JP3781704B2 - クロックデータリカバリ回路 - Google Patents

クロックデータリカバリ回路 Download PDF

Info

Publication number
JP3781704B2
JP3781704B2 JP2002243347A JP2002243347A JP3781704B2 JP 3781704 B2 JP3781704 B2 JP 3781704B2 JP 2002243347 A JP2002243347 A JP 2002243347A JP 2002243347 A JP2002243347 A JP 2002243347A JP 3781704 B2 JP3781704 B2 JP 3781704B2
Authority
JP
Japan
Prior art keywords
output
signal
circuit
clock
ckv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002243347A
Other languages
English (en)
Other versions
JP2004088212A (ja
Inventor
祐輔 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP2002243347A priority Critical patent/JP3781704B2/ja
Priority to CN03120473.2A priority patent/CN1252924C/zh
Priority to US10/391,298 priority patent/US7257184B2/en
Publication of JP2004088212A publication Critical patent/JP2004088212A/ja
Application granted granted Critical
Publication of JP3781704B2 publication Critical patent/JP3781704B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入力データ信号とクロック信号との間の位相差を合わせるクロックデータリカバリ(Clock Data Recovery : CDR)回路に関する。
【0002】
【従来の技術】
図6は、従来のCDR回路のブロック図を示す。図6において、符号130は従来のCDR回路、131は入力データ信号Dinの入力端子、133は入力端子131から入力した入力データ信号Dinと後述の電圧制御発振回路(Voltage Controlled Oscillator : VCO)から出力されたクロック信号ckvとを入力して、位相を比較する位相比較回路(Phase Comparator : PC)または位相差を検出する位相差検出回路(Phase Detector : PD)または位相周波数比較回路(Phase Frequency Detector : PFD)である(以下、符号133の回路を「位相比較回路PD」と言う)。続いて、符号135は位相比較回路PD(133)から出力された基準信号refと位相差を示すエラー信号errorとを入力して、充電電流または放電電流を出力するチャージポンプ回路(Charging Pump : CP)、137は抵抗R3(139)とキャパシタC2(141)と抵抗R4(143)とを直列に接続して構成したループフィルタ(破線で囲んで示す)であって、チャージポンプ回路CP(135)から出力された充電電流または放電電流の直流成分の取り出しを行う。ループフィルタ137は上記充電電流または放電電流を時間的に平均化しvcont+とvcont−との間の電位差として現す。符号145はループフィルタ137により取り出された上記直流成分を所望の電圧vcontへ変換する両相単相電圧変換回路(DSC)、147は両相単相電圧変換回路DSC(145)から出力された所望の電圧vcontに応じてクロック信号ckvを出力し、位相比較回路PD(133)の入力とする電圧制御発振回路VCOである。
本従来例は、チャージポンプ回路135の出力が差動信号であり、ループフィルタ137も差動構成を示しているが、単相出力のチャージポンプ回路と単相用のループフィルタを使用する構成も一般に見られる。単相の構成では、両相単相電圧変換回路145ではなく、ボルテージフォロワ回路等の回路を使用する。
【0003】
次に、従来のCDR回路130の動作を説明する。図6に示されるように、従来のCDR回路130は、入力端子131から入力される入力データ信号Din(周波数f(bits/secまたはHz))に対し、電圧制御発振回路VCO(147)から出力するクロック信号ckvの周波数と位相を合わせる回路である。すなわち、データ入力信号Dinとクロック信号ckvとの位相差を電圧制御発振回路VCO(147)の発振周波数にフィードバックして、クロック信号ckvの位相を入力データ信号Dinに合わせる動作を行う。入力データ信号Dinの時間幅(周期T=1/f)の中心(周期Tの1/2の時刻)にクロック信号ckvの立ち上がりエッジが位置した時に両信号が合ったロック状態となる。ロック状態では、位相比較回路PD(133)の内部のフリップフロップ回路(不図示)において入力データ信号Dinがクロック信号ckvでラッチされ整形されて、CDR回路130の出力であるDout信号として出力端子148から出力される。ロック状態におけるクロック信号ckvはCkout信号として出力端子149から出力される。
【0004】
【発明が解決しようとする課題】
上述のように、従来のCDR回路130は周波数f(bits/secまたはHz)の入力データ信号Dinに対して、周波数f(Hz)またはf/2(Hz)を発振する電圧制御発振回路VCO(147)を用いていた。このため、位相比較回路CP(133)の出力であるエラー信号errorのパルス幅がT/2以下となる場合があり、エラー信号errorおよび基準信号refが高速のパルスとなってしまう場合があった。この結果、位相比較回路PD(133)およびチャージポンプ回路CP135の応答が律速化してしまい、CDR回路130全体として最速動作ができなくなるという問題があった。
【0005】
そこで、本発明の目的は、上記問題を解決するためになされたものであり、データ入力信号Dinとクロック信号ckvとの位相差を位相比較回路PDで検出し、この位相差を電圧制御発振回路VCOの発振周波数にフィードバックしてクロック信号ckvの位相を入力データ信号Dinに合わせる動作を行うCDR回路において、位相比較回路PDの出力であるエラー信号errorおよび基準信号refを高速のパルスとさせず、最速動作を可能とするCDR回路を提供することにある。
【0006】
【課題を解決するための手段】
この発明の該クロックデータリカバリ回路は、入力データ信号とクロック信号との間の位相差を合せるクロックデータリカバリ回路であって、該入力データ信号は周期がTであり、該クロック信号は周波数がf/m(f=1/T、m=2、nは2以上の自然数)であって位相が2π/mずつ異なるm本のクロック信号であり、該クロックデータリカバリ回路は、前記入力データ信号と前記m本のクロック信号とを入力して、該入力データ信号の遷移エッジと各クロック信号の遷移エッジとの間の位相差を示し最小パルス幅が(m/2−1)×T以上のm本のエラー信号を出力し、パルス幅が(m/2)×Tのm本の基準信号を出力する位相比較回路と、前記位相比較回路から出力されたm本のエラー信号の中の所定の1本のエラー信号とm本の基準信号の中の所定の1本の基準信号とを入力して、充電電流または放電電流を出力するチャージポンプ回路をm個有するチャージポンプ回路群と、前記チャージポンプ回路群のm個の各チャージポンプ回路と共通に接続され、該チャージポンプ回路群から出力された充電電流または放電電流を時間的に平均化して直流電圧成分を出力するループフィルタと、前記ループフィルタから出力された直流電圧成分を所定の電圧へ変換する電圧変換回路と、前記電圧変換回路から出力された所定の電圧を入力し、前記m本のクロック信号を生成する電圧制御発振回路とを備え、前記電圧制御発振回路は生成したm本のクロック信号を前記位相比較回路へ出力するものであり、前記位相比較回路は、所定のロック状態になった場合に、前記入力データ信号に所定の整形処理を施したm本のデータ信号と1本以上のクロック信号とを出力することを特徴とする。
【0007】
ここで、この発明のクロックデータリカバリ回路において、前記位相比較回路は、前記入力データ信号を前記各クロック信号の立ち上がりエッジで各々並列にラッチするラッチ部と、前記ラッチ部からの各出力信号と前記各クロック信号とに基づいて、入力データ信号の遷移エッジと各クロック信号の遷移エッジとの間の位相差を示し、最小パルス幅が(m/2−1)×T以上のm本のエラー信号を出力するエラー信号出力部と、前記ラッチ部からの各出力信号を前記各クロック信号の立ち上がりエッジで各々並列に入力する入力部と、前記入力部からの出力信号と前記各クロック信号とに基づいて、パルス幅が(m/2)×Tのm本の基準信号を出力する基準信号出力部と、所定のロック状態になった場合に、前記入力データ信号に所定の整形処理を施したm本のデータ信号と1本以上のクロック信号とを出力する出力部とを備えることができる。
【0008】
ここで、この発明のクロックデータリカバリ回路において、前記ループフィルタと前記電圧変換回路との間に直列に接続されたローパスフィルタをさらに備えることができる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0010】
図1は、本発明の実施の形態におけるCDR回路のブロック図を示す。図1において、符号10は入力データ信号とクロック信号との間の位相差を合わせる本発明の実施の形態におけるCDR回路、1は入力データ信号Din(周期T)の入力端子である。符号2は入力データ信号Dinとm本のクロック信号ckv_k(k=1〜m)とを入力する位相比較回路PDm(またはPFDm)である。位相比較回路PDm(2)は入力データ信号Dinの遷移エッジと各クロック信号ckv_k(k=1〜m)の遷移エッジとの間の位相差を示し最小パルス幅が(m/2−1)×T以上のm本のエラー信号error_k(k=1〜m)を出力し、パルス幅が(m/2)×Tのm本の基準信号(または位相比較基準信号)ref_k(k=1〜m)を出力する。ここで、クロック信号ckv_k(k=1〜m)は、周波数がf/m(f=1/T、m=2、nは2以上の自然数)であって位相が2π/mずつ異なるm本のクロック信号である。位相比較回路PDm(2)は、所定のロック状態になった場合に、入力データ信号Dinに所定の整形処理を施したm本のデータ信号Dout_k(k=1〜m)を符号13ないし15で示される出力端子から出力し、ロック状態におけるクロック信号CKoutを出力端子16から出力する。
【0011】
続いて図1において、符号3は位相比較回路PDm(2)から出力されたm本のエラー信号error_k(k=1〜m)の中の所定の1本のエラー信号error_1とm本の位相比較基準信号ref_k(k=1〜m)の中の所定の1本の位相比較基準信号ref_1とを入力して、充電電流または放電電流を出力するチャージポンプ回路CP_1である。チャージポンプ回路CP_1(3)と同様に、チャージポンプ回路CP_2(4)はエラー信号error_2と位相比較基準信号ref_2とを入力して、充電電流または放電電流を出力する。同様に、チャージポンプ回路CP_m(5)はエラー信号error_mと位相比較基準信号ref_mとを入力して、充電電流または放電電流を出力する。m個のチャージポンプ回路CP_1(3)ないしCP_m(5)によりチャージポンプ回路群が構成されている。
【0012】
図1において、符号6は上述のチャージポンプ回路群のm個の各チャージポンプ回路CP_k(k=1〜m)と共通に接続され、このチャージポンプ回路群から出力された充電電流または放電電流を時間的に平均化して直流電圧成分を出力するループフィルタ(破線で囲んで示す)である。ループフィルタ6は抵抗R1(7)とキャパシタC1(8)と抵抗R2(9)とを直列に接続して構成されており、上記充電電流または放電電流を時間的に平均化しvcont+とvcont−との間の電位差として現す。符号11はループフィルタ6により取り出された上記直流成分を所定の電圧vcontへ変換する両相単相電圧変換回路(DSC)、12は両相単相電圧変換回路DSC(11)から出力された所定の電圧vcontを入力し、上述のm本のクロック信号ckv_k(k=1〜m)を生成する電圧制御発振回路VCOmである。電圧制御発振回路VCOm(12)は生成したm本のクロック信号ckv_k(k=1〜m)を位相比較回路PDm(2)へ出力する。
以上、チャージポンプ回路およびループフィルタは差動型を使用し、両相単相電圧変換回路を使用する場合を説明したが、チャージポンプ回路およびループフィルタに単相型を使用し、両相単相電圧変換回路の替わりにボルテージフォロワ回路等を使用することも可能であることは言うまでもない。
【0013】
次に、本発明の実施の形態のCDR回路10の動作を説明する。図1に示されるように、CDR回路10は、入力端子1から入力される入力データ信号Din(周波数f(bits/secまたはHz))に対し、電圧制御発振回路VCOm(12)から出力する周波数がf/m(f=1/T、m=2、nは2以上の自然数)であって位相が2π/mずつ異なるm本のクロック信号ckv_k(k=1〜m)と位相を合わせる回路である。CDR回路10は、データ入力信号Dinとクロック信号ckv_k(k=1〜m)との位相差を電圧制御発振回路VCOm(12)の発振周波数にフィードバックして、クロック信号ckv_k(k=1〜m)の位相を入力データ信号Dinに合わせる動作を行う。ロック状態では、位相比較回路PD(133)の内部のフリップフロップ回路(後述の図2で示す)において入力データ信号Dinがクロック信号ckv_k(k=1〜m)でラッチされ整形されて、CDR回路10の出力であるDout_k(k=1〜m)信号として出力端子13ないし15から出力される。ロック状態におけるクロック信号Ckoutは出力端子16から出力される。以上のように、周波数がf/m(Hz)であり位相が2π/mずつ異なるm本のクロック信号ckv_k(k=1〜m)を用いることにより、位相比較信号であるエラー信号error_k(k=1〜m)の速度を従来の2×f(Hz。周波数換算)より遅い2×f/m(Hz)に低減することができる。この効果は位相比較基準信号ref_k(k=1〜m)に関しても比例的に働く。
【0014】
図1に示されるように、位相比較回路PDm(2)は位相比較信号であるエラー信号error_k(k=1〜m)と位相比較基準信号ref_k(k=1〜m)とを出力する。エラー信号error_k(k=1〜m)と位相比較基準信号ref_k(k=1〜m)とは、各々1本ずつチャージポンプ回路群のチャージポンプ回路CP_k(k=1〜m)に入力される。チャージポンプ回路CP_k(k=1〜m)は1回路として見ると従来のチャージポンプ回路CP(135)と同様の動作を行う。但し、充電電流と放電電流との電流比は適宜変更可能である。チャージポンプ回路CP_k(k=1〜m)の充電電流および放電電流は、共通に接続されたループフィルタ6で時間的に平均化される。このため、位相比較回路PDm(2)から出力されたm個の位相情報(エラー信号error_kまたは位相比較基準信号ref_k、k=1〜m)は、チャージポンプ回路CP_k(k=1〜m)を通してループフィルタ6で時間的に平均化され、vcont+とvcont−との間の電位差として現れる。両相単相電圧変換回路DSC(11)は、従来のCDR回路130における両相単相電圧変換回路DSC(145)と同様に、vcont+とvcont−との間の電位差を、所定の電圧、例えばGNDからの電位vcontへ変換し、電圧制御発振回路VCOm(12)の発振周波数にフィードバックする。このフィードバックにより、本発明の実施の形態におけるCDR回路10は、電圧制御発振回路VCOm(12)の発振クロック信号ckv_k(k=1〜m)の周波数をCDR回路10の入力である入力データ信号Dinと位相が一致するように動作する。
【0015】
図2は、本発明の位相比較回路PDm(2)の一例(m=4の場合)をブロック図で示す。ここで、m=2、nは2以上の自然数であり、図2にはm=4の場合について例示する。他のm=8、16、32等であってもよいことはもちろんである。図2において、符号20は本発明の位相比較回路PDm(2)の一例(m=4の場合)、21はクロック信号ckv_1の入力端子、22クロック信号ckv_2の入力端子、23はクロック信号ckv_3の入力端子、24はクロック信号ckv_4の入力端子、25は入力データ信号Dinの入力端子である。符号31、32、33および34は各々データ入力のD端子とクロック入力のC端子とQ出力(q等)とを有するラッチ回路L、L、LおよびL、符号41、42、43および44は各々データ入力のD端子とクロック入力のC端子とQ出力(qf等)とを有するD型フリップフロップ回路FF、FF、FFおよびFF、符号51ないし58は排他的論理和回路XORないしXOR、符号61ないし68は論理積回路ANDないしAND、符号71はエラー信号(error_1)の出力端子、72はエラー信号(error_2)の出力端子、73はエラー信号(error_3)の出力端子、74はエラー信号(error_4)の出力端子、75は基準信号(ref_1)の出力端子、76は基準信号(ref_2)の出力端子、77は基準信号(ref_3)の出力端子、78は基準信号(ref_4)の出力端子である。
【0016】
本発明の位相比較回路PDm(20)は、入力データ信号Dinの遷移エッジとクロック信号ckv_k(k=1〜m)の遷移エッジとの間の位相差を比較する位相比較回路である。入力データ信号Dinは周期がTであり、クロック信号ckv_k(k=1〜m)は周波数がf/m(f=1/T)であって位相が2π/mずつ異なるm本のクロック信号である。図2に示されるように、本発明の位相比較回路PDm(20)は、入力データ信号Dinを各クロック信号ckv_kの立ち上がりエッジで各々並列にラッチするラッチ部30と、ラッチ部30からの各出力信号(q等)と各クロック信号ckv_kとに基づいて、入力データ信号Dinの遷移エッジと各クロック信号ckv_kの遷移エッジとの間の位相差を示し、最小パルス幅が(m/2−1)×T以上のm本のエラー信号(error_1等)を出力するエラー信号出力部50と、ラッチ部30からの各出力信号(q等)を各クロック信号ckv_kの立ち上がりエッジで各々並列に入力する入力部40と、入力部40からの出力信号(qf等)と各クロック信号ckv_kとに基づいて、パルス幅が(m/2)×Tのm本の基準信号(ref_1等)を出力する基準信号出力部60とを有している。さらに、所定のロック状態になった場合に、入力データ信号Dinに所定の整形処理を施したm本のデータ信号Dout_k(k=1〜m)を出力し、1本以上のクロック信号CKoutを出力する出力部(不図示)を有している。
【0017】
ラッチ部30は、入力データ信号Dinをクロック信号ckv_kの立ち上がりエッジでラッチするラッチ回路L(i=1〜m)を並列に有している。図2に示されるように、ラッチ回路L(31)はC端子に入力したクロック信号ckv_kの立ち上がりエッジでD端子に入力する入力データ信号Dinをラッチし、Q出力(q)にそのDinを出力する。C端子に入力したクロック信号ckv_1がHigh(論理1)である間は、Q出力(q)をそのままホールドする。一方、C端子に入力したクロック信号ckv_1がLow(論理0)である間は、入力データ信号DinをそのままQ出力(q)に出力する。したがって、C端子に入力したクロック信号ckv_1がLow(論理0)である間、途中で入力データ信号Dinが変化すると当該変化に応じてQ出力(q)も変化する。
【0018】
ラッチ回路L(32)はC端子に入力したクロック信号ckv_2の立ち上がりエッジでD端子に入力する入力データ信号Dinをラッチし、Q出力(q)にそのDinを出力する。C端子に入力したクロック信号ckv_2がHigh(論理1)である間は、Q出力(q)をそのままホールドする。一方、C端子に入力したクロック信号ckv_2がLow(論理0)である間は、入力データ信号DinをそのままQ出力(q)に出力する。したがって、C端子に入力したクロック信号ckv_2がLow(論理0)である間、途中で入力データ信号Dinが変化すると当該変化に応じてQ出力(q)も変化する。
【0019】
ラッチ回路L(33)はC端子に入力したクロック信号ckv_3の立ち上がりエッジでD端子に入力する入力データ信号Dinをラッチし、Q出力(q)にそのDinを出力する。C端子に入力したクロック信号ckv_3がHigh(論理1)である間は、Q出力(q)をそのままホールドする。一方、C端子に入力したクロック信号ckv_3がLow(論理0)である間は、入力データ信号DinをそのままQ出力(q)に出力する。したがって、C端子に入力したクロック信号ckv_3がLow(論理0)である間、途中で入力データ信号Dinが変化すると当該変化に応じてQ出力(q)も変化する。
【0020】
ラッチ回路L(34)はC端子に入力したクロック信号ckv_4の立ち上がりエッジでD端子に入力する入力データ信号Dinをラッチし、Q出力(q)にそのDinを出力する。C端子に入力したクロック信号ckv_4がHigh(論理1)である間は、Q出力(q)をそのままホールドする。一方、C端子に入力したクロック信号ckv_4がLow(論理0)である間は、入力データ信号DinをそのままQ出力(q)に出力する。したがって、C端子に入力したクロック信号ckv_4がLow(論理0)である間、途中で入力データ信号Dinが変化すると当該変化に応じてQ出力(q)も変化する。
【0021】
エラー信号出力部50は、ラッチ部30のラッチ回路Lの出力信号qおよびラッチ回路Lk+1の出力信号qk+1(k+1=m+1の場合はラッチ回路Lの出力信号q)の排他的論理和の出力と、クロック信号ckv_kとの論理積をエラー信号error_k(k=1〜m)として出力する。図2に示されるように、ラッチ回路L(31)のQ出力(q)とラッチ回路L(32)のQ出力(q)とは排他的論理和回路XOR(51)に入力され、さらにその出力qxorqとクロック信号ckv_1とが論理積回路AND(61)に入力されて、その出力(qxorq)*ckv_1がエラー信号(error_1)として出力端子71から出力される。ここで記号「*」は論理積を意味する。
【0022】
ラッチ回路L(32)のQ出力(q)とラッチ回路L(33)のQ出力(q)とは排他的論理和回路XOR(52)に入力され、さらにその出力qxorqとクロック信号ckv_2とが論理積回路AND(62)に入力されて、その出力(qxorq)*ckv_2がエラー信号(error_2)として出力端子72から出力される。
【0023】
ラッチ回路L(33)のQ出力(q)とラッチ回路L(34)のQ出力(q)とは排他的論理和回路XOR(53)に入力され、さらにその出力qxorqとクロック信号ckv_3とが論理積回路AND(63)に入力されて、その出力(qxorq)*ckv_3がエラー信号(error_3)として出力端子73から出力される。
【0024】
ラッチ回路L(34)のQ出力(q)とラッチ回路L(31)のQ出力(q)とは排他的論理和回路XOR(54)に入力され、さらにその出力qxorqとクロック信号ckv_4とが論理積回路AND(64)に入力されて、その出力(qxorq)*ckv_4がエラー信号(error_4)として出力端子74から出力される。このようにm=4の場合に、k+1=m+1=5と最大数4を越えた場合は、ラッチ回路Lk+1(=L)の出力信号qk+1(=q)は元に戻って出力信号qとする。
【0025】
入力部40は、ラッチ部30のラッチ回路Lの出力信号qをクロック信号ckv_k+1(k+1=m+1の場合はクロック信号ckv_1)の立ち上がりエッジで入力するD型フリップフロップFF(k=1〜m)を並列に有している。図2に示されるように、D型フリップフロップFF(41)はC端子に入力したクロック信号ckv_2の立ち上がりエッジでD端子に入力するラッチ回路L(31)の出力信号qをラッチし、Q出力(qf)にその信号qを出力する。次のクロック信号ckv_2の立ち上がりエッジまでの間、Q出力(qf)をそのままホールドする。したがって、この間に途中でD端子qが変化した場合であっても当該変化に応じてQ出力(qf)が変化することはない。
【0026】
D型フリップフロップFF(42)はC端子に入力したクロック信号ckv_3の立ち上がりエッジでD端子に入力するラッチ回路L(32)の出力信号qをラッチし、Q出力(qf)にその信号qを出力する。次のクロック信号ckv_3の立ち上がりエッジまでの間、Q出力(qf)をそのままホールドする。したがって、この間に途中でD端子qが変化した場合であっても当該変化に応じてQ出力(qf)が変化することはない。
【0027】
D型フリップフロップFF(43)はC端子に入力したクロック信号ckv_4の立ち上がりエッジでD端子に入力するラッチ回路L(33)の出力信号qをラッチし、Q出力(qf)にその信号qを出力する。次のクロック信号ckv_4の立ち上がりエッジまでの間、Q出力(qf)をそのままホールドする。したがって、この間に途中でD端子qが変化した場合であっても当該変化に応じてQ出力(qf)が変化することはない。
【0028】
D型フリップフロップFF(44)はC端子に入力したクロック信号ckv_1の立ち上がりエッジでD端子に入力するラッチ回路L(34)の出力信号qをラッチし、Q出力(qf)にその信号qを出力する。次のクロック信号ckv_1の立ち上がりエッジまでの間、Q出力(qf)をそのままホールドする。したがって、この間に途中でD端子qが変化した場合であっても当該変化に応じてQ出力(qf)が変化することはない。このようにm=4の場合に、k+1=m+1=5と最大数4を越えた場合は、D型フリップフロップFFk+1(=FF)のクロック信号ckv_k+1(=ckv_5)は元に戻ってクロック信号ckv_1とする。
【0029】
基準信号出力部60は、入力部40のD型フリップフロップFFの出力信号qfおよびD型フリップフロップFFk+1の出力信号qfk+1(k+1=m+1の場合はD型フリップフロップFFの出力信号qf)の排他的論理和の出力と、クロック信号ckv_k+2(k+2=m+1の場合はクロック信号ckv_1、k+2=m+2の場合はクロック信号ckv_2)との論理積を基準信号ref_k(k=1〜m)として出力する。図2に示されるように、D型フリップフロップFF(41)のQ出力(qf)とD型フリップフロップFF(42)のQ出力(qf)とは排他的論理和回路XOR(55)に入力され、さらにその出力qfxorqfとクロック信号ckv_3とが論理積回路AND(65)に入力されて、その出力(qfxorqf)*ckv_3が基準信号(ref_1)として出力端子75から出力される。
【0030】
D型フリップフロップFF(42)のQ出力(qf)とD型フリップフロップFF(43)のQ出力(qf)とは排他的論理和回路XOR(56)に入力され、さらにその出力qfxorqfとクロック信号ckv_4とが論理積回路AND(66)に入力されて、その出力(qfxorqf)*ckv_4が基準信号(ref_2)として出力端子76から出力される。
【0031】
D型フリップフロップFF(43)のQ出力(qf)とD型フリップフロップFF(44)のQ出力(qf)とは排他的論理和回路XOR(57)に入力され、さらにその出力qfxorqfとクロック信号ckv_1とが論理積回路AND(67)に入力されて、その出力(qfxorqf)*ckv_1が基準信号(ref_3)として出力端子77から出力される。このようにm=4の場合に、k+1=m+1=5と最大数4を越えた場合は、論理積回路AND(67)に入力するクロック信号ckv_k+1(=ckv_5)は元に戻ってクロック信号ckv_1とする。
【0032】
D型フリップフロップFF(44)のQ出力(qf)とD型フリップフロップFF(41)のQ出力(qf)とは排他的論理和回路XOR(58)に入力され、さらにその出力qfxorqfとクロック信号ckv_2とが論理積回路AND(68)に入力されて、その出力(qfxorqf)*ckv_2が基準信号(ref_4)として出力端子78から出力される。このようにm=4の場合に、k+1=m+1=5と最大数4を越えた場合は、D型フリップフロップ回路FFk+1(=FF)の出力信号qfk+1(=qf)は元に戻って出力信号qfとする。さらに、論理積回路AND(68)に入力するクロック信号ckv_k+2(=ckv_6)は出力信号ckv_1から1つ進めてckv_2とする。
【0033】
図3(A)ないし(U)は、図2に示された本発明の位相比較回路PDm(2)のタイムチャートを示す。図3(A)ないし(U)で図2と同じ符号が付された箇所は同じ部分を示すため説明は省略する。図3(A)に示される信号は、信号名が入力データ信号Din、信号速度(Hz換算。以下同様)がf/2(データ周期はT(=1/f))であり、周期Tごとにデータ0、データ1等と示されている。図3(B)に示される信号は、信号名がクロック信号ckv_1、論理式がckv_1、信号速度がf/4であり、入力データ信号Dinがデータ0の間に立ち上がり、入力データ信号Dinがデータ2の間に立ち下がっていることが示されている。図3(C)に示される信号は、信号名がクロック信号ckv_2、論理式がckv_2、信号速度がf/4であり、入力データ信号Dinがデータ1の間に立ち上がり、入力データ信号Dinがデータ3の間に立ち下がっていることが示されている。図3(D)に示される信号は、信号名がクロック信号ckv_3、論理式がckv_3、信号速度がf/4であり、入力データ信号Dinがデータ2の間に立ち上がり、入力データ信号Dinがデータ4の間に立ち下がっていることが示されている。図3(E)に示される信号は、信号名がクロック信号ckv_4、論理式がckv_4、信号速度がf/4であり、入力データ信号Dinがデータ3の間に立ち上がり、入力データ信号Dinがデータ5の間に立ち下がっていることが示されている。
【0034】
図3(F)に示される信号は、信号名がラッチ回路L(31)の出力q、ラッチ回路L(31)のD端子における取り込みエッジがクロック信号ckv_1の立ち上がり(↑ckv_1)、利用する信号(0、4、8、...等)の速度がf/3である。図3(G)に示される信号は、信号名がラッチ回路L(32)の出力q、ラッチ回路L(32)のD端子における取り込みエッジがクロック信号ckv_2の立ち上がり(↑ckv_2)、利用する信号(1、5、9、...等)の速度がf/3である。図3(H)に示される信号は、信号名がラッチ回路L(33)の出力q、ラッチ回路L(33)のD端子における取り込みエッジがクロック信号ckv_3の立ち上がり(↑ckv_3)、利用する信号(2、6、...等)の速度がf/3である。図3(I)に示される信号は、信号名がラッチ回路L(34)の出力q、ラッチ回路L(34)のD端子における取り込みエッジがクロック信号ckv_4の立ち上がり(↑ckv_4)、利用する信号(3、7、...等)の速度がf/3である。
【0035】
図3(J)に示される信号は、信号名が論理積回路61のエラー信号(Error)、論理積回路61の出力を示す論理式が(qxorq)*ckv_1、信号速度はf/2より遅い。図3(K)に示される信号は、信号名が論理積回路62のエラー信号(Error)、論理積回路62の出力を示す論理式が(qxorq)*ckv_2、信号速度はf/2より遅い。図3(L)に示される信号は、信号名が論理積回路63のエラー信号(Error)、論理積回路63の出力を示す論理式が(qxorq)*ckv_3、信号速度はf/2より遅い。図3(M)に示される信号は、信号名が論理積回路64のエラー信号(Error)、論理積回路64の出力を示す論理式が(qxorq)*ckv_4、信号速度はf/2より遅い。上述のように、m個のラッチ回路Lに周波数がf/m(Hz)であって位相が2π/mずつ異なるm本のクロック信号ckv_iを入力することにより、エラー信号(Errori)の速度をf(Hz)より遅い2f/m(Hz)に低減することができる。
【0036】
図3(N)に示される信号は、信号名がD型フリップフロップ回路FF(41)の出力qf、D型フリップフロップ回路FF(41)のD端子における取り込みエッジがクロック信号ckv_2の立ち上がり(↑ckv_2)、信号速度がf/3である。図3(O)に示される信号は、信号名がD型フリップフロップ回路FF(42)の出力qf、D型フリップフロップ回路FF(42)のD端子における取り込みエッジがクロック信号ckv_3の立ち上がり(↑ckv_3)、信号速度がf/3である。図3(P)に示される信号は、信号名がD型フリップフロップ回路FF(43)の出力qf、D型フリップフロップ回路FF(43)のD端子における取り込みエッジがクロック信号ckv_4の立ち上がり(↑ckv_4)、信号速度がf/3である。図3(Q)に示される信号は、信号名がD型フリップフロップ回路FF(44)の出力qf、D型フリップフロップ回路FF(44)のD端子における取り込みエッジがクロック信号ckv_1の立ち上がり(↑ckv_1)、信号速度がf/3である。
【0037】
図3(R)に示される信号は、信号名が論理積回路66の基準信号(ref_1)、論理積回路65の出力を示す論理式が(qfxorqf)*ckv_3、信号速度はf/4より遅い。図3(S)に示される信号は、信号名が論理積回路66の基準信号(ref_2)、論理積回路66の出力を示す論理式が(qfxorqf)*ckv_4、信号速度はf/4より遅い。図3(T)に示される信号は、信号名が論理積回路67の基準信号(ref_3)、論理積回路67の出力を示す論理式が(qfxorqf)*ckv_1、信号速度はf/4より遅い。図3(U)に示される信号は、信号名が論理積回路68の基準信号(ref_4)、論理積回路68の出力を示す論理式が(qfxorqf)*ckv_2、信号速度はf/4より遅い。上述のように、m個のD型フリップフロップ回路FFに周波数がf/m(Hz)であって位相が2π/mずつ均等に異なるm本のクロック信号ckv_iを入力することにより、基準信号(ref_i)の速度をf/2(Hz)より遅いf/m(Hz)に低減することができる。
【0038】
図3(A)、(B)および(F)に示されるように、ラッチ回路L(31)は、クロック信号ckv_1の立ち上がりで入力データ信号Din(データ0)を取り込んでq出力に出力する。入力データ信号がデータ0からデータ1へ遷移しても、クロック信号ckv_1がHighであるためq出力はデータ0をホールドする。クロック信号ckv_1がLowになっている間、入力データ信号Dinのデータ2がそのまま出力qに現れ、入力データ信号Dinがデータ3、4へ遷移するとデータ3、4がそのまま出力qに現れる。次に、データ入力信号Dinがデータ4の間にクロック信号ckv_1が立ち上がると、このデータ4を取り込んでq出力に出力する。入力データ信号がデータ4からデータ5、6へ遷移しても、クロック信号ckv_1がHighであるためq出力はデータ4をホールドする。以下同様であるため説明は省略する。
【0039】
図3(A)、(C)および(G)に示されるように、ラッチ回路L(32)は、クロック信号ckv_2がLowの間、入力データ信号Din(データ0、1)を順次q出力に出力する。クロック信号ckv_2の立ち上がりで入力データ信号Din(データ1)を取り込んでq出力に出力する。入力データ信号がデータ1からデータ2、3へ遷移しても、クロック信号ckv_2がHighであるためq出力はデータ1をホールドする。クロック信号ckv_2がLowになっている間、入力データ信号Dinのデータ3、4、5がそのまま出力qに現れる。次に、データ入力信号Dinがデータ5の間にクロック信号ckv_2が立ち上がると、このデータ5を取り込んでq出力に出力する。以下同様であるため説明は省略する。
【0040】
図3(A)、(D)および(H)に示されるように、ラッチ回路L(33)は、クロック信号ckv_3がLowの間、入力データ信号Din(データ0、1、2)を順次q出力に出力する。クロック信号ckv_3の立ち上がりで入力データ信号Din(データ2)を取り込んでq出力に出力する。入力データ信号がデータ2からデータ3、4へ遷移しても、クロック信号ckv_3がHighであるためq出力はデータ2をホールドする。クロック信号ckv_3がLowになっている間、入力データ信号Dinのデータ4、5、6がそのまま出力qに現れる。次に、データ入力信号Dinがデータ6の間にクロック信号ckv_3が立ち上がると、このデータ6を取り込んでq出力に出力する。以下同様であるため説明は省略する。
【0041】
図3(A)、(E)および(I)に示されるように、ラッチ回路L(34)は、クロック信号ckv_4がLowの間、入力データ信号Din(データ1、2、3)を順次q出力に出力する。クロック信号ckv_4の立ち上がりで入力データ信号Din(データ3)を取り込んでq出力に出力する。入力データ信号がデータ3からデータ4、5へ遷移しても、クロック信号ckv_4がHighであるためq出力はデータ3をホールドする。クロック信号ckv_4がLowになっている間、入力データ信号Dinのデータ5、6、7がそのまま出力qに現れる。次に、データ入力信号Dinがデータ7の間にクロック信号ckv_4が立ち上がると、このデータ7を取り込んでq出力に出力する。以下同様であるため説明は省略する。
【0042】
図3(B)、(F)、(G)および(J)に示されるように、例えばクロック信号ckv_1がHigh(論理1)であり、かつ出力qがデータ0で出力qがデータ1である場合、エラー信号(Error)の出力は「0xor1」となる。クロック信号ckv_1がHigh(論理1)でない場合は、出力qと出力qとが異なるデータの場合であっても、エラー信号(Error)の出力は0となる。このため、出力qがデータ2で出力qがデータ1である場合、または出力qがデータ3で出力qがデータ1である場合のように、エラー信号(Error)として位相比較に関係の無いパルスを出力しないですむ。この結果、位相比較精度の低下または誤動作の発生を起こさないですませることができる。すなわち、出力qおよび出力qの排他的論理和(回路51)の出力とクロック信号ckv_1との論理積(回路61)をとることにより、位相比較に関係するパルス「0xor1」、「4xor5」等のみをエラー信号(Error)として出力することができる。
【0043】
図3(J)に示されるように、エラー信号(Error)のパルス幅は入力データ信号Dinの周期Tに対しクロック信号ckv_1の立ち上がりエッジが中央に位置すると(m/2−0.5)×Tの長さのパルスとなる。クロック信号ckv_1の立ち上がりエッジが入力データ信号Dinの中央よりΔtだけ前に位置した場合、Δtだけ少ないパルス幅のエラー信号(Error)が出力される。一方、クロック信号ckv_1の立ち上がりエッジが入力データ信号Dinの中央よりΔtだけ後に位置した場合、Δtだけ多いパルス幅のエラー信号(Error)が出力される。m=4、Δt=0.5×Tの場合、図3(J)に示されるように、±0.5×Tに対して、エラー信号(Error)のパルス幅は1.5×T±0.5×Tとなる。以下に説明される他のエラー信号(Errori)についても同様である。
【0044】
図3(C)、(G)、(H)および(K)に示されるように、例えばクロック信号ckv_2がHigh(論理1)であり、かつ出力qがデータ1で出力qがデータ2である場合、エラー信号(Error)の出力は「1xor2」となる。クロック信号ckv_2がHigh(論理1)でない場合は、出力qと出力qとが異なるデータの場合であっても、エラー信号(Error)の出力は0となる。すなわち上述と同様に、出力qおよび出力qの排他的論理和(回路52)の出力とクロック信号ckv_2との論理積(回路62)をとることにより、位相比較に関係するパルス「1xor2」、「5xor6」等のみをエラー信号(Error)として出力することができる。
【0045】
図3(D)、(H)、(I)および(L)に示されるように、例えばクロック信号ckv_3がHigh(論理1)であり、かつ出力qがデータ2で出力qがデータ3である場合、エラー信号(Error)の出力は「2xor3」となる。クロック信号ckv_3がHigh(論理1)でない場合は、出力qと出力qとが異なるデータの場合であっても、エラー信号(Error)の出力は0となる。すなわち上述と同様に、出力qおよび出力qの排他的論理和(回路53)の出力とクロック信号ckv_3との論理積(回路63)をとることにより、位相比較に関係するパルス「2xor3」、「6xor7」等のみをエラー信号(Error)として出力することができる。
【0046】
図3(E)、(F)、(I)および(M)に示されるように、例えばクロック信号ckv_4がHigh(論理1)であり、かつ出力qがデータ3で出力qがデータ4である場合、エラー信号(Error)の出力は「3xor4」となる。クロック信号ckv_4がHigh(論理1)でない場合は、出力qと出力qとが異なるデータの場合であっても、エラー信号(Error)の出力は0となる。すなわち上述と同様に、出力qおよび出力qの排他的論理和(回路54)の出力とクロック信号ckv_4との論理積(回路64)をとることにより、位相比較に関係するパルス「3xor4」、「7xor8」等のみをエラー信号(Error)として出力することができる。
【0047】
図3(N)、(O)および(R)に示されるように、例えばクロック信号ckv_3がHigh(論理1)であり、かつ出力qfがデータ0で出力qfがデータ1である場合、基準信号(ref_1)の出力は「0xor1」となる。クロック信号ckv_3がHigh(論理1)でない場合は、出力qfと出力qfとが異なるデータの場合であっても、基準信号(ref_1)の出力は0となる。従来の位相比較回路でラッチ回路を用いていたのに対して、本発明の位相比較回路ではD型フリップフロップ回路を用いることにより、位相比較に関係の無いパルスを排除することができる。さらに、出力qfおよび出力qfの排他的論理和(回路55)の出力とクロック信号ckv_3との論理積(回路65)をとることにより、出力qfがデータ4で出力qfがデータ1である場合のように、位相比較精度の低下または誤動作の発生を引き起こすような位相比較に不要なパルスを排除することができる。この結果、位相比較に関係するパルス「0xor1」、「4xor5」等のみを基準信号(ref_1)として出力することができる。図3(R)に示されるように、基準信号(ref_1)は入力データ信号Dinの遷移があった場合、m=4では常にデータ周期Tの2倍の長さ幅(=2.0×T、一般的には(m/2)×T)のパルスとして出力される。以下に説明される他の基準信号においても同様である。
【0048】
図3(O)、(P)、(S)に示されるように、例えばクロック信号ckv_4がHigh(論理1)であり、かつ出力qfがデータ1で出力qfがデータ2である場合、基準信号(ref_2)の出力は「1xor2」となる。クロック信号ckv_4がHigh(論理1)でない場合は、出力qfと出力qfとが異なるデータの場合であっても、基準信号(ref_2)の出力は0となる。すなわち上述したように、位相比較精度の低下または誤動作の発生を引き起こすような位相比較に不要なパルスを排除することができ、位相比較に関係するパルス「1xor2」、「5xor6」等のみを基準信号(ref_2)として出力することができる。
【0049】
図3(P)、(Q)、(T)に示されるように、例えばクロック信号ckv_1がHigh(論理1)であり、かつ出力qfがデータ2で出力qfがデータ3である場合、基準信号(ref_3)の出力は「2xor3」となる。クロック信号ckv_1がHigh(論理1)でない場合は、出力qfと出力qfとが異なるデータの場合であっても、基準信号(ref_3)の出力は0となる。すなわち上述したように、位相比較精度の低下または誤動作の発生を引き起こすような位相比較に不要なパルスを排除することができ、位相比較に関係するパルス「2xor3」、「6xor7」等のみを基準信号(ref_3)として出力することができる。
【0050】
図3(Q)、(N)、(U)に示されるように、例えばクロック信号ckv_2がHigh(論理1)であり、かつ出力qfがデータ3で出力qfがデータ4である場合、基準信号(ref_4)の出力は「3xor4」となる。クロック信号ckv_2がHigh(論理1)でない場合は、出力qfと出力qfとが異なるデータの場合であっても、基準信号(ref_4)の出力は0となる。すなわち上述したように、位相比較精度の低下または誤動作の発生を引き起こすような位相比較に不要なパルスを排除することができ、位相比較に関係するパルス「3xor4」、「7xor8」等のみを基準信号(ref_4)として出力することができる。
【0051】
以上より、本発明の位相比較回路PDm(2)によれば、m個のラッチ回路Lに周波数がf/m(Hz)であって位相が2π/mずつ異なるm本のクロック信号ckv_kを入力することにより、エラー信号error_k(k=1〜m)の速度をf(Hz)より遅い2f/m(Hz)に低減することができる。位相比較基準信号ref_k(k=1〜m)の速度も同様にf/m(Hz)に低減することができる。すなわち、本発明の位相比較回路PDm(2)により入力データ信号Dinとf/m(Hz)の速度のクロック信号ckv_k(k=1〜m)との位相比較を、最高でも2f/m(Hz)という従来より極めて低速なエラー信号error_k(k=1〜m)と、f/m(Hz)の位相比較基準信号ref_k(k=1〜m)とを用いて行うことができる。
【0052】
さらに本発明の位相比較回路PDm(2)によれば、出力qおよび出力qk+1の排他的論理和の出力とクロック信号ckv_k(k=1〜m)との論理積をとることにより、位相比較に関係するパルスのみをエラー信号error_k(k=1〜m)として出力することができる。すなわち、エラー信号error_k(k=1〜m)として位相比較に関係の無いパルスを出力しないですみ、位相比較精度の低下または誤動作の発生を起こさないですませることができる。位相比較基準信号ref_k(k=1〜m)においても出力qfおよび出力qf +1の排他的論理和の出力とクロック信号ckv_k+2との論理積をとることにより、位相比較精度の低下または誤動作の発生を引き起こすような位相比較に不要なパルスを排除することができる。この結果、位相比較に関係するパルスのみを位相比較基準信号ref_k(k=1〜m)として出力することができる。
【0053】
本発明のCDR回路10におけるチャージポンプ回路CP_kの例としては、例えば“A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector”, J. Savoj, et al. ,IEEE Journal of Solid-State circuits, Vol. 36, No. 5, May 2001, p.765, Fig.10に示されるチャージポンプ回路を利用することができる。図4は、上記チャージポンプ回路を示すブロック図である。図4において、符号80は本発明のCDR回路10におけるチャージポンプ回路CP_kの例、81は電源電圧Vdd端子、82は基準電圧Vref端子、83ないし87はトランジスタである。同様に符号91は電源電圧Vdd端子、92は上述のエラー信号error_kの入力端子、93は上述の位相比較基準信号ref_kの入力端子、94ないし97はトランジスタである。符号98、99はチャージポンプ回路CP_kの出力端子であり、各々電位vcont+とvcont−とを示す。出力端子98と99とがループフィルタ6へと接続されている。回路全体の動作に関しては上述したため省略する。
【0054】
本発明のCDR回路10における電圧制御発振回路VCOm(12)の例としては、例えば“Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS”, M. Tiebout, IEEE Journal of Solid-State circuits, Vol. 36, No. 7, July 2001, p.1023, Fig.11に示される電圧制御発振回路を利用することができる。図5は、上記電圧制御発振回路を示すブロック図である。図5において、符号100は本発明のCDR回路10における電圧制御発振回路VCOm(12)の例(m=4の場合)、101は電源電圧Vdd端子、102ないし121はトランジスタ、122は上述の両相単相電圧変換回路DSC(11)から出力された電圧vcontの入力端子、123ないし126は各々上述のクロック信号ckv_1ないしckv_3の出力端子である。回路全体の動作に関しては上述したため省略する。
【0055】
上述の実施の形態において、複数のチャージポンプCP_k(k=1〜m)からの位相の異なるチャージポンプ電流により、vcont+とvcont−との間の電位差にノイズが発生する場合は、ループフィルタ6と両相単相電圧変換回路DSC(11)との間に直列にローパスフィルタ(不図示)を設けることにより、ノイズをCDR回路10の回路動作に影響しない程度に低減することが可能である。
【0056】
図1等を用いて説明した上述の実施の形態は、各信号に対して1本の信号を用いて例示している。各信号に対して差動信号を使用し、回路の動作速度やノイズマージンを改善することは、容易に類推可能である。また、差動信号を使用する場合、クロック信号ckv_3にクロック信号ckv_1の反転信号を使用し、クロック信号ckv_4にクロック信号ckv_2の反転信号を使用すること、並びにラッチ回路L(33)およびラッチ回路L(34)とD型フリップフロップFF(42)およびD型フリップフロップFF(43)とにクロック信号の立下りエッジでラッチする回路を使用することも、容易に類推可能である。
【0057】
【発明の効果】
以上説明したように、本発明のCDR回路によれば、周波数がf/m(Hz)であって位相が2π/mずつ異なるm本のクロック信号ckv_k(k=1〜m)を用いることにより、データ入力信号Dinとクロック信号ckv_k(k=1〜m)との位相差を電圧制御発振回路VCOm(12)の発振周波数にフィードバックして、クロック信号ckv_k(k=1〜m)の位相を入力データ信号Dinに合わせる動作を行うことができる。本発明のCDR回路の回路動作において、位相比較回路PDm(2)とチャージポンプ回路CP_k(k=1〜m)の動作速度を律速するエラー信号error_k(k=1〜m)の速度と位相比較基準信号ref_k(k=1〜m)の速度とを1/m程度に緩和することができる。このため、エラー信号error_k(k=1〜m)および位相比較基準信号ref_k(k=1〜m)を高速のパルスとさせず、最速動作を可能とするCDR回路を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態におけるCDR回路のブロック図である。
【図2】 本発明の位相比較回路PDm(2)の一例(m=4の場合)のブロック図である。
【図3】 本発明の位相比較回路PDm(2)のタイムチャートである。
【図4】 本発明のチャージポンプ回路CP_kの一例を示すブロック図である図である。
【図5】 本発明の電圧制御発振回路VCOm(12)の一例(m=4の場合)を示すブロック図である。
【図6】 従来のCDR回路のブロック図である。
【符号の説明】
1,21,22,23,24,25,92,93,122,131 入力端子、2 位相比較回路PDm(またはPFDm)、 3 チャージポンプ回路CP_1、 4 チャージポンプ回路CP_2、 5 チャージポンプ回路CP_m、 6,137 ループフィルタ、 7,9,139,143 抵抗、 8,141 キャパシタ、 11,145 両相単相電圧変換回路DSC、 12 電圧制御発振回路VCOm、 13,14,15,16,71,72,73,74,75,76,77,78,98,99,123,124,125,126,148,149 出力端子、 30 ラッチ部、 31,32,33,34 ラッチ回路、 41,42,43,44 D型フリップフロップ回路、 51、52,53,54,55,56,57,58 排他的論理和回路、 61,62,63,64,65,66,67,68 論理積回路、 80 チャージポンプCP_kの回路例、 81,91,101 電源電圧Vdd端子、82 基準電圧Vref端子、 83〜87,94〜97、102〜121 トランジスタ、 100 電圧制御発振回路VCOmの回路例、 133 位相比較回路PD、 135 チャージポンプ回路CP、 147 電圧制御発振回路VCO。

Claims (3)

  1. 入力データ信号とクロック信号との間の位相差を合わせるクロックデータリカバリ回路であって、該入力データ信号は周期がTであり、該クロック信号は周波数がf/m(f=1/T、m=2、nは2以上の自然数)であって位相が2π/mずつ異なるm本のクロック信号であり、該クロックデータリカバリ回路は、
    前記入力データ信号と前記m本のクロック信号とを入力して、該入力データ信号の遷移エッジと各クロック信号の遷移エッジとの間の位相差を示し最小パルス幅が(m/2−1)×T以上のm本のエラー信号を出力し、パルス幅が(m/2)×Tのm本の基準信号を出力する位相比較回路と、
    前記位相比較回路から出力されたm本のエラー信号の中の所定の1本のエラー信号とm本の基準信号の中の所定の1本の基準信号とを入力して、充電電流または放電電流を出力するチャージポンプ回路をm個有するチャージポンプ回路群と、
    前記チャージポンプ回路群のm個の各チャージポンプ回路と共通に接続され、該チャージポンプ回路群から出力された充電電流または放電電流を時間的に平均化して直流電圧成分を出力するループフィルタと、
    前記ループフィルタから出力された直流電圧成分を所定の電圧へ変換する電圧変換回路と、
    前記電圧変換回路から出力された所定の電圧を入力し、前記m本のクロック信号を生成する電圧制御発振回路と
    を備え、
    前記電圧制御発振回路は生成したm本のクロック信号を前記位相比較回路へ出力するものであり、
    前記位相比較回路は、所定のロック状態になった場合に、前記入力データ信号に所定の整形処理を施したm本のデータ信号と1本以上のクロック信号とを出力することを特徴とするクロックデータリカバリ回路。
  2. 請求項1記載のクロックデータリカバリ回路において、前記位相比較回路は、
    前記入力データ信号を前記各クロック信号の立ち上がりエッジで各々並列にラッチするラッチ部と、
    前記ラッチ部からの各出力信号と前記各クロック信号とに基づいて、入力データ信号の遷移エッジと各クロック信号の遷移エッジとの間の位相差を示し、最小パルス幅が(m/2−1)×T以上のm本のエラー信号を出力するエラー信号出力部と、
    前記ラッチ部からの各出力信号を前記各クロック信号の立ち上がりエッジで各々並列に入力する入力部と、
    前記入力部からの出力信号と前記各クロック信号とに基づいて、パルス幅が(m/2)×Tのm本の基準信号を出力する基準信号出力部と、
    所定のロック状態になった場合に、前記入力データ信号に所定の整形処理を施したm本のデータ信号と1本以上のクロック信号とを出力する出力部と
    を備えたことを特徴とするクロックデータリカバリ回路。
  3. 請求項1または2記載のクロックデータリカバリ回路において、前記ループフィルタと前記電圧変換回路との間に直列に接続されたローパスフィルタをさらに備えたことを特徴とするクロックデータリカバリ回路。
JP2002243347A 2002-05-30 2002-08-23 クロックデータリカバリ回路 Expired - Fee Related JP3781704B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002243347A JP3781704B2 (ja) 2002-08-23 2002-08-23 クロックデータリカバリ回路
CN03120473.2A CN1252924C (zh) 2002-05-30 2003-03-19 相位比较电路和时钟数据恢复电路以及收发器电路
US10/391,298 US7257184B2 (en) 2002-05-30 2003-03-19 Phase comparator, clock data recovery circuit and transceiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243347A JP3781704B2 (ja) 2002-08-23 2002-08-23 クロックデータリカバリ回路

Publications (2)

Publication Number Publication Date
JP2004088212A JP2004088212A (ja) 2004-03-18
JP3781704B2 true JP3781704B2 (ja) 2006-05-31

Family

ID=32052127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243347A Expired - Fee Related JP3781704B2 (ja) 2002-05-30 2002-08-23 クロックデータリカバリ回路

Country Status (1)

Country Link
JP (1) JP3781704B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276928B2 (ja) 2008-08-29 2013-08-28 株式会社日立製作所 信号再生回路向け位相比較回路及び信号再生回路向け位相比較回路を備える光通信装置
US8139701B2 (en) * 2010-08-05 2012-03-20 Fujitsu Limited Phase interpolation-based clock and data recovery for differential quadrature phase shift keying
US9189012B2 (en) * 2012-03-29 2015-11-17 Terasquare Co. Ltd. Clock recovery, receiver, and communication system for multiple channels
KR101593678B1 (ko) * 2014-05-26 2016-02-16 고려대학교 산학협력단 클럭 및 데이터 복원 회로 및 그 방법

Also Published As

Publication number Publication date
JP2004088212A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
US6590426B2 (en) Digital phase detector circuit and method therefor
US10873444B2 (en) Frequency/phase lock detector for clock and data recovery circuits
US8390347B1 (en) Single period phase to digital converter
JP3649194B2 (ja) Pll回路および光通信受信装置
JP2007531443A (ja) 高速の位相周波数検出装置
JP2004312726A (ja) 全デジタル周波数検出器及びアナログ位相検出器を用いる周波数/位相同期ループクロックシンセサイザ
US6915081B2 (en) PLL circuit and optical communication reception apparatus
TWI638526B (zh) 頻率合成裝置及其方法
US7127017B1 (en) Clock recovery circuit with second order digital filter
JPS63263936A (ja) データ検出器
WO2002095947A1 (fr) Circuit integre sur semi-conducteur
JP3781704B2 (ja) クロックデータリカバリ回路
JP3617456B2 (ja) Pll回路および光通信受信装置
US7257184B2 (en) Phase comparator, clock data recovery circuit and transceiver circuit
US7368954B2 (en) Phase comparison circuit and CDR circuit
Jeon et al. Area Efficient 4Gb/s Clock Data Recovery Using Improved Phase Interpolator with Error Monitor
JP2002185291A (ja) 電圧制御発振器およびpll回路
JP2002344294A (ja) データ幅補正装置
Rhee et al. A semi-digital delay-locked loop using an analog-based finite state machine
JP2004343636A (ja) リング発振回路及びpll回路
JP2003168973A (ja) クロックリカバリー回路
Karsani A dual-loop frequency synthesizer
Chow et al. Novel frequency doubler circuits and dividers using duty cycle control buffers
Wang et al. A 0.7-1 Gb/s CMOS clock recovery circuit
Ping et al. A low-jitter frequency synthesizer with dynamic phase interpolation for high-speed Ethernet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees