JP3781790B2 - Soil disease control method - Google Patents

Soil disease control method Download PDF

Info

Publication number
JP3781790B2
JP3781790B2 JP14552294A JP14552294A JP3781790B2 JP 3781790 B2 JP3781790 B2 JP 3781790B2 JP 14552294 A JP14552294 A JP 14552294A JP 14552294 A JP14552294 A JP 14552294A JP 3781790 B2 JP3781790 B2 JP 3781790B2
Authority
JP
Japan
Prior art keywords
soil
fermentation
organic matter
density
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14552294A
Other languages
Japanese (ja)
Other versions
JPH07327574A (en
Inventor
章 北村
滋樹 高木
大作 石田
範敏 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fumakilla Ltd
Original Assignee
Fumakilla Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fumakilla Ltd filed Critical Fumakilla Ltd
Priority to JP14552294A priority Critical patent/JP3781790B2/en
Publication of JPH07327574A publication Critical patent/JPH07327574A/en
Application granted granted Critical
Publication of JP3781790B2 publication Critical patent/JP3781790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、有機物を土壌と混合して発酵させることによる土壌病害の抑制方法に関する。更に詳しくは、発酵により生じる発酵熱により土壌病原菌の菌密度を低下させる土壌病害の抑制方法に関する。
【0002】
【従来の技術・発明が解決しようとする課題】
現在、行われている土壌病害の防除法は、一般的に物理的、化学的土壌消毒と、生態的防除に大別されるが、それぞれ以下のような問題点を有している。
【0003】
物理的防除の問題点としては、蒸気消毒による方法では高熱によって発生する毒物により生育不良の危険性があることが指摘されている(「作物のフザリウム病」P292、全国農村教育協会発行、1982年)。熱風消毒による方法では、深根性の植物には応用しにくいという問題点がある。また、夏期の温室密閉による太陽熱消毒は、気温に左右される上に時間がかかり、その間栽培が制限されるという欠点をもち、しかも路地栽培には適用できない。
【0004】
化学的防除の問題点としては、クロルピクリン等の土壌燻蒸剤は人畜に有害であり、都市近郊では使用しにくい状況にある点が指摘されている。また、無作為に殺菌を行うため、病原菌による再汚染の危険性があり、また、その効果が1年以上持続することはまれであり、毎年殺菌を行う必要がある。燻蒸剤以外の化学農薬は、病原菌による耐性獲得の問題があり、また、環境汚染を招く恐れもある。なお、無作為な殺菌は土壌の地力を低下させ、土壌有機物の分解等肥料面でも悪影響を及ぼす。
【0005】
一方、生態的防除は輪作、深耕、施肥等の耕種的防除と、有機物施用、拮抗菌導入等の生物的防除に分けられる。これらの生態的防除は、通常他の防除法と組み合わせて行われており、基本的に有用な防除法であるが、効果が不安定であり、また完全な防除効果が得られにくい点で、抜本的な対策とは言い難い。
【0006】
なかでも生物的防除としては、次の有機物施用と拮抗菌の利用による防除がある。有機物施用における有機物と土壌病害の関係については、多くの研究がなされている。しかし、同じ有機物でも病原菌の種類や対象とする作物によって、その効果は異なり普遍的な技術とは言い難い。また、拮抗菌の利用による防除方法は、古くから盛んに研究されており、実際に微生物資材として上市されているものも少なくない。しかし、現実の圃場において、導入する拮抗菌が常に土壌に定着し、活動するとは限らず、その効果は不安定である。
以上のように土壌病害を短期間で有効に抑制する方法は知られていない。
【0007】
本発明の目的は、環境汚染の心配もなく、長期間にわたって土壌病害を抑制でき、また殺菌後の病原菌の再汚染による助長の心配もない土壌病害の抑制方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、次の知見に基づき、本発明を完成するに至った。
すなわち、代表的な土壌病原菌であるフザリウム属菌は、生育適温が25〜30℃であり、45℃で10日以上、40℃でも20日以上の保温で、そのほとんどが死滅すると言われている。そこで、土壌中の発酵による温度上昇に着目し、その時のフザリウム属菌密度の推移を調査した。その結果、発酵槽での通気発酵においては40〜55℃の発酵熱を17日間維持し、発酵槽を用いない、野積みの場合でも40℃以上発熱することが明確になり、その時のフザリウム属菌密度は、発酵槽での17日間の発酵で約1/1000に、野積みでも約1/10まで低下することを見出した。また、いずれの方法でも土壌中の細菌、放線菌密度は高くなっており、土壌中の微生物活性を高めながら、選択的に病原菌密度を低下させることができることが判明した。
【0009】
即ち、本発明の要旨は、
(1) 有機物を土壌と混合して発酵させながら、発酵熱を40℃以上55℃以下に保持して土壌病原菌の菌密度を低下させることを特徴とする土壌病害の抑制方法、
(2) 40℃以上55℃以下の発酵熱を6日間以上保持する、前記(1)記載の抑制方法、
(3) 発酵槽を用いて発酵を行うものである前記(1)又は(2)記載の抑制方法、
(4) 野積みした土壌中に通気管を埋め込み、通気を行ないつつ発酵を行うものである前記(1)又は(2)記載の抑制方法、並びに
(5) 土壌病原菌に対する拮抗菌を土壌中に含有させて発酵させることを特徴とする前記(1)〜(4)いずれか記載の抑制方法、
に関する。
【0010】
本発明の土壌病害の抑制方法は、有機物を土壌と混合して発酵させながら、発酵により生じる発酵熱を40℃以上に保持して土壌病原菌の菌密度を低下させることを特徴とするものである。
【0011】
本発明に用いられる有機物としては、土壌中に生息する微生物により分解されるものであれば、特に限定されず、例えば、鶏糞、牛糞、豚糞等の家畜糞、おがくず、コーヒー粕、バーク、イナワラ、カニガラ、活性汚泥、魚粉、油粕等が挙げられ、好ましくは鶏糞、カニガラが挙げられる。
また、そのような有機物としては既に発酵が生じている発酵堆肥、厩肥等として土壌に混合することが好ましく、その場合、例えば鶏糞堆肥、牛糞堆肥、バーク堆肥等が用いられる。
【0012】
本発明において、堆肥等の状態で有機物を混合することが好ましいのは、次の理由による。
まず、堆肥は発酵時にその有機物を栄養源として利用しやすい微生物が集積されると考えらる。また、発酵時に高温になるため、高温に耐性の菌が多く存在する。一方、未発酵の有機物を使用した場合は土壌に生息する微生物を利用することになる。従って、当然堆肥を使用した方が土壌中での発酵が効率良く進み発熱が速くなり、土壌微生物の活性は高まるため安定した効果が得られる。
次に、病原菌は植物に寄生、枯死させた後、寄生植物遺体で増殖するが、一般に腐生能の弱いものが多いため、寄生植物遺体が多くの微生物で分解する時に栄養的な競合を受け、その微生物の一部は死滅したり生育を制限される。ここで有機物として堆肥を用いた場合、堆肥には当然腐生能の強い微生物が多いため、堆肥を添加して発酵を行うと、こういった栄養的競合力が増し、病原菌の生育がさらに制限されることになる。これにより、病原菌密度の低下またはその行動が制限されることによる発病の低下が期待される。
【0013】
さらに本発明では、発酵に供される土壌中に土壌病原菌の拮抗菌を含有させることが好ましいが、その場合に拮抗菌をすでに含有している有機物等を土壌に添加してもよい。例えば微生物資材(RC−100、フマキラー(株)製)等が挙げられる。微生物資材,RC−100とは、拮抗菌と、植物抽出残渣類、排水処理汚泥の混合物を含有する土壌病害防止用有機組成物であり、特開昭63−107908号公報に開示されているものである。ここで、用いられる拮抗菌としては、ストレプトマイセス・アクロモジェネス(Streptomyces achromogenes)、ストレプトマイセス・フェオプレウス(Streptomyces phaeopureus)、ストレプトマイセス・ハイグロスコピカス(Streptomyces hygroscopicus )、ストレプトマイセス・ニトロスポレウス(Streptomyces nitrosporeus)、ストレプトマイセス・バルネンシス(Streptomyces barnensis)等が挙げられる。
【0014】
用いられる土壌としては、特に限定されることなく、黒ぼく土、赤色土、砂壌土等が挙げられる。かかる土壌は、本発明の方法により土壌病原菌が生息してる場合でもその増殖を抑制できるが、発病していない土壌においても、拮抗菌を定着、増加させることで、病原菌が侵入しても増加しにくいものとしたり、早く土壌を腐熟化できるという効果がえられる。
【0015】
有機物と土壌の混合割合は、土壌の種類や元来土壌に含まれる有機物含量によって異なり、通常1〜7重量%であるが、混合率が高いほど発酵による発熱は盛んになる。
【0016】
本発明における発酵は、発酵により生じる発酵熱により土壌の温度が40℃以上55℃以下、好ましくは42〜45℃に保持されるように行う。好ましくは発酵熱が40℃以上で6日間以上保持されるのがよい。この温度より低温または保持日数が少ないと、土壌病原菌の菌密度を十分低下させにくい傾向があり、本発明の効果が十分得られにくい。
【0017】
発酵は、野積みした土壌を用いてもよく、また発酵槽を用いて行ってもよいが、発酵時の温度を前記の一定温度以上に効率よく保持するには、発酵槽を用いることが好ましい。その他、野積みする場合には、堆積する高さを高く(通常1〜2m、好ましくは1.5〜1.8m)したり、上部をビニールシート等で被覆することにより、放熱による温度低下を防止することができる。また拮抗菌含有資材を使用することで十分な発熱が得られなくても病原菌密度を低下させることができる。
【0018】
本発明では発酵中に通気を行ってもよく、野積みする場合には、野積みした土壌中に通気管を埋め込んで通気を行ってもよい。通気量が少なすぎると嫌気的になり、多すぎると温度低下および水分の低下により微生物の活動が抑制される。また、発酵時の水分は高すぎると嫌気的になり、低すぎると微生物の活動が抑制される。通気量は、発酵槽の大きさで異なるが、例えば4m3 の発酵槽において通常50〜100L/分、好ましくは70〜80L/分である。
【0019】
本発明においては、以上のような発酵により生じる熱により、土壌病原菌の菌密度を低下させることができるが、フザリウム属菌に対しては発酵開始時の1/1000〜1/10程度に菌密度を低下させることができ、糸状菌に対しては発酵開始時の1/10〜1/2程度である。本発明では、このような菌密度の低下により、土壌病害を抑制することができる。
【0020】
ここで、土壌病原菌の多くはフザリウム属菌や糸状菌であるが、糸状菌がすべて土壌病原菌ではなく、また腐生能の高い糸状菌も多く存在するため、糸状菌が全体的には増加しても、糸状菌の一種である土壌病原菌が減少する場合がある。
【0021】
前記のような発酵熱によって温度が上昇することは、微生物が活発に活動し、有機物を分解していることであり、当然土壌は腐熟化が促進される。このことは、実施例において細菌と放線菌の菌密度が増加していることからも明らかである。従って、本発明の方法によると、土壌の微生物活性を高めながら、土壌病原菌を選択的に殺菌することができる。
【0022】
【実施例】
以下、実施例および試験例により本発明をさらに詳しく説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0023】
実施例1
通気することなしに、次の条件で有機物を土壌と混合して野積みでの発酵を7日間行った。
土壌の高さ; 1.5m
土壌の量 ; 4.6トン(4m3
有機物 ; 豚糞堆肥で7%混合
水分 ; 24%
その時の温度変化を表1に、菌密度の変化を表2に示すが、野積みの発酵により40℃以上の発酵熱が発生し、フザリウム属菌密度が大幅に低下していることが判明した。
【0024】
【表1】

Figure 0003781790
【0025】
【表2】
Figure 0003781790
【0026】
実施例2
通気管で通気しながら、次の条件で有機物を土壌と混合して野積みでの発酵を7日間行った。
土壌の高さ; 1.5m
土壌の量 ; 4.6トン(4m3
通気量 ; 75L/分
通気管 ; 1.8m間隔で深さ1mに埋設
有機物 ; 鶏糞堆肥で7%混合
水分 ; 24%
その時の温度変化を表3に、菌密度の変化を表4に示すが、野積みの発酵により40℃以上の発酵熱が発生し、フザリウム属菌密度が大幅に低下していることが判明した。
【0027】
【表3】
Figure 0003781790
【0028】
【表4】
Figure 0003781790
【0029】
実施例3
発酵槽を用いて、次の条件で有機物を土壌と混合して7日間発酵を行った。
発酵槽 ; 1.9m×2.2m×1m(4.2m3
土壌の量; 4.6トン(4m3
通気量 ; 75L/分
有機物 ; 豚糞堆肥で7%混合
水分 ; 24%
その時の温度変化を表5に、菌密度の変化を表6に示すが、発酵槽での発酵により40℃以上の発酵熱が発生し、フザリウム属菌密度が大幅に低下していることが判明した。
【0030】
【表5】
Figure 0003781790
【0031】
【表6】
Figure 0003781790
【0032】
実施例4
土壌に各有機物(鶏糞堆肥、カニガラ)を5%混合攪拌後、実施例3と同様の条件で発酵槽での発酵を行い、有機物の種類による効果の影響を調べた。また、土壌病原菌に対する拮抗菌を含有する微生物資材であるRC−100(フマキラー(株)製)との併用効果を調べた。その時の病原菌(フザリウム属菌)密度変化を表7に示す。また比較のため有機物を添加しない場合の結果も表7に併せて示す。
【0033】
【表7】
Figure 0003781790
【0034】
表7より、有機物を添加発酵した区は無添加区に比較し、フザリウム属菌密度を低下させ、なかでも、RC−100を併用したものが最もフザリウム属菌密度を低下させ、ついで鶏糞堆肥、カニガラ、無添加の順であった。なお、完全にフザリウム属菌が死滅するまで菌密度を追跡した結果、RC−100添加区では8週間で完全にフザリウム属菌が死滅した。
【0035】
試験例
発酵を行う前の土壌(未発酵土壌)および発酵終了土壌(実施例1及び3で得られたもの)をa/5,000ワグネルポットに詰め、ダイコン種子(萎黄病感受性、耐病総太り、タキイ)をポットあたり9粒播種した。播種2週間後にポットあたり3株残して間引きを行い、4週間後に収穫調査を行った。発病率は、以下の式で算出した。
発病率(%)=(発病株数/調査株数)×100
その時のダイコン萎黄病発病抑制効果を表8に示す。
【0036】
【表8】
Figure 0003781790
【0037】
表8より、発病を抑制することが判ったが、これは発酵槽、および野積み発酵区は選択的にフザリウム属菌密度を低下(表2、表6)させたことによるものであると考えられる。
【0038】
【発明の効果】
本発明の方法によると、土壌の微生物活性を高めながら、病原菌を選択的に殺菌するため、長期間にわたって土壌病害を抑制し、殺菌後の病原菌の再汚染による助長の心配がない。また、環境汚染の心配もなく、いかなる有機物も安心して使用できるという特徴を持っている。さらに、発病していない土壌においても、連作障害の予防として使用できることや、早く土壌を腐熟化できるという効果を有する。[0001]
[Industrial application fields]
The present invention relates to a method for suppressing soil disease by mixing organic matter with soil and fermenting it. More specifically, the present invention relates to a method for suppressing soil diseases in which the density of soil pathogenic bacteria is reduced by fermentation heat generated by fermentation.
[0002]
[Prior art / problems to be solved by the invention]
Currently, the methods for controlling soil diseases are generally classified into physical and chemical soil disinfection and ecological control, but each has the following problems.
[0003]
As a problem of physical control, it has been pointed out that the steam disinfection method has a risk of poor growth due to poisons generated by high heat ("Fusalium disease of crops" P292, published by the National Rural Education Association, 1982). ). The hot air disinfection method has a problem that it is difficult to apply to deep-rooted plants. In addition, solar heat disinfection by closing the greenhouse in summer has the disadvantage that it takes time and depends on the temperature, during which time cultivation is restricted, and it cannot be applied to alley cultivation.
[0004]
As a problem of chemical control, it has been pointed out that soil fumigants such as chlorpicrin are harmful to human livestock and are difficult to use in suburban areas. In addition, since sterilization is performed randomly, there is a risk of recontamination by pathogenic bacteria, and the effect rarely lasts for more than one year, and sterilization is required every year. Chemical pesticides other than fumigants have the problem of acquiring resistance due to pathogenic bacteria, and may also cause environmental pollution. Random sterilization reduces the soil's strength and has a negative effect on fertilizers such as decomposition of soil organic matter.
[0005]
On the other hand, ecological control can be divided into crop control such as rotation, deep plowing and fertilization, and biological control such as application of organic matter and introduction of antagonistic bacteria. These ecological control is usually performed in combination with other control methods, and is basically a useful control method, but the effect is unstable and it is difficult to obtain a complete control effect, It is hard to say that this is a drastic measure.
[0006]
Among them, biological control includes the following organic substance application and the use of antagonistic bacteria. Many studies have been conducted on the relationship between organic matter and soil diseases in organic matter application. However, even with the same organic matter, the effect differs depending on the type of pathogenic bacteria and the target crop, and it is difficult to say that it is a universal technology. In addition, control methods using antagonistic bacteria have been studied extensively for a long time, and many are actually marketed as microbial materials. However, the antagonistic bacteria to be introduced do not always settle and act on the soil in an actual field, and the effect is unstable.
As described above, there is no known method for effectively suppressing soil diseases in a short period of time.
[0007]
An object of the present invention is to provide a soil disease control method that can suppress soil diseases over a long period of time without worrying about environmental pollution, and that does not have to worry about promotion by recontamination of pathogenic bacteria after sterilization.
[0008]
[Means for Solving the Problems]
Based on the following findings, the present inventors have completed the present invention.
That is, Fusarium spp. Which are typical soil pathogens have an optimum growth temperature of 25 to 30 ° C., and it is said that most of them are killed by incubation at 45 ° C. for 10 days or more and even at 40 ° C. for 20 days or more. . Therefore, paying attention to the temperature rise due to fermentation in the soil, the transition of Fusarium density at that time was investigated. As a result, it is clear that the fermentation heat of 40 to 55 ° C. is maintained for 17 days in the aeration fermentation in the fermenter, and the heat generation is 40 ° C. or more even in the case of field loading without using the fermenter. It was found that the bacterial density was reduced to about 1/1000 after 17 days of fermentation in a fermenter and to about 1/10 even after field loading. Moreover, it has been found that the density of bacteria and actinomycetes in the soil is high in any method, and the density of pathogenic bacteria can be selectively reduced while increasing the microbial activity in the soil.
[0009]
That is, the gist of the present invention is as follows.
(1) A method for suppressing a soil disease, wherein the fermented heat is maintained at 40 ° C. or more and 55 ° C. or less while mixing organic matter with soil and fermenting, and the density of soil pathogenic bacteria is reduced.
(2) The suppression method according to (1), wherein the fermentation heat of 40 ° C. or higher and 55 ° C. or lower is maintained for 6 days or more.
(3) The suppression method according to (1) or (2), wherein fermentation is performed using a fermenter,
(4) The suppression method according to the above (1) or (2), wherein an aeration tube is embedded in the soil piled up and fermented while aeration is performed, and (5) an antagonistic bacterium against a soil pathogen is contained in the soil. The suppression method according to any one of (1) to (4), wherein the method is contained and fermented,
About.
[0010]
The method for suppressing soil diseases of the present invention is characterized in that the fermentation heat generated by fermentation is maintained at 40 ° C. or higher while organic matter is mixed with soil and fermented to reduce the density of soil pathogens. .
[0011]
The organic matter used in the present invention is not particularly limited as long as it can be decomposed by microorganisms that inhabit the soil. For example, livestock excrement such as chicken dung, cow dung, and pig dung, sawdust, coffee lees, bark, inawara , Crab, activated sludge, fish meal, oil cake, etc., preferably chicken manure and crab.
In addition, such organic matter is preferably mixed with soil as fermented compost, manure, or the like that has already undergone fermentation. In this case, for example, chicken manure compost, cow manure compost, bark compost, or the like is used.
[0012]
In the present invention, it is preferable to mix organic substances in the state of compost or the like for the following reason.
First, it is thought that compost accumulates microorganisms that can easily use the organic matter as a nutrient source during fermentation. Moreover, since it becomes high temperature at the time of fermentation, many microbes resistant to high temperature exist. On the other hand, when unfermented organic matter is used, microorganisms that live in the soil are used. Therefore, naturally, the use of compost is more efficient in fermentation in the soil, the heat generation is faster, and the activity of soil microorganisms is increased, so that a stable effect can be obtained.
Next, the pathogens infest the plant and die, and then grow in the body of the parasitic plant, but in general, many of them have poor rotability, so when the parasitic plant body is decomposed by many microorganisms, it receives nutritional competition, Some of the microorganisms die or are restricted from growing. When compost is used as organic matter here, naturally, there are many microorganisms with strong rotability in the compost, so when fermenting with compost, the nutritional competitiveness increases and the growth of pathogenic bacteria is further restricted. Will be. As a result, a decrease in the density of pathogenic bacteria or a reduction in the disease caused by the restriction of the behavior is expected.
[0013]
Furthermore, in the present invention, it is preferable to contain an antagonist of a soil pathogen in the soil to be subjected to fermentation, but in that case, an organic substance or the like that already contains the antagonist may be added to the soil. Examples thereof include microbial materials (RC-100, manufactured by Fumakilla Co., Ltd.). Microbial material, RC-100, is an organic composition for preventing soil diseases containing a mixture of antagonistic bacteria, plant extraction residues and wastewater treatment sludge, and is disclosed in Japanese Patent Laid-Open No. 63-107908 It is. Here, the antagonistic bacteria used are Streptomyces achromogenes, Streptomyces phaeopureus, Streptomyces hygroscopicus, Streptomyces hygroscopicus, Streptomyces nitrospo Examples include Reus (Streptomyces nitrosporeus), Streptomyces barnensis and the like.
[0014]
The soil to be used is not particularly limited, and examples thereof include black soil, red soil, sand loam soil and the like. Such soil can suppress its growth even when soil pathogens are inhabited by the method of the present invention. The effect is that it can be difficult and the soil can be quickly ripened.
[0015]
The mixing ratio of organic matter and soil varies depending on the kind of soil and the organic matter content originally contained in the soil, and is usually 1 to 7% by weight. However, the higher the mixing rate, the more heat generated by fermentation.
[0016]
Fermentation in the present invention is performed so that the temperature of the soil is maintained at 40 ° C. or higher and 55 ° C. or lower , preferably 42 to 45 ° C., by the fermentation heat generated by fermentation. Preferably not good that fermentation heat is retained more than 6 days at 40 ° C. or higher. If the temperature is lower than this temperature or if the number of holding days is small, the density of soil pathogenic bacteria tends to be difficult to reduce sufficiently, and the effects of the present invention are not sufficiently obtained.
[0017]
Fermentation may use soil piled up or may be performed using a fermenter, but it is preferable to use a fermenter in order to efficiently maintain the temperature during fermentation above the certain temperature. . In addition, when stacking, increasing the height of accumulation (usually 1 to 2 m, preferably 1.5 to 1.8 m) or covering the upper part with a vinyl sheet or the like can reduce the temperature drop due to heat dissipation. Can be prevented. Further, the use of antagonistic bacteria-containing materials can reduce the density of pathogenic bacteria even if sufficient fever is not obtained.
[0018]
In the present invention, aeration may be performed during fermentation, and in the case of field loading, ventilation may be performed by embedding a ventilation pipe in the field soil. If the air flow rate is too small, it becomes anaerobic, and if it is too much, the activity of microorganisms is suppressed due to a decrease in temperature and moisture. Moreover, when the water | moisture content at the time of fermentation is too high, it will become anaerobic, and when too low, the activity of microorganisms will be suppressed. The amount of aeration varies depending on the size of the fermenter, but is usually 50 to 100 L / min, preferably 70 to 80 L / min, for example, in a 4 m 3 fermenter.
[0019]
In the present invention, the density of soil pathogenic bacteria can be reduced by heat generated by fermentation as described above, but for Fusarium spp., The density of bacteria is about 1/1000 to 1/10 at the start of fermentation. It is about 1/10 to 1/2 at the start of fermentation for filamentous fungi. In the present invention, soil diseases can be suppressed by such a decrease in bacterial density.
[0020]
Here, many of the soil pathogens are Fusarium spp. And filamentous fungi. However, since all the fungi are not soil pathogens and there are many fungi with high rotability, the total number of fungi increases. However, soil pathogens, which are a type of filamentous fungus, may decrease.
[0021]
An increase in temperature due to the heat of fermentation as described above means that microorganisms are actively active and are decomposing organic matter, and naturally soil is promoted to saturate. This is also clear from the fact that the bacterial density of bacteria and actinomycetes is increased in the examples. Therefore, according to the method of the present invention, soil pathogens can be selectively sterilized while increasing the microbial activity of the soil.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example and a test example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
[0023]
Example 1
Without aeration, the organic matter was mixed with the soil under the following conditions, and field fermentation was performed for 7 days.
Soil height; 1.5m
Amount of soil: 4.6 tons (4m 3 )
Organic matter: 7% mixed with pig manure compost; 24%
The temperature change at that time is shown in Table 1, and the change in bacterial density is shown in Table 2. It was found that fermentation heat of 40 ° C. or more was generated by fermentation of the field, and the density of Fusarium bacteria was greatly reduced. .
[0024]
[Table 1]
Figure 0003781790
[0025]
[Table 2]
Figure 0003781790
[0026]
Example 2
While ventilating with an aeration tube, organic matter was mixed with soil under the following conditions and fermentation in a field was performed for 7 days.
Soil height; 1.5m
Amount of soil: 4.6 tons (4m 3 )
Aeration rate: 75 L / min ventilation pipe; Organic matter buried at a depth of 1 m at intervals of 1.8 m; 7% mixed moisture with chicken manure compost; 24%
The temperature change at that time is shown in Table 3, and the change in bacterial density is shown in Table 4. It was found that fermentation heat of 40 ° C. or more was generated by fermentation of the field, and the density of Fusarium bacteria was greatly reduced. .
[0027]
[Table 3]
Figure 0003781790
[0028]
[Table 4]
Figure 0003781790
[0029]
Example 3
Using a fermenter, the organic matter was mixed with soil under the following conditions and fermented for 7 days.
Fermenter: 1.9m x 2.2m x 1m (4.2m 3 )
Amount of soil: 4.6 tons (4m 3 )
Aeration rate: 75L / min organic matter; 7% mixed water in swine manure compost; 24%
The change in temperature at that time is shown in Table 5, and the change in bacterial density is shown in Table 6. It was found that fermentation heat of 40 ° C. or more was generated by fermentation in the fermentor, and the density of Fusarium bacteria was greatly reduced. did.
[0030]
[Table 5]
Figure 0003781790
[0031]
[Table 6]
Figure 0003781790
[0032]
Example 4
After 5% of each organic matter (chicken manure compost, crab) was mixed and stirred in the soil, fermentation was performed in a fermentor under the same conditions as in Example 3, and the effect of the effect due to the type of organic matter was examined. Moreover, the combined use effect with RC-100 (manufactured by Fumakilla Co., Ltd.), which is a microbial material containing antagonists against soil pathogens, was examined. Table 7 shows changes in density of pathogenic bacteria (Fusarium spp.) At that time. For comparison, the results in the case where no organic substance is added are also shown in Table 7.
[0033]
[Table 7]
Figure 0003781790
[0034]
From Table 7, the group fermented with organic matter was reduced in the Fusarium genus density compared to the non-added group, and among them, the combination of RC-100 decreased the Fusarium genus density most, and then the chicken manure compost, The order was crab, no addition. In addition, as a result of tracing the cell density until the Fusarium genus was completely killed, the Fusarium genus was completely killed in 8 weeks in the RC-100 addition group.
[0035]
Test Example Soil before fermentation (unfermented soil) and soil after fermentation (obtained in Examples 1 and 3) were packed in a / 5,000 wagner pots, and radish seeds (yellowing susceptibility, disease resistant total fat) 9 seeds per pot. Two weeks after sowing, 3 strains were left per pot, and thinning was conducted. After 4 weeks, harvesting was conducted. The incidence was calculated by the following formula.
Disease incidence (%) = (number of diseased strains / number of surveyed strains) x 100
Table 8 shows the effect of suppressing radish yellowing at that time.
[0036]
[Table 8]
Figure 0003781790
[0037]
From Table 8, it was found that the disease was suppressed, but this was thought to be due to the fermenter and the unfermented fermented area selectively reducing the Fusarium genus density (Tables 2 and 6). It is done.
[0038]
【The invention's effect】
According to the method of the present invention, since pathogenic bacteria are selectively sterilized while increasing the microbial activity of the soil, soil diseases are suppressed over a long period of time, and there is no worry of promotion due to recontamination of pathogenic bacteria after sterilization. In addition, there is a feature that any organic matter can be used safely without worrying about environmental pollution. Furthermore, even in soil that does not cause disease, it has the effect that it can be used as prevention of continuous cropping disorder and that the soil can be quickly ripened.

Claims (5)

有機物を土壌と混合して発酵させながら、発酵熱を40℃以上55℃以下に保持して土壌病原菌の菌密度を低下させることを特徴とする土壌病害の抑制方法。A method for suppressing soil diseases, wherein the fermented heat is maintained at 40 ° C. or higher and 55 ° C. or lower by mixing organic matter with soil and fermenting to reduce the density of soil pathogenic bacteria. 40℃以上55℃以下の発酵熱を6日間以上保持する、請求項1記載の抑制方法。The suppression method of Claim 1 which hold | maintains the fermentation heat of 40 to 55 degreeC for 6 days or more. 発酵槽を用いて発酵を行うものである請求項1又は2記載の抑制方法。 The suppression method according to claim 1 or 2, wherein fermentation is performed using a fermenter. 野積みした土壌中に通気管を埋め込み、通気を行ないつつ発酵を行うものである請求項1又は2記載の抑制方法。 The method according to claim 1 or 2, wherein the fermentation is carried out while aeration pipes are embedded in the soil piled up and aeration is performed. 土壌病原菌に対する拮抗菌を土壌中に含有させて発酵させることを特徴とする請求項1〜4いずれか記載の抑制方法。 The method according to any one of claims 1 to 4, wherein an antagonistic fungus against a soil pathogen is contained in the soil and fermented.
JP14552294A 1994-06-03 1994-06-03 Soil disease control method Expired - Lifetime JP3781790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14552294A JP3781790B2 (en) 1994-06-03 1994-06-03 Soil disease control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14552294A JP3781790B2 (en) 1994-06-03 1994-06-03 Soil disease control method

Publications (2)

Publication Number Publication Date
JPH07327574A JPH07327574A (en) 1995-12-19
JP3781790B2 true JP3781790B2 (en) 2006-05-31

Family

ID=15387177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14552294A Expired - Lifetime JP3781790B2 (en) 1994-06-03 1994-06-03 Soil disease control method

Country Status (1)

Country Link
JP (1) JP3781790B2 (en)

Also Published As

Publication number Publication date
JPH07327574A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
CN103649303B (en) Microbial composite and method
CN103964935B (en) Organic active fertilizer
CN102633544B (en) Method for taking farmyard manure as raw material to produce tobacco biofertilizer
CN102286376B (en) Microbial inoculum for high-efficiency fermenting bed and preparation method thereof
JP5753804B2 (en) Liquid fertilizer manufacturing method, compost manufacturing method and no-tillage cultivation method
CN106810302A (en) It is a kind of to cultivate the method that excrement dirt recycling produces organic fertilizer
CN109279953A (en) A kind of production method of odorless, high nitrogen livestock manure fermented organic fertilizer
CN102432146A (en) Complex microbial inoculum for efficiently converting poultry culture excrement and preparation method thereof
CN108531412A (en) A kind of preparation method of ECMD Efficient Rings control microbial deodorant
JPH0959081A (en) Treatment of sludge
JPH05268945A (en) New bacillus microorganism and use thereof
Wright et al. Reduction of selected pathogens in anaerobic digestion
JP3781790B2 (en) Soil disease control method
KR101878896B1 (en) Composition comprising microorganism fermentation liquid for malodor removal
CN108641984A (en) One plant of urea bacillus SC-7 and its application in compost
JP3549268B2 (en) Method for producing electronic organic fertilizer and electronic feed
KR20000002846A (en) Bed soil for horticulture utilizing earthworm excrement and preparing them
JP2003274938A (en) Useful composition and method for production thereof or the like
CN106007830A (en) Manure fermenting compound bacterium solution and application thereof
CN110981606A (en) Biological fumigation synergist and preparation method and application thereof
JP4643203B2 (en) Microorganism for fermenting, decomposing and treating cow dung, and method for treating cow dung using the same
RU2491264C2 (en) Method for biological treatment of animal wastes
KR20170116395A (en) Organic clear manure making of skill system
CN108783046A (en) A kind of application process that probiotics is raised pigs on the big column of fermentation bed
CN109328987A (en) A kind of rice nursery substrate and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7