JP3784187B2 - Separation and concentration of Ga and In in solution - Google Patents
Separation and concentration of Ga and In in solution Download PDFInfo
- Publication number
- JP3784187B2 JP3784187B2 JP00833999A JP833999A JP3784187B2 JP 3784187 B2 JP3784187 B2 JP 3784187B2 JP 00833999 A JP00833999 A JP 00833999A JP 833999 A JP833999 A JP 833999A JP 3784187 B2 JP3784187 B2 JP 3784187B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- concentrating
- separating
- jarosite
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、Ga,Inを含有する溶液からGa,In、特にGaを分離、濃縮する方法に関する。
【0002】
【従来の技術】
Gaは亜鉛やアルミニウムの製錬副産物として微量得られる金属元素で、化合物半導体に多く使用されている。化合物半導体分野では6N(99,9999%)以上に精製された高純度GaがGaAs,GaP製造に使用され、これらは発光ダイオード、IC、LSIなどに利用されている。一方、InはGa同様、亜鉛やアルミニウムの製錬副産物として微量得られる金属元素で、大部分が液晶の透明電極膜であるITOに使用されている。
【0003】
従来、Ga,Inを含む溶液からGa,Inを選択的に分離、濃縮する方法として、イオン交換法、溶媒抽出法等がある。イオン交換法としては、例えば特開昭59−193230号公報に開示の方法が知られている。この方法は、Ga,Inを微量に含む溶液を適正なpHのもとでキレート性イオン交換樹脂層に通し、Ga,Inを選択的に吸着させ、その後、鉱酸を用いてこれらを溶離するものである。
【0004】
一方、溶媒抽出法としては、有機溶媒にカルボン酸系または燐酸系キレート抽出薬剤を含ませ、これを有機相とし、水相のpHを調整し、前記有機相と激しく接触させることにより、水相中のGa,Inを選択的に有機相中にキレートとして抽出する方法が良く知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記イオン交換法は、回収するGa,Inの量に関係なく樹脂塔等の大掛かりな設備が必要となる。また、鉄、アルミニウム等の不純物が多量に存在する場合は、あらかじめ除いておかないと、樹脂の分離効率が悪くなるだけでなく、樹脂塔の閉塞等の問題が生じる。
【0006】
また、溶媒抽出法においては、反応に必要な有機キレート剤、有機溶媒の使用が多く、これらのランニングコストの他に、安全面から防曝設備が義務づけられており、これがために初期投資として非常にコスト高になる問題点があった。
【0007】
このように、従来のいずれの方法も、今後の事業としては取り組むにはコスト的に困難であり、いかに低コストで微量のGa,Inを回収するかが課題であった。
【0008】
本発明は、上述の背景のもとでなされたものであり、微量のGa,Inを含む溶液から、低コストで効率よくGa,Inを回収することを可能にする溶液中のGa,Inの分離濃縮法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究した結果、湿式亜鉛製錬で亜鉛浸出残渣処理に用いられているジャロサイト法に注目し、Ga,Inを微量含有する溶液からGa,In、特にGaを溶液中からジャロサイトの沈澱に分離、濃縮する条件を見出し、本発明をなすに至ったもので、第1の発明は、
Ga,Inを含有する溶液を、鉄(III)イオン、硫酸イオン、一価の陽イオン存在下で、鉱酸またはアルカリ剤を用いてpHを2〜4に調整する第1工程と、
第1工程で得られた溶液を撹拌しながら液温を70〜150℃まで加熱し、2〜24時間反応させ、ジャロサイトを生成させて、該ジャロサイト粒子とともにGa,Inを共沈させる第2工程と、
第2工程で得られた反応生成物を固液分離して、Ga,Inを含むジャロサイトを回収する第3工程とを有する溶液中のGa,Inの分離濃縮法である。
【0010】
第2の発明は、
第1の発明にかかる溶液中のGa,Inの分離濃縮法において、
前記第2工程において、別途生成させたジャロサイト粒子をパルプ濃度で50〜150g/Lとなるように添加することを特徴とする溶液中のGa,Inの分離濃縮法である。
【0011】
第3の発明は、
第1ないし第3の発明にかかる溶液中のGa,Inの分離濃縮法において、
前記第2工程において、先に第3工程で回収されたGa,Inを含むジャロサイトの少なくとも一部を添加するようにし、第3工程で得られるGa,Inを含むジャロサイト中のGa,Inの含有率が1〜5%になるように、この添加処理を繰り返し行うことを特徴とする溶液中のGa,Inの分離濃縮法である。
【0012】
第4の発明は、
第1ないし第3のいずれかの発明にかかる溶液中のGa,Inの分離濃縮法において、
前記Ga,Inを含有する溶液の鉄(III)イオン濃度を0.2〜5g/Lに、硫酸イオン濃度を0.2g/L以上に、一価の陽イオン濃度を0.01〜0.1モル/Lに調整することを特徴とする溶液中のGa,Inの分離濃縮法である。
【0013】
第5の発明は、
第1ないし第4のいずれかの発明にかかる溶液中のGa,Inの分離濃縮法において、
前記一価の陽イオンが、Na+,K+,NH4 +のいずれか一種以上である事を特徴とする溶液中のGa,Inの分離濃縮法である。
【0014】
【発明の実施の形態】
図1は本発明の一実施の形態にかかる溶液中のGa,Inの分離濃縮法の概略構成を示すフロー図である。以下、図1を参照にしながら本発明の一実施の形態にかかる溶液中のGa,Inの分離濃縮法を説明する。なお、この実施の形態は、Ga,Inを含む溶液として、湿式亜鉛製錬における亜鉛浸出残渣処理工程で得られる溶液を用いる例である。
【0015】
この実施の形態の方法は、(1)Ga,Inを含有する溶液のpHを2〜4に調整する第1工程、(2)第1工程で得られた溶液を反応させてジャロサイト粒子とともにGa,Inを共沈させる第2工程、(3)第2工程で得られた反応生成物を固液分離して、Ga,Inを含むジャロサイトを回収する第3工程とを有する。
【0016】
(1)第1工程(pH調整工程)
この工程は、Ga,Inを含む溶液にアルカリ剤又は鉱酸を加えてpHを2〜4に調整する工程である。ここで、Ga,Inを含む溶液は、例えば、図1に示される湿式亜鉛製錬における亜鉛浸出残渣処理工程の2段中和工程で得られる。すなわち、図1に示されるように、湿式亜鉛製錬における亜鉛浸出残渣処理は、焼鉱に戻り硫酸を加えて亜鉛浸出を行った後の亜鉛浸出残渣に、まず、SO2 と電解尾液とを加えてSO2 浸出を行う。このSO2 浸出処理によって、亜鉛浸出残渣から、Pb、Au、Ag等が残渣として取り除かれる。
【0017】
次に、SO2浸出によってPb、Au、Ag等が取り除かれた液に、炭酸カルシウム(CaCO3)を加えて第一段中和を行う。これにより、石膏が析出して遊離硫酸が取り除かれる。
【0018】
次に、1段中和がなされた液に亜鉛粉末を加えて脱砒素処理を行う。この脱砒素処理の際に、砒化銅パルプが析出される。次に、脱砒素処理が施された後の液に炭酸カルシウムが加えられて2段中和がなされる。この2段中和の際に、石膏、Ga、In等が取り除かれる。本発明は、この2段中和の際に取り除かれたGa、In等を含む2段中和残渣の酸浸出溶液を分離濃縮の対象たる溶液として用いる。なお、2段中和後には、O2 及び蒸気が加えられて脱鉄処理がなされてヘマタイトとして取り除かれ、残りの液は、最初の浸出液に戻されて同様の処理がなされる。
【0019】
この2段中和の際に得られるGa、In等を含む溶液には、通常、鉄(II)イオン、硫酸イオン、一価の陽イオンが含まれている。これらの成分はジャロサイトの構成要素であるが、鉄(II)イオンは空気、酸素あるいは過マンガン酸イオン等の酸化剤により鉄(III)イオンにする必要がある。この発明は、鉄酸化物であるジャロサイトを生成させ、この粒子と共にGa,Inを共沈させるものである。すなわち、一般に、弱酸性の溶液中に存在するGa,Inイオンは、鉄(III)イオンの沈澱物が液中から析出する際に、その沈澱物に取り込まれて液中から分離される事が知られている。この発明は、析出させる鉄(III)イオンの沈澱物として、ジャロサイトを用いることで、Ga,Inが選択的に取り込まれて良好な分離濃縮ができることに着目したものである。
【0020】
まず、溶液中にジャロサイトの構成要素である鉄(III)イオン、硫酸イオンおよびNa+,K+,NH4 +等の一価の陽イオンが所定割合以上含まれていることが必要である。したがって、これらが所定割合含まれるように、必要に応じてそれぞれ補給あるいは酸化する。酸化剤としては空気、酸素あるいは過マンガン酸イオンが適当である。鉄(III)イオン濃度は、溶液で0.2〜5g/Lが好ましい。0.2g/Lより低いと、溶液中に存在するGa,Inイオンの捕集率がGaイオンで60%を割る。一方、5g/Lより多くとも効果は変わらず、いたずらにコストをかけることになる。
【0021】
硫酸イオン濃度は、0.2g/L以上あれば良く、一価の陽イオンについては上記化学式の理論量の5〜10倍にあたる0.01〜0.1モル/Lであればよい。
【0022】
さらに、ジャロサイトの沈澱を生成させるためには、溶液のpHが重要である。溶液のpHは、2〜4が好ましい。pHが4より高い領域ではGa,Inイオン以外のアルミニウム、亜鉛等の不純物も鉄沈澱物と共に沈澱するために、Ga,Inをそれら不純物より分離することはできない。またpHが2より小さいと鉄のみの沈澱物が一部生成し、Ga,Inを共沈させることができない。
【0023】
また、ジャロサイトの生成は、加熱熟成による。すなわち、溶液を激しく撹拌しながら、液温を70〜150℃になるまで加熱する。そして、この状態で2〜24時間、より好ましくは10〜24時間反応、熟成をさせる。この場合の温度が低いとジャロサイトにならず、水酸化鉄(III)が生じ、濾過性の悪化を招く。150℃以上でもジャロサイト以外の鉄沈殿物が生成する。また、液温が70〜100℃であれば常圧加熱が可能なので、装置コストの点でも好ましい。また、反応時間が短いとジャロサイト中へのGaの共沈率が不十分となり、一方、反応時間が24時間を越えてもそれ以上は熟成は進行しない。
【0024】
また、反応槽に、別途生成したジャロサイト粒子をパルプ濃度で50〜150g/L添加すると、より短い反応時間(2〜6時間)でジャロサイトの生成が完了する。このジャロサイトの添加は、処理操作を開始する初回のみあらかじめ別途生成させておいたジャロサイト粒子を添加する。処理操作が開始され、第3工程を経てジャロサイトが回収された以降は、この第3工程で回収されたジャロサイトの一部を戻して添加する。この添加は、第3工程で得られるGa,Inを含むジャロサイト中のGa,Inの含有率それぞれ1〜5%になるように、繰り返し行う。
【0025】
第3工程では、第2工程の反応終了後、シックナー等で固液分離して、液は排水に、Ga,Inを含んだジャロサイトは回収される。回収したジャロサイトは、上記の通りその一部が第2工程に戻されるほかはアルカリ浸出、あるいはSO2 還元浸出工程に回される。
【0026】
(実施例1)
Ga,Inを含有する溶液として、亜鉛製錬の亜鉛浸出残渣処理工程の石膏を浸出し、あらかじめ大部分のInを除いた後の溶液を用いた。主な成分は、Ga 100mg/L,In 100mg/L,不純物としてZn 30g/L、A1 15g/Lであった。
【0027】
この溶液は1g/Lの硫酸酸性であったので、硫酸イオンは加えず、一価の陽イオンであるK+を2.5g/L(0.06モル/L)添加し、鉄(III)イオンを0.2g/Lの場合と4.0g/Lの場合の2種類について添加し、それぞれ撹拌機付き反応槽に挿入した。
【0028】
上記2種の溶液を炭カルでpHを2.7に調整した後、強撹拌し、液温を90℃まで上げ、この状態で24時間反応させた。反応終了後、濾過を行い、沈澱および濾液中のGa,Inと不純物であるアルミニウム、亜鉛について定量し、それぞれについて沈澱率を求めた。結果を図2の表1に示す。
【0029】
(実施例2)
実施例1と同様の溶液を用い、鉄(III)イオンを2g/Lとして、一価の陽イオンであるK+を0.3g/L(0.008モル/L)添加した場合と、3.0g/L(0.08モル/L)添加した場合について、実施例1と同様の操作を行った。それぞれについての沈澱率を、図2の表2に示す。
【0030】
(実施例3)
実施例1と同様の溶液に、鉄(III)イオン0.5g/L、K+ を0.7g/L(0.018モル/L)添加し、撹拌機付き反応槽に挿入した。この溶液を炭カルでpHを2.7に調整した後、別途生成させておいたジャロサイト粒子をパルプ濃度で102g/L添加し、液温を90℃まで上げ、この状態で4時間反応させた。反応終了後、濾過を行い、沈澱および濾液中のGa,Inと不純物であるアルミニウム、亜鉛について定量し、それぞれについて沈澱率を求めた。結果を図2の表3に示す。
【0031】
【発明の効果】
以上詳述したように、本発明は、Ga,Inを含有する溶液を、鉄(III)イオン、硫酸イオン、一価の陽イオン存在下で、鉱酸またはアルカリ剤を用いてpHを2〜4に調整する第1工程と、第1工程で得られた溶液を激しく撹拌しながら液温を70〜150℃まで加熱し、2〜24時間反応させ、ジャロサイトを生成させて、該ジャロサイト粒子とともにGa,Inを共沈させる第2工程と、第2工程で得られた反応生成物を固液分離して、Ga,Inを含むジャロサイトを回収する第3工程とを有する溶液中のGa,Inの分離濃縮法であり、微量のGa,Inを含む溶液から、低コストで効率よくGa,Inを回収することを可能にしたものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる溶液中のGa,Inの分離濃縮法の概略構成を示すフロー図である。
【図2】実施例の沈殿率等をまとめて表にして示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating and concentrating Ga, In, particularly Ga, from a solution containing Ga, In.
[0002]
[Prior art]
Ga is a metal element obtained in a trace amount as a smelting byproduct of zinc and aluminum, and is often used in compound semiconductors. In the compound semiconductor field, high-purity Ga refined to 6N (99,9999%) or more is used for GaAs and GaP production, and these are used for light-emitting diodes, ICs, LSIs, and the like. On the other hand, In, like Ga, is a metal element obtained in a trace amount as a smelting by-product of zinc and aluminum, and most of it is used in ITO which is a transparent electrode film of liquid crystal.
[0003]
Conventional methods for selectively separating and concentrating Ga and In from a solution containing Ga and In include an ion exchange method and a solvent extraction method. As an ion exchange method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 59-193230 is known. In this method, a solution containing a small amount of Ga and In is passed through a chelating ion exchange resin layer under an appropriate pH, and Ga and In are selectively adsorbed, and then these are eluted using a mineral acid. Is.
[0004]
On the other hand, as a solvent extraction method, a carboxylic acid-based or phosphate-based chelate extraction agent is contained in an organic solvent, and this is used as an organic phase, and the pH of the aqueous phase is adjusted, and the aqueous phase is vigorously brought into contact with the organic phase. A method of selectively extracting Ga and In as a chelate in an organic phase is well known.
[0005]
[Problems to be solved by the invention]
However, the ion exchange method requires a large facility such as a resin tower regardless of the amount of Ga and In to be recovered. Further, when a large amount of impurities such as iron and aluminum are present, if not removed in advance, not only the resin separation efficiency is deteriorated, but also problems such as clogging of the resin tower occur.
[0006]
In addition, in the solvent extraction method, organic chelating agents and organic solvents necessary for the reaction are often used, and in addition to these running costs, exposure prevention equipment is obligated for safety reasons. However, there was a problem that the cost was high.
[0007]
Thus, any of the conventional methods is difficult in terms of cost to tackle as a future business, and how to collect a small amount of Ga and In at a low cost is a problem.
[0008]
The present invention has been made under the above-described background, and it is possible to efficiently recover Ga and In at low cost from a solution containing a small amount of Ga and In. An object is to provide a separation and concentration method.
[0009]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have focused on the jarosite method used for zinc leaching residue treatment in wet zinc smelting, and from a solution containing a small amount of Ga, In, Ga, In, The inventors have found a condition for separating and concentrating In, particularly Ga, into a jarosite precipitate from a solution, and have reached the present invention.
A first step of adjusting the pH of the solution containing Ga, In to 2 to 4 using a mineral acid or an alkaline agent in the presence of iron (III) ions, sulfate ions, and monovalent cations;
While stirring the solution obtained in the first step, the liquid temperature is heated to 70 to 150 ° C. and reacted for 2 to 24 hours to generate jarosite and co-precipitate Ga and In together with the jarosite particles. Two steps,
And a third step of recovering jarosite containing Ga and In by solid-liquid separation of the reaction product obtained in the second step, and a method of separating and concentrating Ga and In in a solution.
[0010]
The second invention is
In the method for separating and concentrating Ga and In in the solution according to the first invention,
In the second step, it is a method for separating and concentrating Ga and In in a solution, wherein jarosite particles produced separately are added so that the pulp concentration is 50 to 150 g / L.
[0011]
The third invention is
In the method for separating and concentrating Ga and In in the solutions according to the first to third inventions,
In the second step, at least a part of the jarosite containing Ga and In previously collected in the third step is added, and Ga and In in the jarosite containing Ga and In obtained in the third step. In this method, Ga and In are separated and concentrated in a solution.
[0012]
The fourth invention is:
In the method for separating and concentrating Ga and In in a solution according to any one of the first to third inventions,
The solution containing Ga and In has an iron (III) ion concentration of 0.2-5 g / L, a sulfate ion concentration of 0.2 g / L or more, and a monovalent cation concentration of 0.01-0. It is a method for separating and concentrating Ga and In in a solution characterized by adjusting to 1 mol / L.
[0013]
The fifth invention is:
In the method for separating and concentrating Ga and In in a solution according to any one of the first to fourth inventions,
A method for separating and concentrating Ga and In in a solution, wherein the monovalent cation is at least one of Na + , K + and NH 4 + .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing a schematic configuration of a method for separating and concentrating Ga and In in a solution according to an embodiment of the present invention. Hereinafter, a method for separating and concentrating Ga and In in a solution according to an embodiment of the present invention will be described with reference to FIG. In addition, this embodiment is an example using the solution obtained by the zinc leaching residue processing process in wet zinc smelting as a solution containing Ga and In.
[0015]
In the method of this embodiment, (1) the first step of adjusting the pH of the solution containing Ga, In to 2 to 4, (2) the solution obtained in the first step is reacted to form the jarosite particles. A second step of co-precipitation of Ga and In, and (3) a third step of recovering jarosite containing Ga and In by solid-liquid separation of the reaction product obtained in the second step.
[0016]
(1) 1st process (pH adjustment process)
This step is a step of adjusting the pH to 2 to 4 by adding an alkali agent or a mineral acid to a solution containing Ga and In. Here, the solution containing Ga and In is obtained, for example, in a two-step neutralization step of the zinc leaching residue treatment step in the wet zinc smelting shown in FIG. That is, as shown in FIG. 1, the zinc leach residue processing in wet zinc smelting, zinc leach residue after the zinc leaching by adding sulfuric acid to return to burn ore, firstly, the SO 2 and the electrolyte tail solution To perform SO 2 leaching. By this SO 2 leaching treatment, Pb, Au, Ag, etc. are removed as residues from the zinc leaching residue.
[0017]
Next, first stage neutralization is performed by adding calcium carbonate (CaCO 3 ) to the liquid from which Pb, Au, Ag, and the like have been removed by SO 2 leaching. Thereby, gypsum precipitates and free sulfuric acid is removed.
[0018]
Next, a zinc powder is added to the liquid that has been neutralized by one stage to perform a dearsenic treatment. During this dearsenic treatment, copper arsenide pulp is deposited. Next, calcium carbonate is added to the liquid after the dearsenic treatment, and two-stage neutralization is performed. In the two-stage neutralization, gypsum, Ga, In and the like are removed. In the present invention, the acid leaching solution of the two-stage neutralization residue containing Ga, In and the like removed during the two-stage neutralization is used as a solution to be separated and concentrated. After the two-stage neutralization, O2 and steam are added to remove iron to remove it as hematite, and the remaining liquid is returned to the initial leachate and subjected to the same treatment.
[0019]
The solution containing Ga, In and the like obtained during the two-step neutralization usually contains iron (II) ions, sulfate ions, and monovalent cations. Although these components are constituent elements of jarosite, iron (II) ions must be converted to iron (III) ions by an oxidizing agent such as air, oxygen or permanganate ions. In the present invention, jarosite, which is an iron oxide, is generated, and Ga and In are coprecipitated with the particles. That is, generally, Ga and In ions present in a weakly acidic solution may be taken into the precipitate and separated from the liquid when the precipitate of iron (III) ions is precipitated from the liquid. Are known. This invention pays attention to the fact that Ga and In are selectively taken in and good separation and concentration can be achieved by using jarosite as the precipitate of iron (III) ions to be precipitated.
[0020]
First, it is necessary that a monovalent cation such as iron (III) ion, sulfate ion and Na + , K + , NH 4 + which are constituent elements of jarosite is contained in a predetermined ratio or more in the solution. . Accordingly, replenishment or oxidation is performed as necessary so that these are included in a predetermined ratio. As the oxidizing agent, air, oxygen or permanganate ions are suitable. The iron (III) ion concentration is preferably 0.2 to 5 g / L in solution. When it is lower than 0.2 g / L, the collection rate of Ga and In ions existing in the solution is less than 60% by Ga ions. On the other hand, even if it exceeds 5 g / L, the effect does not change, and the cost is increased.
[0021]
The sulfate ion concentration may be 0.2 g / L or more, and the monovalent cation may be 0.01 to 0.1 mol / L corresponding to 5 to 10 times the theoretical amount of the above chemical formula.
[0022]
Furthermore, the pH of the solution is important in order to produce jarosite precipitates. The pH of the solution is preferably 2-4. In the region where the pH is higher than 4, impurities such as aluminum and zinc other than Ga and In ions are precipitated together with the iron precipitate, so that Ga and In cannot be separated from these impurities. On the other hand, if the pH is less than 2, a part of iron-only precipitate is generated, and Ga and In cannot be co-precipitated.
[0023]
The formation of jarosite is due to heat aging. That is, the solution temperature is heated to 70 to 150 ° C. while vigorously stirring the solution. In this state, the reaction and aging are performed for 2 to 24 hours, more preferably for 10 to 24 hours. If the temperature in this case is low, jarosite will not be formed, and iron (III) hydroxide will be produced, leading to deterioration of filterability. Even at 150 ° C. or higher, iron precipitates other than jarosite are generated. Moreover, since normal pressure heating is possible if liquid temperature is 70-100 degreeC, it is preferable also at the point of apparatus cost. Moreover, when the reaction time is short, the coprecipitation rate of Ga into jarosite becomes insufficient. On the other hand, even if the reaction time exceeds 24 hours, the aging does not proceed any further.
[0024]
Moreover, when the jarosite particle | grains produced | generated separately in the reaction tank are added by 50-150 g / L by pulp concentration, the production | generation of jarosite will be completed in a shorter reaction time (2-6 hours). In the addition of jarosite, jarosite particles that are separately generated in advance are added only for the first time when the processing operation is started. After the processing operation is started and jarosite is recovered through the third step, a part of the jarosite recovered in the third step is returned and added. This addition is repeated so that the Ga and In contents in the jarosite containing Ga and In obtained in the third step are 1 to 5%, respectively.
[0025]
In the third step, after completion of the reaction in the second step, solid-liquid separation is performed with a thickener or the like, and the liquid is drained, and jarosite containing Ga and In is recovered. The recovered jarosite is partly returned to the second step as described above, and sent to the alkali leaching or SO2 reduction leaching step.
[0026]
Example 1
As a solution containing Ga and In, gypsum in the zinc leaching residue treatment step of zinc smelting was leached, and a solution after removing most of In beforehand was used. The main components were Ga 100 mg / L, In 100 mg / L, Zn 30 g / L as impurities, and A1 15 g / L.
[0027]
Since this solution was 1 g / L of sulfuric acid acid, 2.5 g / L (0.06 mol / L) of monovalent cation K + was added without adding sulfate ion, and iron (III) Ions were added in two cases, 0.2 g / L and 4.0 g / L, and each was inserted into a reactor equipped with a stirrer.
[0028]
The above two solutions were adjusted to pH 2.7 with charcoal cal and then stirred vigorously to raise the liquid temperature to 90 ° C. and reacted in this state for 24 hours. After completion of the reaction, filtration was performed, and precipitation, Ga, In, and impurities such as aluminum and zinc were quantified, and a precipitation rate was determined for each. The results are shown in Table 1 in FIG.
[0029]
(Example 2)
When the same solution as in Example 1 was used, the iron (III) ion was set to 2 g / L, and a monovalent cation, K +, was added at 0.3 g / L (0.008 mol / L); The same operation as Example 1 was performed about the case where 0.0 g / L (0.08 mol / L) was added. The precipitation rate for each is shown in Table 2 of FIG.
[0030]
Example 3
To the same solution as in Example 1, 0.5 g / L of iron (III) ions and 0.7 g / L (0.018 mol / L) of K + were added and inserted into a reaction vessel equipped with a stirrer. After adjusting the pH of this solution to 2.7 with charcoal, add 102 g / L of jarosite particles, which had been separately produced, at a pulp concentration, raise the liquid temperature to 90 ° C., and react for 4 hours in this state. It was. After completion of the reaction, filtration was performed, and precipitation, Ga, In, and impurities such as aluminum and zinc were quantified, and a precipitation rate was determined for each. The results are shown in Table 3 in FIG.
[0031]
【The invention's effect】
As described in detail above, in the present invention, a solution containing Ga and In is adjusted to a pH of 2 to 2 using a mineral acid or an alkaline agent in the presence of iron (III) ions, sulfate ions and monovalent cations. The first step adjusted to 4 and the solution obtained in the first step is heated to 70 to 150 ° C. while vigorously stirring and reacted for 2 to 24 hours to form jarosite. In a solution having a second step of co-precipitation of Ga and In together with particles, and a third step of recovering jarosite containing Ga and In by solid-liquid separation of the reaction product obtained in the second step This is a method for separating and concentrating Ga and In, and enables Ga and In to be efficiently recovered from a solution containing a small amount of Ga and In at a low cost.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a schematic configuration of a method for separating and concentrating Ga and In in a solution according to an embodiment of the present invention.
FIG. 2 is a table summarizing precipitation rates and the like of examples.
Claims (5)
第1工程で得られた溶液を撹拌しながら液温を70〜150℃まで加熱し、2〜24時間反応させ、ジャロサイトを生成させて、該ジャロサイト粒子とともにGa,Inを共沈させる第2工程と、
第2工程で得られた反応生成物を固液分離して、Ga,Inを含むジャロサイトを回収する第3工程とを有する溶液中のGa,Inの分離濃縮法。A first step of adjusting the pH of the solution containing Ga, In to 2 to 4 using a mineral acid or an alkaline agent in the presence of iron (III) ions, sulfate ions, and monovalent cations;
While stirring the solution obtained in the first step, the liquid temperature is heated to 70 to 150 ° C. and reacted for 2 to 24 hours to generate jarosite and co-precipitate Ga and In together with the jarosite particles. Two steps,
A method for separating and concentrating Ga and In in a solution, comprising solid-liquid separation of the reaction product obtained in the second step and recovering jarosite containing Ga and In.
前記第2工程において、別途生成させたジャロサイト粒子をパルプ濃度で50〜150g/Lとなるように添加することを特徴とする溶液中のGa,Inの分離濃縮法。In the method for separating and concentrating Ga and In in the solution according to claim 1,
Separating and concentrating Ga and In in a solution, wherein in the second step, jarosite particles produced separately are added so that the pulp concentration is 50 to 150 g / L.
前記第2工程において、先に第3工程で回収されたGa,Inを含むジャロサイトの少なくとも一部を添加するようにし、第3工程で得られるGa,Inを含むジャロサイト中のGa,Inの含有率が1〜5%になるように、この添加処理を繰り返し行うことを特徴とする溶液中のGa,Inの分離濃縮法。In the method for separating and concentrating Ga and In in the solution according to claim 1 or 2,
In the second step, at least a part of the jarosite containing Ga and In previously collected in the third step is added, and Ga and In in the jarosite containing Ga and In obtained in the third step. A method for separating and concentrating Ga and In in a solution, wherein the addition treatment is repeated so that the content of 1 is 5%.
前記Ga,Inを含有する溶液の鉄(III)イオン濃度を0.2〜5g/Lに、硫酸イオン濃度を0.2g/L以上に、一価の陽イオン濃度を0.01〜0.1モル/Lに調整することを特徴とする溶液中のGa,Inの分離濃縮法。In the method for separating and concentrating Ga and In in the solution according to any one of claims 1 to 3,
The solution containing Ga and In has an iron (III) ion concentration of 0.2-5 g / L, a sulfate ion concentration of 0.2 g / L or more, and a monovalent cation concentration of 0.01-0. A method for separating and concentrating Ga and In in a solution, wherein the concentration is adjusted to 1 mol / L.
前記一価の陽イオンが、Na+,K+,NH4 +のいずれか一種以上である事を特徴とする溶液中のGa,Inの分離濃縮法。In the method for separating and concentrating Ga and In in the solution according to any one of claims 1 to 4,
A method for separating and concentrating Ga and In in a solution, wherein the monovalent cation is at least one of Na + , K + and NH 4 + .
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00833999A JP3784187B2 (en) | 1999-01-14 | 1999-01-14 | Separation and concentration of Ga and In in solution |
US09/481,506 US6319483B1 (en) | 1999-01-14 | 2000-01-12 | Gallium and/or indium separation and concentration method |
AT00100678T ATE250146T1 (en) | 1999-01-14 | 2000-01-13 | SEPARATION AND CONCENTRATION PROCESS FOR OBTAINING GALLIUM AND INDIUM FROM SOLUTIONS USING JAROSITE PRECIPITATION |
DE2000605226 DE60005226T2 (en) | 1999-01-14 | 2000-01-13 | Separation and concentration processes for the extraction of gallium and indium from solutions by means of jarosite precipitation |
EP20000100678 EP1020537B1 (en) | 1999-01-14 | 2000-01-13 | Separation and concentration method for recovering gallium and indium from solutions by jarosite precipitation |
NO20000204A NO322699B1 (en) | 1999-01-14 | 2000-01-14 | Process for separating and concentrating gallium and optionally indium from other components |
AU11356/00A AU756317B2 (en) | 1999-01-14 | 2000-01-14 | Separation and concentration method |
CA 2295468 CA2295468C (en) | 1999-01-14 | 2000-01-14 | Separation and concentration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00833999A JP3784187B2 (en) | 1999-01-14 | 1999-01-14 | Separation and concentration of Ga and In in solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000204423A JP2000204423A (en) | 2000-07-25 |
JP3784187B2 true JP3784187B2 (en) | 2006-06-07 |
Family
ID=11690455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00833999A Expired - Lifetime JP3784187B2 (en) | 1999-01-14 | 1999-01-14 | Separation and concentration of Ga and In in solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3784187B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI118226B (en) * | 2005-12-29 | 2007-08-31 | Outokumpu Technology Oyj | A method for recovering rare metals in a zinc leaching process |
JP4961603B2 (en) * | 2006-07-14 | 2012-06-27 | Dowaメタルマイン株式会社 | Method for treating gallium-containing solution |
-
1999
- 1999-01-14 JP JP00833999A patent/JP3784187B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000204423A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3756687B2 (en) | Method for removing and fixing arsenic from arsenic-containing solutions | |
US9670565B2 (en) | Systems and methods for the hydrometallurgical recovery of lead from spent lead-acid batteries and the preparation of lead oxide for use in new lead-acid batteries | |
JP6336469B2 (en) | Method for producing scandium-containing solid material with high scandium content | |
CN102517455A (en) | Method for recovering cadmium from copper cadmium residues | |
WO2020196046A1 (en) | Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt | |
JP6077624B2 (en) | Method for treating zinc sulfate containing solution | |
JP2008081784A (en) | Electrolyzed sediment copper treatment method | |
AU756317B2 (en) | Separation and concentration method | |
WO2018101039A1 (en) | Ion exchange processing method, and scandium recovery method | |
CN105274352B (en) | A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate | |
US8282903B2 (en) | Method for recovering nitric acid and purifying silver nitrate electrolyte | |
US4094753A (en) | Recovery of gallium from gallium compounds | |
JPS6221728B2 (en) | ||
JP4801372B2 (en) | Method for removing manganese from cobalt sulfate solution | |
CA1172456A (en) | Hydrometallurgical process for the recovery of valuable metals from metallic alloys | |
JP3784187B2 (en) | Separation and concentration of Ga and In in solution | |
JP3806258B2 (en) | Ga, In solvent extraction method | |
JP3810963B2 (en) | Method for separating and concentrating Ga | |
JPH08209259A (en) | Method for separating and recovering platinum group from plantinum group-containing iron alloy | |
JP3386516B2 (en) | Method for preventing the formation of alkali-based double salts with jarosite and ammonium | |
KR101763549B1 (en) | Method and arrangement of separating arsenic from starting materials | |
JP3799488B2 (en) | Method for purifying Ga-containing solution | |
JP2002030355A (en) | Wet type treating method for zinc leaching residue | |
JP4961603B2 (en) | Method for treating gallium-containing solution | |
WO2023017590A1 (en) | Method for recovering cobalt and nickel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |