JP3777983B2 - Method for manufacturing glass article - Google Patents

Method for manufacturing glass article Download PDF

Info

Publication number
JP3777983B2
JP3777983B2 JP2000567479A JP2000567479A JP3777983B2 JP 3777983 B2 JP3777983 B2 JP 3777983B2 JP 2000567479 A JP2000567479 A JP 2000567479A JP 2000567479 A JP2000567479 A JP 2000567479A JP 3777983 B2 JP3777983 B2 JP 3777983B2
Authority
JP
Japan
Prior art keywords
temperature
glass
heating
deposit
glass article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000567479A
Other languages
Japanese (ja)
Inventor
朋浩 石原
達彦 齋藤
裕一 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Application granted granted Critical
Publication of JP3777983B2 publication Critical patent/JP3777983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高品質な大型のガラス物品及びその製造方法に関する。特に、長尺かつ外径のばらつきの小さい光ファイバ用ガラス母材及びその製法に関する。
【0002】
【従来の技術】
フォトマスク用ガラス母材、光ファイバ用ガラス母材等のガラス物品は、気相軸付法(VAD法)あるいは外付法(OVD法)等の気相合成法により合成されたガラス微粒子堆積体を、加熱炉中で真空あるいは減圧雰囲気下で高温加熱処理し、透明化して製造される。高品質のガラス物品を得るためには、ガラス母材中への気泡の残留を極力無くし、かつ、その母材の外径を均一とすることが必要である。そのための方法として、加熱透明化工程を3工程に分け、それぞれの工程の温度を適切に制御する方法が提案されている(特開平6−256035号公報)。
【0003】
この方法は、加熱処理中にガラス微粒子堆積体に残留するガスを除去する第1の加熱工程、前記第1の加熱工程の加熱温度より高く、前記堆積体の透明化温度より低い温度で加熱収縮させる第2の加熱工程、及び前記透明化温度で前記堆積体を透明化させる第3の加熱工程を含むことを特徴としている。また、この方法の第2の加熱工程において、ガラス微粒子堆積体を加熱する発熱体を上下方向に多段に分割しそれぞれ独立に温度を制御できるようにしている。下部の発熱体の温度が上部の発熱体の温度以上になるように設定することにより、ガラス物品の長手方向の外径変動を小さくする効果がある。近年、大量生産の必要性や製造工程の効率化の観点から、大型のガラス微粒子堆積体を使用して、長さが1000mm以上かつ品質のすぐれた(気泡の残留がなく、外径の長手方向の変動が小さい)光ファイバ母材の製造方法の確立が望まれている。
【0004】
本発明者らは、自重の影響が大きくなる長さ1000mm以上の光ファイバ用ガラス母材では、前記第3の加熱工程のような高温(1490〜1600℃)での加熱処理を行うと、外径の長手方向の変動が大きいという問題に気づいた。
また、本発明者らは、透明化温度が1490℃より低い温度の場合は、加熱時間が1時間以下であると、前記堆積体の透明化が難しく、前記堆積体の両端部に焼きのこし(完全に透明化されていない部分)ができるという問題に気づいた。
【0005】
【発明が解決しようとする課題】
本発明は、大型のガラス微粒子堆積体から長手方向に外径が安定した大型の高品質のガラス物品を得ることができる製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
第1の発明は、気相合成法により合成したガラス微粒子堆積体を加熱炉に鉛直方向に挿入し、真空又は減圧雰囲気中で透明化温度より低い温度で加熱して、前記ガラス微粒子体に残留するガスを除去するとともに加熱収縮させる第1の加熱工程と、透明化温度で加熱して前記ガラス微粒子体を透明化させる第2の加熱工程とを有し、前記第2の加熱工程がガラス微粒子堆積体表面の温度が1400〜1480℃となるように制御して70分以上の所定の時間加熱し、第2の加熱工程の後にガラス物品を冷却する冷却工程を有する長さが1000mm以上のガラス物品の製造方法に関する。
【0007】
第2の発明は、前記第1の加熱工程が1000〜1300℃で10Pa以下の所定の真空度になるまで前記ガスの除去を行う脱気工程を有する第1の発明のガラス物品の製造方法に関する。
【0008】
第3の発明は、前記第1の加熱工程が1000〜1300℃で10Pa以下の所定の真空度になるまでガスの除去を行う脱気工程と、10Pa以下の所定の真空度において1300〜1400℃で加熱する加熱収縮処理工程とからなる第1の発明のガラス物品の製造方法に関する。
【0009】
第4の発明は、前記加熱炉は、長手方向の複数部分に対応してそれぞれ独立に制御されたヒータを備え、前記ガラス微粒子堆積体の温度を長手方向の複数部分に分けて制御する第1の発明のガラス物品の製造方法に関する。
【0010】
第5の発明は、前記各加熱工程において、前記ヒータと前記ガラス微粒子堆積体とを隔離する炉心管の温度を測定し、その温度に基づいて各加熱工程の温度を制御する第1の発明のガラス物品の製造方法に関する。
【0011】
第6の発明は、前記ガラス微粒子堆積体は透明ガラスロッドとその周囲に形成された多孔質ガラス部分からなる複合母材である第1の発明のガラス物品の製造方法に関する。
【0012】
第7の発明は、前記第2の加熱工程において、前記ガラス微粒子堆積体表面の温度を上方から下方へ向かって連続的又は段階的に高くする第1の発明のガラス物品の製造方法に関する。
【0013】
本発明の方法によれば、大型のガラス微粒子堆積体から、長さが1000mm以上であり、外径の長手方向の変動が外径の長手方向の中央値に対して±2%以内という光ファイバ母材を容易に製造することができる。
【0014】
【発明の実施の形態】
VAD法あるいはOVD法などの気相合成法で得られたガラス微粒子堆積体は、第1の加熱工程において、真空又は減圧雰囲気中で、該堆積体に残留するガスの除去と該堆積体の加熱収縮処理を施される。この工程においては、1000〜1300℃の温度で10Pa以下の所定の真空度になるまでガスの除去を行い、その後に10Pa以下の所定の真空度で1300〜1400℃の温度で加熱収縮処理を行うことが好ましい。
【0015】
前記第1の加熱工程後のガラス微粒子堆積体は、第2の加熱工程において、1400〜1480℃の温度範囲で70分以上加熱し、透明化される。加熱温度は、1400〜1480℃と従来の透明化温度よりも低く設定することにより、自重による前記堆積体の引き延びが低減される。この場合、加熱温度が下がりやすい該堆積体の両端部においては、完全に透明化されない部分が発生することがあるが、加熱時間を70分以上の所定の時間に設定することにより該堆積体の両端部を完全に透明化することができる。このように透明化温度を低くすることにより、長さが1000mmの大型の光ファイバ用ガラス母材では、母材外径の長手方向の変動が外径の長手方向の中央値に対し±2%以内にすることができる。
【0016】
本発明に使用される加熱炉は、ガラス微粒子堆積体の温度を長手方向の複数部分に分けて制御するため、長手方向の複数部分に対応してそれぞれ独立に制御できる複数のヒータを備えることが好ましい。このようにすることによって、長尺のガラス微粒子堆積体を加熱する場合でも引き延びやすい部分と引き延びにくい部分の温度を適切に制御することができる。
【0017】
ガラス微粒子堆積体を鉛直方向に挿入するたて型の加熱炉を使用する場合、高温での加熱処理の際に自重による引き延びが発生して外径が上部では細く、下部では太くなる傾向がある。そのような場合には、第2の加熱工程においてガラス微粒子堆積体表面の温度が上端から下方へ向かって連続的又は段階的に高くなるように制御するのが好ましい。
【0018】
ガラス微粒子堆積体の透明化では、該堆積体を加熱炉のヒータから隔離するため、該堆積体はヒーターとの間にカーボン材等からなる炉心管を介して挿入される。
【0019】
前記第1及び第2の加熱工程における温度制御は、放射温度計等の温度センサを使用してガラス微粒子堆積体表面の温度を測定し、その測定値に基づいてヒータの出力を制御することによって行うようにする。該堆積体表面の温度は炉心管の温度に近い温度となっていることが多く、その場合、より測定が容易な炉心管の温度を測定し、その測定値に基づいてヒータの出力を制御するようにしてもよい。
【0020】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。
(実施例1a)
VAD法で合成した純シリカからなるガラス微粒子堆積体を図1に示す真空焼結炉を使用して本発明の方法に従い透明ガラス化した。図1の真空焼結炉において1はガラス微粒子堆積体、2は真空焼結炉本体、3は炉心管、4はヒータ、5は不活性ガス供給装置、6及び7はそれぞれ炉心管3及び炉本体2内へ供給する不活性ガスの流量計、8及び9はそれぞれ炉心管3及び炉本体2への不活性ガスの供給用配管、10及び11は炉内減圧用吸入ポンプ、12及び13はそれぞれ炉本体2及び炉心管3から排気するための配管、14は母材1を支えるシード棒、15は上蓋、16は母材1の表面温度計測用の炉心管3まで貫通しているのぞき穴、16′は炉心管3の温度計測用のぞき穴、17は母材1の表面温度を計測する温度計、18は炉心管3の温度を計測する温度計、19は温度制御装置、20はトラバース機である。なお、図では炉本体2及び炉心管3の両方にそれぞれ別々にガス供給、排気手段を設けているが、これらはどちらか一方のみとすることもできる。また、図には記載を省略したが配管8、9、12、13にはバルブが設けられており、これらのバルブの切替えで真空(減圧)排気又はガスの吹流しを行う。さらに、これも図示省略したが、温度計18は温度制御装置19にも接続されている。
【0021】
ガラス微粒子堆積体1は、VAD法で形成され、外径200mm、重量30kg、有効部長さ1500mmのものを使用した。真空焼結炉の温度を400℃に保って該堆積体1を炉心管3に挿入し、上蓋15で炉内を密封し、炉内圧力を10Paまで下げた。この状態で該堆積体1の全域における表面温度を10℃/分の昇温速度で1300℃まで上昇させて60分間保持し、該堆積体1に残留したガスを十分に脱気した(脱気工程)。
次に該堆積体1の表面温度を5℃/分で上昇させ、1350℃で50分間保持した(加熱収縮処理工程)。
次に該堆積体1の表面温度を5℃/分で上昇させ、該堆積体1の全域における表面温度を1420℃とした後、100分間保持して透明化した(透明化工程)。
この後、ヒータでの加熱を停止して降温を続け、ガラス物品を冷却し(冷却工程)、600℃で製品を取り出した。
得られたガラス物品の寸法を測定した結果、有効部長さ1400mm全長にわたって外径は90±0.5mm(外径変化率±0.56%)であり、外径の長手方向の変動が小さく、良好な品質を有していた。
【0022】
(実施例1b)
また、実施例1aのガラス微粒子堆積体1に代えて、中心部にGeがドープされ屈折率を高くし、外周部に純SiO層を有する透明ガラスロッドの周囲に、VAD法によりSiOの多孔質ガラス層を形成した実施例1aと同寸法の複合母材を用いて、実施例1aと同様に透明化したが、同様に良好な品質が得られた。
【0023】
(実施例1c)
また、ガラス微粒子堆積体1として、外径300mm、有効部長さ1500mm、重量60kgのものを使用し、実施例1aと同様に脱気工程、加熱処理工程を行った後、該堆積体1の表面温度を5℃/分で上昇させ、該堆積体1の全域における表面温度を1420℃とした後、180分間保持して透明化した。
得られたガラス物品の寸法を測定した結果、有効部長さ1400mm全長にわたって外径は150±1.2mm(外径変化率±0.6%)と良好な品質が得られた。
【0024】
(比較例1a)
実施例1aと同サイズのガラス微粒子堆積体1を、同じ設備により以下の条件で透明ガラス化した。すなわち、真空焼結炉の温度を400℃に保って該堆積体1を炉心管3に挿入し、上蓋15で炉内を密封し、炉内圧力を10Paまで下げた。この状態で該堆積体1の全域における表面温度を10℃/分の昇温速度で1300℃まで上昇させて60分間保持し、該堆積体1に残留したガスを十分に脱気した(脱気工程)。
次に、該堆積体1の表面温度を5℃/分で上昇させ1350℃とし、同温度で50分間保持した(加熱収縮処理工程)。
次に、該堆積体1の表面温度を5℃/分で上昇させ、該堆積体1の全域における表面温度を1500℃とした後、60分間保持して透明化した(透明化工程)。この後、ヒータでの加熱を停止して降温を続け、600℃で製品を取り出した。得られたガラス物品の寸法を測定した結果、有効部長さ1400mm全長にわたって外径は90±4.5mm(外径変化率±5%)であり、外径の長手方向の変動が大きかった。
【0025】
(比較例1b)
実施例1cと同サイズのガラス微粒子堆積体1を使用し、比較例1aと同じ条件で透明化した。得られたガラス物品の寸法を測定した結果、有効部長さ1550mm全長にわたって外径は150±5.0mm(外径変化率±3.3%)であり、外径の長手方向の変動が大きかった。
【0026】
実施例1a及び比較例1aの結果は、表1のとおりである。また、これらの例における長手方向に対する外径変動の傾向を図2に示す。第2の加熱工程(透明化工程)において、従来技術よりも低い1400〜1480℃の範囲(好ましくは1400〜1440℃の範囲)で70分以上(好ましくは100分以上、さらに好ましくは150分以上)保持して引き延びを防止することが、外径の安定化に重要であることがわかる。
実施例において、炉内の真空度を10Paとしているが、ガラス物品中の気泡の残留を防ぐため、この値は低い方が好ましく、9Pa、8Paであっても良い。
本発明の方法は、ガラス物品の自重が大きい場合、特に、自重が50kg以上のものほど外径変動の低減に有効である。
【0027】
【表1】

Figure 0003777983
【0028】
(実施例2a)
実施例1aと同サイズのガラス微粒子堆積体1を、実施例1aと同じ設備、同じ温度条件で透明化した。ただし、本実施例においては透明化処理中の温度の制御を炉心管3の外表面温度を測定する温度計18を用いて、炉心管3の温度を制御することによって行った。得られたガラス物品の寸法を測定した結果、有効部長さ1400mm全長にわたって外径は90±0.7mm(外径変化率±0.78%)であり、外径の長手方向の変動が小さく、良好な品質を有していた。この結果から、該堆積体1の表面の温度を測定する代わりに、比較的測定の容易な炉心管の温度を測定しても問題のないことがわかる。
【0029】
(実施例2b)
実施例1cと同サイズのガラス微粒子堆積体1を使用し、実施例1cと同じ条件で透明化した。得られたガラス物品の寸法を測定した結果、有効部長さ1410mm全長にわたって外径は150±1.5mm(外径変化率±1.0%)と良好な品質が得られた。
【0030】
(実施例3a)
実施例1aと同サイズのガラス微粒子堆積体1を、図1の真空焼結炉と同形式で、ヒータ4を図3に示すように上段ヒータ4−1、中段ヒータ4−2及び下段ヒータ4−3の3段に分割して制御した真空焼結炉を使用して、実施例1aと同様に透明化した。
該堆積体1は外径200mm、有効部長さ1560mmのものを使用した。真空焼結炉の温度を400℃に保って該堆積体1を炉心管3に挿入し、上蓋15で炉内を密封し、炉内圧力を10Paまで下げた。この状態で該堆積体1の全域における表面温度を10℃/分の昇温速度で1300℃まで上昇させて60分間保持し、該堆積体1に残留したガスを十分に脱気した(脱気工程)。
次に該堆積体1の表面温度を10℃/分で上昇させ、1350℃にして50分間保持した(加熱収縮処理工程)。
【0031】
次に上段ヒータ4−1の影響を強く受ける該堆積体1の範囲Aの中心点における表面温度を5℃/分で上昇させて1400℃に、中段ヒータ4−2の影響を強く受ける範囲Bの中心点における表面温度を7℃/分で上昇させて1420℃に、下段ヒータ4−3の影響を強く受ける範囲Cの中心点における表面温度を9℃/分で上昇させて1440℃にした後、100分間保持して該堆積体1を透明化させた(透明化工程)。このときの温度分布はほぼ図3に示すとおりである。
この後、ヒータでの加熱を停止して降温を続け、ガラス物品を冷却し(冷却工程)、600℃で製品を取り出した。
得られたガラス物品の外径を測定した結果、有効部長さ1405mm全長にわたって外径は90±0.1mm(外径変化率±0.11%)であり、外径の長手方向の変動が小さく、良好な品質を有していた。
【0032】
(実施例3b)
実施例3aにおいて、該堆積体1の表面温度の制御を、各ヒーター位置に対応する炉心管3の表面温度を測定し制御することによっても、実施例3aと同様の良好な品質が得られた(有効部長さ1417mm全長にわたって外径は90±0.3mm(外径変化率±0.33%))。
【0033】
(実施例3c)
実施例3aのガラス微粒子堆積体1に代えて、中心部にGeがドープされ、外周部に純SiO層を有する透明ガラスロッドの周囲にVAD法により純SiO多孔質ガラス層を形成した実施例3aと同寸法の複合母材を用いて、実施例3aと同様に透明化したが、同様に良好な品質が得られた。
【0034】
(実施例3d)
実施例3aにおいて、1350℃での加熱収縮処理を行っているが、なくても同様に良好な品質が得られた。
【0035】
(実施例3e)
実施例3aにおいて、実施例3aのガラス微粒子堆積体1に代えて、実施例1cと同サイズのガラス微粒子堆積体1を使用し、透明化工程で保持時間を180分間とした場合は、有効部長さ1390mm全長にわたって外径は150±0.7mm(外径変化率±0.46%)同様に良好な品質が得られた。
【0036】
(実施例3f)
実施例3eにおいて、該堆積体1の表面温度の制御を、各ヒーター位置に対応する炉心管3の表面温度を測定し制御することによっても、実施例3aと同様の良好な品質が得られた(有効部長さ1400mm全長にわたって外径は150±1.0mm(外径変化率±0.66%))。
【0037】
(実施例3g)
外径が365mm、有効部長さ1560mm、重量80kgのガラス微粒子堆積体1を、実施例3eと同じ設備、同じ条件で透明化した。得られたガラス物品の寸法を測定した結果、有効部長さ1470mm全長にわたり外径は163±1.5mm(外径変化率±0.92%)であった。
【0038】
(比較例2)
実施例3gと同サイズのガラス微粒子堆積体1を、実施例3eと同じ設備により以下の条件で透明ガラス化した。すなわち、真空焼結炉の温度を400℃に保って該堆積体1を炉心管3に挿入し、上蓋15で炉内を密封し、炉内圧力を10Paまで下げた。この状態で該堆積体1の全域における表面温度を10℃/分の昇温速度で1300℃まで上昇させて60分間保持し、該堆積体1に残留したガスを十分に脱気した(脱気工程)。
【0039】
次に、該堆積体1の表面温度を5℃/分で上昇させ1350℃とし、同温度で50分間保持した(加熱収縮処理工程)。
次に該堆積体1の表面温度を15℃/分で上昇させ、該堆積体1の全域における表面温度を1500℃とした後、60分間保持して透明化した(透明化工程)。この後、ヒータでの加熱を停止して降温を続け、600℃で製品を取り出した。得られたガラス物品の寸法を測定した結果、有効部長さ1660mm全長にわたって外径は158±7mm(外径変化率±4.43%)であり、外径の長手方向の変動が大きかった。
【図面の簡単な説明】
【図1】 実施例で使用した真空焼結炉の装置構成を示す概略説明図である。
【図2】 実施例1及び比較例1で得られた光ファイバ母材の長手方向における外径変化を示す図である。
【図3】 実施例3における温度制御の状態を示す模式図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-quality large glass article and a method for producing the same. In particular, the present invention relates to a glass preform for an optical fiber that is long and has a small variation in outer diameter, and a method for producing the same.
[0002]
[Prior art]
Glass articles such as glass masks for photomasks and glass preforms for optical fibers are glass fine particle deposits synthesized by a gas phase synthesis method such as a gas phase axis method (VAD method) or an external method (OVD method). Is manufactured by heating at high temperature in a heating furnace in a vacuum or a reduced-pressure atmosphere to make it transparent. In order to obtain a high-quality glass article, it is necessary to eliminate the residual bubbles in the glass base material as much as possible and to make the outer diameter of the base material uniform. As a method therefor, a method has been proposed in which the heat-clearing step is divided into three steps and the temperature of each step is appropriately controlled (Japanese Patent Laid-Open No. 6-256035).
[0003]
This method includes a first heating step for removing gas remaining in the glass particulate deposit during the heat treatment, and heat shrinkage at a temperature higher than the heating temperature of the first heating step and lower than the transparency temperature of the deposit. And a third heating step for transparentizing the deposited body at the transparentizing temperature. Further, in the second heating step of this method, the heating element for heating the glass fine particle deposit is divided into multiple stages in the vertical direction so that the temperature can be controlled independently. By setting the temperature of the lower heating element to be equal to or higher than the temperature of the upper heating element, there is an effect of reducing the fluctuation of the outer diameter in the longitudinal direction of the glass article. In recent years, from the viewpoint of the necessity of mass production and the efficiency of the manufacturing process, using a large glass particulate deposit, the length is 1000 mm or more and the quality is excellent (there is no residual bubbles, the longitudinal direction of the outer diameter The establishment of a method for manufacturing an optical fiber preform is desired.
[0004]
When the heat treatment at a high temperature (1490 to 1600 ° C.) as in the third heating step is performed on an optical fiber glass preform having a length of 1000 mm or more in which the influence of its own weight becomes large, the present inventors I noticed the problem of large variation in the longitudinal direction of the diameter.
In addition, when the transparentization temperature is lower than 1490 ° C., the present inventors have difficulty in clearing the deposit when the heating time is 1 hour or less, and baking is performed on both ends of the deposit ( I noticed that there was a problem that was not completely transparent.
[0005]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method which can obtain the large-sized high quality glass article with the outer diameter stabilized in the longitudinal direction from the large-sized glass particulate deposit.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, a glass particulate deposit synthesized by a vapor phase synthesis method is vertically inserted into a heating furnace, heated in a vacuum or a reduced pressure atmosphere at a temperature lower than a clearing temperature, and remains in the glass particulate. A first heating step for removing the gas to be heated and shrinking by heating, and a second heating step for heating the glass fine particle body at a transparent temperature to make the glass fine particle transparent, wherein the second heating step is a glass fine particle. A glass having a length of 1000 mm or more having a cooling step of controlling the temperature of the deposited body to be 1400 to 1480 ° C., heating for a predetermined time of 70 minutes or more, and cooling the glass article after the second heating step. The present invention relates to a method for manufacturing an article.
[0007]
2nd invention is related with the manufacturing method of the glass article of 1st invention which has the deaeration process which removes the said gas until the said 1st heating process becomes a predetermined vacuum degree of 10 Pa or less at 1000-1300 degreeC. .
[0008]
According to a third aspect of the present invention, there is provided a degassing step of removing gas until the first heating step reaches a predetermined vacuum level of 10 Pa or less at 1000 to 1300 ° C., and 1300 to 1400 ° C. at a predetermined vacuum level of 10 Pa or lower. It is related with the manufacturing method of the glass article of 1st invention which consists of a heat-shrink process process heated with.
[0009]
According to a fourth aspect of the present invention, the heating furnace includes a heater that is independently controlled corresponding to a plurality of portions in the longitudinal direction, and controls the temperature of the glass particulate deposit in a plurality of portions in the longitudinal direction. The present invention relates to a method for producing a glass article.
[0010]
According to a fifth aspect of the first aspect of the present invention, in each of the heating steps, the temperature of the core tube that separates the heater and the glass particulate deposit is measured, and the temperature of each heating step is controlled based on the temperature. The present invention relates to a method for manufacturing a glass article.
[0011]
6th invention is related with the manufacturing method of the glass article of 1st invention which is a composite base material in which the said glass particulate deposit body consists of a transparent glass rod and the porous glass part formed in the circumference | surroundings.
[0012]
7th invention is related with the manufacturing method of the glass article of 1st invention which raises the temperature of the said glass fine particle deposit | stacking body continuously or stepwise from upper direction to the downward direction in a said 2nd heating process.
[0013]
According to the method of the present invention, an optical fiber having a length of 1000 mm or more and a variation in the longitudinal direction of the outer diameter within ± 2% with respect to the median value in the longitudinal direction of the outer diameter from a large glass particulate deposit. The base material can be easily manufactured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the first heating step, the glass fine particle deposit obtained by the vapor phase synthesis method such as the VAD method or the OVD method is used to remove the gas remaining in the deposit and to heat the deposit in a vacuum or a reduced pressure atmosphere. Shrinkage treatment is applied. In this step, the gas is removed at a temperature of 1000 to 1300 ° C. until a predetermined vacuum level of 10 Pa or lower, and then a heat shrinking process is performed at a temperature of 1300 to 1400 ° C. at a predetermined vacuum level of 10 Pa or lower. It is preferable.
[0015]
In the second heating step, the glass particulate deposit after the first heating step is heated in the temperature range of 1400 to 1480 ° C. for 70 minutes or more to be transparent. By setting the heating temperature to 1400 to 1480 ° C., which is lower than the conventional clearing temperature, extension of the deposited body due to its own weight is reduced. In this case, there may occur a portion that is not completely transparent at both end portions of the deposited body where the heating temperature tends to decrease. However, by setting the heating time to a predetermined time of 70 minutes or more, Both ends can be made completely transparent. Thus, by lowering the transparency temperature, in a large glass preform for an optical fiber having a length of 1000 mm, the longitudinal variation of the outer diameter of the preform is ± 2% with respect to the median value of the outer diameter in the longitudinal direction. Can be within.
[0016]
The heating furnace used in the present invention is provided with a plurality of heaters that can be controlled independently corresponding to the plurality of portions in the longitudinal direction in order to control the temperature of the glass particulate deposit in a plurality of portions in the longitudinal direction. preferable. By doing in this way, even when heating a long glass fine particle deposit body, the temperature of the part which is easy to extend and the part which is difficult to extend can be controlled appropriately.
[0017]
When using a vertical heating furnace that inserts a glass particle deposit in the vertical direction, it tends to stretch due to its own weight during heat treatment at high temperatures, and the outer diameter tends to be thin at the top and thick at the bottom. is there. In such a case, in the second heating step, it is preferable to control the temperature of the surface of the glass fine particle deposit so as to increase continuously or stepwise from the upper end to the lower side.
[0018]
When the glass particulate deposit is made transparent, the deposit is isolated from the heater of the heating furnace, and the deposit is inserted between the heater and a heater core tube made of a carbon material or the like.
[0019]
The temperature control in the first and second heating steps is performed by measuring the temperature of the surface of the glass particulate deposit using a temperature sensor such as a radiation thermometer and controlling the output of the heater based on the measured value. To do. The temperature of the surface of the deposit is often close to the temperature of the core tube. In this case, the temperature of the core tube, which is easier to measure, is measured, and the output of the heater is controlled based on the measured value. You may do it.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1a
A glass fine particle deposit made of pure silica synthesized by the VAD method was made into a transparent glass according to the method of the present invention using a vacuum sintering furnace shown in FIG. In the vacuum sintering furnace of FIG. 1, 1 is a glass particulate deposit, 2 is a vacuum sintering furnace body, 3 is a furnace core tube, 4 is a heater, 5 is an inert gas supply device, and 6 and 7 are the furnace core tube 3 and the furnace, respectively. Inert gas flowmeters to be supplied into the main body 2, 8 and 9 are pipes for supplying inert gas to the furnace core tube 3 and the furnace main body 2, 10 and 11 are suction pumps for depressurizing the furnace, and 12 and 13 are Piping for exhausting from the furnace body 2 and the core tube 3, 14 is a seed rod for supporting the base material 1, 15 is an upper lid, and 16 is a peephole penetrating to the core tube 3 for measuring the surface temperature of the base material 1. , 16 'is a peephole for measuring the temperature of the core tube 3, 17 is a thermometer for measuring the surface temperature of the base material 1, 18 is a thermometer for measuring the temperature of the core tube 3, 19 is a temperature control device, and 20 is a traverse. Machine. In the figure, gas supply and exhaust means are provided separately for both the furnace body 2 and the furnace core tube 3, but only one of them may be provided. Although not shown in the figure, valves 8, 9, 12, and 13 are provided with valves, and vacuum (decompression) exhaust or gas blowing is performed by switching these valves. Further, although not shown, the thermometer 18 is also connected to the temperature control device 19.
[0021]
The glass fine particle deposit 1 was formed by the VAD method, and had an outer diameter of 200 mm, a weight of 30 kg, and an effective part length of 1500 mm. The deposit 1 was inserted into the furnace core tube 3 while maintaining the temperature of the vacuum sintering furnace at 400 ° C., the inside of the furnace was sealed with the upper lid 15, and the furnace pressure was reduced to 10 Pa. In this state, the surface temperature of the entire area of the deposit 1 is increased to 1300 ° C. at a rate of temperature increase of 10 ° C./min and held for 60 minutes, and the gas remaining in the deposit 1 is sufficiently degassed (degassed) Process).
Next, the surface temperature of the deposited body 1 was increased at 5 ° C./min and held at 1350 ° C. for 50 minutes (heating shrinkage treatment step).
Next, the surface temperature of the deposited body 1 was increased at 5 ° C./min, the surface temperature of the entire area of the deposited body 1 was set to 1420 ° C., and then kept for 100 minutes to be transparent (transparentizing step).
Thereafter, the heating with the heater was stopped, the temperature was continuously lowered, the glass article was cooled (cooling step), and the product was taken out at 600 ° C.
As a result of measuring the dimensions of the obtained glass article, the outer diameter is 90 ± 0.5 mm (outer diameter change rate ± 0.56%) over the entire length of the effective part length of 1400 mm, and the fluctuation in the longitudinal direction of the outer diameter is small, Had good quality.
[0022]
(Example 1b)
Further, instead of the glass fine particle deposit 1 of Example 1a, the central portion is doped with Ge, the refractive index is increased, and the periphery of a transparent glass rod having a pure SiO 2 layer on the outer peripheral portion is made of SiO 2 by the VAD method. Using a composite base material having the same dimensions as Example 1a in which the porous glass layer was formed, it was made transparent in the same manner as Example 1a, but good quality was obtained in the same manner.
[0023]
(Example 1c)
Further, the glass fine particle deposit 1 having an outer diameter of 300 mm, an effective part length of 1500 mm, and a weight of 60 kg was used, and after performing a deaeration process and a heat treatment process in the same manner as in Example 1a, the surface of the deposit 1 The temperature was raised at 5 ° C./min, the surface temperature of the entire area of the deposited body 1 was set to 1420 ° C., and then kept for 180 minutes to be transparent.
As a result of measuring the dimensions of the obtained glass article, the outer diameter was 150 ± 1.2 mm (outer diameter change rate ± 0.6%) over the entire length of the effective portion length of 1400 mm, and good quality was obtained.
[0024]
(Comparative Example 1a)
The glass fine particle deposit 1 having the same size as that of Example 1a was made into a transparent glass under the following conditions using the same equipment. That is, while keeping the temperature of the vacuum sintering furnace at 400 ° C., the deposit 1 was inserted into the furnace core tube 3, the inside of the furnace was sealed with the upper lid 15, and the furnace pressure was lowered to 10 Pa. In this state, the surface temperature of the entire area of the deposit 1 is increased to 1300 ° C. at a rate of temperature increase of 10 ° C./min and held for 60 minutes, and the gas remaining in the deposit 1 is sufficiently degassed (degassed) Process).
Next, the surface temperature of the deposited body 1 was increased at 5 ° C./min to 1350 ° C. and held at the same temperature for 50 minutes (heating shrinkage treatment step).
Next, the surface temperature of the deposited body 1 was increased at 5 ° C./min to set the surface temperature of the entire area of the deposited body 1 to 1500 ° C., and then kept transparent for 60 minutes (clearing step). Thereafter, heating with the heater was stopped, the temperature was continuously lowered, and the product was taken out at 600 ° C. As a result of measuring the dimensions of the obtained glass article, the outer diameter was 90 ± 4.5 mm (outer diameter change rate ± 5%) over the entire length of the effective part length of 1400 mm, and the longitudinal variation of the outer diameter was large.
[0025]
(Comparative Example 1b)
The glass fine particle deposit 1 having the same size as that of Example 1c was used, and it was made transparent under the same conditions as in Comparative Example 1a. As a result of measuring the dimensions of the obtained glass article, the outer diameter was 150 ± 5.0 mm (outer diameter change rate ± 3.3%) over the entire length of the effective part length of 1550 mm, and the longitudinal variation of the outer diameter was large. .
[0026]
The results of Example 1a and Comparative Example 1a are as shown in Table 1. Moreover, the tendency of the outer diameter fluctuation | variation with respect to the longitudinal direction in these examples is shown in FIG. In the second heating step (clearing step), it is 70 minutes or more (preferably 100 minutes or more, more preferably 150 minutes or more) in the range of 1400 to 1480 ° C. (preferably in the range of 1400 to 1440 ° C.) lower than the prior art. It can be seen that holding and preventing stretching is important for stabilizing the outer diameter.
In the examples, the degree of vacuum in the furnace is set to 10 Pa. However, in order to prevent bubbles from remaining in the glass article, this value is preferably low, and may be 9 Pa or 8 Pa.
The method of the present invention is more effective in reducing fluctuations in the outer diameter when the weight of the glass article is large, particularly when the weight of the glass article is 50 kg or more.
[0027]
[Table 1]
Figure 0003777983
[0028]
Example 2a
The glass particulate deposit 1 having the same size as that of Example 1a was made transparent under the same equipment and the same temperature conditions as in Example 1a. However, in the present embodiment, the temperature during the transparency treatment was controlled by controlling the temperature of the core tube 3 using the thermometer 18 that measures the outer surface temperature of the core tube 3. As a result of measuring the dimensions of the obtained glass article, the outer diameter is 90 ± 0.7 mm (outer diameter change rate ± 0.78%) over the entire length of the effective portion length of 1400 mm, and the fluctuation in the longitudinal direction of the outer diameter is small, Had good quality. From this result, it can be seen that there is no problem even if the temperature of the core tube, which is relatively easy to measure, is measured instead of measuring the temperature of the surface of the deposit 1.
[0029]
(Example 2b)
The glass fine particle deposit 1 having the same size as that of Example 1c was used, and it was made transparent under the same conditions as in Example 1c. As a result of measuring the dimension of the obtained glass article, the outer diameter was 150 ± 1.5 mm (outer diameter change rate ± 1.0%) over the entire length of the effective part length of 1410 mm, and good quality was obtained.
[0030]
(Example 3a)
The glass fine particle deposit 1 having the same size as that of Example 1a is formed in the same format as the vacuum sintering furnace of FIG. 1, and the heater 4 is shown in FIG. Using a vacuum sintering furnace controlled by dividing into three stages of -3, it was made transparent in the same manner as in Example 1a.
The deposit 1 had an outer diameter of 200 mm and an effective part length of 1560 mm. The deposit 1 was inserted into the furnace core tube 3 while maintaining the temperature of the vacuum sintering furnace at 400 ° C., the inside of the furnace was sealed with the upper lid 15, and the furnace pressure was reduced to 10 Pa. In this state, the surface temperature of the entire area of the deposit 1 is increased to 1300 ° C. at a rate of temperature increase of 10 ° C./min and held for 60 minutes, and the gas remaining in the deposit 1 is sufficiently degassed (degassed) Process).
Next, the surface temperature of the deposit 1 was increased at 10 ° C./min, and maintained at 1350 ° C. for 50 minutes (heating shrinkage treatment step).
[0031]
Next, the surface temperature at the center point of the range A of the deposit 1 that is strongly influenced by the upper heater 4-1 is increased at 5 ° C./min to 1400 ° C., and the range B that is strongly influenced by the middle heater 4-2. The surface temperature at the center point of No. 4 was increased at 7 ° C./min to 1420 ° C., and the surface temperature at the center point of the range C strongly affected by the lower heater 4-3 was increased at 9 ° C./min to 1440 ° C. Thereafter, the deposit 1 was made transparent by being held for 100 minutes (transparency process). The temperature distribution at this time is substantially as shown in FIG.
Thereafter, the heating with the heater was stopped, the temperature was continuously lowered, the glass article was cooled (cooling step), and the product was taken out at 600 ° C.
As a result of measuring the outer diameter of the obtained glass article, the outer diameter is 90 ± 0.1 mm (outer diameter change rate ± 0.11%) over the entire length of the effective portion 1405 mm, and the fluctuation of the outer diameter in the longitudinal direction is small. Had good quality.
[0032]
(Example 3b)
In Example 3a, the same good quality as in Example 3a was obtained by controlling the surface temperature of the deposit 1 by measuring and controlling the surface temperature of the core tube 3 corresponding to each heater position. (Outer diameter is 90 ± 0.3 mm over the entire length of the effective portion 1417 mm (outer diameter change rate ± 0.33%)).
[0033]
(Example 3c)
In place of the glass fine particle deposit 1 of Example 3a, a pure SiO 2 porous glass layer was formed by a VAD method around a transparent glass rod doped with Ge at the center and having a pure SiO 2 layer at the outer periphery. Using a composite base material having the same dimensions as in Example 3a, it was made transparent in the same manner as in Example 3a, but good quality was obtained in the same manner.
[0034]
(Example 3d)
In Example 3a, the heat-shrinkage treatment at 1350 ° C. was performed, but good quality was obtained even without it.
[0035]
Example 3e
In Example 3a, instead of the glass fine particle deposit 1 of Example 3a, when the glass fine particle deposit 1 of the same size as Example 1c is used and the holding time is 180 minutes in the clarification step, the effective length The outer diameter was 150 ± 0.7 mm over the entire length of 1390 mm (outer diameter change rate ± 0.46%), and good quality was obtained as well.
[0036]
(Example 3f)
In Example 3e, the same good quality as in Example 3a was obtained by controlling the surface temperature of the deposit 1 by measuring and controlling the surface temperature of the core tube 3 corresponding to each heater position. (Outer diameter is 150 ± 1.0 mm (outer diameter change rate ± 0.66%) over the entire effective portion length of 1400 mm).
[0037]
(Example 3g)
The glass fine particle deposit 1 having an outer diameter of 365 mm, an effective portion length of 1560 mm, and a weight of 80 kg was made transparent using the same equipment and the same conditions as in Example 3e. As a result of measuring the dimensions of the obtained glass article, the outer diameter was 163 ± 1.5 mm (outer diameter change rate ± 0.92%) over the entire length of the effective portion 1470 mm.
[0038]
(Comparative Example 2)
The glass fine particle deposit 1 having the same size as that of Example 3g was made into a transparent glass under the following conditions using the same equipment as Example 3e. That is, while keeping the temperature of the vacuum sintering furnace at 400 ° C., the deposit 1 was inserted into the furnace core tube 3, the inside of the furnace was sealed with the upper lid 15, and the furnace pressure was lowered to 10 Pa. In this state, the surface temperature of the entire area of the deposited body 1 is increased to 1300 ° C. at a rate of temperature increase of 10 ° C./min and held for 60 minutes to sufficiently degas the gas remaining in the deposited body 1 (degassing). Process).
[0039]
Next, the surface temperature of the deposited body 1 was increased at 5 ° C./min to 1350 ° C., and held at that temperature for 50 minutes (heating shrinkage treatment step).
Next, the surface temperature of the deposited body 1 was increased at 15 ° C./min to set the surface temperature of the entire area of the deposited body 1 to 1500 ° C., and then kept transparent for 60 minutes (clearing step). Thereafter, heating with the heater was stopped, the temperature was continuously lowered, and the product was taken out at 600 ° C. As a result of measuring the dimensions of the obtained glass article, the outer diameter was 158 ± 7 mm (outer diameter change rate ± 4.43%) over the entire length of the effective part length of 1660 mm, and the fluctuation of the outer diameter in the longitudinal direction was large.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a device configuration of a vacuum sintering furnace used in Examples.
FIG. 2 is a diagram showing changes in the outer diameter in the longitudinal direction of the optical fiber preforms obtained in Example 1 and Comparative Example 1.
3 is a schematic diagram showing a state of temperature control in Embodiment 3. FIG.

Claims (7)

気相合成法により合成したガラス微粒子堆積体を加熱炉に鉛直方向に挿入し、真空又は減圧雰囲気中で透明化温度より低い温度で加熱して、前記ガラス微粒子体に残留するガスを除去するとともに加熱収縮させる第1の加熱工程と、透明化温度で加熱して前記ガラス微粒子体を透明化させる第2の加熱工程とを有し、前記第2の加熱工程がガラス微粒子堆積体表面の温度が1400〜1480℃となるように制御して70分以上の所定の時間加熱し、第2の加熱工程の後にガラス物品を冷却する冷却工程を有することを特徴とする長さが1000mm以上のガラス物品の製造方法。  A glass particulate deposit synthesized by a gas phase synthesis method is vertically inserted into a heating furnace and heated at a temperature lower than the transparent temperature in a vacuum or reduced pressure atmosphere to remove the gas remaining in the glass particulate. A first heating step for heat shrinking, and a second heating step for heating the glass fine particle body to be transparent by heating at a clearing temperature, wherein the temperature of the surface of the glass fine particle deposit is determined by the second heating step. A glass article having a length of 1000 mm or more, characterized by having a cooling step of controlling the temperature to 1400 to 1480 ° C. and heating for a predetermined time of 70 minutes or more and cooling the glass article after the second heating step Manufacturing method. 前記第1の加熱工程が1000〜1300℃で10Pa以下の所定の真空度になるまで前記ガスの除去を行う脱気工程を有することを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  2. The glass article according to claim 1, further comprising a deaeration step in which the gas is removed until the first heating step has a predetermined degree of vacuum of 10 Pa or less at 1000 to 1300 ° C. 3. Production method. 前記第1の加熱工程が1000〜1300℃で10Pa以下の所定の真空度になるまでガスの除去を行う脱気工程と、10Pa以下の所定の真空度において1300〜1400℃で加熱する加熱収縮処理工程とからなることを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  A degassing step for removing gas until the first heating step at 1000 to 1300 ° C. reaches a predetermined vacuum level of 10 Pa or less, and a heat shrinking process for heating at 1300 to 1400 ° C. at a predetermined vacuum level of 10 Pa or lower. The method for producing a glass article according to claim 1, comprising a step. 前記加熱炉は、長手方向の複数部分に対応してそれぞれ独立に制御されたヒータを備え、前記ガラス微粒子堆積体の温度を長手方向の複数部分に分けて制御することを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  The heating furnace includes a heater that is independently controlled corresponding to a plurality of portions in the longitudinal direction, and controls the temperature of the glass particulate deposit in a plurality of portions in the longitudinal direction. A method for producing a glass article according to item 1. 前記ヒータと前記ガラス微粒子堆積体とを隔離する炉心管の温度を測定し、その温度に基づいて各加熱工程の温度を制御することを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  The temperature of a furnace core tube that separates the heater and the glass fine particle deposit is measured, and the temperature of each heating step is controlled based on the temperature. Production method. 前記ガラス微粒子堆積体は透明ガラスロッドとその周囲に形成された多孔質ガラス部分からなる複合母材であることを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  2. The method for producing a glass article according to claim 1, wherein the glass particulate deposit is a composite base material comprising a transparent glass rod and a porous glass portion formed around the transparent glass rod. 前記第2の加熱工程において、前記ガラス微粒子堆積体表面の温度を上方から下方へ向かって連続的又は段階的に高くすることを特徴とする請求の範囲第1項に記載のガラス物品の製造方法。  2. The method for producing a glass article according to claim 1, wherein in the second heating step, the temperature of the surface of the glass particulate deposit is increased continuously or stepwise from above to below. .
JP2000567479A 1998-08-31 1999-08-26 Method for manufacturing glass article Expired - Lifetime JP3777983B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24480998 1998-08-31
JP296899 1999-01-08
PCT/JP1999/004609 WO2000012438A1 (en) 1998-08-31 1999-08-26 Method of producing glass article and glass base material for optical fiber

Publications (1)

Publication Number Publication Date
JP3777983B2 true JP3777983B2 (en) 2006-05-24

Family

ID=26336455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000567479A Expired - Lifetime JP3777983B2 (en) 1998-08-31 1999-08-26 Method for manufacturing glass article

Country Status (6)

Country Link
JP (1) JP3777983B2 (en)
KR (1) KR20010073057A (en)
CN (1) CN1152835C (en)
AU (1) AU755861B2 (en)
GB (1) GB2357500B (en)
WO (1) WO2000012438A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183042A (en) * 2001-12-14 2003-07-03 Shin Etsu Chem Co Ltd Method of manufacturing preform for optical fiber and preform for optical fiber manufactured by the same
CN102503114B (en) * 2011-10-18 2013-09-18 江苏亨通光电股份有限公司 Device and method for manufacturing quartz core rod for optical fiber
JP6011218B2 (en) * 2012-10-03 2016-10-19 住友電気工業株式会社 Manufacturing method of transparent glass base material
WO2020246499A1 (en) * 2019-06-06 2020-12-10 古河電気工業株式会社 Heating device and method for manufacturing optical fiber base material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420032B2 (en) * 1973-07-06 1979-07-19
JPS60256035A (en) * 1984-06-01 1985-12-17 Hitachi Ltd X-ray diffraction method
JP2836302B2 (en) * 1991-07-19 1998-12-14 住友電気工業株式会社 Method for manufacturing glass articles
AU653411B2 (en) * 1991-07-19 1994-09-29 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JP2917729B2 (en) * 1993-03-03 1999-07-12 住友電気工業株式会社 Manufacturing method of optical fiber preform
JPH0781962A (en) * 1993-09-16 1995-03-28 Sumitomo Electric Ind Ltd Production of optical fiber preform

Also Published As

Publication number Publication date
KR20010073057A (en) 2001-07-31
AU5443799A (en) 2000-03-21
CN1152835C (en) 2004-06-09
GB2357500B (en) 2001-12-12
WO2000012438A1 (en) 2000-03-09
GB2357500A (en) 2001-06-27
AU755861B2 (en) 2003-01-02
GB0107542D0 (en) 2001-05-16
CN1315924A (en) 2001-10-03

Similar Documents

Publication Publication Date Title
JP2917729B2 (en) Manufacturing method of optical fiber preform
CN105198201B (en) A kind of preparation method of silica glass preform
JP5340921B2 (en) Method for producing semi-finished products from synthetic quartz glass
US10807901B2 (en) Method for producing an optical blank from synthetic quartz glass
JP5096141B2 (en) Method for manufacturing quartz glass hollow cylinder
WO2018036142A1 (en) Sintering device with casing tube for optical fibre preform rod and sintering method therefor
JP2008506626A5 (en)
JP3777983B2 (en) Method for manufacturing glass article
JPH09124332A (en) Production of preform for optical fiber
JP2836302B2 (en) Method for manufacturing glass articles
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JPH1179773A (en) Production of glass preform and device therefor
CN111320357B (en) Low-hydroxyl high-purity quartz rod/pipe and preparation method thereof
JP7024489B2 (en) Manufacturing method of base material for optical fiber
JP3987462B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
JP3711219B2 (en) Method for producing synthetic quartz glass ingot
JP2009007227A (en) Method of manufacturing transparent glass body
JP2004224655A (en) Apparatus and method of transparently vitrifying optical fiber preform
JP2985493B2 (en) Manufacturing method of optical fiber preform
JPH08333129A (en) Method for drying and sintering porous glass optical waveguide preform
JPS63151639A (en) Production of glass preformer for optical fiber
JP4403623B2 (en) Optical fiber preform manufacturing method
CN116479525A (en) Single crystal furnace, single crystal furnace adjusting method and method for producing low-oxygen crystal bar
JP2003112938A (en) Producing device for optical fiber preform ingot and producing method therefor
JP2003286034A (en) Method for manufacturing glass preform

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3777983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term