JP3778085B2 - Reflective photoelectric sensor - Google Patents

Reflective photoelectric sensor Download PDF

Info

Publication number
JP3778085B2
JP3778085B2 JP2001401535A JP2001401535A JP3778085B2 JP 3778085 B2 JP3778085 B2 JP 3778085B2 JP 2001401535 A JP2001401535 A JP 2001401535A JP 2001401535 A JP2001401535 A JP 2001401535A JP 3778085 B2 JP3778085 B2 JP 3778085B2
Authority
JP
Japan
Prior art keywords
light
light receiving
lens
light projecting
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001401535A
Other languages
Japanese (ja)
Other versions
JP2003204077A (en
Inventor
充 小林
豊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001401535A priority Critical patent/JP3778085B2/en
Publication of JP2003204077A publication Critical patent/JP2003204077A/en
Application granted granted Critical
Publication of JP3778085B2 publication Critical patent/JP3778085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を前方に射出して検出対象で反射した光を受光する反射型光電センサに関するものである。
【0002】
【従来の技術】
図3に従来の反射型光電センサの構成図を示す。図3において、従来の反射型光電センサは、投光レンズ1と、この投光レンズ1を介して前方に光を射出する投光素子2と、受光レンズ3と、この受光レンズ3を介して前方から入来する光を受光する受光素子4と、これらの各部品を保持するセンサボディ(筐体)6PAとを備えている。
【0003】
投光素子2および受光素子4は図示しない基板に実装され、これら投光素子2および受光素子4と投光レンズ1および受光レンズ3は、図3に示すようにセンサボディ6PAによって幾何学的に位置決めされる。
【0004】
投光素子2は、電流を流すと発光するLEDまたはレーザダイオードなどである。受光素子4は、受光面における入射光の位置の移動に応じて出力が変化するPSD(位置検出素子)または2分割PD(フォトダイオード)などである。
【0005】
このような構成の反射型光電センサでは、投光素子2が赤外線などの光を射出すると、その光は、投光レンズ1で集光された後、前方に検出対象があればその検出対象で反射する。そして反射した光が受光レンズ3で集光された後に受光素子4で受光されたとすると、受光された光は電気的信号に変換されて反射型光電センサの出力信号として用いられる。
【0006】
ところで、この種の反射型光電センサでは、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとの離間距離、より具体的には、投光レンズ1と受光レンズ3との離間距離BL1、並びに投光素子2と受光素子4との離間距離BLD1が短いと、遠方の検出対象に対する検出分解能が悪くなるという問題がある。
【0007】
図4に図3の構成では遠方の検出対象に対する検出分解能が悪くなる様子を示す。図4の検出対象DOは図3のそれよりも遠い位置(L2>L1)にあり、反射型光電センサ自体は図3のそれと同じものである。
【0008】
図3に示すように、検出対象が図4のそれよりも近い位置にある場合、検出対象DOが位置P3から位置P4にまたは位置P4から位置P3に移動したとき、その移動距離ΔLに対応する受光素子4の受光面上での変位長はΔL1となる。
【0009】
これに対し、図4に示すように、検出対象が図3のそれよりも遠い位置にある場合、検出対象DOが位置P1から位置P2にまたは位置P2から位置P1に、図3の場合と同じ距離だけ移動したとき、その移動距離ΔLに対応する受光素子4の受光面上での変位長はΔL2となり、このΔL2は明らかにΔL1よりも短くなる。つまり、検出対象が遠い位置にあるほど、同じ距離だけ移動したとしても、受光素子4上の変位が幾何学的に小さくなるので、検出素子4から出力される信号変化も小さくなり、センサ感度が悪くなるのである(例えばL1≪L2のとき、ΔL1≫ΔL2となり、ΔL2≒0となる)。この場合、ΔL2を受光素子4にて電気信号に変換することが難しくなる。
【0010】
図5に図3,図4のものよりも遠方の検出対象に対する検出分解能を良くした反射型光電センサの構成図を示す。図5の反射型光電センサは、投光レンズ1と、投光素子2と、受光レンズ3と、受光素子4とを図3,4の反射型光電センサと同様に備えているほか、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとを、図3,4よりも離して保持するセンサボディ6PBを備えている。つまり、図5の反射型光電センサでは、投光レンズ1と受光レンズ3との離間距離BL2は図3,4のBL1よりも長く、投光素子2と受光素子4との離間距離BLD2は図3,4のBLD1よりも長くなっている。
【0011】
このように離間距離BL2,BLD2をより長く設定することにより、遠方の検出対象に対する検出分解能を良くすることができる。例えば、図5に示すように、図4と同様に検出対象DOが位置P1から位置P2にまたは位置P2から位置P1に移動したとすると、その移動距離ΔLに対応する受光素子4の受光面上での変位長はΔL3となり、このΔL3は明らかに図4のΔL2よりも長くなるので、検出素子4から出力される信号変化がより大きくなり、センサ感度が良くなる。
【0012】
【発明が解決しようとする課題】
しかしながら、図5の反射型光電センサでは、前方に検出不能範囲(不感帯ともいう)が生じるという課題がある。
【0013】
図6に図5の反射型光電センサにおける不感帯の説明図を示す。離間距離BL2,BLD2を長めに設定すると、図6に示すように、前方に位置する検出対象が所定距離D外の遠距離範囲にある場合、その遠距離範囲にある検出対象で投光素子2から射出された光が受光素子4の受光範囲内に反射するが、前方に位置する検出対象が所定距離D内にある場合、その所定距離D内にある検出対象で投光素子2から射出された光が受光素子4の受光範囲外に反射する。図6の例では、所定距離Dの遠端に検出対象が位置するとき、その検出対象で反射した光が受光素子4の受光範囲の外縁に入光することになるので、所定距離D内に検出対象が位置すれば、その検出対象で反射した光はもはや受光素子4の受光範囲に入光することができなくなるから、所定距離D内が不感帯の範囲となる。そして、この不感帯の範囲は、離間距離BL2,BLD2をより長く設定するほどより拡大する。
【0014】
この課題を解決するべく、従来では、図3の構成の反射型光電センサと図5の構成の反射型光電センサとを併用する場合がある。しかし、異なる種類の反射型光電センサを2個使用する構成では、設置スペースの確保およびコスト高が新たな課題となる。
【0015】
本発明は、上記事情に鑑みてなされたものであり、別の反射型光電センサと併用することなく、遠距離範囲にある検出対象に対する検出分解能を上げることができるとともに、不感帯の範囲を縮小することができる反射型光電センサを提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するための請求項1記載の発明は、投光レンズと、この投光レンズを介して前方に光を射出する遠距離用投光素子と、受光レンズと、この受光レンズを介して前方から入来する光を受光する受光素子とを備え、前方に位置する検出対象が所定距離外の遠距離範囲にある場合、その遠距離範囲にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するとともに、前方に位置する検出対象が前記所定距離内にある場合、その所定距離内にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲外に反射するように、前記投光レンズおよび遠距離用投光素子の組みと前記受光レンズおよび受光素子の組みとが離間して設けられる反射型光電センサであって、前記投光レンズおよび遠距離用投光素子の組みを一組、前記受光レンズおよび受光素子の組みを二組備え、それぞれ前方に光を射出する2個の近距離用投光素子をさらに備え、前記受光レンズおよび受光素子の各組みの間に前記投光レンズおよび遠距離用投光素子の組みを配置するとともに、前記所定距離内の近距離範囲にある検出対象で前記近距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するように、前記投光レンズおよび遠距離用投光素子の組みと一方の組みの受光レンズおよび受光素子との間に一方の近距離用投光素子を配置し、前記投光レンズおよび遠距離用投光素子の組みと他方の組みの受光レンズおよび受光素子との間に他方の近距離用投光素子を配置してなることを特徴とする。
【0020】
【発明の実施の形態】
本発明に係る実施形態について説明する前に、本発明に関連した参考例について説明する。
参考例
図1は本発明に関連した参考例の反射型光電センサの構成図であり、この図を用いて参考例について説明する。
【0021】
参考例の反射型光電センサは、図1に示すように、投光レンズ1と、LEDまたはレーザダイオードなどによりなり投光レンズ1を介して前方に光を射出する遠距離用の投光素子2と、受光レンズ3と、PSDまたは2分割PDなどによりなり受光レンズ3を介して前方から入来する光を受光する受光素子4と、レンズ一体型形状のLEDまたはチップLED(図では砲弾形状のLED)によりなり前方に光を射出する近距離用の投光素子5と、これらの各部品を保持するセンサボディ6とを備えている。
【0022】
このセンサボディ6は、前方に位置する検出対象が所定距離D外の遠距離範囲RLDにある場合、遠距離範囲RLDにある検出対象で投光素子2から射出された光が受光素子4の受光範囲内に反射するとともに、前方に位置する検出対象が所定距離D内にある場合、所定距離D内にある検出対象で投光素子2から射出された光が受光素子4の受光範囲外(図では受光範囲外上方)に反射するように、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとを離間して保持している。図1の例では、図5の従来の反射型光電センサと同様に、投光レンズ1と受光レンズ3との離間距離はBL2に設定され、投光素子2と受光素子4との離間距離はBLD2に設定されている。
【0023】
また、センサボディ6は、所定距離D内の近距離範囲RSD(図1の例では近端側を除くDの一部)にある検出対象で投光素子5から射出された光が受光素子4の受光範囲内に反射するように、投光素子5を、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとの間に配置して保持している。
【0024】
上記構成の反射型光電センサによれば、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとを任意に適当な距離だけ離間することにより、検出対象が遠距離範囲RLDで前後方向に移動した場合におけるその移動距離に対応する受光素子4の受光面上での変位長を、任意に設定することができる。図1の例では、図5の反射型光電センサと同様に、離間距離BL2,BLD2に設定されているので、遠距離範囲RLDにおいて、検出対象DOが位置P1から位置P2にまたは位置P2から位置P1に、図5の場合と同じ距離だけ移動したとすれば、その移動距離ΔLに対応する受光素子4の受光面上での変位長は、図5と同様にΔL3となる。
【0025】
この場合、図5の従来構成例では、図6で説明したように不感帯の範囲Dが生じることになるが、参考例では、投光素子5を設け、この投光素子5から射出された光が所定距離D内の近距離範囲RSDにある検出対象で受光素子4の受光範囲内に向けて反射するようにしたので、近距離範囲RSDの分だけ不感帯の範囲Dを縮小することができる。図1の例では、不感帯の範囲Dのほとんどが近距離範囲RSDでカバーされている。
【0026】
以上、参考例によれば、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとを任意に適当な距離だけ離すことにより、遠距離範囲にある検出対象に対する検出分解能を上げることができる。
【0027】
近距離範囲RSDにある検出対象で投光素子5から射出された光が受光素子4の受光範囲内に反射するように、投光素子5が、投光レンズ1および投光素子2の組みと受光レンズ3および受光素子4の組みとの間に配置されるので、不感帯の範囲Dを縮小することができる。この場合、従来の反射型光電センサと比較した場合、投光素子5を1個追加するだけであるから、安価であるほか、別の反射型光電センサと併用することなく、寸法を大きくすることなく不感帯の範囲Dを縮小することができる。
【0028】
さらに、近距離用の投光素子5が砲弾形状のLEDまたはチップLEDによりなるので、近距離用の投光素子と投光レンズとを使用する構成と比べ、小型化およびコスト低減が可能となる。また、一般的な部品であるので、入手が容易である。
【0029】
施形態)
図2は本発明に係る施形態の反射型光電センサの構成図であり、この図を用いて施形態について説明する。
【0030】
施形態の反射型光電センサは、図2に示すように、投光素子5を2個、投光レンズ1および遠距離用の投光素子2の組みを一組、そして受光レンズ3および受光素子4の組みを二組備えるとともに、これらの各組みの間に投光レンズ1および投光素子2の組みを配置し、この投光レンズ1および投光素子2の組みと一方の組みの受光レンズ3および受光素子4との間に一方の投光素子5を配置し、そして投光レンズ1および投光素子2の組みと他方の組みの受光レンズ3および受光素子4との間に他方の投光素子5を配置して保持するセンサボディ6Aを備えている。
【0031】
このような構成の反射型光電センサでも、一方の組みの受光レンズ3および受光素子4と、投光レンズ1および投光素子2の組みと、これらの間に設けられる投光素子5とが参考例の反射型光電センサと同様に機能し、他方の組みの受光レンズ3および受光素子4と、投光レンズ1および投光素子2の組みと、これらの間に設けられる投光素子5とが参考例の反射型光電センサと同様に機能するから、参考例と同様に、別の反射型光電センサと併用することなく、遠距離範囲にある検出対象に対する検出分解能を上げることができるとともに、不感帯の範囲を縮小することができる。
【0032】
【発明の効果】
以上のことから明らかなように、請求項1記載の発明は、投光レンズと、この投光レンズを介して前方に光を射出する遠距離用投光素子と、受光レンズと、この受光レンズを介して前方から入来する光を受光する受光素子とを備え、前方に位置する検出対象が所定距離外の遠距離範囲にある場合、その遠距離範囲にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するとともに、前方に位置する検出対象が前記所定距離内にある場合、その所定距離内にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲外に反射するように、前記投光レンズおよび遠距離用投光素子の組みと前記受光レンズおよび受光素子の組みとが離間して設けられる反射型光電センサであって、前記投光レンズおよび遠距離用投光素子の組みを一組、前記受光レンズおよび受光素子の組みを二組備え、それぞれ前方に光を射出する2個の近距離用投光素子をさらに備え、前記受光レンズおよび受光素子の各組みの間に前記投光レンズおよび遠距離用投光素子の組みを配置するとともに、前記所定距離内の近距離範囲にある検出対象で前記近距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するように、前記投光レンズおよび遠距離用投光素子の組みと一方の組みの受光レンズおよび受光素子との間に一方の近距離用投光素子を配置し、前記投光レンズおよび遠距離用投光素子の組みと他方の組みの受光レンズおよび受光素子との間に他方の近距離用投光素子を配置してなるので、別の反射型光電センサと併用することなく、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の組みとを任意に適当な距離だけ離すことにより、遠距離範囲にある検出対象に対する検出分解能を上げることができ、近距離範囲にある検出対象で近距離用投光素子から射出された光が受光素子の受光範囲内に反射するように、近距離用投光素子を、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の組みとの間に配置することにより、不感帯の範囲を縮小することができる。
【図面の簡単な説明】
【図1】 本発明に関連した参考例の反射型光電センサの構成図である。
【図2】 本発明に係る施形態の反射型光電センサの構成図である。
【図3】 従来の反射型光電センサの構成図である。
【図4】 図3の構成では遠方の検出対象に対する検出分解能が悪くなる様子を示す図である。
【図5】 図3,図4のものよりも遠方の検出対象に対する検出分解能を良くした反射型光電センサの構成図である。
【図6】 図5の反射型光電センサにおける不感帯の説明図である。
【符号の説明】
1 投光レンズ
2 投光素子
3 受光レンズ
4 受光素子
5 投光素子
6,6A センサボディ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflective photoelectric sensor that emits light forward and receives light reflected by a detection target.
[0002]
[Prior art]
FIG. 3 shows a configuration diagram of a conventional reflective photoelectric sensor. In FIG. 3, the conventional reflective photoelectric sensor includes a light projecting lens 1, a light projecting element 2 that emits light forward through the light projecting lens 1, a light receiving lens 3, and a light receiving lens 3. It includes a light receiving element 4 that receives light coming from the front, and a sensor body (housing) 6PA that holds these components.
[0003]
The light projecting element 2 and the light receiving element 4 are mounted on a substrate (not shown). The light projecting element 2, the light receiving element 4, the light projecting lens 1, and the light receiving lens 3 are geometrically arranged by a sensor body 6PA as shown in FIG. Positioned.
[0004]
The light projecting element 2 is an LED or a laser diode that emits light when an electric current is passed. The light receiving element 4 is a PSD (position detecting element) or a two-part PD (photodiode) whose output changes in accordance with the movement of the position of incident light on the light receiving surface.
[0005]
In the reflection type photoelectric sensor having such a configuration, when the light projecting element 2 emits light such as infrared light, the light is collected by the light projecting lens 1 and then, if there is a detection target ahead, the detection target. reflect. If the reflected light is collected by the light receiving lens 3 and then received by the light receiving element 4, the received light is converted into an electrical signal and used as an output signal of the reflective photoelectric sensor.
[0006]
By the way, in this type of reflective photoelectric sensor, the distance between the combination of the light projecting lens 1 and the light projecting element 2 and the group of the light receiving lens 3 and the light receiving element 4, more specifically, the light projecting lens 1 and the light receiving lens. 3 and the separation distance BLD1 between the light projecting element 2 and the light receiving element 4 are short, there is a problem that the detection resolution with respect to a far detection target is deteriorated.
[0007]
FIG. 4 shows a state in which the detection resolution for a far detection target is deteriorated in the configuration of FIG. The detection target DO in FIG. 4 is at a position farther than that in FIG. 3 (L2> L1), and the reflective photoelectric sensor itself is the same as that in FIG.
[0008]
As shown in FIG. 3, when the detection target is at a position closer to that of FIG. 4, when the detection target DO moves from the position P3 to the position P4 or from the position P4 to the position P3, it corresponds to the movement distance ΔL. The displacement length on the light receiving surface of the light receiving element 4 is ΔL1.
[0009]
On the other hand, as shown in FIG. 4, when the detection target is at a position farther than that of FIG. 3, the detection target DO is from position P1 to position P2 or from position P2 to position P1, as in FIG. When moved by the distance, the displacement length on the light receiving surface of the light receiving element 4 corresponding to the moving distance ΔL is ΔL2, and this ΔL2 is clearly shorter than ΔL1. In other words, the farther the detection target is, the smaller the displacement on the light receiving element 4 is, even if it is moved by the same distance, so that the change in the signal output from the detection element 4 is reduced, and the sensor sensitivity is reduced. (For example, when L1 << L2, ΔL1 >> ΔL2 and ΔL2≈0). In this case, it becomes difficult to convert ΔL2 into an electrical signal by the light receiving element 4.
[0010]
FIG. 5 shows a configuration diagram of a reflective photoelectric sensor in which the detection resolution for a detection object farther than that of FIGS. 3 and 4 is improved. The reflective photoelectric sensor in FIG. 5 includes a light projecting lens 1, a light projecting element 2, a light receiving lens 3, and a light receiving element 4 in the same manner as the reflective photoelectric sensor in FIGS. A sensor body 6PB is provided that holds the set of the lens 1 and the light projecting element 2 and the set of the light receiving lens 3 and the light receiving element 4 apart from those in FIGS. That is, in the reflective photoelectric sensor of FIG. 5, the distance BL2 between the light projecting lens 1 and the light receiving lens 3 is longer than BL1 in FIGS. 3 and 4, and the distance BLD2 between the light projecting element 2 and the light receiving element 4 is shown in FIG. It is longer than 3 or 4 BLD1.
[0011]
By setting the separation distances BL2 and BLD2 longer as described above, it is possible to improve the detection resolution for a far detection target. For example, as shown in FIG. 5, if the detection object DO moves from the position P1 to the position P2 or from the position P2 to the position P1 as in FIG. 4, on the light receiving surface of the light receiving element 4 corresponding to the movement distance ΔL. Since the displacement length at ΔL3 becomes ΔL3, which is clearly longer than ΔL2 in FIG. 4, the change in the signal output from the detection element 4 becomes larger and the sensor sensitivity is improved.
[0012]
[Problems to be solved by the invention]
However, the reflective photoelectric sensor of FIG. 5 has a problem that an undetectable range (also referred to as a dead zone) is generated in the front.
[0013]
FIG. 6 is an explanatory diagram of the dead zone in the reflective photoelectric sensor of FIG. When the separation distances BL2 and BLD2 are set longer, as shown in FIG. 6, when the detection target located in the front is in a long distance range outside the predetermined distance D, the light projecting element 2 is detected by the detection target in the long distance range. Is reflected within the light receiving range of the light receiving element 4, but when the detection target located in the front is within the predetermined distance D, the light is emitted from the light projecting element 2 with the detection target within the predetermined distance D. The reflected light is reflected outside the light receiving range of the light receiving element 4. In the example of FIG. 6, when the detection target is located at the far end of the predetermined distance D, the light reflected by the detection target enters the outer edge of the light receiving range of the light receiving element 4. If the detection target is located, the light reflected by the detection target can no longer enter the light receiving range of the light receiving element 4, and therefore the dead zone is within the predetermined distance D. The range of the dead zone is further expanded as the separation distances BL2 and BLD2 are set longer.
[0014]
In order to solve this problem, conventionally, the reflective photoelectric sensor having the configuration of FIG. 3 and the reflective photoelectric sensor having the configuration of FIG. 5 may be used in combination. However, in a configuration in which two different types of reflective photoelectric sensors are used, securing installation space and high costs are new issues.
[0015]
The present invention has been made in view of the above circumstances, and can increase the detection resolution for a detection target in a long-distance range and reduce the range of the dead zone without using it in combination with another reflective photoelectric sensor. It is an object of the present invention to provide a reflective photoelectric sensor that can be used.
[0016]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above-described problems is a light projecting lens, a long distance light projecting element that emits light forward through the light projecting lens, a light receiving lens, and a light receiving lens. A light receiving element that receives light coming from the front, and when the detection target located in the front is in a long distance range outside a predetermined distance, the long distance light projecting element is a detection target in the long distance range. The light emitted from the light receiving element is reflected in the light receiving range of the light receiving element, and when the detection target located in the front is within the predetermined distance, the detection target within the predetermined distance from the long distance light projecting element. A reflection type photoelectric device in which the set of the light projecting lens and the long distance light projecting element and the set of the light receiving lens and the light receiving element are spaced apart so that the emitted light is reflected outside the light receiving range of the light receiving element. a sensor, said light projecting A pair of light emitting elements for light and long distance, two pairs of light receiving lenses and light receiving elements, each of which further comprises two light projecting elements for short distance that emit light forward, A pair of the light projecting lens and the long distance light projecting element is disposed between each pair of light receiving elements, and the light is emitted from the short distance light projecting element at a detection target in a short distance range within the predetermined distance. So that the reflected light is reflected within the light receiving range of the light receiving element, and one short distance light projecting between the pair of the light projecting lens and the long distance light projecting element and the one light receiving lens and the light receiving element. An element is disposed, and the other short distance light projecting element is disposed between the combination of the light projecting lens and the long distance light projecting element and the other light receiving lens and the light receiving element. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Before describing embodiments according to the present invention, reference examples related to the present invention will be described.
( Reference example )
FIG. 1 is a configuration diagram of a reflective photoelectric sensor of a reference example related to the present invention, and the reference example will be described with reference to this figure.
[0021]
As shown in FIG. 1, the reflective photoelectric sensor of the reference example includes a light projecting lens 1 and a long distance light projecting element 2 that emits light forward through the light projecting lens 1. A light receiving lens 3, a light receiving element 4 that receives light coming from the front through the light receiving lens 3 and includes a lens-integrated LED or chip LED (in the figure, a bullet-shaped LED). A short-distance projecting element 5 that emits light forward and a sensor body 6 that holds these components.
[0022]
In the sensor body 6, when the detection target located in the front is in the long distance range R LD outside the predetermined distance D, the light emitted from the light projecting element 2 by the detection target in the long distance range R LD is received by the light receiving element 4. When the detection target located in the front is within the predetermined distance D, the light emitted from the light projecting element 2 at the detection target within the predetermined distance D is outside the light reception range of the light receiving element 4. The set of the light projecting lens 1 and the light projecting element 2 and the set of the light receiving lens 3 and the light receiving element 4 are held apart so as to be reflected (upwardly outside the light receiving range in the figure). In the example of FIG. 1, the distance between the light projecting lens 1 and the light receiving lens 3 is set to BL2 and the distance between the light projecting element 2 and the light receiving element 4 is similar to the conventional reflective photoelectric sensor in FIG. It is set to BLD2.
[0023]
Further, the sensor body 6 receives light emitted from the light projecting element 5 as a detection target in the short distance range R SD (a part of D excluding the near end side in the example of FIG. 1) within the predetermined distance D. The light projecting element 5 is disposed and held between the combination of the light projecting lens 1 and the light projecting element 2 and the group of the light receiving lens 3 and the light receiving element 4 so as to reflect within the light receiving range 4.
[0024]
According to the reflection type photoelectric sensor having the above-described configuration, the set of the light projecting lens 1 and the light projecting element 2 and the set of the light receiving lens 3 and the light receiving element 4 are separated from each other by an appropriate distance so that the object to be detected is a long distance. The displacement length on the light receiving surface of the light receiving element 4 corresponding to the moving distance when moving in the front-rear direction within the range R LD can be arbitrarily set. In the example of FIG. 1, similar to the reflective photoelectric sensor of FIG. 5, which are set to the distance BL2, BLD2, in the far range R LD, from the detection target DO is or located at a position P2 from the position P1 P2 If it is moved to the position P1 by the same distance as in FIG. 5, the displacement length on the light receiving surface of the light receiving element 4 corresponding to the moving distance ΔL is ΔL3 as in FIG.
[0025]
In this case, in the conventional configuration example of FIG. 5, the dead zone range D occurs as described with reference to FIG. 6, but in the reference example , the light projecting element 5 is provided and light emitted from the light projecting element 5 is provided. Is reflected toward the light receiving range of the light receiving element 4 by the detection target in the short distance range R SD within the predetermined distance D, the dead band range D can be reduced by the short distance range R SD. it can. In the example of FIG. 1, most of the dead zone range D is covered by the short distance range R SD .
[0026]
As described above, according to the reference example , the combination of the light projecting lens 1 and the light projecting element 2 and the pair of the light receiving lens 3 and the light receiving element 4 are arbitrarily separated from each other by an appropriate distance, thereby detecting a detection target in a long distance range. The resolution can be increased.
[0027]
The light projecting element 5 is a combination of the light projecting lens 1 and the light projecting element 2 so that the light emitted from the light projecting element 5 on the detection target in the short distance range RSD is reflected within the light receiving range of the light receiving element 4. And the light receiving lens 3 and the set of the light receiving element 4, the dead zone range D can be reduced. In this case, when compared with a conventional reflective photoelectric sensor, only one light projecting element 5 is added, so that it is inexpensive and the size is increased without using it in combination with another reflective photoelectric sensor. The dead zone range D can be reduced.
[0028]
Furthermore, since the short-distance light projecting element 5 is formed of a bullet-shaped LED or chip LED, it is possible to reduce the size and cost as compared with a configuration using a short-distance light projecting element and a light projecting lens. . Moreover, since it is a general part, it is easy to obtain.
[0029]
(Implementation form)
Figure 2 is a block diagram of a reflection type photoelectric sensor implementation form of the present invention, the implementation mode will be described with reference to FIG.
[0030]
Reflective photoelectric sensor implementation embodiment, as shown in FIG. 2, two light emitting element 5, the light projecting lens 1 and a set of set of light emitting element 2 for long range, and the light receiving lens 3 and the light-receiving Two sets of the elements 4 are provided, and a set of the light projecting lens 1 and the light projecting element 2 is arranged between these sets, and the set of the light projecting lens 1 and the light projecting element 2 and the light reception of one set are received. One light projecting element 5 is disposed between the lens 3 and the light receiving element 4, and the other between the pair of the light projecting lens 1 and the light projecting element 2 and the other light receiving lens 3 and the light receiving element 4. A sensor body 6A for arranging and holding the light projecting element 5 is provided.
[0031]
Even in the reflection type photoelectric sensor having such a configuration, one set of the light receiving lens 3 and the light receiving element 4, the combination of the light projecting lens 1 and the light projecting element 2, and the light projecting element 5 provided therebetween are reference. It functions in the same manner as the reflective photoelectric sensor of the example , and the other set of the light receiving lens 3 and the light receiving element 4, the set of the light projecting lens 1 and the light projecting element 2, and the light projecting element 5 provided therebetween. Since it functions in the same way as the reflective photoelectric sensor of the reference example , it can increase the detection resolution for a detection target in a long range without using it with another reflective photoelectric sensor as in the reference example. Can be reduced.
[0032]
【The invention's effect】
As is apparent from the above, the invention described in claim 1 includes a light projecting lens, a long distance light projecting element that emits light forward through the light projecting lens, a light receiving lens, and the light receiving lens. A light-receiving element that receives light coming from the front via, and when the detection target located in the front is in a long distance range outside a predetermined distance, the long distance projection is detected by the detection target in the long distance range. When the light emitted from the optical element is reflected within the light receiving range of the light receiving element and the detection target located in the front is within the predetermined distance, the long distance light projection is performed with the detection target within the predetermined distance. A reflection in which the set of the light projecting lens and the long distance light projecting element and the set of the light receiving lens and the light receiving element are provided so as to reflect light emitted from the element outside the light receiving range of the light receiving element. a type photoelectric sensor, before One set of a light projecting lens and a long distance light projecting element, two sets of the light receiving lens and light receiving element, each further comprising two short distance light projecting elements that emit light forward, A pair of the light projecting lens and a long distance light projecting element is disposed between each pair of the light receiving lens and the light receiving element, and the detection target in the short distance range within the predetermined distance from the short distance light projecting element. For the short distance between the set of the light projecting lens and the long distance light projecting element and the one set of the light receiving lens and the light receiving element so that the emitted light is reflected within the light receiving range of the light receiving element. Since a light projecting element is arranged, and the other short distance light projecting element is disposed between the light projecting lens and the long distance light projecting element and the other light receiving lens and light receiving element , Use with other reflective photoelectric sensors In addition, by separating the combination of the light projecting lens and the light projecting element for a long distance from the light receiving lens and the light receiving element by any suitable distance, the detection resolution for the detection target in the long distance range can be increased. The light projecting element for short distance, the light projecting element for long distance, and the light projecting element for long distance so that the light emitted from the light projecting element for short distance is reflected in the light receiving range of the light receiving element. The range of the dead zone can be reduced by disposing between the pair of the light receiving lens and the light receiving element.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a reflective photoelectric sensor of a reference example related to the present invention.
2 is a block diagram of a reflection type photoelectric sensor implementation according to the present invention.
FIG. 3 is a configuration diagram of a conventional reflective photoelectric sensor.
4 is a diagram illustrating a state in which the detection resolution with respect to a distant detection target deteriorates in the configuration of FIG. 3;
FIG. 5 is a configuration diagram of a reflective photoelectric sensor with improved detection resolution for a detection target farther away than that of FIGS. 3 and 4;
6 is an explanatory diagram of a dead zone in the reflective photoelectric sensor of FIG. 5. FIG.
[Explanation of symbols]
1 Light Emitting Lens 2 Light Emitting Element 3 Light Receiving Lens 4 Light Receiving Element 5 Light Emitting Element 6, 6A Sensor Body

Claims (1)

投光レンズと、この投光レンズを介して前方に光を射出する遠距離用投光素子と、受光レンズと、この受光レンズを介して前方から入来する光を受光する受光素子とを備え、
前方に位置する検出対象が所定距離外の遠距離範囲にある場合、その遠距離範囲にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するとともに、前方に位置する検出対象が前記所定距離内にある場合、その所定距離内にある検出対象で前記遠距離用投光素子から射出された光が前記受光素子の受光範囲外に反射するように、前記投光レンズおよび遠距離用投光素子の組みと前記受光レンズおよび受光素子の組みとが離間して設けられる反射型光電センサであって、
前記投光レンズおよび遠距離用投光素子の組みを一組、
前記受光レンズおよび受光素子の組みを二組備え、
それぞれ前方に光を射出する2個の近距離用投光素子をさらに備え、
前記受光レンズおよび受光素子の各組みの間に前記投光レンズおよび遠距離用投光素子の組みを配置するとともに、
前記所定距離内の近距離範囲にある検出対象で前記近距離用投光素子から射出された光が前記受光素子の受光範囲内に反射するように、前記投光レンズおよび遠距離用投光素子の組みと一方の組みの受光レンズおよび受光素子との間に一方の近距離用投光素子を配置し、前記投光レンズおよび遠距離用投光素子の組みと他方の組みの受光レンズおよび受光素子との間に他方の近距離用投光素子を配置してなることを特徴とする反射型光電センサ
A light projecting lens; a long distance light projecting element that emits light forward through the light projecting lens; a light receiving lens; and a light receiving element that receives light coming from the front through the light receiving lens. ,
When the detection target located in the front is in a long distance range outside a predetermined distance, the light emitted from the long distance light projecting element on the detection target in the long distance range is reflected in the light reception range of the light receiving element. At the same time, when the detection target located in the front is within the predetermined distance, the light emitted from the long-distance light projecting element is reflected outside the light receiving range of the light receiving element. A reflection type photoelectric sensor in which the set of the light projecting lens and the long distance light projecting element and the set of the light receiving lens and the light receiving element are provided apart from each other,
One set of the light projecting lens and the long distance light projecting element,
Comprising two sets of the light receiving lens and light receiving element;
Further comprising two short-distance light projecting elements that each emit light forward,
While disposing a set of the light projecting lens and a long distance light projecting element between each set of the light receiving lens and the light receiving element,
The light projecting lens and the long distance light projecting element so that the light emitted from the short distance light projecting element on the detection target within the short distance range within the predetermined distance is reflected within the light receiving range of the light receiving element. One short distance light projecting element is disposed between the light receiving lens and the light receiving element of one set, and the light projecting lens and long distance light projecting element and the other light receiving lens and light receiving element are disposed. A reflection type photoelectric sensor , wherein the other short-distance light projecting element is disposed between the elements .
JP2001401535A 2001-12-28 2001-12-28 Reflective photoelectric sensor Expired - Fee Related JP3778085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401535A JP3778085B2 (en) 2001-12-28 2001-12-28 Reflective photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401535A JP3778085B2 (en) 2001-12-28 2001-12-28 Reflective photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2003204077A JP2003204077A (en) 2003-07-18
JP3778085B2 true JP3778085B2 (en) 2006-05-24

Family

ID=27640188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401535A Expired - Fee Related JP3778085B2 (en) 2001-12-28 2001-12-28 Reflective photoelectric sensor

Country Status (1)

Country Link
JP (1) JP3778085B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276513B2 (en) * 2009-04-24 2013-08-28 パナソニック株式会社 Reflective photoelectric sensor
JP4991787B2 (en) * 2009-04-24 2012-08-01 パナソニック株式会社 Reflective photoelectric sensor
JP2011107019A (en) * 2009-11-19 2011-06-02 Yamatake Corp Photoelectric sensor
JP6003121B2 (en) * 2012-03-15 2016-10-05 オムロン株式会社 Reflective photoelectric sensor
US10771768B2 (en) * 2016-12-15 2020-09-08 Qualcomm Incorporated Systems and methods for improved depth sensing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266410A (en) * 1987-04-24 1988-11-02 Konica Corp Distance measuring device for camera
JPH0382909A (en) * 1989-08-25 1991-04-08 Honda Motor Co Ltd Optical reflector detecting apparatus
JPH04370710A (en) * 1991-06-20 1992-12-24 Nisca Corp Method and apparatus for measuring distance
JP3752788B2 (en) * 1997-07-15 2006-03-08 松下電工株式会社 Ranging light sensor
JP3012581B2 (en) * 1997-12-05 2000-02-21 オリンパス光学工業株式会社 Camera multipoint ranging device
JP2000213931A (en) * 1999-01-21 2000-08-04 Hamamatsu Photonics Kk Range finding module

Also Published As

Publication number Publication date
JP2003204077A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
US20190322272A1 (en) Automotive auxiliary ladar sensor
US6835923B2 (en) Method and apparatus for self-monitoring of proximity sensors
KR101923724B1 (en) Transmitting integrated type optical structure and scanning LiDAR having the same
JP2018511799A (en) Beam steering LADAR sensor
US20070030474A1 (en) Optical range finder
JP6737296B2 (en) Object detection device
US6018165A (en) Optoelectronic sensor device
CN101971056B (en) Light barrier and method for detecting objects
JP5209455B2 (en) Laser distance measuring instrument
JP2010256182A (en) Reflection type photoelectric sensor
JPH10221064A (en) Optical distance-measuring device
JP2003504631A (en) Sensor device for detecting wetness of glass
WO2012089957A1 (en) Device for detecting an angular direction in which an object is located
JP5276513B2 (en) Reflective photoelectric sensor
JP3778085B2 (en) Reflective photoelectric sensor
JP2023022138A (en) Optical scanning device and control method
US20200150238A1 (en) Non-interfering long- and short-range lidar systems
EP1471565A3 (en) Mapping device for semiconductor wafers
KR920009107A (en) Optical space transmission device
CN103940740A (en) Sensor device for detecting moisture on a pane
JP2000186928A (en) Light wave range finder
JP2006510523A (en) Multifunctional lighting device
KR20200033373A (en) A lidar having a structure in which a light emitting axis and a light receiving axis coincide
KR20220000664U (en) Tof optical sensing module with stray-light guide-away structure
JP2004521358A (en) Optical sensor to detect surface wetting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R151 Written notification of patent or utility model registration

Ref document number: 3778085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees