JP3806258B2 - Ga, In solvent extraction method - Google Patents

Ga, In solvent extraction method Download PDF

Info

Publication number
JP3806258B2
JP3806258B2 JP1323399A JP1323399A JP3806258B2 JP 3806258 B2 JP3806258 B2 JP 3806258B2 JP 1323399 A JP1323399 A JP 1323399A JP 1323399 A JP1323399 A JP 1323399A JP 3806258 B2 JP3806258 B2 JP 3806258B2
Authority
JP
Japan
Prior art keywords
extraction
solvent
solution
organic phase
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1323399A
Other languages
Japanese (ja)
Other versions
JP2000212658A (en
Inventor
理人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP1323399A priority Critical patent/JP3806258B2/en
Publication of JP2000212658A publication Critical patent/JP2000212658A/en
Application granted granted Critical
Publication of JP3806258B2 publication Critical patent/JP3806258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ga,Inを含有する被抽出溶液に抽出用有機溶媒を加えてGa,Inを有機相に抽出して分離するGa,Inの溶媒抽出方法に関する。
【0002】
【従来の技術】
Gaは亜鉛やアルミニウムの製錬副産物として微量得られる金属元素で、化合物半導体に多く使用されている。化合物半導体分野では6N(99.9999%)以上に精製された高純度GaがGaAs,GaP製造に使用され、これらは発光ダイオード、IC、LSIなどに利用されている。一方、InはGa同様、亜鉛やアルミニウムの製錬副産物として微量得られる金属元素で、大部分が液晶の透明電極膜であるITOに使用されている。
【0003】
従来、Ga,Inを含む溶液(被抽出溶液)からGa,Inを選択的に分離、濃縮する方法として、溶媒抽出法がある。その原理は、有機溶剤としてカルボン酸系または燐酸系キレート抽出薬剤を加え、これを有機相とし、前記被抽出溶液の水相のpHを調整し、前記有機相と十分に接触させることにより、水相中のGa,Inを選択的に有機相中にキレート化合物として抽出することである。この際、Ga,In等の抽出反応が進むと有機相のキレート剤のプロトン(H)が抽出元素であるGa,In等に置換され、水相に放出される。そのため水相のpHが低下してくるため、抽出反応を継続させるには接触反応時にアルカリ剤を添加することで水相のpHを調整する必要がある。
【0004】
有機相に抽出されたGa,In等は次工程において高濃度の酸を含む水溶液との接触により、ストリップされ、回収工程に送られる。一方、高濃度の酸と接触した有機相はGa,In等のイオンを離すと同時にプロトンを得て、再度抽出工程に戻され循環利用される。
【0005】
【発明が解決しようとする課題】
しかしながら、前記方法では溶媒抽出時、水相のpHを維持するためアルカリ剤の添加が必要であるが、添加されたアルカリ剤によって瞬間的にまたは局所的にpHが非常に高くなり、鉄、亜鉛およびアルミニウム等の不純物が有機相に移行してしまう割合が高く、次工程でのこれらの分離が必要で手間とコストがかかった。
【0006】
本発明は、上述の背景のもとでなされたものであり、鉄、亜鉛およびアルミニウム等の不純物の有機相への移行を押さえながら、Ga,Inを効率よく抽出することができるGa,Inの溶媒抽出方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の課題を解決するために、本発明者らが鋭意研究した結果、Ga,In等の抽出時に水相のpHの低下を抑えるには、プロトンが水相中に放出されないようにすることが必要であること、また、そのためには、あらかじめ有機相中に含有させたキレート剤のプロトンをアルカリ土類金属元素で置換しておくことが必要であることが解明された。本発明は、この解明結果に基づいてなされたものであり、第1の発明は、
Ga,Inを含有する被抽出溶液に抽出用有機溶媒を加えてGa,Inを有機相に抽出して分離するにおいて、
前記被抽出溶液は、そのpHが2.4〜3.6に調整されたものであり、
前記抽出用有機溶媒は、有機溶剤にキレート剤が加えられ、さらに、このキレート剤のプロトンの一部がアルカリ土類元素で置換された有機相を有するものであり、
前記被抽出溶液と前記抽出用有機溶媒とを混合することによって前記被抽出溶液中のGa,Inを有機相中に抽出することを特徴とするGa,Inの溶媒抽出方法である。
【0008】
第2の発明は、
第1の発明にかかるGa,Inの溶媒抽出方法において、
前記被抽出溶液と前記抽出用有機溶媒との混合工程は、両液の温度を70℃以下に維持し、撹拌または振とうする処理を行うものであることを特徴とするGa,Inの溶媒抽出方法である。
【0009】
第3の発明は、
第1又は第2の発明にかかるGa,Inの溶媒抽出方法において、
前記有機相のキレート剤のプロトンとアルカリ土類元素を置換する方法が、キレート剤を含む有機相に、アルカリ土類元素水酸化物のパルプを加えることであることを特徴とするGa,Inの溶媒抽出方法である。
【0010】
第4の発明は、
第1ないし第3のいずれかの発明にかかるGa,Inの溶媒抽出方法において、
前記有機相のキレート剤のプロトンと置換するアルカリ土類元素がカルシウムであり、その置換方法が、キレート剤を含む有機相に90〜110g/Lの消石灰パルプを有機相の容量に対して0.5〜2.5容量%を加えることであることを特徴とするGa,Inの溶媒抽出方法である。
【0011】
第5の発明は、
第1ないし第4のいずれかの発明にかかるGa,Inの溶媒抽出方法において、
前記キレート剤がカルボン酸系の抽出試薬であることを特徴とするGa,Inの溶媒抽出方法である。
【0012】
第6の発明は、第1ないし第5の発明のいずれかの発明に係るGa,Inの溶媒抽出方法において、前記抽出操作における抽出用有機溶媒/被抽出溶液を、容量比で0.5〜l.5とし、当該抽出用有機溶媒中に抽出されたGa,Inを、5〜12Nの塩酸による逆抽出工程でストリップして濃縮することを特徴とするGa,Inの溶媒抽出方法である。
【0013】
【発明の実施の形態】
図1は本発明の一実施の形態にかかるGa,Inの溶媒抽出方法の概略構成を示すフロー図である。以下、図1を参照にしながら本発明の一実施の形態にかかるGa,Inの溶媒抽出方法を説明する。なお、この実施の形態は、Ga,Inを含む溶液である被抽出溶液として、湿式亜鉛製錬における亜鉛浸出残渣処理工程で得られる溶液を用いる例である。
【0014】
この実施の形態の方法は、(1)Ga,Inを含む溶液である被抽出溶液を得る工程、(2)被抽出溶液のpHを調整する工程、(3)有機溶媒を得る工程、(4)被抽出液と有機溶媒とを混合する工程、(5)有機相を分離して取り出す工程、(6)有機相からGa,Inを分離する工程(逆抽出)とを有する。
【0015】
(1)被抽出溶液を得る工程
Ga,Inを含む溶液である被抽出溶液は、図1に示される湿式亜鉛製錬における亜鉛浸出残渣処理工程の2段中和工程で得られる。すなわち、図1に示されるように、湿式亜鉛製錬における亜鉛浸出残渣処理は、焼鉱に戻り硫酸を加えて亜鉛浸出を行った後の亜鉛浸出残渣に、まず、SO2 と電解尾液とを加えてSO2 浸出を行う。このSO2 浸出処理によって、亜鉛浸出残渣から、Pb、Au、Ag等が残渣として取り除かれる。
【0016】
次に、SO2 浸出によってPb、Au、Ag等が取り除かれた液に、炭酸カルシウム(CaCO3 )を加えて第一段中和を行う。これにより、石膏が析出して遊離硫酸が取り除かれる。
【0017】
次に、1段中和がなされた液に亜鉛粉末を加えて脱砒素処理を行う。この脱砒素処理の際に、砒化銅パルプが析出される。次に、脱砒素処理が施された後の液に炭酸カルシウムが加えられて2段中和がなされる。この2段中和の際に、石膏、Ga、In等が取り除かれる。本発明は、この2段中和の際に取り除かれるGa、In等を含む2段中和残渣の酸浸出溶液を被抽出溶液として用いる。なお、2段中和後には、O2 及び蒸気が加えられて脱鉄処理がなされてヘマタイトとして取り除かれ、残りの液は、最初の浸出液に戻されて同様の処理がなされる。
【0018】
(2)被抽出溶液のpHを調整する工程
この工程は、被抽出溶液にアルカリ剤又は鉱酸を加えて被抽出溶液のpHを調整する工程である。特にキレート系の溶媒抽出を行う際、溶液のpHは非常に大きな影響を抽出に与える。pHが2.4〜3.6が好ましい。カルボン酸系キレート試薬でGa,Inイオンを同時に抽出する場合は、pHが2.4を下回ると、Ga,Inイオンともに抽出率が80%未満であり、pHが3.6を超えるとGaイオンの抽出率が80%を割り始め、かつ亜鉛、鉄、アルミニウム等の不純物イオンが多く抽出されてしまう。Ga,In両イオンの抽出率を85〜95%とし、不純物イオンを最低に抑える好ましいpH範囲は2.6〜3.2である。従って溶液中のpHが2.4〜3.6外の場合は鉱酸あるいはアルカリ剤を用いてこのpH範囲に調整する。
【0019】
(3)抽出用有機溶媒を得る工程
上記被抽出溶液を得る工程と平行して、有機溶媒を得る工程が行なわれる。抽出用有機溶媒(抽出用有機相)は、キレート剤の一種であるカルボン酸系の抽出試薬(R一COOH)をケロシン等の有機溶剤を用いて容量で30〜50%に希釈したものを用いる。抽出試薬が30%未満ではGa,Inの抽出率が落ち、50%より多い場合でもGa,Inの抽出率は変わらないので経済的ではない。またキレート抽出剤として燐酸系を用いることもできる。
【0020】
次に、上記キレート剤のプロトンの一部をアルカリ土類金属元素で置換する。この処理操作は、上記有機相に90〜110g/Lのアルカリ土類水酸化物パルプを有機相容量に対して0.5〜2.5容量%添加し、緩やかに撹拌する事で行う。この操作で有機相中のキレート剤のプロトンはアルカリ土類元素に置換される。添加するアルカリ土類水酸化物としては消石灰が操作性、コストの面で最適である。添加された消石灰パルプ(90〜110g/L)は速やかに有機溶媒に溶解され、透明な溶液となる。混合当初は消石灰がイオン化してないので白濁しているが、消石灰中のカルシウムが有機溶媒中のキレートに置換されることによって濁りがなくなる。
【0021】
(4)被抽出液と有機溶媒とを混合する工程
pH調整された被抽出溶液と前記調製した抽出用有機溶媒とを、有機相/水相比、が容量比で0.5〜1.5となるようにそれぞれの液を撹拌機付き反応槽に給液し、70℃以下で15分以上激しく撹拌する。有機相/水相比が容量比で0.5より小さい場合には溶液中にアルミニウム等不純物が多量に含まれていると有機相に抽出され、有機溶媒の粘度があがり抽出効率が低下する。逆にl.5を超えるとかなり不純物成分の多い溶液についても抽出可能であるが分離濃縮という点で経済的ではない。さらに好ましくは、0.9〜1.0がよい。また、混合時の温度は、70℃以下が好ましい。70℃を超えると、Inの抽出効率が極端に低下し、30%を割ることもある。
【0022】
(5)有機相を分離して取り出す工程
撹拌抽出後、有機相と水相を分離するためにセットラーにて静置する。この際、溶液が硫酸酸性の場合は石膏(CaSO4 ・2H2 0)が発生し、セットラー下部に蓄積する。連続操業をするためにはセットラーの抜き出し部はコーン状にし、セットラーヘの石膏の蓄積を防止する。
【0023】
(6)有機相からGa,Inを分離する工程(逆抽出)
有機相中に抽出されたGa,Inは次工程の強酸による逆抽出工程でストリップされる。強酸としては5〜12N塩酸が一般的でその量としては有機相の容量の30分の1程度で行う。従ってこの塩酸溶液中のGa,In濃度は処理前の溶液の20〜60倍濃縮されたことになる。又、濃塩酸と接触した有機相はプロトンを得て、再度抽出工程に戻され循環利用される。
【0024】
(実施例)
被抽出溶液として、亜鉛製錬の亜鉛浸出残査処理工程における2段中和処理によって得られた溶液から石膏を浸出し、あらかじめ大部分のInを除いた後の溶液を用いた。この被抽出溶液の主な成分は、Ga 100m g/L,In 200m g/L,不純物として、Fe 15g/L、Zn 30g/L、A115g/Lであった。この溶液は硫酸酸性であったので、炭カル添加でpHを3.4とした。
【0025】
抽出用有機溶液としては、抽出用有機相としてカルボン酸系の抽出試薬バーサチック10(シェル化学株式会社の商品名)を用い、これを灯油系の有機溶剤であるケロシンで容量で50%に希釈したものを用いた。この抽出用有機溶液に消石灰を水で100g/L程度のパルプにしたものを容量で有機相の2%加え、バーサチックのプロトンをカルシウムイオンに置換した。添加された消石灰パルプ(100g/L)は速やかに有機溶媒に溶解され、透明な溶液となった。
【0026】
次に、上記pHを3.4に調整した被抽出溶液と前記調製した有機溶媒とを有機相/水相比が容量比1.0となるようにそれぞれの液を1リットルの撹拌機(プロペラ式)付き反応槽に給液し、40℃で30分間、撹拌速度300rpmで撹拌した。撹拌抽出後、有機相と水相を分離するためにセットラーにて静置した。この際、溶液が硫酸酸性であったので石膏(CaSO4 ・2H2 0)が発生し、セットラー下部に蓄積した。セットラ一の抜き出し部をコーン状とし、逐次セットラーから石膏を抜き出した。抽出終了時、水相のpHを測定したところ3.3で抽出前とほぼ変わらなかった。
【0027】
次に、上記分離した有機相を9N塩酸を用いたで逆抽出工程でストリップした。用いた9N塩酸容量は、有機相容量の30分の1程度としたので、Ga,Inの濃縮度は処理前の溶液の30倍になる。なお、プロトンを得た有機相は、再度抽出工程に戻し循環利用した。
【0028】
以上得られた結果から、抽出対象成分であるGa,Inの抽出率(回収率)と同時に混入した不純物であるFe,Zn,A1の抽出率を算出した結果を本発明法として図2の表1に示す。
【0029】
(比較例)
この比較例は、消石灰によるプロトンーカルシウムの置換を行わなかった点を除き、上記実施例1とほとんど同じ工程により、抽出操作を行った。すなわち、被抽出溶液を実施例1と同じものを使用し、被抽出溶液のpH調整も実施例の操作と同様に行い3.4に調整した。有機相の調製はバーサチックーケロシンまで実施例1と同様で、pHを3.4に調整した溶液と前記調製した有機溶媒を有機相/水相比が容量比1.0となるようにそれぞれの液を1リットルの撹拌機(プロペラ式)付き反応槽に給液し、40℃で30分間,撹拌速度300rpmで撹拌した。この問、pHが下がらないように撹拌抽出中に、NaOH溶液の添加を行い、pH3.4を維持した。以下実施例と同操作を行い、その結果を従来法として表1に示した。
【0030】
実施例と比較例とを比較すると、Ga,Inの回収率についてはほとんど差はなく、Gaが実施例85%に対して比較例が84%、Inが実施例92%に対して比較例が91%であった。しかしながら、不純物の混入については、アルミニウムで、比較例12%に対して実施例が4%,鉄で、比較例11%に対して実施例が2%,同様に、亜鉛についても、比較例8%に対して実施例2%と、比較例に対して実施例は有機相の不純物の混入を押さえることができた。
【0031】
【発明の効果】
以上詳述したように、本発明は、Ga,Inを含有する被抽出溶液に抽出用有機溶媒を加えてGa,Inを有機相に抽出して分離するGa,Inの溶媒抽出方法において、前記被抽出溶液は、そのpHが2.4〜3.6に調整されたものであり、前記抽出用有機溶媒は、有機溶剤にキレート剤が加えられ、さらに、このキレート剤のプロトンの一部がアルカリ土類元素で置換された有機相を有するものであり、 前記被抽出溶液と前記抽出用有機溶媒とを混合することによって前記被抽出溶液中のGa,Inを有機相中に抽出することを特徴とする。これにより、鉄、亜鉛およびアルミニウム等の不純物の有機相への移行を押さえながら、Ga,Inを効率よく抽出することができるGa,Inの溶媒抽出方法を得ている。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるGa,Inの溶媒抽出方法の概略構成を示すフロー図である。
【図2】実施例1及び比較例1の回収率をまとめて表にして比較して示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ga, In solvent extraction method in which an extraction organic solvent is added to a solution to be extracted containing Ga, In to extract and separate Ga and In into an organic phase.
[0002]
[Prior art]
Ga is a metal element obtained in a trace amount as a smelting byproduct of zinc and aluminum, and is often used in compound semiconductors. In the compound semiconductor field, high-purity Ga purified to 6N (99.9999%) or more is used for GaAs and GaP production, and these are used for light-emitting diodes, ICs, LSIs, and the like. On the other hand, In, like Ga, is a metal element obtained in a trace amount as a smelting by-product of zinc and aluminum, and most of it is used in ITO which is a transparent electrode film of liquid crystal.
[0003]
Conventionally, there is a solvent extraction method as a method for selectively separating and concentrating Ga and In from a solution containing Ga and In (solution to be extracted). The principle is that a carboxylic acid-based or phosphoric acid-based chelate extraction agent is added as an organic solvent, this is used as an organic phase, the pH of the aqueous phase of the solution to be extracted is adjusted, and the water is sufficiently brought into contact with the organic phase. This is to selectively extract Ga and In in the phase into the organic phase as a chelate compound. At this time, when the extraction reaction of Ga, In, etc. proceeds, protons (H + ) of the chelating agent in the organic phase are replaced with Ga, In, etc., which are extraction elements, and released into the aqueous phase. Therefore, since the pH of the aqueous phase is lowered, it is necessary to adjust the pH of the aqueous phase by adding an alkaline agent during the contact reaction in order to continue the extraction reaction.
[0004]
Ga, In and the like extracted in the organic phase are stripped by contact with an aqueous solution containing a high concentration acid in the next step and sent to the recovery step. On the other hand, the organic phase that has been in contact with the high-concentration acid releases protons such as Ga and In, and at the same time obtains protons, and is returned to the extraction process and recycled.
[0005]
[Problems to be solved by the invention]
However, in the above method, it is necessary to add an alkaline agent in order to maintain the pH of the aqueous phase at the time of solvent extraction, but the pH becomes very high instantaneously or locally by the added alkaline agent, and iron, zinc In addition, the rate at which impurities such as aluminum migrate to the organic phase is high, and it is necessary to separate them in the next step, which takes time and cost.
[0006]
The present invention has been made under the above-mentioned background, and is capable of efficiently extracting Ga and In while suppressing the transition of impurities such as iron, zinc and aluminum to the organic phase. An object is to provide a solvent extraction method.
[0007]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, in order to suppress a decrease in pH of the aqueous phase during extraction of Ga, In, etc., it is necessary to prevent protons from being released into the aqueous phase. It has been clarified that this is necessary, and for that purpose, it is necessary to replace the proton of the chelating agent previously contained in the organic phase with an alkaline earth metal element. The present invention has been made based on the results of this elucidation.
In extracting and separating Ga and In into an organic phase by adding an extraction organic solvent to an extraction solution containing Ga and In,
The to-be-extracted solution has its pH adjusted to 2.4-3.6,
The organic solvent for extraction has an organic phase in which a chelating agent is added to the organic solvent, and a part of protons of the chelating agent is substituted with an alkaline earth element,
The Ga and In solvent extraction method is characterized in that Ga and In in the extraction solution are extracted into an organic phase by mixing the extraction solution and the organic solvent for extraction.
[0008]
The second invention is
In the Ga, In solvent extraction method according to the first invention,
Ga and In solvent extraction characterized in that the mixing step of the solution to be extracted and the organic solvent for extraction performs a process of stirring or shaking while maintaining the temperature of both solutions at 70 ° C. or lower. Is the method.
[0009]
The third invention is
In the Ga or In solvent extraction method according to the first or second invention,
The method for replacing protons and alkaline earth elements of the chelating agent in the organic phase is to add pulp of alkaline earth element hydroxide to the organic phase containing the chelating agent. Solvent extraction method.
[0010]
The fourth invention is:
In the Ga, In solvent extraction method according to any one of the first to third inventions,
The alkaline earth element that replaces the proton of the chelating agent in the organic phase is calcium, and the substitution method is performed by adding 90 to 110 g / L of slaked lime pulp to the organic phase containing the chelating agent in an amount of 0. The solvent extraction method for Ga and In is characterized by adding 5 to 2.5% by volume.
[0011]
The fifth invention is:
In the Ga, In solvent extraction method according to any one of the first to fourth inventions,
It is a Ga, In solvent extraction method, wherein the chelating agent is a carboxylic acid-based extraction reagent.
[0012]
According to a sixth invention, in the Ga, In solvent extraction method according to any one of the first to fifth inventions, the extraction organic solvent / extracted solution in the extraction operation is 0.5 to l. The Ga and In solvent extraction method is characterized in that Ga and In extracted in the organic solvent for extraction are stripped and concentrated in a back extraction step with 5 to 12N hydrochloric acid.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing a schematic configuration of a Ga, In solvent extraction method according to an embodiment of the present invention. Hereinafter, a Ga, In solvent extraction method according to an embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which a solution obtained in a zinc leaching residue treatment step in wet zinc smelting is used as a solution to be extracted which is a solution containing Ga and In.
[0014]
The method of this embodiment includes (1) a step of obtaining an extraction solution that is a solution containing Ga, In, (2) a step of adjusting the pH of the extraction solution, (3) a step of obtaining an organic solvent, (4 ) A step of mixing the liquid to be extracted and an organic solvent, (5) a step of separating and taking out the organic phase, and (6) a step of separating Ga and In from the organic phase (back extraction).
[0015]
(1) Step of obtaining solution to be extracted The solution to be extracted, which is a solution containing Ga and In, is obtained in the two-step neutralization step of the zinc leaching residue treatment step in wet zinc smelting shown in FIG. That is, as shown in FIG. 1, the zinc leach residue processing in wet zinc smelting, zinc leach residue after the zinc leaching by adding sulfuric acid to return to burn ore, firstly, the SO 2 and the electrolyte tail solution To perform SO 2 leaching. By this SO 2 leaching treatment, Pb, Au, Ag, etc. are removed as residues from the zinc leaching residue.
[0016]
Next, first stage neutralization is performed by adding calcium carbonate (CaCO 3 ) to the liquid from which Pb, Au, Ag and the like have been removed by SO 2 leaching. Thereby, gypsum precipitates and free sulfuric acid is removed.
[0017]
Next, a zinc powder is added to the liquid that has been neutralized by one stage to perform a dearsenic treatment. During this dearsenic treatment, copper arsenide pulp is deposited. Next, calcium carbonate is added to the liquid after the dearsenic treatment, and two-stage neutralization is performed. In the two-stage neutralization, gypsum, Ga, In and the like are removed. In the present invention, an acid leaching solution of a two-stage neutralization residue containing Ga, In and the like removed during the two-stage neutralization is used as an extraction solution. After the two-stage neutralization, O 2 and steam are added to remove iron to remove it as hematite, and the remaining liquid is returned to the first leachate and subjected to the same treatment.
[0018]
(2) Step of adjusting the pH of the solution to be extracted This step is a step of adjusting the pH of the solution to be extracted by adding an alkaline agent or mineral acid to the solution to be extracted. In particular, when performing chelate-based solvent extraction, the pH of the solution has a very large influence on the extraction. The pH is preferably 2.4 to 3.6. When Ga and In ions are simultaneously extracted with a carboxylic acid chelating reagent, if the pH is less than 2.4, the extraction rate of both Ga and In ions is less than 80%, and if the pH exceeds 3.6, Ga ions are extracted. The extraction rate starts to be less than 80%, and many impurity ions such as zinc, iron, and aluminum are extracted. A preferable pH range in which the extraction rate of both Ga and In ions is 85 to 95% and impurity ions are minimized is 2.6 to 3.2. Therefore, when the pH in the solution is outside 2.4 to 3.6, the pH is adjusted to this pH range using a mineral acid or an alkali agent.
[0019]
(3) Step of obtaining organic solvent for extraction A step of obtaining an organic solvent is performed in parallel with the step of obtaining the solution to be extracted. As the organic solvent for extraction (organic phase for extraction), a carboxylic acid type extraction reagent (R-COOH), which is a kind of chelating agent, is diluted to 30 to 50% by volume with an organic solvent such as kerosene. . If the extraction reagent is less than 30%, the extraction rate of Ga and In decreases, and if it is more than 50%, the extraction rate of Ga and In does not change, which is not economical. Moreover, a phosphoric acid type can also be used as a chelate extractant.
[0020]
Next, a part of protons of the chelating agent is replaced with an alkaline earth metal element. This treatment operation is performed by adding 90 to 110 g / L of alkaline earth hydroxide pulp to the organic phase in an amount of 0.5 to 2.5% by volume based on the volume of the organic phase and gently stirring. By this operation, protons of the chelating agent in the organic phase are replaced with alkaline earth elements. As the alkaline earth hydroxide to be added, slaked lime is optimal in terms of operability and cost. The added slaked lime pulp (90 to 110 g / L) is quickly dissolved in an organic solvent to become a transparent solution. Since slaked lime is not ionized at the beginning of mixing, it is cloudy. However, turbidity is eliminated by replacing calcium in slaked lime with chelate in an organic solvent.
[0021]
(4) Step of mixing the solution to be extracted and the organic solvent The pH-adjusted solution to be extracted and the prepared organic solvent for extraction have an organic phase / water phase ratio of 0.5 to 1.5 in volume ratio. Then, each solution is fed into a reaction tank equipped with a stirrer and stirred vigorously at 70 ° C. or lower for 15 minutes or longer. When the organic phase / aqueous phase ratio is smaller than 0.5 by volume, if the solution contains a large amount of impurities such as aluminum, it is extracted into the organic phase, the viscosity of the organic solvent increases, and the extraction efficiency decreases. Conversely, l. If it exceeds 5, it is possible to extract a solution having a large amount of impurity components, but it is not economical in terms of separation and concentration. More preferably, 0.9-1.0 is good. The temperature during mixing is preferably 70 ° C. or lower. If it exceeds 70 ° C., the extraction efficiency of In is extremely reduced, and may be 30%.
[0022]
(5) Step of separating and taking out the organic phase After stirring and extraction, the organic phase and the aqueous phase are allowed to stand with a setter in order to separate them. At this time, if the solution is sulfuric acid acid, gypsum (CaSO 4 .2H 2 0) is generated and accumulated in the lower part of the setler. In order to perform continuous operation, the extraction part of the setler should be shaped like a cone to prevent the plaster from accumulating on the setler.
[0023]
(6) Step of separating Ga and In from the organic phase (back extraction)
Ga and In extracted in the organic phase are stripped in the back extraction step with a strong acid in the next step. As the strong acid, 5-12N hydrochloric acid is generally used, and the amount is about 1/30 of the capacity of the organic phase. Therefore, the Ga and In concentrations in this hydrochloric acid solution are concentrated 20 to 60 times that of the solution before the treatment. In addition, the organic phase that has come into contact with concentrated hydrochloric acid obtains protons, and is returned to the extraction step for recycling.
[0024]
(Example)
As the solution to be extracted, a solution obtained by leaching gypsum from the solution obtained by the two-step neutralization treatment in the zinc leaching residue treatment process of zinc smelting and removing most of In beforehand was used. Main components of this solution to be extracted were Ga 100 mg / L, In 200 mg / L, and impurities were Fe 15 g / L, Zn 30 g / L, and A 115 g / L. Since this solution was acidic with sulfuric acid, the pH was adjusted to 3.4 by adding charcoal calcium.
[0025]
As an organic solution for extraction, a carboxylic acid-based extraction reagent Versatic 10 (trade name of Shell Chemical Co., Ltd.) was used as an organic phase for extraction, and this was diluted to 50% by volume with kerosene, a kerosene-based organic solvent. A thing was used. 2% of the organic phase was added to the organic solution for extraction with pulp of about 100 g / L slaked lime with water to replace the versatic protons with calcium ions. The added slaked lime pulp (100 g / L) was quickly dissolved in an organic solvent to become a transparent solution.
[0026]
Next, the solution to be extracted whose pH is adjusted to 3.4 and the prepared organic solvent are mixed with a 1 liter stirrer (propeller) so that the organic phase / water phase ratio is 1.0. The solution was fed to a reaction vessel equipped with a formula) and stirred at 40 ° C. for 30 minutes at a stirring speed of 300 rpm. After stirring and extracting, the mixture was allowed to stand with a setter in order to separate the organic phase and the aqueous phase. At this time, since the solution was acidic with sulfuric acid, gypsum (CaSO 4 .2H 2 0) was generated and accumulated in the lower part of the setler. The extraction part of the setler was made into a cone shape, and the gypsum was sequentially extracted from the setler. At the end of the extraction, the pH of the aqueous phase was measured and was almost the same as before extraction at 3.3.
[0027]
Next, the separated organic phase was stripped in a back extraction step using 9N hydrochloric acid. Since the 9N hydrochloric acid capacity used was about 1/30 of the organic phase capacity, the concentration of Ga and In was 30 times that of the solution before treatment. The organic phase from which protons were obtained was recycled back to the extraction step.
[0028]
From the results obtained above, the results of calculating the extraction rates of impurities Fe, Zn, and A1 mixed at the same time as the extraction rate (recovery rate) of Ga and In that are the extraction target components are shown in FIG. It is shown in 1.
[0029]
(Comparative example)
In this comparative example, the extraction operation was performed by almost the same steps as in Example 1 except that the substitution of proton-calcium with slaked lime was not performed. That is, the same extraction solution as in Example 1 was used, and the pH of the extraction solution was adjusted to 3.4 by performing the same adjustment as in the operation of the example. The organic phase was prepared in the same manner as in Example 1 up to versatic kerosene, and the solution prepared by adjusting the pH to 3.4 and the prepared organic solvent were adjusted so that the organic phase / water phase ratio was 1.0. The solution was fed into a 1 liter reactor equipped with a stirrer (propeller type), and stirred at 40 ° C. for 30 minutes at a stirring speed of 300 rpm. During this stirring extraction, NaOH solution was added to maintain the pH of 3.4 so that the pH did not drop. Thereafter, the same operation as in the Examples was performed, and the results are shown in Table 1 as a conventional method.
[0030]
When the Examples and Comparative Examples are compared, there is almost no difference in the recovery rates of Ga and In. Ga is 85% of the Comparative Example with 84% of the Comparative Example, and In is the Comparative Example with the Comparative Example of 92%. It was 91%. However, with regard to the mixing of impurities, aluminum was 4% in the example compared to 12% of the comparative example, iron was 2% in the example of 11% of the comparative example, and similarly zinc was also in the comparative example 8 Example 2 was able to suppress contamination of impurities in the organic phase compared to Example 2% with respect to%.
[0031]
【The invention's effect】
As described in detail above, the present invention provides a solvent extraction method for Ga and In, in which an extraction organic solvent is added to a solution to be extracted containing Ga and In, and Ga and In are extracted and separated into an organic phase. The extraction solution has a pH adjusted to 2.4 to 3.6, and the organic solvent for extraction is obtained by adding a chelating agent to the organic solvent, and further, a part of protons of the chelating agent is added. And having an organic phase substituted with an alkaline earth element, and extracting Ga and In in the solution to be extracted into the organic phase by mixing the solution to be extracted and the organic solvent for extraction. Features. Thereby, the solvent extraction method of Ga and In is obtained that can efficiently extract Ga and In while suppressing the migration of impurities such as iron, zinc, and aluminum to the organic phase.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a schematic configuration of a Ga, In solvent extraction method according to an embodiment of the present invention.
FIG. 2 is a table showing the recovery rates of Example 1 and Comparative Example 1 in a table and compared.

Claims (6)

Ga,Inを含有する被抽出溶液に抽出用有機溶媒を加えてGa,Inを有機相に抽出して分離するGa,Inの溶媒抽出方法において、前記被抽出溶液は、そのpHが2.4〜3.6に調整されたものであり、前記抽出用有機溶媒は、有機溶剤にキレート剤が加えられ、さらに、このキレート剤のプロトンの一部がアルカリ土類元素で置換された有機相を有するものであり、前記被抽出溶液と前記抽出用有機溶媒とを混合することによって前記被抽出溶液中のGa,Inを有機相中に抽出することを特徴とするGa,Inの溶媒抽出方法。 In the Ga, In solvent extraction method in which an organic solvent for extraction is added to an extraction solution containing Ga and In to extract and separate Ga and In into an organic phase, the extraction solution has a pH of 2.4. The organic solvent for extraction is an organic phase in which a chelating agent is added to the organic solvent, and a part of protons of the chelating agent is substituted with an alkaline earth element. A Ga and In solvent extraction method comprising: extracting the Ga and In in the extraction solution into an organic phase by mixing the extraction solution and the organic solvent for extraction. 請求項1に記載のGa,Inの溶媒抽出方法において、前記被抽出溶液と前記抽出用有機溶媒との混合工程は、両液の温度を70℃以下に維持し、撹拌または振とうする処理を行うものであることを特徴とするGa,Inの溶媒抽出方法。 2. The Ga and In solvent extraction method according to claim 1, wherein the step of mixing the solution to be extracted and the organic solvent for extraction is performed by maintaining the temperature of both solutions at 70 ° C. or lower and stirring or shaking. A solvent extraction method for Ga and In, which is performed. 請求項1又は2に記載のGa,Inの溶媒抽出方法において、前記有機相のキレート剤のプロトンとアルカリ土類元素を置換する方法が、キレート剤を含む有機相に、アルカリ土類元素水酸化物のパルプを加えることであることを特徴とするGa,Inの溶媒抽出方法。 3. The Ga, In solvent extraction method according to claim 1 or 2, wherein the organic phase chelating agent proton and alkaline earth element are replaced by alkaline earth element hydroxylation in the organic phase containing the chelating agent. A method for extracting Ga and In solvents, comprising adding a pulp of a product. 請求項1ないし3のいずれかに記載のGa,Inの溶媒抽出方法において、前記有機相のキレート剤のプロトンと置換するアルカリ土類元素がカルシウムであり、その置換方法が、キレート剤を含む有機相に90〜110g/Lの消石灰パルプを有機相の容量に対して0.5〜2.5容量%を加えることであることを特徴とするGa,Inの溶媒抽出方法。 4. The Ga, In solvent extraction method according to claim 1, wherein the alkaline earth element that substitutes the proton of the chelating agent in the organic phase is calcium, and the substitution method is an organic containing a chelating agent. A Ga and In solvent extraction method characterized by adding 0.5 to 2.5% by volume of 90 to 110 g / L of slaked lime pulp to the phase with respect to the volume of the organic phase. 請求項1ないし4のいずれかに記載のGa,Inの溶媒抽出方法において、前記キレート剤がカルボン酸系および/または燐酸系の抽出試薬であることを特徴とするGa,Inの溶媒抽出方法。 The Ga, In solvent extraction method according to any one of claims 1 to 4, wherein the chelating agent is a carboxylic acid-based and / or phosphoric acid-based extraction reagent. 請求項1ないし5のいずれかに記載のGa,Inの溶媒抽出方法において、
前記抽出操作における抽出用有機溶媒/被抽出溶液を、容量比で0.5〜l.5とし、
当該抽出用有機溶媒中に抽出されたGa,Inを、5〜12Nの塩酸による逆抽出工程でストリップして濃縮することを特徴とするGa,Inの溶媒抽出方法。
In the Ga, In solvent extraction method according to any one of claims 1 to 5,
In the extraction operation, the organic solvent for extraction / the solution to be extracted is 0.5 to 1 by volume ratio. 5 and
A Ga, In solvent extraction method comprising stripping and concentrating Ga, In extracted in the extraction organic solvent in a back extraction step with 5-12 N hydrochloric acid.
JP1323399A 1999-01-21 1999-01-21 Ga, In solvent extraction method Expired - Fee Related JP3806258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323399A JP3806258B2 (en) 1999-01-21 1999-01-21 Ga, In solvent extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323399A JP3806258B2 (en) 1999-01-21 1999-01-21 Ga, In solvent extraction method

Publications (2)

Publication Number Publication Date
JP2000212658A JP2000212658A (en) 2000-08-02
JP3806258B2 true JP3806258B2 (en) 2006-08-09

Family

ID=11827480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323399A Expired - Fee Related JP3806258B2 (en) 1999-01-21 1999-01-21 Ga, In solvent extraction method

Country Status (1)

Country Link
JP (1) JP3806258B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006497A1 (en) 2004-07-09 2006-01-19 Aquatech Corporation Indium adsorbing agent and method for separating indium
JP5367862B2 (en) 2012-03-13 2013-12-11 国立大学法人九州大学 Scandium extractant and method for extracting scandium using the extractant
JP5442080B2 (en) 2012-08-20 2014-03-12 国立大学法人九州大学 Valuable metal separation method
JP5398885B1 (en) 2012-08-20 2014-01-29 国立大学法人九州大学 Gallium extraction method
JP5420033B1 (en) 2012-08-20 2014-02-19 国立大学法人九州大学 Indium extractant and method for extracting indium using the extractant
JP5734268B2 (en) 2012-12-12 2015-06-17 国立大学法人九州大学 Nickel extraction method
JP5595554B1 (en) 2013-03-18 2014-09-24 国立大学法人九州大学 Method for separating impurities from an acidic solution containing nickel, cobalt and / or scandium
JP5940688B1 (en) 2015-01-20 2016-06-29 国立大学法人九州大学 Zirconium extractant and zirconium extraction method

Also Published As

Publication number Publication date
JP2000212658A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
KR101484954B1 (en) Process for the production of high purity phosphoric acid
EP2949626B1 (en) Method for producing high-purity nickel sulfate and method for removing impurity element of magnesium from solution containing nickel
CN110358923B (en) Method for extracting indium and recycling zinc oxide smoke dust by using zinc oxide smoke dust
CN109319818B (en) Method for preparing 5N-grade strontium chloride
CN109264758B (en) Method for preparing 6N-grade strontium chloride
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
JP2008081784A (en) Electrolyzed sediment copper treatment method
JP3806258B2 (en) Ga, In solvent extraction method
CN109319819B (en) Process for preparing 6N-grade strontium nitrate
CN105925797B (en) A kind of method and system for decomposing white tungsten fine ore
JPWO2016031699A1 (en) Scandium separation method
JP5867710B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
CN110494576B (en) Lithium recovery method
US4094753A (en) Recovery of gallium from gallium compounds
EP1020537A1 (en) Separation and concentration method for recovering gallium and indium from solutions by jarosite precipitation
JP2010138490A (en) Method of recovering zinc
CN106755994A (en) A kind of production method for comprehensively utilizing zinc cobalt raw material high
CN109292807B (en) Method for preparing 5N-grade strontium nitrate
CN105567986B (en) A kind of method for reclaiming gallium germanium from zinc dust precipitation gallium germanium slag with resin
KR101481366B1 (en) Selective recovery method of silver and tin in the anode slime
JP3810963B2 (en) Method for separating and concentrating Ga
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
CN111573762B (en) Method for treating deplating waste liquid of printed circuit board
JP2008106348A (en) Method of separating and recovering zinc
JP3799488B2 (en) Method for purifying Ga-containing solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees