JP3783834B2 - 赤外線検知素子の製造方法 - Google Patents

赤外線検知素子の製造方法 Download PDF

Info

Publication number
JP3783834B2
JP3783834B2 JP2000125709A JP2000125709A JP3783834B2 JP 3783834 B2 JP3783834 B2 JP 3783834B2 JP 2000125709 A JP2000125709 A JP 2000125709A JP 2000125709 A JP2000125709 A JP 2000125709A JP 3783834 B2 JP3783834 B2 JP 3783834B2
Authority
JP
Japan
Prior art keywords
thin film
infrared
temperature
oxide thin
infrared detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000125709A
Other languages
English (en)
Other versions
JP2001303236A (ja
Inventor
弘子 樋熊
章志 宮下
英興 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000125709A priority Critical patent/JP3783834B2/ja
Priority to US09/765,384 priority patent/US20010050221A1/en
Publication of JP2001303236A publication Critical patent/JP2001303236A/ja
Application granted granted Critical
Publication of JP3783834B2 publication Critical patent/JP3783834B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thermistors And Varistors (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線検知素子の製造方法に関し、特に赤外線検知素子を複数個2次元上に並べて2次元画像センサとして利用することを目的としており、さらに詳しくは赤外線の入射光を吸収することにより温度変化し、その温度変化によって抵抗値が変化する材料を用いて赤外線の放射強度の信号を読み出す方式の非冷却赤外線検知素子の製造方法に関するものである。
【0002】
【従来の技術】
赤外線検出器としては、ボロメーター方式などの熱型検出器と量子(フォトン)型検出器がある。量子(フォトン)型検出器は、ダーク電流に起因したノイズを低下させるために液体窒素温度近くまで冷却しなければ、検出感度を高められない。一方、ボロメーター方式の赤外線検出器は素子の冷却が不要であり、コストの低減、機器の簡素化および小型化、携帯用途において大変有利である。
【0003】
ボロメーター方式の赤外線検出器は、入射した赤外線を受光部が吸収することにより受光部の温度を変化させ、この受光部に配置した材料の温度変化による抵抗値変化から該赤外線の放射強度を電気信号として検出するものである。したがって、抵抗変化の温度依存性(抵抗温度係数:TCR)が大きいほど、検出感度が高くなる。ボロメーター方式で非冷却赤外線検出器に用いられている、すなわち室温で赤外線を吸収して温度変化することで抵抗値が変化するボロメーター薄膜としては、従来、半導体材料であるSi、Ge、V23薄膜が用いられていた。しかしながら、SiのTCRは、1.5%/deg.程度と小さく、また比較的感度の高V23薄膜の場合にも室温におけるTCRは、2.0%/deg.程度である。
【0004】
さらに、最近、TCRの高い材料として、La1-xSrxMnO3(0<x<1)というペロブスカイト型Mn酸化物をボロメーター膜として用いた赤外線センサが報告されている。La1-xSrxMnO3のTCRは、0℃以下では3.0%/deg.を越え、室温では2.5%/deg.程度である。この技術に関しては、特開平10−163510に記載されている。
【0005】
また、本発明の発明者らは、室温でのTCRが高いBi1-xxMn13(0≦x<1、Aは希土類もしくはアルカリ土類から選択された1種以上の金属)というペロブスカイト型Mn酸化物を用いた赤外線センサをすでに提案している。室温でのBi1-xxMn13を主成分とする薄膜のTCRは、3.0%/deg.以上4.0%/deg.以下のものが得られている。この技術に関しては、特開平10−307324に記載されている。このようにペロブスカイト型Mn酸化物の中でも特にBi1-xxMn13は室温でのTCRが高いため高感度の赤外線検知素子を得る上で大変有効な材料である。
【0006】
【発明が解決しようとする課題】
非冷却赤外線検知素子の高感度化を実現するには、ボロメーター用薄膜の性能向上が必要であり、室温でのTCRが2.5%/deg.以上、望ましくは3.0%/deg.以上に向上させる必要がある。上述したように、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)は室温でのTCRが高いため、ボロメーター用薄膜として有望であるが、汎用的で量産性に優れたBi1-xxMn13を主成分とする薄膜の製造方法がなかった。
【0007】
一方、赤外線検知素子においては、熱酸化しやすい卑金属もしくは化合物または低融点金属などが配線および電極部分に用いられ、それらが読み出し回路としてSi基板に埋設されており、さらにボロメーター用薄膜は、Si基板上の空隙部を介して設けられたSiO2層である構造体上に形成される。したがって、配線および電極が、熱酸化もしくは、溶融しない温度よりも低い基板温度、即ち、500℃以下の基板温度にてボロメーター用薄膜を形成しなければならない。
【0008】
本発明は、このような問題点を解消する為になされたもので、抵抗温度係数が高い薄膜材料による赤外線検知素子が500℃未満、望ましくは450℃以下の低い基板温度で製造でき、高感度のボロメーター方式による赤外線検知素子の量産を可能とする製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明による赤外線検知素子の製造方法に於いては、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とするボロメーター用薄膜を用いた赤外線検知素子の製造するために、100℃以上500℃未満の基板温度にて、酸素もしくはオゾンを含有するガス雰囲気中でスパッタリングにより金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜を形成する工程と、上記酸化物薄膜に酸素もしくはオゾンを含有するガスの雰囲気中で熱処理を施して上記酸化物薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減する工程とを備えることを特徴としている。
【0010】
また、上記酸化物薄膜が、Si基板上に空隙部を介して設けられたSiO2層である構造体上もしくはその上に積層された電気絶縁体層上に積層されることを特徴とするものである。
【0011】
また、上記酸化物薄膜に施こす熱処理が、赤外線もしくはレーザー照射により行われることを特徴とするものである。
【0012】
また、上記酸化物薄膜に施こす熱処理が、上記酸化物薄膜を380℃〜450℃の温度で10分〜15分間保持する工程を含むことを特徴とするものである。
【0013】
更に、上記赤外線検知回路で動作できる上記酸化物薄膜の体積抵抗率のレベルが、3.0Ωcm以上であることを特徴とするものである。
【0014】
このように、本発明の赤外線検知素子の製造方法によれば、100℃以上500℃未満の基板温度にて、酸素もしくはオゾンを含有するガス雰囲気中でスパッタリングにより金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜を形成する工程、および形成された金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜に酸素もしくはオゾンを含有するガスの雰囲気中で熱処理を施して薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減する工程により、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜をボロメーターとして機能させるするものである。
【0015】
また、本発明の赤外線検知素子の製造方法においては、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜は、Si基板上に空隙部を介して設けられたSiO2層である構造体上もしくは、Si基板上に空隙部を介して設けられたSiO2層である構造体上に積層された電気絶縁体層上にさらに積層されており、温度により抵抗値が変化するボロメーターとして用いられる。また、電気絶縁体層をSiO2層上に設けることで、Bi1-xxMn13の結晶化が促進して、基板温度を低減しようとするものである。
【0016】
また、本発明の赤外線検知素子の製造方法によれば、金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜に、酸素もしくはオゾンを含有するガスの雰囲気中で赤外線もしくはレーザー照射による熱処理を施こすことで、薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減して、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜をボロメーターとして機能させるものである。
【0017】
本発明は、温度により抵抗値が変化する薄膜の主成分が、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)であり、この薄膜は、室温付近の温度範囲では、半導体的電気伝導性を示し、かつ高い抵抗温度係数を有している。この半導体領域での高い抵抗温度係数を有する前記Bi1-xxMn13薄膜が赤外線を検知するボロメーターであり、これを受光部に配備することで、赤外線検出素子を高感度化しようとするものである。
【0018】
さらに、受光部を複数個シリコン基板上に2次元的に配置することで、高感度の2次元画像センサを得ることができる。
【0019】
【発明の実施の形態】
実施の形態1.
図1は本発明の1実施の形態に関する赤外線検知素子の断面説明図である。赤外線検知素子の受光部1は、シリコン基板2の上に、SiO2層によるブリッジ構造体4によって熱絶縁のために空隙部6を形成した。SiO2層は、プラズマCVDにより形成した。さらに、SiO2層のブリッジ構造体4の支持脚を伝って基板2までPtの配線3を配した。SiO2層および一部のPtの配線の上に、ボロメーター用薄膜5を配備した。赤外線の検知回路は、受光部1が赤外線を吸収することで温度変化によりボロメーター用薄膜5の抵抗値が変わり、この抵抗値変化をボロメーター用薄膜5の下部にある配線3の両端からバイアス電圧を印加して検出するようになっている。
【0020】
本発明の実施の形態1では、ボロメーター用薄膜の主成分は、Bi1-xxMn13の表記において、AがLaおよびSr、およびx=0.4である。即ちBi0.6Sr0.3La0.1MnO3とした。Bi0.6Sr0.3La0.1MnO3薄膜は、酸素100%のガスを導入し、ガス圧を0.5Paに調整したチャンバー内にて基板温度を430℃に保持し、スパッタリングにより金属成分の比がBi:Sr:La:Mn=0.6:0.3:0.1である酸化物薄膜を形成した後、ガス圧を高めて3Paに保持した状態で430℃で15分間温度保持した後、室温まで約10℃/min.で冷却することにより作製した。ボロメーター用薄膜を形成した後、受光部1の最外層に、酸化シリコンによる保護膜7をコーティングした。
【0021】
図2は、本発明の1実施の形態に関する赤外線検知素子の斜視図である。この図において保護膜7は記載していない。ブリッジ構造の支持脚8は受光部1の断熱性を高めるために、細長い構造となっている。受光部は、パターニングされている。本実施例に示された赤外線検知素子およびその周辺部の構成および形状は、本発明の1形態であって、本発明が実施の形態1に限定されるものではない。
【0022】
電気抵抗の測定は、図3に示した測定治具を用いて行った。この図において前記赤外線検知素子であるシリコン基板2を台板9にアロンアルファ(登録商標)で接着し、電極パッド10と素子とをワイヤボンド11で接続し、電極パッド10に電流リード13を接続して通電試験を行った。また、台板9に温度センサ12を素子と同様にアロンアルファで接着し、固定した。さらに、30℃で3.5Vとなるように電流値を調整し、定電流を通電し直流2端子法で電気抵抗の測定を行った。Bi0.6Sr0.3La0.1MnO3薄膜の抵抗温度係数の測定は測定治具を恒温槽に入れ、各温度での抵抗の測定値から計算により求めた。抵抗温度係数と温度との相関を図4に示す。図4から明らかな通り、30℃における体積抵抗率は3.0Ωcmであり、また30℃以下において3.0%/K以上の高い抵抗温度係数が得られた。
【0023】
実施の形態2.
図5は本発明の1実施の形態に関する赤外線検知素子の断面説明図である。赤外線検知素子の受光部1は、シリコン基板2の上に、酸化シリコン層によるブリッジ構造体4によって熱絶縁体ギャップ6が形成されている。そのブリッジ構造体4はSiO2層上にYSZの電気絶縁層が積層されている2層構造となっている。ブリッジ構造体4が2層になっていることの他は、実施の形態1と全く同じ構成になっている。
【0024】
SiO2層は、実施の形態1と同様にプラズマCVDにより形成した。YSZの電気絶縁層は、電子ビーム蒸着法により形成した。ボロメーター用薄膜の主成分は、実施の形態1と同じBi0.6Sr0.3La0.1MnO3とした。Bi0.6Sr0.3La0.1MnO3薄膜の製造方法は、410℃の基板温度でスパッタリングしたこと、およびスパッタリングの後、410℃の基板温度で15分間温度保持したこと以外は、実施の形態1と同じである。
【0025】
電気抵抗の測定および抵抗温度係数の算出は、実施の形態1と同様に行った。実施の形態1および実施の形態2の抵抗温度係数と温度との相関を図4に示す。実施の形態1では、30℃における抵抗率が3.0Ωcmであり、図4より、実施の形態1では30℃以下において3.0%/K以上の高い抵抗温度係数が得られた。また、実施の形態2では、図4から明らかなように、30℃以下において抵抗温度係数が3.0%/K以上となり、実施の形態1と同様に高い抵抗温度係数が得られた。尚、30℃における体積抵抗率は、実施の形態1では、3.0Ωcmであり、実施の形態2では、1.6Ωcmとなった。実施の形態1および実施の形態2において、ボロメーター用薄膜の組成は同一のBi0.6Sr0.3La0.1MnO3であるが、実施の形態2では、実施の形態1よりも20℃低い温度で合成されたにも関わらず体積抵抗率が低かった。X線回折により両者の薄膜の結晶性を調べたところ、YSZ上に形成された実施の形態2の方が回折ピークの強度が高く、結晶性が高められていることがわかった。以上より、実施の形態1および2のボロメーター薄膜は、500℃以下の基板温度でのスパッタリングおよび熱処理により合成でき、しかも30℃以下において3.0%/K以上の高い抵抗温度係数を有すると共に、赤外線検知回路で動作できるレベルの体積抵抗率を有していることがわかった。
【0026】
実施の形態2の電気絶縁層の具体例として、YSZについて述べたが、MgO、Al23、Y23、CeO2、HfO2などでも同様に良好な結果が得られた。ただし、本発明がこれらの材料に限定されるものではない。
【0027】
実施の形態3.
本発明の実施の形態3のボロメーター用薄膜5の主成分は、Bi1-xxMn13の表記において、AがSr、およびx=0.4である。即ちBi0.6Sr0.4La0.1MnO3である。初めに、金属成分の比がBi:Sr:Mn=0.6:0.4:0.1である酸化物薄膜を酸化シリコン層上にスパッタリングにより形成した。スパッタ条件は、ガス圧は0.8Paに統一し、ガスの種類および基板加熱温度を変化させた。ガス(A)はオゾン100%、ガス(B)は酸素100%、ガス(C)はオゾン40%とアルゴン60%の混合ガス、ガス(D)は酸素40%とアルゴン60%の混合ガスであり、ガス(E)は比較としてアルゴン100%とした。
【0028】
金属成分の比がBi:Sr:Mn=0.6:0.4:1である酸化物薄膜をスパッタリングで形成した後、冷却前にスパッタ時と同じ温度でガス圧を4Paとし て10分間保持した後、室温まで約10℃/min.で徐冷し、本発明によるボロメーター用薄膜(A)から(D)および比較例による膜(E)を得た。また、比較例(F)として、ガス(A)を用いて、金属成分の比がBi:Sr:Mn=0.6:0.4:1である酸化物薄膜をスパッタリングで形成した後、すぐに室温まで約10℃/min.で徐冷したもの、および、比較例(G)として、ガス(D) を用いて、Bi:Sr:Mn=0.6:0.4:1である薄膜をスパッタリングで形成した後、すぐに室温まで約1℃/min.で徐冷したものについても作製した。
【0029】
上述した種々の条件で作製した本発明によるボロメーター用薄膜および比較例の膜の表面の導電性をテスターでチェックした。この結果を表1に示す。表1において素子抵抗が2MΩ以下で、テスターチェックで導電性を示したものを○印で、また2MΩを越えてテスターチェックで導電性を示さないものを×印で、電極が剥離して測定不能のものは−で示した。
【0030】
【表1】
Figure 0003783834
【0031】
表1から明らかなように、酸素もしくはオゾンを含有するガスを用いてスパッタリングにより形成し、且つ酸素もしくはオゾンを含有するガス雰囲気中で熱処理して作製された本発明によるボロメーター用薄膜は、基板温度が450℃以下で導電性を示した。酸素もしくはオゾンを含有するガスを用いなかった膜(E)は、導電性を示さなかった。酸素もしくはオゾンを含有するガスを用いてスパッタリングにより形成した後、酸素もしくはオゾンを含有するガス雰囲気中で熱処理を施さなかった膜(F)もしくは(G)は、導電性が得られない、もしくは、500℃以上で導電性の薄膜が得られた。尚、基板温度450℃における本発明によるボロメーター用薄膜(A)から(D)の30℃における電気抵抗を測定したところ、(A)は体積抵抗率が1.0Ωcm、抵抗温度係数3.0%/K、(B)は体積抵抗率が2.0Ωcm、抵抗温度係数3.2%/K、(C)は体積抵抗率が3.0Ωcm、抵抗温度係数3.4%/K、および(D)は体積抵抗率が4.0Ωcm、抵抗温度係数3.6%/Kという良好な値が得られた。
【0032】
金属成分の比がBi:Sr:Mn=0.6:0.4:1である酸化物薄膜をスパッタリングで形成した後、酸素もしくはオゾンを含有するガス雰囲気中で熱処理を施す時間は、温度との兼ね合いで決まり、5分でも導電性の膜が得られるようになる。しかし、安定に合成するには基板温度をできる限り低くくするため、このような低温化の限界に近い温度では、熱処理時間は10分以上が望ましい。
【0033】
実施の形態4.
実施の形態4では赤外線検出素子の構成は、実施の形態1とボロメーター用薄膜の主成分が異なっている点以外は全く同じである。実施の形態4のボロメーター用薄膜の主成分は、Bi1-xxMn13の表記においてAがLaおよびSr、およびx=0.4である。即ちBi0.333Sr0.333La0.333MnO3 である。金属成分の比がBi:Sr:La:Mn=0.333:0.333:0.333である酸化物薄膜を実施の形態1と全く同じ条件でのスパッタリングおよび熱処理により作製した。しかし、得られた金属成分の比がBi:Sr:La:Mn=0.333:0.333:0.333である薄膜酸化物薄膜の抵抗はテスターの測定限界をこえる程高く、赤外線検出素子に適用できないことがわかった。X線回折により薄膜の結晶構造を調べたところ、ペロブスカイト構造になっていないことが判明した。そこで、金属成分の比がBi:Sr:La:Mn=0.333:0.333:0.333である酸化物薄膜を実施の形態1と同じスパッタ条件で形成した後、基板温度を500℃まで高め、酸素ガス、3Paの雰囲気中で5分保持した後、ヒーターへの通電を止めたところ、400℃までに冷却されるまで、20分を要した。400℃以下は、ヒーター制御で約10℃/min.で徐冷した。この薄膜の表面をテスターでチェックすると100KΩを示し、体積抵抗率はボロメーター用薄膜として十分機能しうるレベルとなっているようであったが、電極部材の一部が配線部材と共に剥離しているのが見られた。このような剥離は、配線部材の酸化により起きたと考えられる。
【0034】
次に、金属成分の比がBi:Sr:La:Mn=0.333:0.333:0.333である酸化物薄膜を実施の形態1と同じスパッタ条件で形成し、すぐに約10℃/min.で徐冷して取り出した膜に、基板温度を430℃とし、酸素のガス圧を3Paとした雰囲気中で図6の赤外線ランプによる熱処理装置を用いて、熱処理を施した。
【0035】
図6は、赤外線ランプ加熱による熱処理装置の構成を示す図である。図において、赤外線ランプ15の発生する赤外線が、赤外線透過窓16を通過し、抵抗加熱ヒーター19上で400℃に加熱された基板20を照射した。チャンバー21内には、反射ミラー22が取り付けてエネルギー密度を高めており、ガスボンベ23からの酸素ガス供給と真空ポンプ18とにより3Paにガス圧が保たれている。基板温度は赤外線カメラ17によりモニターされている。
【0036】
赤外線の照射で基板の表面温度が500℃になるようにあらかじめランプのパワー調整を行ない、温度保持は、ランプの点滅により制御した。抵抗加熱ヒーターのみで基板の表面温度が430℃となるように温度設定した。ランプ点灯後10秒で、基板の表面温度は500℃に到達した。500℃での温度保持時間を5分以下とする異なる温度保持時間の素子を作製した。5分間の赤外線照射では、ヒーター温度およびヒーターの出力制御には何ら変化が及ぼされることはなかった。各素子は温度保持した後、ランプを消灯したところ、表面温度はわずか数秒で430℃に戻り、さらにヒーター制御で室温まで約10℃/min.で徐冷した。
【0037】
赤外線照射による熱処理を行った各素子では電極の剥離は見られず、電気抵抗の測定において、問題はなかった。これは、基板表面からの熱処理が、短時間で加熱および冷却ができ、効率よく表面が加熱できるため、素子全体の温度が上がらないため、配線へのダメージが少なかったと考えられる。図7は、素子の体積抵抗率と500℃に保持した時間との相関図である。図より、500℃に保持して2分後には、すなわちランプ点灯から5分後には、抵抗率が1Ωcm近くまで低下し、十分にボロメーターとして実用可能なレベルとなった。
【0038】
実施の形態5.
金属成分の比がBi:Sr:La:Mn=0.333:0.333:0.333である酸化物薄膜を実施の形態4と同じスパッタ条件で形成し、すぐに約110℃/min.で徐冷して取り出した。この薄膜は、実施の形態4で述べたように、導電性がないため、さらに、酸素圧力を3Pa、基板温度は430℃とした状態で、KrFエキシマレーザーを5分間、50Hz、30Wで繰り返し照射し、薄膜の表面に熱処理を施した。図8は、レーザー照射による熱処理装置の構成を示す図である。図において、レーザー発生源24の発生するレーザー光が、レーザー透過窓25を通過し、チャンバー21内に入射し、レーザー反射ミラーにより、抵抗加熱ヒーター19上で400℃に加熱された基板20に照射した。チャンバー21内は、ガスボンベ23からの酸素ガス供給と真空ポンプ18とにより3Paにガス圧が保たれている。レーザー光が基板2に照射する様子は、可視光透過窓26より、CCDカメラ27により、モニターできるようになっている。
【0039】
5分間のKrFエキシマレーザーの照射で、ヒーター温度およびヒーターの出力制御には何ら変化が及ぼされることはなく、薄膜の体積抵抗率は5Ω・cm以下に低下した。レーザーの発振周波数は1Hzから100Hzまで検討し、発振周波数が上がるほど照射時間は短くなることがわかった。またレーザーパワーを10W以下にした場合は、3時間の照射でも、十分抵抗率を下げることができなかったが、この場合、基板温度を450℃に上げて照射を実施すると、15分以下の照射で、体積抵抗率は5Ω・cm以下となった。
【0040】
これらの薄膜をXDにより観察したところ、レーザー照射前において観察されなかったペロブスカイト構造のピークが出現し、通常500℃以上で起こる結晶化が実現されたことがわかった。またレーザー照射による熱処理によって、配線、電極の酸化、溶融による損傷は見られず、ボロメーター用薄膜のTCRは3%以上となり、赤外線検知素子として十分機能することが確認できた。
【0041】
本発明の実施の形態5では、酸素ガス100%のガス雰囲気でのスパッタリングおよびレーザー照射例について述べたが、酸素とオゾンの混合ガス、オゾンガスのみ、酸素とアルゴンの混合ガス、もしくは酸素と窒素の混合ガスなど各種ガスを用いても同様な効果が得られた。また、実施例では、KrFエキシマレーザーを用いたがArFレーザーもしくは、CO2レーザーでも同様な効果が得られた。さらに、レーザー光は、照射面積をレンズもしくはマスクによって容易に絞り込みができ、ボロメーターとする部分にのみ照射が可能であるため、照射によりパターニングが可能であり、エッチングによるパターニングの工程を省略することができた。
【0042】
Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜をスパッタリングとヒーターによる基板加熱による熱処理で合成する場合、基板温度が、500℃を越えなければ、膜の体積抵抗率が下がらず、赤外線検知素子として十分機能しないものがあった。Bi1-xSrxMn13について、xを変化させて、組成と赤外線検知素子として機能しうる膜の得られる基板温度との相関について調べた。この結果、xが0.5以下の場合、基板温度を510℃以上にしないと、膜の体積抵抗率が下がらず、赤外線検知素子として機能しないことがわかった。このような場合でも、本発明によれば、酸素もしくはオゾンを含有するガスの雰囲気中で赤外線もしくはレーザー照射による熱処理を施して、薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減することができ、赤外線検知素子として十分機能するボロメーター用薄膜が得られることを確認した。
【0043】
【発明の効果】
(1)以上のように 本発明の赤外線検知素子の製造方法によれば、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とするボロメーター用薄膜を用いた赤外線検知素子を製造するための赤外線検知素子の製造方法は、100℃以上500℃未満の基板温度にて、酸素もしくはオゾンを含有するガス雰囲気中でスパッタリングにより金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜を形成する工程と、上記酸化物薄膜に酸素もしくはオゾンを含有するガスの雰囲気中で熱処理を施して上記酸化物薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減する工程とを備えることを特徴とするものであるので、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜をボロメーター用薄膜として機能させることができ、しかも高感度化の赤外線検知素子を量産することが可能となる。
【0044】
(2)上記酸化物薄膜が、Si基板上に空隙部を介して設けられたSiO2層である構造体上もしくはその上に積層された電気絶縁体層上に積層されることを特徴とするものであるので、温度により抵抗値が変化するボロメーターとして用いられ、また、電気絶縁体層をSiO2層上に設けることで、Bi1-xxMn13の結晶化が促進され、基板温度を低減できる。
【0045】
(3)上記酸化物薄膜に施こす熱処理が、赤外線もしくはレーザー照射により行われることを特徴とするものであるので、基板全体を加熱する必要がないため、酸化もしくは溶融により配線、もしくは電極を損傷することなく、薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減することができ、Bi1-xxMn13(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とする薄膜をボロメーター用薄膜として機能させることができ、しかも高感度化の赤外線検知素子を量産することができる。さらに、レーザー照射では、電極パターンと同サイズの微少部分を熱処理することができるため、パターニング工程を省くメリットが得られる。
【0046】
(4)上記酸化物薄膜に施こす熱処理が、上記酸化物薄膜を380℃〜450℃の温度で10分〜15分間保持する工程を含むことを特徴とするものであるので、抵抗温度係数が高い薄膜材料による赤外線検知素子を500℃以下の低い基板温度で製造でき、高感度のボロメーター方式による赤外線検知素子を量産することができる。
【0047】
(5)上記赤外線検知回路で動作できる上記酸化物薄膜の体積抵抗率のレベルが、3.0Ωcm以上であることを特徴とするものであるので、抵抗温度係数が高い薄膜材料による赤外線検知素子を500℃以下の低い基板温度で製造でき、高感度のボロメーター方式による赤外線検知素子を量産することができる。
【図面の簡単な説明】
【図1】 本発明の赤外線検知素子の製造方法の実施の形態1による赤外線検知素子の受光部の構造を示す断面説明図である。
【図2】 本発明の赤外線検知素子の製造方法の実施の形態1による赤外線検知素子の受光部の構造を示す斜視図である。
【図3】 本発明の赤外線検知素子の製造方法で用いる電気抵抗測定用治具を示す斜視図である。
【図4】 本発明の赤外線検知素子の製造方法の実施の形態1および実施の形態2による抵抗温度係数と温度との相関を示すグラフである。
【図5】 本発明の赤外線検知素子の製造方法の実施の形態2による赤外線検知素子の受光部の構造を示す断面説明図である。
【図6】 本発明の赤外線検知素子の製造方法の実施の形態4で用いる赤外線照射による熱処理装置の構成を示す概略図である。
【図7】 本発明の赤外線検知素子の製造方法の実施の形態4による赤外線検知素子の抵抗率と基板表面温度を500℃に保持する時間の相関を示すグラフである。
【図8】 本発明の赤外線検知素子の製造方法の実施の形態5で用いるレーザー照射による熱処理装置の構成を示す概略図である。
【符号の説明】
1 受光部、2 Si基板、3 配線、4 ブリッジ構造体、5 ボロメーター用薄膜、6 ギャップ、7 保護膜、8 支持脚、9 固定台、10 電極パッド、11 ワイヤボンド、12 温度センサ、13 電流リード、14 電気絶縁層、15 赤外線ランプ、16 赤外線透過窓、17 赤外線カメラ、18 真空ポンプ、19 抵抗加熱ヒーター、20 基板、21 チャンバー、22 反射ミラー、23 ガスボンベ、24 レーザー電源、25 レーザー透過窓、26 可視光透過窓、27 CCDカメラ、28 レーザー反射ミラー。

Claims (4)

  1. Bi - Mn(元素Aは希土類金属もしくはアルカリ土類金属のいずれかより1種以上の元素、0≦x<1)を主成分とするボロメーター用薄膜を用いた赤外線検知素子の製造方法であって、
    100℃以上500℃未満の基板温度にて、酸素もしくはオゾンを含有するガス雰囲気中でスパッタリングにより金属成分の比がBi:A:Mn=1−x:x:1である酸化物薄膜を形成する工程と、
    上記酸化物薄膜に酸素もしくはオゾンを含有するガスの雰囲気中で380℃〜450℃の温度で10分〜15分間保持する熱処理を施して上記酸化物薄膜の体積抵抗率を赤外線検知回路で動作できるレベルに低減する工程とを備えることを特徴とする赤外線検知素子の製造方法。
  2. 上記酸化物薄膜が、Si基板上に空隙部を介して設けられたSiO層である構造体上もしくはその上に積層された電気絶縁体層上に積層されることを特徴とする請求項1に記載の赤外線検知素子の製造方法。
  3. 上記酸化物薄膜に施こす熱処理が、赤外線もしくはレーザー照射により行われることを特徴とする請求項1あるいは請求項2に記載の赤外線検知素子の製造方法。
  4. 上記赤外線検知回路で動作できる上記酸化物薄膜の体積抵抗率のレベルが、3.0Ωcm以上であることを特徴とする請求項1乃至請求項3のいずれかに記載の赤外線検知素子の製造方法。
JP2000125709A 2000-04-26 2000-04-26 赤外線検知素子の製造方法 Expired - Fee Related JP3783834B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000125709A JP3783834B2 (ja) 2000-04-26 2000-04-26 赤外線検知素子の製造方法
US09/765,384 US20010050221A1 (en) 2000-04-26 2001-01-22 Method for manufacturing infrared ray detector element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125709A JP3783834B2 (ja) 2000-04-26 2000-04-26 赤外線検知素子の製造方法

Publications (2)

Publication Number Publication Date
JP2001303236A JP2001303236A (ja) 2001-10-31
JP3783834B2 true JP3783834B2 (ja) 2006-06-07

Family

ID=18635613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125709A Expired - Fee Related JP3783834B2 (ja) 2000-04-26 2000-04-26 赤外線検知素子の製造方法

Country Status (2)

Country Link
US (1) US20010050221A1 (ja)
JP (1) JP3783834B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859479B2 (ja) * 2001-10-17 2006-12-20 日本電気株式会社 ボロメータ型赤外線検出器
WO2005078399A1 (ja) * 2004-02-16 2005-08-25 Matsushita Electric Industrial Co., Ltd. 赤外線撮像素子
JP4535367B2 (ja) 2004-05-24 2010-09-01 ルネサスエレクトロニクス株式会社 集積回路装置
JPWO2006013819A1 (ja) * 2004-08-02 2008-05-01 松下電器産業株式会社 抵抗変化素子とそれを用いた抵抗変化型メモリ

Also Published As

Publication number Publication date
US20010050221A1 (en) 2001-12-13
JP2001303236A (ja) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3386830B2 (ja) ボロメータ及び半導体基板上にボロメータ・セルを形成する方法並びにボロメータアレイで構成された赤外線検出アレイ
Cole et al. Monolithic two-dimensional arrays of micromachined microstructures for infrared applications
Iborra et al. IR uncooled bolometers based on amorphous Ge/sub x/Si/sub 1-x/O/sub y/on silicon micromachined structures
Almasri et al. Self-supporting uncooled infrared microbolometers with low-thermal mass
EP0534768A1 (en) Uncooled infrared detector and method for forming the same
JP4962837B2 (ja) 赤外線センサの製造方法
WO2015009334A1 (en) Laser power and energy sensor utilizing anisotropic thermoelectric material
Völklein et al. High sensitivity and detectivity radiation thermopiles made by multi-layer technology
Karunagaran et al. Study of a pulsed laser deposited vanadium oxide based microbolometer array
TW202225649A (zh) 紅外線成像微測輻射熱計及相關形成方法
JP3783834B2 (ja) 赤外線検知素子の製造方法
US6713763B2 (en) Oxide thin film for a bolometer, process for producing the same, and infrared sensor using the same
US4464065A (en) Fast granular superconducting bolometer
EP3642575A2 (en) Detector of electromagnetic radiation
Dobrzański et al. Micromachined silicon bolometers as detectors of soft X-ray, ultraviolet, visible and infrared radiation
Almasri et al. Uncooled multimirror broad-band infrared microbolometers
Gray et al. Semiconducting YBaCuO as infrared-detecting bolometers
Cole et al. Monolithic arrays of micromachined pixels for infrared applications
WO2018234406A2 (en) FAST DETECTOR OF ELECTROMAGNETIC RADIATION
Rana et al. High Responsivity ${\rm a\!-\! Si} _ {\rm x}{\rm Ge} _ {1-{\rm x}}{\rm O} _ {\rm y}:{\rm H} $ Microbolometers
JPH11183259A (ja) 赤外線検出素子
EP3811043B1 (en) A high bandwidth thermoelectric thin film uv, visible light and infrared radiation sensor and a method for manufacturing thereof
Noda Uncooled thermal infrared sensors: recent status in microbolometers and their sensing materials
JP3580215B2 (ja) 赤外線検知素子
CA3137677C (en) A high-bandwidth thermoelectric thin-film uv, visible light and infrared radiation sensor and a method for manufacturing thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees