JP5276513B2 - Reflective photoelectric sensor - Google Patents

Reflective photoelectric sensor Download PDF

Info

Publication number
JP5276513B2
JP5276513B2 JP2009107027A JP2009107027A JP5276513B2 JP 5276513 B2 JP5276513 B2 JP 5276513B2 JP 2009107027 A JP2009107027 A JP 2009107027A JP 2009107027 A JP2009107027 A JP 2009107027A JP 5276513 B2 JP5276513 B2 JP 5276513B2
Authority
JP
Japan
Prior art keywords
light
light receiving
light projecting
lens
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009107027A
Other languages
Japanese (ja)
Other versions
JP2010258237A (en
Inventor
真武 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009107027A priority Critical patent/JP5276513B2/en
Publication of JP2010258237A publication Critical patent/JP2010258237A/en
Application granted granted Critical
Publication of JP5276513B2 publication Critical patent/JP5276513B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、光を前方に射出して、検出対象で反射した光を受光する反射型光電センサに関するものである。   The present invention relates to a reflective photoelectric sensor that emits light forward and receives light reflected by a detection target.

図3に従来の反射型光電センサの構成図を示す。従来の反射型光電センサは、投光レンズ1と、投光レンズ1を介して前方に光を射出する投光素子2aと、受光レンズ3と、受光レンズ3を介して前方から入射する光を受光する受光素子4と、これらの部品を保持するセンサボディ6aとを備えている。そして、投光素子2aと受光素子4は基板5に実装され、投光素子2aおよび受光素子4と投光レンズ1および受光レンズ3は、図3に示すようにセンサボディ6aによって幾何学的に位置決めされている。なお、本例では、投光レンズ1と受光レンズ3は離間距離BL1、投光素子2aと受光素子4は離間距離BLD1の位置に配置されている。   FIG. 3 shows a configuration diagram of a conventional reflective photoelectric sensor. The conventional reflective photoelectric sensor includes a light projecting lens 1, a light projecting element 2 a that emits light forward through the light projecting lens 1, a light receiving lens 3, and light incident from the front through the light receiving lens 3. A light receiving element 4 for receiving light and a sensor body 6a for holding these components are provided. The light projecting element 2a and the light receiving element 4 are mounted on the substrate 5, and the light projecting element 2a, the light receiving element 4, the light projecting lens 1 and the light receiving lens 3 are geometrically formed by the sensor body 6a as shown in FIG. It is positioned. In this example, the light projecting lens 1 and the light receiving lens 3 are disposed at a distance BL1, and the light projecting element 2a and the light receiving element 4 are disposed at a distance BLD1.

投光素子2aは、電流を流すと発光するLEDまたはレーザーダイオードなどで構成されている。受光素子4は、受光面における入射光の位置の移動に応じて出力が変化するPSD(位置検出素子)または2分割PD(フォトダイオード)などで構成されている。   The light projecting element 2a is configured by an LED or a laser diode that emits light when an electric current is passed. The light receiving element 4 includes a PSD (position detecting element) or a two-part PD (photodiode) whose output changes in accordance with the movement of the position of incident light on the light receiving surface.

上記の構成からなる本例の反射型光電センサは、投光素子2aが赤外線などの光を射出すると、その光は、投光レンズ1で集光された後、投光レンズ1から光軸方向の前方にL1離れた位置P1にある検出物体DOで反射して、反射した光は受光レンズ3で集光された後、受光素子4で受光した光に応じて電気信号に変換して出力される。   In the reflective photoelectric sensor of the present example having the above-described configuration, when the light projecting element 2a emits light such as infrared rays, the light is collected by the light projecting lens 1 and then is projected from the light projecting lens 1 in the optical axis direction. The light reflected by the detection object DO at the position P1 that is L1 in front of the light is condensed by the light receiving lens 3, and then converted into an electrical signal according to the light received by the light receiving element 4 and output. The

ところで、このような反射型光電センサでは、投光レンズ1および投光素子2aの組みと、受光レンズ3および受光素子4の組みとの離間距離により、検出分解能が劣るという課題がある。例えば、投光レンズ1と受光レンズ3の離間距離BL1および、投光素子2aと受光素子4の離間距離BLD1が短いと、遠方の検出物体の検出分解能が劣る。   By the way, in such a reflection type photoelectric sensor, there exists a subject that detection resolution is inferior by the separation distance of the group of the light projection lens 1 and the light projecting element 2a, and the group of the light receiving lens 3 and the light receiving element 4. For example, when the distance BL1 between the light projecting lens 1 and the light receiving lens 3 and the distance BLD1 between the light projecting element 2a and the light receiving element 4 are short, the detection resolution of a distant detection object is poor.

図4に、遠方の検出物体に対して検出分解能が劣る様子を示す。図4における検出物体DOは、投光レンズ1から光軸方向の前方にL2離れた位置P3にあり、図3における検出物体DOより遠い位置(L2>L1)にある。なお、反射型光電センサの構成は図3と同等の構成である。   FIG. 4 shows a state in which the detection resolution is inferior to a distant detection object. The detection object DO in FIG. 4 is at a position P3 that is L2 away from the light projecting lens 1 in the optical axis direction, and is far from the detection object DO in FIG. 3 (L2> L1). The configuration of the reflective photoelectric sensor is the same as that shown in FIG.

図3に示すように、検出物体DOが位置P1と位置P2の間を移動したときの移動距離をΔLとすると、受光素子4の受光面上の変位はΔL1となる。   As shown in FIG. 3, when the moving distance when the detection object DO moves between the position P1 and the position P2 is ΔL, the displacement on the light receiving surface of the light receiving element 4 is ΔL1.

これに対して、図4に示すように、検出物体DOが位置P3と位置P4の間を移動したときの移動距離をΔLとすると、受光素子4の受光面上の変位はΔL2となり、このΔL2は明らかに図3で示したΔL1よりも短くなる。なお、P1とP2の間の距離と、P3とP4の間の距離はΔLで同じ距離である。   On the other hand, as shown in FIG. 4, when the moving distance when the detection object DO moves between the position P3 and the position P4 is ΔL, the displacement on the light receiving surface of the light receiving element 4 is ΔL2, and this ΔL2 Is clearly shorter than ΔL1 shown in FIG. Note that the distance between P1 and P2 and the distance between P3 and P4 are the same distance ΔL.

すなわち、検出物体DOが遠くにあるほど、同じ距離を移動しても受光素子4の受光面上の変位が幾何学的に小さくなり、受光素子4から出力される電気信号も小さくなり、検出分解能が低下する。   In other words, the farther the detection object DO is, the smaller the displacement on the light receiving surface of the light receiving element 4 geometrically even when the same distance is moved, and the smaller the electrical signal output from the light receiving element 4 is. Decreases.

そこで、遠方にある検出物体DOの検出分解能が向上した反射型光電センサの構成を図5に示す。図5の反射型光電センサは、図3、4に示した反射型光電センサと同様の構成であるが、投光レンズ1と受光レンズ3の離間距離BL2および、投光素子2aと受光素子4の離間距離BLD2は図3、4のBL1およびBLD1より長くなるように配置されている。   Therefore, FIG. 5 shows a configuration of a reflective photoelectric sensor in which the detection resolution of a detection object DO located far away is improved. The reflective photoelectric sensor of FIG. 5 has the same configuration as that of the reflective photoelectric sensor shown in FIGS. 3 and 4, but the separation distance BL <b> 2 between the light projecting lens 1 and the light receiving lens 3, and the light projecting element 2 a and the light receiving element 4. The separation distance BLD2 is longer than BL1 and BLD1 in FIGS.

このように、離間距離BL2、BLD2を長くすることで遠方にある検出物体DOの検出分解能を向上することができる。例えば、図5に示すように、検出物体DOが図4と同様に位置P3と位置P4の間を移動したときの移動距離をΔLとすると、受光素子4の受光面上の変位はΔL3となり、このΔL3は明らかに図4で示したΔL2より長くなる。それにより、受光素子4から出力される電気信号が大きくなり、検出分解能が向上する。   Thus, the detection resolution of the detection object DO in the distance can be improved by increasing the separation distances BL2 and BLD2. For example, as shown in FIG. 5, when the movement distance when the detection object DO moves between the position P3 and the position P4 as in FIG. 4 is ΔL, the displacement on the light receiving surface of the light receiving element 4 is ΔL3, This ΔL3 is clearly longer than ΔL2 shown in FIG. Thereby, the electrical signal output from the light receiving element 4 is increased, and the detection resolution is improved.

しかし、図5で示した反射型光電センサには、センサの前方付近で検出物体DOを検出不能な領域(不感帯)が生じるという課題がある。図6に反射型光電センサの不感帯の説明を示す。   However, the reflective photoelectric sensor shown in FIG. 5 has a problem that a region (dead zone) in which the detection object DO cannot be detected is generated near the front of the sensor. FIG. 6 illustrates the dead zone of the reflective photoelectric sensor.

図6の反射型光電センサは、図5に示した反射型光電センサと同様の構成で、検出物体DOがセンサの前面から所定距離L3の遠端にある位置P6に検出物体DOがある場合、検出物体DOで反射した光は、受光素子4の受光面の外縁に照射される。そのため、位置P6より近い範囲(所定距離L3内)にある位置P5に検出物体DOがある場合、検出物体DOで反射した光は、受光素子4の受光面外に照射されるので、所定距離L3内にある検出物体DOを検出することができない。この所定距離L3が不感帯となり、不感帯の範囲は、離間距離BL2、BLD2を長く設定するほど拡大する。   The reflective photoelectric sensor in FIG. 6 has the same configuration as that of the reflective photoelectric sensor shown in FIG. 5, and when the detected object DO is at a position P6 at the far end of the predetermined distance L3 from the front surface of the sensor, The light reflected by the detection object DO is applied to the outer edge of the light receiving surface of the light receiving element 4. Therefore, when the detection object DO is located at a position P5 within a range closer to the position P6 (within the predetermined distance L3), the light reflected by the detection object DO is irradiated outside the light receiving surface of the light receiving element 4, and therefore the predetermined distance L3. The detected object DO inside cannot be detected. This predetermined distance L3 becomes a dead zone, and the range of the dead zone increases as the separation distances BL2 and BLD2 are set longer.

そこで、近距離用投光素子を用いることによって、不感帯の範囲を縮小した反射型光電センサの構成を図7に示す(例えば特許文献1)。本例の反射型光電センサは、投光レンズ1と、投光レンズ1を介して前方に光を射出する遠距離用投光素子2と、受光レンズ3と、受光レンズを介して前方から入射する光を受光する受光素子4と、前方に光を射出する近距離用投光素子7とをセンサボディ26内に保持している。そして、遠距離用投光素子2と受光素子4は、基板5に実装されており、投光レンズ1の後方側の焦点に遠距離用投光素子2が配置され、受光レンズ3の後方側の焦点に受光素子4が配置されている。   Therefore, FIG. 7 shows a configuration of a reflective photoelectric sensor in which the range of the dead zone is reduced by using a short-distance light projecting element (for example, Patent Document 1). The reflective photoelectric sensor of this example is incident from the front through a light projecting lens 1, a long distance light projecting element 2 that emits light forward through the light projecting lens 1, a light receiving lens 3, and a light receiving lens. The light receiving element 4 that receives the light to be transmitted and the short-distance light projecting element 7 that emits light forward are held in the sensor body 26. The long distance light projecting element 2 and the light receiving element 4 are mounted on the substrate 5, the long distance light projecting element 2 is disposed at the focal point on the rear side of the light projecting lens 1, and the rear side of the light receiving lens 3. The light receiving element 4 is arranged at the focal point.

センサボディ26の前面は、同一平面の光透過性材料261で形成されており、前方に位置する検出物体が所定距離D外の遠距離範囲Laにある場合、遠距離用投光素子2から射出された光が検出物体で反射して、その反射光が受光素子4の受光面内に照射され、また前方に位置する検出物体が所定距離D内の近距離範囲Lbにある場合、近距離用投光素子7から射出された光が検出物体で反射して、その反射光が受光素子4の受光面内に照射されるように、投光レンズ1および遠距離用投光素子2の組みと、受光レンズ3および受光素子4の組みとが離間して配置され、その間に近距離用投光素子7が配置される。また、投光レンズ1および遠距離用投光素子2の組みと近距離用投光素子7との間に仕切り262、受光レンズ3および受光素子4の組みと近距離用投光素子7との間に仕切り263が形成されている。また、仕切り262、263の後端は基板5と当接し、前端は光透過性材料261と当接するように、前後方向に形成されている。   The front surface of the sensor body 26 is formed of a light transmissive material 261 on the same plane. When the detection object located in front is in the long distance range La outside the predetermined distance D, the light is emitted from the long distance light projecting element 2. When the detected light is reflected by the detection object, the reflected light is irradiated on the light receiving surface of the light receiving element 4, and the detection object located in the front is in the short distance range Lb within the predetermined distance D, the short distance is used. A combination of the light projecting lens 1 and the long distance light projecting element 2 so that the light emitted from the light projecting element 7 is reflected by the detection object and the reflected light is applied to the light receiving surface of the light receiving element 4. The pair of the light receiving lens 3 and the light receiving element 4 are disposed apart from each other, and the short distance light projecting element 7 is disposed therebetween. Further, a partition 262, a combination of the light receiving lens 3 and the light receiving element 4, and the short distance light projecting element 7 are arranged between the combination of the light projecting lens 1 and the long distance light projecting element 2 and the short distance light projecting element 7. A partition 263 is formed therebetween. Further, the rear ends of the partitions 262 and 263 are formed in the front-rear direction so as to abut against the substrate 5 and the front end abuts against the light transmissive material 261.

そして、光透過性材料261の後方近傍にある投光レンズ1と受光レンズ3と近距離用投光素子7は、各々の前面と光透過性材料261との間の前後方向の距離が略同一となるように配置されている。すなわち、投光レンズ1と受光レンズ3と近距離用投光素子7は、センサボディ26内で、前後方向における略同一の位置にある。   In the light projecting lens 1, the light receiving lens 3, and the short distance light projecting element 7 in the vicinity of the rear of the light transmissive material 261, the distance in the front-rear direction between each front surface and the light transmissive material 261 is substantially the same. It is arranged to become. That is, the light projecting lens 1, the light receiving lens 3, and the short-distance light projecting element 7 are in substantially the same position in the front-rear direction within the sensor body 26.

上記の構成からなる本例の反射型光電センサは、検出物体が所定距離D外の遠距離範囲Laにある場合、遠距離用投光素子2によって射出された光は、遠距離範囲Laにある検出物体で反射され、反射した光は受光素子4の受光面上に照射される。また、検出物体が所定距離D内の近距離範囲Lbにある場合、遠距離用投光素子2によって射出された光は、近距離範囲Lbにある検出物体で反射され、反射した光は受光素子4の受光面外に照射されるが、近距離用投光素子7によって射出された光は、近距離範囲Lbにある検出物体で反射され、反射した光は受光素子4の受光面内に照射される。そのため、遠距離用投光素子2のみでは検出することができなかった、近距離範囲Lbにある検出物体を検出することができる。   In the reflective photoelectric sensor of this example configured as described above, when the detection object is in the long distance range La outside the predetermined distance D, the light emitted by the long distance light projecting element 2 is in the long distance range La. The light reflected by the detection object is irradiated onto the light receiving surface of the light receiving element 4. When the detection object is in the short distance range Lb within the predetermined distance D, the light emitted by the long distance light projecting element 2 is reflected by the detection object in the short distance range Lb, and the reflected light is the light receiving element. 4, the light emitted by the short-distance light projecting element 7 is reflected by the detection object in the short-distance range Lb, and the reflected light irradiates the light-receiving surface of the light-receiving element 4. Is done. Therefore, it is possible to detect a detection object in the short distance range Lb that could not be detected only by the long distance light projecting element 2.

特開2003−204077号公報JP 2003-204077 A

図7に示した反射型光電センサにおいて、近距離用投光素子7を用いることによって、不感帯の範囲を近距離範囲Lb分だけ縮小することができるが、センサボディ6の前面から近距離範囲Lbまでの間の近接範囲Lcが不感帯として残る。   In the reflective photoelectric sensor shown in FIG. 7, the dead zone range can be reduced by the short distance range Lb by using the short distance light projecting element 7, but the short distance range Lb from the front surface of the sensor body 6 can be reduced. The proximity range Lc until is left as a dead zone.

これは、検出物体が近接範囲Lcにある場合、近距離用投光素子7によって射出された光は、近接範囲Lcにある検出物体で反射されるが、反射光の一部がセンサボディ26の仕切り263の前端部263aによって遮光されてしまう。そのため、受光素子4の受光面に照射される光が低下するため、近接範囲Lcにある検出物体を検出することができない。   This is because, when the detection object is in the proximity range Lc, the light emitted by the short-distance light projecting element 7 is reflected by the detection object in the proximity range Lc, but a part of the reflected light of the sensor body 26 The light is shielded by the front end portion 263a of the partition 263. For this reason, since the light irradiated on the light receiving surface of the light receiving element 4 is reduced, it is not possible to detect the detection object in the proximity range Lc.

本発明は、上記事由に鑑みてなされたものであり、その目的は、遠距離範囲にある検出物体の検出分解能を落とさずに、不感帯の範囲を縮小することができる反射型光電センサを提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a reflective photoelectric sensor that can reduce the range of the dead zone without degrading the detection resolution of a detection object in a long distance range. There is.

請求項1の発明は、投光レンズと、当該投光レンズを介して前方に光を射出する遠距離用投光素子と、受光レンズと、当該受光レンズを介して前方から入射する光を受光する受光素子と、前方に光を射出する近距離用投光素子とをセンサボディ内に備え、前方に位置する検出対象と投光レンズ前面との間の距離が所定距離外の遠距離範囲にある場合、遠距離用投光素子から射出された光が遠距離範囲内にある検出対象で反射して、受光素子の受光面内に照射し、前方に位置する検出対象と投光レンズ前面および近距離用投光素子前面との間の距離が所定距離内の近距離範囲にある場合、遠距離用投光素子から射出された光が近距離範囲内にある検出対象で反射して、受光素子の受光面外に照射し、近距離用投光素子から射出された光が近距離範囲内にある検出対象で反射して、受光素子の受光範囲内に照射するように、投光レンズの後方側の焦点に遠距離用投光素子を配置し、受光レンズの後方側の焦点に受光素子を配置し、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の組みとが離間して設けられ、その間に近距離用投光素子が設けられる反射型光電センサにおいて、受光レンズの後方側の焦点距離が投光レンズの後方側の焦点距離よりも短く、受光レンズの前面が投光レンズの前面および近距離用投光素子の前面より後方に配置され、受光レンズの前方にあるセンサボディ前面が、投光レンズおよび近距離用投光素子の前方にあるセンサボディ前面よりも後方となるように形成されていることを特徴とする。   According to the first aspect of the present invention, a light projecting lens, a long-distance light projecting element that emits light forward through the light projecting lens, a light receiving lens, and light incident from the front through the light receiving lens are received. A light-receiving element that emits light and a short-distance light projecting element that emits light forward are provided in the sensor body, and the distance between the detection target located in front and the front surface of the light-projecting lens is in a long distance range outside a predetermined distance. In some cases, the light emitted from the long-distance light projecting element is reflected by the detection target within the long-distance range and irradiates the light-receiving surface of the light-receiving element. When the distance to the front surface of the short-range light projecting element is within a short distance range within a predetermined distance, the light emitted from the long-distance light projecting element is reflected by the detection target within the short distance range and received. The light emitted from the light receiving surface of the element and emitted from the light emitting element for short distance is short distance. A long distance light projecting element is arranged at the focal point on the rear side of the light projecting lens so that it is reflected by the detection target in the surroundings and irradiated within the light receiving range of the light receiving element, and received at the focal point on the rear side of the light receiving lens. In a reflective photoelectric sensor in which an element is arranged, a set of a light projecting lens and a long distance light projecting element and a set of a light receiving lens and a light receiving element are provided apart from each other, and a short distance light projecting element is provided therebetween. The focal length on the rear side of the light receiving lens is shorter than the focal length on the rear side of the light projecting lens, and the front surface of the light receiving lens is arranged behind the front surface of the light projecting lens and the front surface of the short distance light projecting element. The front surface of the sensor body is formed so as to be behind the front surface of the sensor body in front of the light projecting lens and the short distance light projecting element.

この発明によれば、受光レンズの前面が投光レンズの前面および近距離用投光素子の前面より後方に配置され、受光レンズの前方にあるセンサボディ前面が、投光レンズおよび近距離用投光素子の前方にあるセンサボディ前面よりも後方となるように、センサボディ前面に段部が形成されていることによって、従来の反射型光電センサよりも不感帯の範囲を縮小することができる。   According to the present invention, the front surface of the light receiving lens is disposed behind the front surface of the light projecting lens and the front surface of the short distance light projecting element, and the front surface of the sensor body in front of the light receiving lens is disposed on the front surface of the light projecting lens. By forming the step portion on the front surface of the sensor body so as to be behind the front surface of the sensor body in front of the optical element, the range of the dead zone can be reduced as compared with the conventional reflective photoelectric sensor.

また、投光レンズの後方側の焦点距離は、受光レンズの後方側の焦点距離よりも長いため、遠距離範囲にある検出対象の検出分解能を落とすことはない。   Further, since the focal length on the rear side of the light projecting lens is longer than the focal length on the rear side of the light receiving lens, the detection resolution of the detection target in the long distance range is not reduced.

請求項2の発明は、請求項1の発明において、前記近距離用投光素子を二個と、前記投光レンズおよび前記遠距離用投光素子の組みを一組と、前記受光レンズおよび前記受光素子の組みを二組とを備え、受光レンズおよび受光素子の各組みの間に投光レンズおよび遠距離用投光素子の組みを配置するとともに、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の一方の組みとの間に一方の近距離用投光素子を配置し、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の他方の組みとの間に他方の近距離用投光素子を配置することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, two near-field light projecting elements, a pair of the light projecting lens and the long distance light projecting element, the light receiving lens, Two sets of light receiving elements are provided, and a set of a light projecting lens and a long distance light projecting element is disposed between each pair of the light receiving lens and the light receiving element, and the light projecting lens and the long distance light projecting element One short distance light projecting element is disposed between the light receiving lens and one of the light receiving elements, and the light projecting lens and the long distance light projecting element and the other light receiving lens and the light receiving element are combined. The other short distance light projecting element is arranged between the two.

この発明によれば、受光レンズおよび受光素子の組みを二組備えることによって、センサ近傍における検出可能領域を拡大することができ、安定して検出することが可能となる。   According to the present invention, by providing two sets of the light receiving lens and the light receiving element, the detectable region in the vicinity of the sensor can be expanded, and stable detection can be performed.

以上説明したように、本発明では、遠距離範囲にある検出物体の検出分解能を落とさずに、不感帯の範囲を縮小することができるという効果がある。   As described above, according to the present invention, there is an effect that the range of the dead zone can be reduced without reducing the detection resolution of the detection object in the long distance range.

本発明の反射型光電センサの実施形態1の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of Embodiment 1 of the reflection type photoelectric sensor of this invention. 同上の実施形態2の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of Embodiment 2 same as the above. 従来の反射型光電センサの概略構成を示す図である。It is a figure which shows schematic structure of the conventional reflective photoelectric sensor. 同上の遠距離範囲における検出を示す概略構成図である。It is a schematic block diagram which shows the detection in the long distance range same as the above. 同上の遠距離範囲の検出分解能の向上を示す概略構成図である。It is a schematic block diagram which shows the improvement of the detection resolution of a long distance range same as the above. 同上の近距離範囲の不感帯を示す概略構成図である。It is a schematic block diagram which shows the dead zone of the short distance range same as the above. 同上の近接範囲の不感帯を示す概略構成断面図である。It is a schematic structure sectional view showing the dead zone of the proximity range same as the above.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本発明の実施形態1の反射型光電センサの構成図を図1に示す。投光レンズ1と、投光レンズ1を介して前方に光を射出する遠距離用投光素子2と、受光レンズ3と、受光レンズ3を介して前方から入射する光を受光する受光素子4と、前方に光を射出する近距離用投光素子7とをセンサボディ6内に保持している。そして、遠距離用投光素子2と受光素子4は、基板5に実装されており、投光レンズ1の後方側の焦点に遠距離用投光素子2が配置され、受光レンズ3の後方側の焦点に受光素子4が配置されている。ここで、受光レンズ3の後方側の焦点距離f2は、投光レンズ1の後方側の焦点距離f1よりも短いため、受光レンズ3は、投光レンズ1よりも後方に配置されている。また、基板5はセンサボディ6の後面に配置されている。
(Embodiment 1)
The block diagram of the reflective photoelectric sensor of Embodiment 1 of this invention is shown in FIG. A light projecting lens 1, a long distance light projecting element 2 that emits light forward through the light projecting lens 1, a light receiving lens 3, and a light receiving element 4 that receives light incident from the front through the light receiving lens 3. The short-distance light projecting element 7 that emits light forward is held in the sensor body 6. The long distance light projecting element 2 and the light receiving element 4 are mounted on the substrate 5, the long distance light projecting element 2 is disposed at the focal point on the rear side of the light projecting lens 1, and the rear side of the light receiving lens 3. The light receiving element 4 is arranged at the focal point. Here, since the focal length f2 on the rear side of the light receiving lens 3 is shorter than the focal length f1 on the rear side of the light projecting lens 1, the light receiving lens 3 is disposed behind the light projecting lens 1. The substrate 5 is disposed on the rear surface of the sensor body 6.

センサボディ6の前面は、光透過性材料61で形成されており、前方に位置する検出物体が所定距離D1外の遠距離範囲LL1にある場合、遠距離用投光素子2から射出された光が検出物体で反射して、その反射光が受光素子4の受光面内に照射され、前方に位置する検出物体が所定距離D1内にある場合、遠距離用投光素子2から射出された光が検出物体で反射して、その反射光が受光素子4の受光面外に照射され、また前方に位置する検出物体が所定距離D2内の近距離範囲LL2にある場合、近距離用投光素子7から射出された光が検出物体で反射して、その反射光が受光素子4の受光面内に照射されるように、投光レンズ1および遠距離用投光素子2の組みと、受光レンズ3および受光素子4の組みとが離間して配置され、その間に近距離用投光素子7が配置される。また、投光レンズ1および遠距離用投光素子2の組みと近距離用投光素子7との間に仕切り62、受光レンズ3および受光素子4の組みと近距離用投光素子7との間に仕切り63が基板5に実装されている。   The front surface of the sensor body 6 is formed of a light-transmitting material 61, and light emitted from the long-distance light projecting element 2 when the detection object located in the front is in the long-distance range LL1 outside the predetermined distance D1. Is reflected by the detection object, and the reflected light is irradiated on the light receiving surface of the light receiving element 4, and when the detection object located in the front is within the predetermined distance D1, the light emitted from the long distance light projecting element 2 Is reflected by the detection object, and the reflected light is irradiated to the outside of the light receiving surface of the light receiving element 4, and when the detection object located in the front is in the short distance range LL2 within the predetermined distance D2, the light projecting element for short distance The combination of the light projecting lens 1 and the long distance light projecting element 2 and the light receiving lens so that the light emitted from the light 7 is reflected by the detection object and the reflected light is applied to the light receiving surface of the light receiving element 4. 3 and the set of light receiving elements 4 are spaced apart from each other. Distance light projecting element 7 is arranged. Further, the partition 62, the light receiving lens 3 and the light receiving element 4, and the short distance light projecting element 7 are arranged between the light projecting lens 1 and the long distance light projecting element 2 and the short distance light projecting element 7. A partition 63 is mounted on the substrate 5 therebetween.

また、センサボディ6は断面が略矩形状に形成されており、センサボディ6の前面に光透過性材料からなるカバー61が覆設されている。そして、カバー61は、受光レンズ3の前方に配置されているカバー61aと、投光レンズ1および近距離用投光素子7の前方に配置されているカバー61bとで構成されており、カバー61aはカバー61bよりも後方となるように配置されている。そして、カバー61a、61bの後方近傍にある投光レンズ1と受光レンズ3と近距離用投光素子7は、各々の前面とカバー61a、61bとの間の前後方向の距離が略同一となるように配置されている。すなわち、受光レンズ3は、投光レンズ1および近距離用投光素子7よりも後方に配置されている。   The sensor body 6 has a substantially rectangular cross section, and a cover 61 made of a light transmissive material is covered on the front surface of the sensor body 6. The cover 61 includes a cover 61a disposed in front of the light receiving lens 3, and a cover 61b disposed in front of the light projecting lens 1 and the short distance light projecting element 7, and the cover 61a. Is arranged behind the cover 61b. The light projecting lens 1, the light receiving lens 3, and the short distance light projecting element 7 in the vicinity of the rear of the covers 61a and 61b have substantially the same distance in the front-rear direction between the front surface and the covers 61a and 61b. Are arranged as follows. That is, the light receiving lens 3 is arranged behind the light projecting lens 1 and the short distance light projecting element 7.

また、センサボディ6内で基板5に実装されている仕切り62は、前端がカバー61bと当接するように前後方向に形成されており、仕切り63は、前端がカバー61a、61bの両者に当接するように前後方向に形成されている。ここで、仕切り63の前端部63aは、前端部63aが略L字状となる段部63bが形成されている。   In addition, the partition 62 mounted on the substrate 5 in the sensor body 6 is formed in the front-rear direction so that the front end contacts the cover 61b, and the partition 63 contacts the covers 61a and 61b at the front end. Is formed in the front-rear direction. Here, the front end portion 63a of the partition 63 is formed with a step portion 63b in which the front end portion 63a is substantially L-shaped.

そして、センサボディ6の側面64において、受光側の側面64aの前端と、仕切り63の段部63bの後段との間に、カバー61aが覆設されている。また、投光側の側面64bの前端と、仕切り63の段部63bの前段との間に、カバー61bが覆設されている。   In the side surface 64 of the sensor body 6, a cover 61 a is provided between the front end of the light receiving side surface 64 a and the rear stage of the step 63 b of the partition 63. Further, a cover 61 b is provided between the front end of the side surface 64 b on the light projecting side and the front stage of the step part 63 b of the partition 63.

遠距離用投光素子2は、電流を流すと発光するLEDまたはレーザーダイオードなどで構成されている。受光素子4は、受光面における入射光の位置の移動に応じて出力が変化するPSD(位置検出素子)または2分割PD(フォトダイオード)などで構成されている。また、近距離用投光素子7は、レンズ付き砲弾タイプのLEDまたはチップタイプのLEDで構成されている。   The long-distance light projecting element 2 includes an LED or a laser diode that emits light when an electric current is passed. The light receiving element 4 includes a PSD (position detecting element) or a two-part PD (photodiode) whose output changes in accordance with the movement of the position of incident light on the light receiving surface. The short-distance light projecting element 7 is composed of a bullet-type LED with a lens or a chip-type LED.

上記の構成からなる本実施形態は、検出物体が遠距離範囲LL1にある場合、遠距離用投光素子2から射出された光が投光レンズ1で集光された後、前方に射出されて検出物体で反射して、反射光が受光レンズ3で集光された後、受光素子4の受光面内に照射され、受光した光に応じて電気信号に変換され、検出物体の有無または検出物体の距離などを検出信号として出力する。また、検出物体が近距離範囲LL2にある場合、近距離用投光素子7から射出された光が検出物体で反射して、反射光が受光レンズ3で集光された後、受光素子4の受光面内に照射され、受光した光に応じて電気信号に変換され、検出物体の有無または検出物体の距離などを検出信号として出力する。   In the present embodiment configured as described above, when the detection object is in the long distance range LL1, the light emitted from the long distance light projecting element 2 is condensed by the light projecting lens 1 and then emitted forward. After being reflected by the detection object and condensed by the light receiving lens 3, the reflected light is irradiated on the light receiving surface of the light receiving element 4 and converted into an electrical signal according to the received light, and the presence or absence of the detection object or the detection object Are output as detection signals. When the detection object is in the short distance range LL2, the light emitted from the short distance light projecting element 7 is reflected by the detection object, and the reflected light is collected by the light receiving lens 3, and then the light receiving element 4 Irradiated within the light receiving surface and converted into an electrical signal in accordance with the received light, the presence or absence of the detection object or the distance of the detection object is output as a detection signal.

ここで、遠距離用投光素子2で検出可能な遠距離範囲LL1および、近距離用投光素子7で検出可能な近距離範囲LL2は、図7で示した従来の反射型光電センサの遠距離用投光素子2で検出可能な遠距離範囲Laおよび、近距離用投光素子7で検出可能な近距離範囲Lbよりも後方に広い範囲(LL1>La、LL2>Lb)となっている。これは、受光レンズ3の位置を従来よりも後方に配置することによって、仕切り63の前端部63aに段部63bを形成することができる。そして、この段部63bによって、従来の反射型光電センサでは、近接距離Lcにある検出物体からの反射光を仕切り263の前端部263aによって遮光していた部位(図7参照)に、図1に示す空間63cが生じる。   Here, the long-distance range LL1 that can be detected by the long-distance light projecting element 2 and the short-distance range LL2 that can be detected by the short-distance light projecting element 7 are the far distances of the conventional reflective photoelectric sensor shown in FIG. It is a wide range (LL1> La, LL2> Lb) behind the long distance range La detectable by the distance light projecting element 2 and the short distance range Lb detectable by the short distance light projecting element 7. . This is because the step 63b can be formed on the front end 63a of the partition 63 by arranging the position of the light receiving lens 3 behind the conventional lens. Then, in the conventional reflective photoelectric sensor, the reflected light from the detection object at the close distance Lc is shielded by the front end 263a of the partition 263 (see FIG. 7) by the step 63b, as shown in FIG. A space 63c shown is created.

したがって、従来の反射型光電センサの近距離範囲Lbよりセンサに近い距離にある、近距離範囲LL2の後端に検出物体が存在する場合の反射光B1は、空間63cを通過して、受光レンズ3に入射することができる。   Therefore, the reflected light B1 when the detection object is present at the rear end of the short distance range LL2, which is closer to the sensor than the short distance range Lb of the conventional reflective photoelectric sensor, passes through the space 63c and is received by the light receiving lens. 3 can be incident.

このように、反射光が空間63cを通過することによって、受光レンズ3に反射光が入射する角度が拡大するため、近距離用投光素子7で検出可能な近距離範囲LL2は後方に拡大され、不感帯である近接距離をLL3まで縮小される。この不感帯LL3は、図7で示した従来の反射型光電センサの不感帯Lcよりも、縮小(LL3<Lc)されている。   In this way, since the reflected light passes through the space 63c, the angle at which the reflected light is incident on the light receiving lens 3 is expanded, so that the short distance range LL2 that can be detected by the short distance light projecting element 7 is expanded backward. The proximity distance that is the dead zone is reduced to LL3. This dead zone LL3 is reduced (LL3 <Lc) from the dead zone Lc of the conventional reflective photoelectric sensor shown in FIG.

また、投光レンズ1と投光素子2の離間距離は従来の反射型光電センサと同一なため、遠距離範囲LL1にある検出物体の検出分解能が低下することはない。   Further, since the separation distance between the light projecting lens 1 and the light projecting element 2 is the same as that of the conventional reflective photoelectric sensor, the detection resolution of the detection object in the long distance range LL1 does not decrease.

このように、1台の反射型光電センサで近距離範囲の不感帯を縮小することができ、別の反射型光電センサと併用する必要がないので、コストを下げることが可能となる。   In this way, the dead zone in the short-range range can be reduced with one reflection type photoelectric sensor, and it is not necessary to use with another reflection type photoelectric sensor, so that the cost can be reduced.

(実施形態2)
本発明の実施形態2の反射型光電センサの構成図を図2に示す。本発明の実施形態2の反射型光電センサは、実施形態1の反射型光電センサと同様の構成であるが、受光レンズ3および受光素子4の組みを二組と、近距離用投光素子7を二個備えていることが特徴である。
(Embodiment 2)
The block diagram of the reflective photoelectric sensor of Embodiment 2 of this invention is shown in FIG. The reflective photoelectric sensor according to the second embodiment of the present invention has the same configuration as that of the reflective photoelectric sensor according to the first embodiment, but includes two sets of the light receiving lens 3 and the light receiving element 4 and a short distance light projecting element 7. It is characterized by having two.

本実施形態は、近距離用投光素子7を二個と、投光レンズ1および遠距離用投光素子2の組みを一組と、受光レンズ3および受光素子4の組みを二組とをセンサボディ16内に保持している。   In the present embodiment, two short distance light projecting elements 7, one set of the light projecting lens 1 and the long distance light projecting element 2, and two sets of the light receiving lens 3 and the light receiving element 4 are combined. It is held in the sensor body 16.

そして、受光レンズ3および受光素子4の各組みの間に、投光レンズ1および遠距離用投光素子2の組みを配置するとともに、投光レンズ1および遠距離用投光素子2の組みと受光レンズ3および受光素子4の一方の組みとの間に一方の近距離用投光素子7を配置し、投光レンズ1および遠距離用投光素子2の組みと受光レンズ3および受光素子4の他方の組みとの間に他方の近距離用投光素子7を配置している。また、投光レンズ1および遠距離用投光素子2の組みと各近距離用投光素子7との間に仕切り162、受光レンズ3および受光素子4の各組みと各近距離用投光素子7との間に仕切り163が基板5に実装されている。   A pair of the light projecting lens 1 and the long distance light projecting element 2 is arranged between each pair of the light receiving lens 3 and the light receiving element 4, and the light projecting lens 1 and the long distance light projecting element 2 are combined. One short distance light projecting element 7 is disposed between one set of the light receiving lens 3 and the light receiving element 4, and the light projecting lens 1 and the long distance light projecting element 2 are combined with the light receiving lens 3 and the light receiving element 4. The other short-distance light projecting element 7 is arranged between the other set. Further, a partition 162, each set of the light receiving lens 3 and the light receiving element 4, and each short distance light projecting element between the pair of the light projecting lens 1 and the long distance light projecting element 2 and each short distance light projecting element 7. 7, a partition 163 is mounted on the substrate 5.

また、センサボディ16は断面が略矩形状に形成されており、センサボディ16の前面に光透過性材料からなるカバー161が覆設されている。そして、カバー161は、各受光レンズ3の前方に配置されている一対のカバー161aと、投光レンズ1および各近距離用投光素子7の前方に配置されているカバー161bとで構成されており、各カバー161aはカバー161bよりも後方となるよう配置されている。そして、カバー161a、161bの後方近傍にある投光レンズ1と各受光レンズ3と各近距離用投光素子7は、各々の前面とカバー161a、161bとの間の前後方向の距離が略同一となるように配置されている。すなわち、各受光レンズ3は、投光レンズ1および各近距離用投光素子7よりも後方に配置されている。   The sensor body 16 has a substantially rectangular cross section, and a cover 161 made of a light transmissive material is covered on the front surface of the sensor body 16. The cover 161 includes a pair of covers 161 a disposed in front of each light receiving lens 3 and a cover 161 b disposed in front of the light projecting lens 1 and each short-distance light projecting element 7. Each cover 161a is disposed behind the cover 161b. The light projecting lens 1, each light receiving lens 3, and each short distance light projecting element 7 in the vicinity of the rear of the covers 161 a and 161 b have substantially the same distance in the front-rear direction between the front surface and the covers 161 a and 161 b. It is arranged to become. That is, each light receiving lens 3 is arranged behind the light projecting lens 1 and each short distance light projecting element 7.

また、センサボディ16内で基板5に実装されている仕切り162は、前端がカバー161bと当接するように前後方向に形成されており、仕切り163は、前端がカバー161a、161bの両者に当接するように前後方向に形成されている。ここで、各仕切り163の前端部163aは、カバー161の段部161cの形状に合わせて、前端部163aが略L字状となる段部163bが形成されている。   The partition 162 mounted on the substrate 5 in the sensor body 16 is formed in the front-rear direction so that the front end contacts the cover 161b, and the front end of the partition 163 contacts both the covers 161a and 161b. Is formed in the front-rear direction. Here, the front end portion 163a of each partition 163 is formed with a step portion 163b in which the front end portion 163a is substantially L-shaped in accordance with the shape of the step portion 161c of the cover 161.

そして、センサボディ16の側面164において、受光側の側面164aの前端と、各仕切り163の段部163bの後段との間に、カバー161aが覆設されている。また、各仕切り163の段部163bの前段の間に、カバー161bが覆設されている。   Then, on the side surface 164 of the sensor body 16, a cover 161 a is provided between the front end of the light receiving side surface 164 a and the rear stage of the step portion 163 b of each partition 163. Further, a cover 161b is provided between the front part of the step part 163b of each partition 163.

上記の構成からなる本実施形態は、実施形態1と同様に、検出物体が遠距離範囲LL1にある場合、遠距離用投光素子2から射出された光が投光レンズ1で集光された後、前方に射出されて検出物体で反射して、反射光が各受光レンズ3で集光された後、各受光素子4の受光面内に照射され、受光した光に応じて電気信号に変換され、検出物体の有無または検出物体の距離などを検出信号として出力する。また、検出物体が近距離範囲LL2にある場合、各近距離用投光素子7から射出された光が検出物体で反射して、反射光が各受光レンズ3で集光された後、受光素子4の受光面内に照射され、受光した光に応じて電気信号に変換され、検出物体の有無または検出物体の距離などを検出信号として出力する。   In the present embodiment configured as described above, similarly to the first embodiment, when the detection object is in the long distance range LL1, the light emitted from the long distance light projecting element 2 is condensed by the light projecting lens 1. After that, the light is emitted forward, reflected by the detection object, and the reflected light is collected by each light receiving lens 3 and then irradiated on the light receiving surface of each light receiving element 4 and converted into an electric signal according to the received light. Then, the presence / absence of the detection object or the distance of the detection object is output as a detection signal. When the detection object is in the short distance range LL2, the light emitted from each short distance light projecting element 7 is reflected by the detection object, and the reflected light is condensed by each light receiving lens 3, and then the light receiving element. 4 is irradiated into the light receiving surface and converted into an electrical signal according to the received light, and the presence or absence of the detection object or the distance of the detection object is output as a detection signal.

ここで、遠距離用投光素子2で検出可能な遠距離範囲LL1および、各近距離用投光素子7で検出可能な近距離範囲LL2は、図7で示した従来の反射型光電センサの遠距離用投光素子2で検出可能な遠距離範囲Laおよび、近距離用投光素子7で検出可能な近距離範囲Lbよりも後方に広い範囲(LL1>La、LL2>Lb)となっている。これは、各受光レンズ3の位置を従来よりも後方に配置することによって、各仕切り163の前端部163aに段部163bを形成することができる。そして、この段部163bによって、従来の反射型光電センサでは、近接距離Lcにある検出物体からの反射光を仕切り263の前端部263aによって遮光していた部位(図7参照)に、図2に示す一対の空間163cが生じる。   Here, the long distance range LL1 that can be detected by the long distance light projecting element 2 and the short distance range LL2 that can be detected by each short distance light projecting element 7 are the same as those of the conventional reflective photoelectric sensor shown in FIG. The long distance range La that can be detected by the long distance light projecting element 2 and the wide range behind the short distance range Lb that can be detected by the short distance light projecting element 7 (LL1> La, LL2> Lb). Yes. This is because the stepped portion 163b can be formed at the front end portion 163a of each partition 163 by disposing the positions of the respective light receiving lenses 3 behind the conventional one. Then, in the conventional reflection type photoelectric sensor, the reflected light from the detection object at the close distance Lc is shielded by the front end portion 263a of the partition 263 (see FIG. 7) by this step portion 163b, as shown in FIG. A pair of spaces 163c shown are created.

したがって、従来の反射型光電センサの近距離範囲Lbよりセンサに近い距離にある、近距離範囲LL2の後端に検出物体が存在する場合の反射光B1は、各空間163cを通過して、受光レンズ3に入射することができる。   Accordingly, the reflected light B1 when the detection object is present at the rear end of the short distance range LL2, which is closer to the sensor than the short distance range Lb of the conventional reflective photoelectric sensor, passes through each space 163c and is received. The light can enter the lens 3.

このように、反射光が空間163cを通過することによって、各受光レンズ3に反射光が入射する角度が拡大するため、各近距離用投光素子7で検出可能な近距離範囲LL2は後方に拡大され、不感帯である近接距離をLL3まで縮小される。この不感帯LL3は、図7で示した従来の反射型光電センサの不感帯Lcよりも、縮小(LL3<Lc)されている。   In this way, since the reflected light passes through the space 163c, the angle at which the reflected light is incident on each light receiving lens 3 is expanded, so that the short distance range LL2 that can be detected by each short distance light projecting element 7 is rearward. It is enlarged and the proximity distance which is a dead zone is reduced to LL3. This dead zone LL3 is reduced (LL3 <Lc) from the dead zone Lc of the conventional reflective photoelectric sensor shown in FIG.

また、近距離用投光素子7を二個と、受光レンズ3および受光素子4の組みを二組備えることによって、近距離範囲LL2における横方向の検出可能領域を拡大することができ、安定して検出物体を検出することが可能となる。   Further, by providing two short-range light projecting elements 7 and two sets of the light-receiving lens 3 and the light-receiving element 4, the laterally detectable region in the short-range range LL2 can be expanded and stabilized. Thus, it becomes possible to detect the detected object.

また、投光レンズ1と投光素子2の離間距離は従来の反射型光電センサと変えていないため、遠距離範囲LL1にある検出物体の検出分解能が低下することはない。   Further, since the separation distance between the light projecting lens 1 and the light projecting element 2 is not changed from that of the conventional reflective photoelectric sensor, the detection resolution of the detection object in the long distance range LL1 does not decrease.

このように、1台の反射型光電センサで近距離範囲の不感帯を縮小することができ、別の反射型光電センサと併用する必要がないので、コストを下げることが可能となる。   In this way, the dead zone in the short-range range can be reduced with one reflection type photoelectric sensor, and it is not necessary to use with another reflection type photoelectric sensor, so that the cost can be reduced.

1 投光レンズ
2 遠距離用投光素子
3 受光レンズ
4 受光素子
5 基板
6 センサボディ
7 近距離用投光素子
61 カバー
62 仕切り
63 仕切り
63b 段部
63c 空間
DESCRIPTION OF SYMBOLS 1 Light projection lens 2 Long distance light projecting element 3 Light receiving lens 4 Light receiving element 5 Board | substrate 6 Sensor body 7 Short distance light projecting element 61 Cover 62 Partition 63 Partition 63b Step part 63c Space

Claims (2)

投光レンズと、当該投光レンズを介して前方に光を射出する遠距離用投光素子と、受光レンズと、当該受光レンズを介して前方から入射する光を受光する受光素子と、前方に光を射出する近距離用投光素子とをセンサボディ内に備え、
前方に位置する検出対象と投光レンズ前面との間の距離が所定距離外の遠距離範囲にある場合、遠距離用投光素子から射出された光が遠距離範囲内にある検出対象で反射して、受光素子の受光面内に照射し、前方に位置する検出対象と投光レンズ前面および近距離用投光素子前面との間の距離が所定距離内の近距離範囲にある場合、遠距離用投光素子から射出された光が近距離範囲内にある検出対象で反射して、受光素子の受光面外に照射し、近距離用投光素子から射出された光が近距離範囲内にある検出対象で反射して、受光素子の受光範囲内に照射するように、投光レンズの後方側の焦点に遠距離用投光素子を配置し、受光レンズの後方側の焦点に受光素子を配置し、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の組みとが離間して設けられ、その間に近距離用投光素子が設けられる反射型光電センサにおいて、
受光レンズの後方側の焦点距離が投光レンズの後方側の焦点距離よりも短く、受光レンズの前面が投光レンズの前面および近距離用投光素子の前面より後方に配置され、受光レンズの前方にあるセンサボディ前面が、投光レンズおよび近距離用投光素子の前方にあるセンサボディ前面よりも後方となるよう形成されていることを特徴とする反射型光電センサ。
A light projecting lens; a long distance light projecting element that emits light forward through the light projecting lens; a light receiving lens; a light receiving element that receives light incident from the front through the light receiving lens; A short-distance light projecting element that emits light is provided in the sensor body,
When the distance between the detection target located in front and the front surface of the projection lens is in a long distance range outside the predetermined distance, the light emitted from the long distance light projecting element is reflected by the detection target within the long distance range. If the distance between the detection target located in front of the light receiving element and the front surface of the light projecting lens and the front surface of the short distance light projecting element is within a predetermined distance range, The light emitted from the light projecting element for the distance is reflected by the detection target within the short distance range and irradiated outside the light receiving surface of the light receiving element, and the light emitted from the light projecting element for the short distance is within the short distance range. A long distance light projecting element is arranged at the focal point on the rear side of the light projecting lens so that the light is reflected by the detection target in the light receiving region and irradiated within the light receiving range of the light receiving element, and the light receiving element is arranged at the rear focal point of the light receiving lens. A combination of a light projecting lens and a long distance light projecting element, a light receiving lens and a light receiving element. Sets and are spaced apart, the reflective photoelectric sensor provided is short-range light emitting element therebetween,
The focal length on the rear side of the light receiving lens is shorter than the focal length on the rear side of the light projecting lens, and the front surface of the light receiving lens is arranged behind the front surface of the light projecting lens and the front surface of the short distance light projecting element. A reflective photoelectric sensor, wherein the front surface of the sensor body is formed behind the front surface of the sensor body in front of the light projecting lens and the short distance light projecting element.
前記近距離用投光素子を二個と、前記投光レンズおよび前記遠距離用投光素子の組みを一組と、前記受光レンズおよび前記受光素子の組みを二組とを備え、
受光レンズおよび受光素子の各組みの間に投光レンズおよび遠距離用投光素子の組みを配置するとともに、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の一方の組みとの間に一方の近距離用投光素子を配置し、投光レンズおよび遠距離用投光素子の組みと受光レンズおよび受光素子の他方の組みとの間に他方の近距離用投光素子を配置することを特徴とする請求項1記載の反射型光電センサ。
Two short-range light projecting elements, one set of the light projecting lens and the long distance light projecting element, and two sets of the light receiving lens and the light receiving element,
A combination of a light projecting lens and a long distance light projecting element is disposed between each pair of the light receiving lens and the light receiving element. One short distance light projecting element is disposed between the light projecting lens and the long distance light projecting element and the other pair of the light receiving lens and the light receiving element. The reflective photoelectric sensor according to claim 1, wherein:
JP2009107027A 2009-04-24 2009-04-24 Reflective photoelectric sensor Expired - Fee Related JP5276513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107027A JP5276513B2 (en) 2009-04-24 2009-04-24 Reflective photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107027A JP5276513B2 (en) 2009-04-24 2009-04-24 Reflective photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2010258237A JP2010258237A (en) 2010-11-11
JP5276513B2 true JP5276513B2 (en) 2013-08-28

Family

ID=43318802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107027A Expired - Fee Related JP5276513B2 (en) 2009-04-24 2009-04-24 Reflective photoelectric sensor

Country Status (1)

Country Link
JP (1) JP5276513B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548148B (en) * 2011-05-19 2016-09-28 欧司朗光电半导体有限公司 Photoelectron device and the method being used for manufacturing photoelectron device
JP6003121B2 (en) 2012-03-15 2016-10-05 オムロン株式会社 Reflective photoelectric sensor
JP6006108B2 (en) * 2012-12-20 2016-10-12 株式会社アルファ Optical sensor unit
WO2021040015A1 (en) * 2019-08-30 2021-03-04 Toto株式会社 Toilet seat device and excrement sensing device
JP2021038637A (en) * 2019-08-30 2021-03-11 Toto株式会社 Toilet seat device and excrement detection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131482U (en) * 1978-03-02 1979-09-12
JPS6343460U (en) * 1986-09-02 1988-03-23
JPH01163350U (en) * 1988-04-30 1989-11-14
JP2001156325A (en) * 1999-11-29 2001-06-08 Citizen Electronics Co Ltd Photo reflector
JP2002100801A (en) * 2000-09-21 2002-04-05 Toshiba Corp Semiconductor light-receiving and emitting device
JP3778085B2 (en) * 2001-12-28 2006-05-24 松下電工株式会社 Reflective photoelectric sensor

Also Published As

Publication number Publication date
JP2010258237A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
JP6736629B2 (en) Transmitting/receiving module for photoelectric sensor and object detecting method
JP6737296B2 (en) Object detection device
EP2672295B1 (en) Photoelectric sensor
KR101923724B1 (en) Transmitting integrated type optical structure and scanning LiDAR having the same
JP5276513B2 (en) Reflective photoelectric sensor
JP2014052366A (en) Optical measurement instrument and vehicle
JP6003121B2 (en) Reflective photoelectric sensor
US20070030474A1 (en) Optical range finder
EP2230537B1 (en) Photoelectric sensor for sensing a target
US8384884B2 (en) Range finder
KR101885954B1 (en) Scanning lidar having concave reflective mirror
JP5251641B2 (en) Photoelectric sensor
JP3778085B2 (en) Reflective photoelectric sensor
JP2020101471A (en) Distance image detection device and vehicle lamp fitting
JP2010256183A (en) Reflection-type photoelectric sensor
JP2007064803A (en) Laser radar apparatus
KR20220074519A (en) An improved ToF Sensor Device
KR101868963B1 (en) Structure to the one direction over the distance by using the detected light
JP6663156B2 (en) Object detection device
KR20180089352A (en) Scanning lidar having concave reflective mirror
KR102280497B1 (en) Lidar Sensor Assembly
JP4317441B2 (en) Detection head and projection head of photoelectric sensor and detection head of wafer detection sensor
WO2020032009A1 (en) Sensor system
JP5007604B2 (en) Optical scanning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees