JP3711219B2 - Method for producing synthetic quartz glass ingot - Google Patents

Method for producing synthetic quartz glass ingot Download PDF

Info

Publication number
JP3711219B2
JP3711219B2 JP31704599A JP31704599A JP3711219B2 JP 3711219 B2 JP3711219 B2 JP 3711219B2 JP 31704599 A JP31704599 A JP 31704599A JP 31704599 A JP31704599 A JP 31704599A JP 3711219 B2 JP3711219 B2 JP 3711219B2
Authority
JP
Japan
Prior art keywords
base material
silica glass
synthetic quartz
porous silica
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31704599A
Other languages
Japanese (ja)
Other versions
JP2001139333A (en
Inventor
浩人 生野
晴男 村山
友之 石井
忠華 周
安雄 石川
潤一 神保
正人 斉藤
龍也 露木
誠 安部
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP31704599A priority Critical patent/JP3711219B2/en
Publication of JP2001139333A publication Critical patent/JP2001139333A/en
Application granted granted Critical
Publication of JP3711219B2 publication Critical patent/JP3711219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、VAD合成石英ガラス母材の製法(Vapor phase Axial Deposition method)で多孔質シリカガラス母材を形成し、この母材を透明化炉内で焼結し透明化して合成石英ガラスインゴットを製造する合成石英ガラスインゴットの製造方法に関するものである。
【0002】
【従来の技術】
合成石英ガラスの製造方法の一つであるVAD法は、図1に示すように、炉1内に懸垂されて回転しながら上昇するターゲット2に対して、多重管バーナ3から四塩化珪素などの珪素化合物と酸水素ガスの多重ガス4を供給して、高温の酸水素火炎中で加水分解して生成したガラス微粒子をターゲット2表面の下方にシリカガラス多孔質母材5として堆積させていく方法である。そして、このシリカガラス多孔質母材5は、次に図2に示すように、ターゲット2とともに透明化炉(ゾーンシンターン炉)6内で回転しながら降下させて焼結し透明化して合成石英ガラスインゴット7とするものである。
【0003】
このようにして得られた合成石英ガラスインゴット7は、さらにその後、図3に示すように回転して外周を回転する研削砥石10で研削するとともに、ドリル11を回転しながらむく状合成石英ガラスインゴットの長手方向に押し込んで中央部12に穴を明け、これによって管状合成石英ガラス部材としていた。
【0004】
しかしながら、このような従来技術により合成石英ガラスインゴット又は合成石英ガラス管を製造すると、図2に示すように、シリカガラス多孔質母材5を吊り下げて透明化するために、シリカガラス多孔質母材の中央部は基材部および先端部よりも長い時間にわたって加熱され、シリカガラス母材は中央部で加熱軟化されて自重によって垂直方向に伸びて、その分だけ中央部の太さ径が細くなるといった現象が生じていた。
【0005】
即ち、多孔質シリカガラス母材を透明化炉(ゾーンシンター)内に吊り下げて回転、下降しながら順次に焼結して透明化処理を行うと、多孔質シリカガラス母材中央部は、上端部および下端部に比べ加熱領域が上下方向で長く存在するので、下端の先端部では最初と同一の太さ径のままで焼結されていくが、次の母材中央部を加熱していく段階では加熱部下側の自重によって、加熱で軟化している中央部が引き伸ばされて太さ径が細くなっていく現象が生じていた。その結果、焼結工程が終了したインゴットの太さ径は、先端の径が太くそれから上方に向かって徐々に細くなっていて、中央部を過ぎると再び太くなってターゲット付近では最初の太さ径となっているものであった。
【0006】
このような合成石英ガラスインゴットを用いて合成石英ガラス管、例えば半導体製造装置の炉心管を製造しようとすると、原材料の合成石英ガラスインゴットの径寸法精度が悪いために、その後の工程で径合せのために外周研削に著しい時間を要し、製造能率が低下してコストの引上げをもたらしていた。
【0007】
【発明が解決しようとする課題】
この発明は、ターゲットに堆積して形成されるる多孔質シリカガラス母材の移動速度および/又は酸水素ガス供給量を調整して、シリカガラス母材中央部のかさ密度を上端部および下端部のかさ密度より大きくし、これを焼結し透明化して得られる合成石英ガラスインゴットの中央部と上端部又は下端部の太さ径の差を少なくしようとするものである。
【0008】
【発明が解決しようとする課題】
この発明は、反応炉内に懸垂されて回転、上昇するターゲットに、珪素を含む原料ガスおよび酸水素ガスを供給し原料ガスを加水分解して前記ターゲットに多孔質シリカガスを堆積させるVAD合成石英ガラス母材製法で多孔質シリカガラス母材を形成し、この母材を透明化炉内で焼結し透明化して合成石英ガラスインゴットを製造するにあたり、回転、上昇するターゲットに堆積して形成された多孔質シリカガラス母材の移動速度および/又は酸水素ガス供給量を調整して、多孔質シリカガラス母材のかさ密度を0.2〜1.0g/cmとし、しかも前記母材の中央部のかさ密度を上端部および下端部のかさ密度より大きくすることにより、多孔質シリカガラス母材を焼結し透明化して得られる合成石英ガラスインゴットの中央部と上端部又は下端部の太さ径の差を少なくすることを特徴とする合成石英ガラスインゴットの製造方法(請求項1)、多孔質シリカガラス母材形成のために供給される酸水素ガスの水素に対する酸素の割合(酸素/水素)を容積比で0.4〜0.6とすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法(請求項2)、ターゲットに堆積された多孔質シリカガラス母材の中央部の移動速度を、母材の上端部および下端部の移動速度と比較して遅くすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法(請求項3)、多孔質シリカガラス母材のかさ密度が、母材中央部と上端部又は下端部とで少なくとも0.11g/cm以上の差があるようにすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法(請求項4)および合成石英ガラスインゴットが炉心管用である請求項1ないし4のいずれかに記載の合成石英ガラスインゴットの製造方法(請求項5)である。
【0009】
【発明の実施の形態】
この発明は、VAD合成石英ガラス母材製法で多孔質シリカガラス母材を形成し、これを焼結して透明な石英ガラスインゴットを製造する際に、得られたインゴットの中央部と上端部又は下端部との太さ径の差を少なくしようとするものである。
【0010】
既に述べたように、多孔質シリカガラス母材を下端部から順次、加熱、焼結し透明化していくと、母材の下端部で加熱、焼結している段階では加熱部分から下側の自重が小さいのでこの部分の太さ径の縮小は少ないが、徐々に中央部を加熱していくに従って、その部分より下側の荷重が増していってその荷重によって加熱されて軟化されている中央部が引き伸ばされ、母材中央部分の太さ径が減少する。しかし、中央部の焼結が終了してさらに上端部の加熱、焼結が行われる段階になると、上端部はターゲットに付着しているので太さ径の減少は少なくなる。以上のようにして、シリカガラス母材の加熱、焼結に当たっては、母材の上下端部では実質的に太さ径の縮小は行われないのに、母材の中央部だけが不可避的に太さ径の縮小がなされていた。そこで、本発明は、かかる状態を避けるために上下端部を除く母材の中央部だけのかさ密度を大きくして、シリカガラス母材の加熱、焼結に当たって母材中央部の太さ径の縮小を抑制し、太さ径が実質的に均一に近い石英ガラスインゴットが得れれるようにするものである。
【0011】
発明者が、多孔質シリカガラス母材のかさ密度とこの母材を焼結して得た透明石英ガラスインゴット径の関係を調べたところ図4の通りであった。図4は、多孔質シリカガラス母材のかさ密度と、この母材を焼結して得た透明石英ガラスインゴットの太さ径の比率(母材多孔体に対する比率)の関係を示したものである。この図によっても明らかなように、シリカガラス母材の密度を大きくすることによって、得られた石英ガラスインゴットの径収縮をほぼ比例関係で減少することが出来るものである。
【0012】
そこで、本発明では多孔質シリカガラス母材中央部のかさ密度を調節することで、その母材を焼結して得られる透明石英ガラスインゴットの中央部と上端部又は下端部とで太さ径の差異の少ない透明石英ガラスインゴットを得ようとするものである。
【0013】
この発明において、多孔質シリカガラス母材は、基本的には従来と同様なVAD合成石英ガラス製法で製造するものである。即ち、図1に示すように炉内1に懸垂されて回転しながら上昇するターゲット2に対して、多重管バーナ3から四塩化珪素などの珪素化合物と酸水素ガスの多重ガス4を供給して、高温の酸水素火炎中で加水分解して反応で生成したガラス微粒子を、ターゲット2表面の下方にシリカガラス多孔質母材5として堆積させていくものである。
【0014】
しかしながら、本発明で製造される多孔質シリカガラス母材は、その全てをかさ密度が0.2〜1.0g/cmの範囲内としたうえで、しかも母材中央部のかさ密度を上端部および下端部のかさ密度より大きくするものである。多孔質シリカガラス母材のかさ密度が0.2g/cm未満であると強度不足のために母材製造中に破損する恐れがある。また、かさ密度が1.0g/cmを超えると焼結して透明化処理に際してガラスに気泡が残る可能性ある。従って、多孔質シリカガラス母材は、その全てのかさ密度を0.2〜1.0g/cmの範囲内とすることが必要である。母材全体のかさ密度を上記の範囲としたうえで、特に母材中央部かさ密度を上端部および下端部のかさ密度より大きくする。そのためには、ターゲットに堆積する多孔質シリカガラス母材の移動速度および/又は酸水素ガス供給量を調整する。
【0015】
発明者のこれまでの実験によると、図5に示すように、酸水素ガスの供給量を増加すると多孔質シリカガラスの成長速度(軸方向の単位時間当りの成長距離)が遅くなり、またそれに応じて多孔質シリカガラス母材のかさ密度が大きくなることが認められた。また、反対に酸水素ガス供給量を減少すると多孔質シリカガラスの成長速度が増す一方で、得られたシリカガラス母材のかさ密度が小さくなることが認められた。
【0016】
酸水素ガスを供給する多重管バーナーは、中心に四塩化珪素、その外周に水素と酸素を供給し、その外周にアルゴンガスもしくは窒素ガスを介してさらに水素および酸素を流すいわゆる二重火炎を発生させるものであるが、このうち内側に発生させている火炎に用いている水素、酸素の調節をするのが特に有効である。
【0017】
本発明において、多孔質シリカガラス母材を焼結して透明化した場合に太さ径が縮小する部分が中央部で、また太さ径が減少しない部分は上端部および下端部であるが、この太さ径が減少する部分と太さ径が減少しない部分はシリカガラス母材の長さや太さ径の大きさにより異なって一律ではない。
【0018】
水素に対する酸素の割合は水素1に対して容積比で酸素0.4〜0.6であることが好ましい。酸素の割合が0.4未満では酸素不足が生じて熱量が不足し、かさ密度低下が激しく工程中に母材が破損してしまう可能性がある。また、この酸素の量が0.6を超えると酸素ガスの流速が上昇して反応効率が低下し、目的の形状、大きさのものが確保できなくなってしまう。水素ガスも適切な流量で提供するが、必要な流量と適切なガス流速を得るためにはバーナの口径を調節して行う。この場合に、一度に流量を1割以上変えると溶融面の温度が急激に変動し、多孔体表面に応力が発生し多孔質シリカガラス母材が破損する恐れがあるので避けなければならない。母材の径は製造中連続的に変化しているので、多孔体かさ密度の制御も連続的に行うことが好ましい。四塩化珪素の供給も適切な流量で供給することが必要である。また、四塩化珪素も適切なガス流速になっていないと反応効率を低下させ収率が低下してコストアップにつながることになる。四塩化珪素の流量もバーナ口径を調節することによって行う。
【0019】
酸水素ガスの供給量を調整する代わりに、或いは酸水素ガスの供給量を調整するとともに、堆積する多孔質シリカガラス母材の移動速度を遅くすることによっても母材の中央部のかさ密度を上下端部よりも上げることができる。この移動速度の調整も母材の長さ、太さ、ガスの調整などで一律ではないが、通常は中央部の移動速度を上下端部の10〜15%遅くするのが好ましい。
【0020】
以上によって得られた多孔質シリカガラス母材は、図2に示すように透明化炉6内に従来と同じようにして回転、下降しながら入れて加熱、焼結して透明な合成石英ガラスインゴット7とするものである。このインゴットは、その後図3に示すように回転しながら外周を回転する研削砥石10で研削し、またドリル11を回転しながら合成石英ガラスインゴット7内に押し込んで中央部12に穴明けを行い、管状合成石英ガラス管などに加工するものである。この場合、本発明で得られたインゴットでは中央部と上下端部とで太さ径の変動が少ないので、外周研削に際して従来のインゴットと比較して大幅に少量の研削で同一径の管ができるので、材料費の低減と加工コストの低減に大きく役立つものである。
【0021】
【実施例】
(実施例1)
図1の装置を用いてターゲットの下方に、バーナより四塩化珪素40g/min、水素160〜200l/min、酸素80〜100l/mimを供給し、シリカガラス多孔体を長さ1000mmに堆積させた。ここで用いたバーナは、中心に四塩化珪素、その外周に水素と酸素を供給し、その外周にアルゴンガスを介してさらに水素および酸素を流すいわゆる二重火炎を発生させるものであった。また、この多孔体を堆積させるに当り、ターゲットの上昇速度を多孔体製造開始位置より長さ方向で100mm堆積するまでは移動速度を40mm/hとし、100mm堆積させた位置から先の400mm堆積させるまでに至る間でターゲットの移動速度を40mm/hから20mm/hにまで直線的に変化させた。次に、400mm堆積させた時点からその先の600mm堆積させるまでの間は20mm/hと一定とし、その後600mm堆積させた時点から先の900mm堆積させるまでは逆に20mm/hから40mm/hまで直線的に変化させた。そして、最後の900mm〜1000mmは40mm/hで移動させた。その結果、250mm径×1000mm長さの合成石英ガラス多孔体母材を得た。この多孔体母材の基材先端から所定距離の位置における多孔体かさ密度は表1に示す通りで、中央部でかさ密度は大きく上下端部で小さな値となっていた。
【0022】
次いで、この多孔体母材を透明化炉に入れ、1500℃、ヘリウム雰囲気で加熱し焼結を行って透明化した。焼結は、図2に示すような炉を用い、多孔体母材を炉の上部から挿入して徐々に下降させて多孔体の先端から順次焼結を行った。その結果、124mm径×500mm長さの合成石英ガラスのインゴットを得た。このインゴットの長さ方向の径変動は表1の通りであった。
【0023】
【表1】

Figure 0003711219
【0024】
表1の結果から明らかなように、多孔体母材の中央部のかさ密度を大きくすることによって、これを焼結して透明化した石英ガラスインゴットの太さ径の変動は1mm以下と少なくほぼ均一の太さ径を有するインゴットを得ることが出来るようになった。
【0025】
(比較例1)
実施例1と同様にして、ターゲットの下方に、バーナより四塩化珪素40g/min、水素160l/min、酸素80l/mimを供給し、シリカガラス多孔体母材を長さ1000mm堆積させた。この多孔体母材を堆積させるに当り、ターゲットの上昇速度を40mm/hで一定とした。この多孔体母材のかさ密度は0.35g/cmで一定であった。次いで、この多孔体母材を1500℃、ヘリウム雰囲気で焼結を行って透明化した。焼結は実施例1と同様にして、多孔体母材を炉の上部から挿入して徐々に下降させて多孔体母材の先端から順次焼結を行った。その結果、120mm径×500mm長さの合成石英ガラスのインゴットを得た。このインゴットは先端およびターゲットの近くが太く、中央部の太さ径が細いものであった。その太さ径の変動は表1の通りであった。表1に見られるように、比較例のガラスインゴットは太さ径の大きい部分の上端部および下端部と太さ径の細い中央部でその差が10mmもあった。
【0026】
(実施例2)
実施例1同様にしてターゲットの下方に、バーナより四塩化珪素40g/min、水素160〜200l/min、酸素80〜100l/mimを供給し、シリカガラス多孔体を1000mm堆積させた。この多孔体母材を堆積させるに当り、酸水素供給量を調整してターゲットの上昇速度を多孔体製造開始位置より長さ方向で100mm堆積するまでA部分でのかさ密度は0.30cmとし、100mm堆積させた位置から先の400mm堆積させるまでのB部分のかさ密度は0.40cmまで連続的に変化させ、400mm堆積させた時点からその先の600mm堆積させるまでのC部分では0.40cmと一定とし、その後600mm堆積させた時点から先の900mm堆積させるまでのD部分では0.30cmと直線的に変化させ、最後の900mm〜1000mmのE部分では0.30cmとした。その結果、250mm径×1000mm長さのシリカガラス多孔体母材を得た。この多孔体母材の基材先端から所定距離の位置における多孔体母材のかさ密度は表2に示す通りで、中央部でかさ密度は大きく上下端部で小さな値となっていた。
【0027】
次いで、この多孔体母材を1500℃、ヘリウム雰囲気で実施例1と同様にして多孔体の先端部から焼結を行って透明化した。その結果、114mm径×500mm長さの合成石英ガラスのインゴットを得た。このインゴットの長さ方向の径変動は表2の通りであった。
【0028】
【表2】
Figure 0003711219
【0029】
表2の結果から明らかなように、多孔体の中央部のかさ密度を大きくすることによって、これを焼結して透明化した石英ガラスインゴットの太さ径の変動は1mm以下と少なくほぼ均一の径を有するインゴットを得ることが出来るようになった。
【0030】
(比較例1)
実施例2と同様にして、ターゲットの下方に、バーナより四塩化珪素40g/min、水素160l/min、酸素80l/mimを供給し、シリカガラス多孔体を長さ1000mm堆積させた。この多孔体を堆積させるに当り、酸水素ガス供給量を一定とした。この多孔体母材のかさ密度は0.30g/cmで一定であった。次いで、この多孔体母材を1500℃、ヘリウム雰囲気で焼結を行って透明化した。焼結は実施例1と同様にして、多孔体母材を炉の上部から挿入して徐々に下降させて多孔体母材の先端から順次焼結を行った。その結果、110mm径×500mm長さの合成石英ガラスのインゴットを得た。このインゴットは先端およびターゲットの近くが太く、中央部の太さ径が細いものであった。その太さ径の変動は表2の通りであった。表2に見られるように、比較例のガラスインゴットは径の太い部分の上端部および下端部と径の細い中央部でその差が8mmもあった。
【0031】
【発明の効果】
以上の本発明によると、合成石英ガラス母材製造の段階で母材の移動速度および/又は酸水素ガス供給量を調整して母材中央部のかさ密度を上端部および下端部のそれよりも大きくしたので、これを加熱、焼結して得られた合成石英ガラスインゴットは、その太さ径が中央部と上端部または下端部とで差異が少なくすることが出来るようになった。そのために、この合成石英ガラスインゴットを用いて炉心管を製造するような場合は、製管前の外周研削作業の軽減を図ることができて、コストの大幅な減少を図ることが出来るようになった。
【図面の簡単な説明】
【図1】従来のDAV法多孔質シリカガラス母材の製造方法を示す説明図。
【図2】図1に示す方法で製造された多孔質シリカガラス母材を透明化炉で加熱、焼結して透明化処理を行う方法を示す説明図。
【図3】図3で示す方法で得られた合成石英ガラスインゴットから機械加工で管状体を製造する方法を示す説明図。
【図4】多孔質シリカガラス母材(多孔体)のかさ密度とインゴット径の多孔体に対する比率を示す線図。
【図5】酸素供給量と多孔体母材の成長速度およびかさ密度の関係を示す線図。
【符号の説明】
1…炉、2…ターゲット、3…多重管バーナー、4…多重ガス、5…シリカガラス母材、6…透明化炉、7…合成石英ガラスインゴット、10…研削砥石、11…ドリル、12…中央部。[0001]
BACKGROUND OF THE INVENTION
In this invention, a porous silica glass base material is formed by a VAD synthetic silica glass base material manufacturing method (Vapor phase Axial Deposition method), and this base material is sintered and clarified in a transparentizing furnace to produce a synthetic silica glass ingot. The present invention relates to a method of manufacturing a synthetic quartz glass ingot to be manufactured.
[0002]
[Prior art]
As shown in FIG. 1, the VAD method, which is one of the methods for producing synthetic quartz glass, uses a multi-tube burner 3 to move silicon tetrachloride or the like against a target 2 that is suspended in a furnace 1 and rises while rotating. A method of depositing glass fine particles produced by supplying a multiple gas 4 of silicon compound and oxyhydrogen gas and hydrolyzing in a high-temperature oxyhydrogen flame as a silica glass porous base material 5 below the surface of the target 2 It is. Then, this silica glass porous base material 5 is lowered by rotating in a transparent furnace (zone-sink furnace) 6 together with the target 2 as shown in FIG. The glass ingot 7 is used.
[0003]
The synthetic quartz glass ingot 7 obtained in this way is further ground as shown in FIG. 3 with a grinding wheel 10 that rotates and rotates on the outer periphery, and a peeled synthetic quartz glass ingot while rotating the drill 11. Were drilled in the longitudinal direction to make a hole in the central portion 12, thereby forming a tubular synthetic quartz glass member.
[0004]
However, when a synthetic quartz glass ingot or a synthetic quartz glass tube is manufactured by such a conventional technique, as shown in FIG. 2, the silica glass porous matrix 5 is suspended and made transparent, so that the silica glass porous matrix is made transparent. The central part of the material is heated for a longer time than the base part and the tip part, and the silica glass base material is heated and softened in the central part and extends in the vertical direction by its own weight, and the thickness diameter of the central part is reduced accordingly. The phenomenon that became.
[0005]
That is, when the porous silica glass base material is suspended in a clearing furnace (zone sinter) and rotated and lowered and then sintered in order, the center of the porous silica glass base is the upper end. Since the heating region is longer in the vertical direction than the upper and lower ends, the tip of the lower end is sintered with the same diameter and diameter as the beginning, but the next central part of the base material is heated. In the stage, a phenomenon has occurred in which the diameter of the central portion, which has been softened by heating, is stretched due to the weight of the lower side of the heating portion and the diameter of the thickness is reduced. As a result, the diameter of the ingot after the sintering process is thick, and the tip diameter is thick and then gradually narrows upward. It was what.
[0006]
When trying to manufacture a synthetic quartz glass tube such as a core tube of a semiconductor manufacturing apparatus using such a synthetic quartz glass ingot, the diameter of the synthetic quartz glass ingot as a raw material is poor, so that the diameter is adjusted in the subsequent steps. For this reason, it took a considerable amount of time for peripheral grinding, resulting in a reduction in manufacturing efficiency and an increase in cost.
[0007]
[Problems to be solved by the invention]
The present invention adjusts the moving speed and / or the oxyhydrogen gas supply amount of the porous silica glass base material formed by being deposited on the target so that the bulk density of the central part of the silica glass base material is adjusted between the upper end part and the lower end part. It is intended to reduce the difference in thickness between the central part and the upper end part or the lower end part of the synthetic quartz glass ingot obtained by making the density higher than the thickness density and sintering it to make it transparent.
[0008]
[Problems to be solved by the invention]
The present invention provides a VAD synthetic quartz glass in which a source gas containing silicon and an oxyhydrogen gas are supplied to a target suspended and rotated and raised in a reaction furnace to hydrolyze the source gas and deposit a porous silica gas on the target. When a porous silica glass base material is formed by a base material manufacturing method, and this base material is sintered and transparentized in a transparentizing furnace to produce a synthetic quartz glass ingot, it is formed by depositing on a rotating and rising target. The bulk density of the porous silica glass base material is adjusted to 0.2 to 1.0 g / cm 3 by adjusting the moving speed and / or oxyhydrogen gas supply amount of the porous silica glass base material, and the center of the base material The central and upper ends of a synthetic quartz glass ingot obtained by sintering and clarifying the porous silica glass base material by making the bulk density of the part larger than the bulk density of the upper end and lower end. A method for producing a synthetic quartz glass ingot, characterized in that the difference in thickness diameter of the part or the lower end is reduced (claim 1), and the hydrogen of the oxyhydrogen gas supplied for forming the porous silica glass base material The method for producing a synthetic quartz glass ingot according to claim 1, wherein the oxygen ratio (oxygen / hydrogen) is 0.4 to 0.6 in volume ratio, and the porous material deposited on the target A method for producing a synthetic silica glass ingot according to claim 1, wherein the moving speed of the central part of the vitreous silica glass base material is made slower than the moving speeds of the upper end portion and the lower end portion of the base material (claim). 3) The bulk density of the porous silica glass base material is such that there is a difference of at least 0.11 g / cm 3 or more between the central portion of the base material and the upper end portion or the lower end portion. Synthetic quartz glass ingo A method for producing a synthetic quartz glass ingot according to any one of claims 1 to 4, wherein the method for producing a quartz glass (Claim 4) and the synthetic quartz glass ingot are for a furnace core tube.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a porous silica glass base material is formed by a VAD synthetic silica glass base material manufacturing method, and this is sintered to produce a transparent quartz glass ingot. It is intended to reduce the difference in thickness from the lower end.
[0010]
As described above, when the porous silica glass base material is heated, sintered, and made transparent from the lower end portion in order, the lower part of the base material is heated and sintered at the stage where it is heated and sintered. Since the weight is small, there is little reduction in the diameter of this part, but as the center is gradually heated, the load below that part increases and is heated and softened by that load. The part is stretched, and the diameter of the central part of the base material decreases. However, when the sintering of the center portion is completed and the upper end portion is further heated and sintered, the upper end portion adheres to the target, so that the decrease in the diameter is reduced. As described above, when heating and sintering the silica glass base material, although the thickness diameter is not substantially reduced at the upper and lower ends of the base material, only the central part of the base material is unavoidable. The diameter was reduced. Therefore, the present invention increases the bulk density of only the central part of the base material excluding the upper and lower ends in order to avoid such a state, and the thickness diameter of the central part of the base material during heating and sintering of the silica glass base material is increased. It is intended to suppress the reduction and obtain a quartz glass ingot whose thickness diameter is substantially uniform.
[0011]
FIG. 4 shows the relationship between the bulk density of the porous silica glass base material and the diameter of the transparent quartz glass ingot obtained by sintering the base material. FIG. 4 shows the relationship between the bulk density of the porous silica glass base material and the ratio of the diameter of the transparent quartz glass ingot obtained by sintering the base material (ratio to the base material porous body). is there. As is apparent from this figure, by increasing the density of the silica glass base material, the diameter shrinkage of the obtained quartz glass ingot can be reduced in a substantially proportional relationship.
[0012]
Therefore, in the present invention, by adjusting the bulk density of the central part of the porous silica glass base material, the diameter of the central part and the upper end part or the lower end part of the transparent quartz glass ingot obtained by sintering the base material It is intended to obtain a transparent quartz glass ingot with a small difference.
[0013]
In the present invention, the porous silica glass base material is basically manufactured by the same VAD synthetic quartz glass manufacturing method as in the prior art. That is, as shown in FIG. 1, a multi-gas 4 of a silicon compound such as silicon tetrachloride and oxyhydrogen gas is supplied from a multi-tube burner 3 to a target 2 that is suspended while rotating in a furnace 1 and rotates. The glass fine particles generated by the reaction by hydrolysis in a high-temperature oxyhydrogen flame are deposited as a silica glass porous base material 5 below the surface of the target 2.
[0014]
However, the porous silica glass base material produced by the present invention has a bulk density in the range of 0.2 to 1.0 g / cm 3 , and the bulk density at the center of the base material is the upper end. It is made larger than the bulk density of the part and the lower end part. If the bulk density of the porous silica glass base material is less than 0.2 g / cm 3, the porous silica glass base material may be damaged during manufacture of the base material due to insufficient strength. Further, if the bulk density exceeds 1.0 g / cm 3 , the glass may sinter and air bubbles may remain in the glass during the clearing treatment. Therefore, it is necessary that the bulk density of the porous silica glass base material is within the range of 0.2 to 1.0 g / cm 3 . The bulk density of the entire base material is set within the above range, and in particular, the bulk density of the central part of the base material is made larger than the bulk densities of the upper end portion and the lower end portion. For this purpose, the moving speed and / or the oxyhydrogen gas supply amount of the porous silica glass base material deposited on the target is adjusted.
[0015]
According to the inventor's previous experiments, as shown in FIG. 5, when the supply amount of oxyhydrogen gas is increased, the growth rate (growth distance per unit time in the axial direction) of the porous silica glass is slowed. Accordingly, the bulk density of the porous silica glass base material was observed to increase. On the other hand, it was recognized that when the oxyhydrogen gas supply amount was decreased, the growth rate of the porous silica glass was increased while the bulk density of the obtained silica glass base material was decreased.
[0016]
A multi-tube burner that supplies oxyhydrogen gas generates silicon double chloride at the center, hydrogen and oxygen at the outer periphery, and a so-called double flame that flows hydrogen and oxygen through argon gas or nitrogen gas at the outer periphery. Of these, it is particularly effective to adjust the hydrogen and oxygen used in the flame generated inside.
[0017]
In the present invention, when the porous silica glass base material is sintered and made transparent, the portion where the diameter is reduced is the central portion, and the portion where the diameter is not reduced is the upper end and the lower end, The portion where the thickness diameter decreases and the portion where the thickness diameter does not decrease differ depending on the length of the silica glass base material and the thickness diameter, and are not uniform.
[0018]
The ratio of oxygen to hydrogen is preferably 0.4 to 0.6 in volume ratio with respect to hydrogen 1. If the ratio of oxygen is less than 0.4, oxygen shortage occurs, the amount of heat is insufficient, and the bulk density is drastically reduced, and the base material may be damaged during the process. On the other hand, when the amount of oxygen exceeds 0.6, the flow rate of the oxygen gas increases, the reaction efficiency decreases, and a target shape and size cannot be secured. Hydrogen gas is also provided at an appropriate flow rate, but the burner diameter is adjusted in order to obtain the required flow rate and appropriate gas flow rate. In this case, if the flow rate is changed by 10% or more at a time, the temperature of the molten surface changes rapidly, and stress is generated on the surface of the porous body, which may cause damage to the porous silica glass base material. Since the diameter of the base material changes continuously during production, it is preferable to continuously control the bulk density of the porous body. It is necessary to supply silicon tetrachloride at an appropriate flow rate. Further, if silicon tetrachloride is not at an appropriate gas flow rate, the reaction efficiency is lowered, the yield is lowered, and the cost is increased. The flow rate of silicon tetrachloride is also adjusted by adjusting the burner diameter.
[0019]
Instead of adjusting the supply amount of oxyhydrogen gas, or adjusting the supply amount of oxyhydrogen gas, the bulk density of the central part of the base material can also be reduced by slowing the moving speed of the porous silica glass base material to be deposited. It can be raised from the upper and lower ends. Although the adjustment of the moving speed is not uniform due to the length, thickness, gas adjustment, etc. of the base material, it is usually preferable to make the moving speed of the central part 10-15% slower than the upper and lower ends.
[0020]
As shown in FIG. 2, the porous silica glass base material obtained as described above is placed in the transparentizing furnace 6 while rotating and descending in the same manner as in the prior art, and heated and sintered to obtain a transparent synthetic quartz glass ingot. 7 and so on. The ingot is then ground with a grinding wheel 10 that rotates on the outer periphery while rotating as shown in FIG. 3, and is pushed into the synthetic quartz glass ingot 7 while rotating the drill 11 to make a hole in the central portion 12. It is processed into a tubular synthetic quartz glass tube. In this case, since the ingot obtained by the present invention has a small variation in the diameter at the center and the upper and lower ends, a pipe having the same diameter can be formed with a much smaller amount of grinding compared to the conventional ingot at the outer periphery grinding. Therefore, it greatly helps to reduce material costs and processing costs.
[0021]
【Example】
(Example 1)
Using the apparatus of FIG. 1, silicon tetrachloride 40 g / min, hydrogen 160 to 200 l / min, and oxygen 80 to 100 l / mim were supplied from a burner below the target to deposit a porous silica glass to a length of 1000 mm. . The burner used here generated silicon tetrachloride at the center, hydrogen and oxygen were supplied to the outer periphery thereof, and a so-called double flame was generated in which hydrogen and oxygen were further supplied to the outer periphery via argon gas. Further, when depositing the porous body, the moving speed is set to 40 mm / h until the target ascending speed is deposited 100 mm in the length direction from the porous body production start position, and the previous 400 mm is deposited from the position where 100 mm is deposited. The moving speed of the target was linearly changed from 40 mm / h to 20 mm / h. Next, it is constant at 20 mm / h from the time of 400 mm deposition to the subsequent 600 mm deposition, and from 20 mm / h to 40 mm / h conversely from the time of 600 mm deposition to the previous 900 mm deposition. It was changed linearly. The last 900 mm to 1000 mm was moved at 40 mm / h. As a result, a synthetic quartz glass porous base material having a diameter of 250 mm × 1000 mm was obtained. The porous bulk density at a predetermined distance from the tip of the base material of the porous base material is as shown in Table 1. The bulk density was large at the center and small at the upper and lower ends.
[0022]
Next, this porous base material was placed in a transparentizing furnace, heated at 1500 ° C. in a helium atmosphere, and sintered to be transparent. For the sintering, a furnace as shown in FIG. 2 was used, and a porous body base material was inserted from the upper part of the furnace and gradually lowered to perform sintering sequentially from the tip of the porous body. As a result, a 124 mm diameter × 500 mm long synthetic quartz glass ingot was obtained. The diameter variation in the length direction of the ingot was as shown in Table 1.
[0023]
[Table 1]
Figure 0003711219
[0024]
As is apparent from the results in Table 1, the variation in the thickness of the quartz glass ingot obtained by sintering and clarifying the thickness of the porous glass base material by increasing the bulk density at the center of the porous body base material is less than 1 mm and is almost the same. An ingot having a uniform diameter can be obtained.
[0025]
(Comparative Example 1)
In the same manner as in Example 1, 40 g / min of silicon tetrachloride, 160 l / min of hydrogen, and 80 l / mim of oxygen were supplied from the burner below the target, and a porous silica glass base material having a length of 1000 mm was deposited. In depositing this porous base material, the ascending speed of the target was kept constant at 40 mm / h. The bulk density of this porous matrix was constant at 0.35 g / cm 3 . Next, this porous base material was made transparent by sintering at 1500 ° C. in a helium atmosphere. Sintering was performed in the same manner as in Example 1, and the porous base material was inserted from the top of the furnace and gradually lowered, and the sintering was sequentially performed from the tip of the porous base material. As a result, an ingot of 120 mm diameter × 500 mm long synthetic quartz glass was obtained. This ingot was thick in the vicinity of the tip and the target and the diameter of the central portion was thin. The variation of the diameter was as shown in Table 1. As can be seen in Table 1, the glass ingot of the comparative example had a difference of 10 mm between the upper end and lower end of the portion with a large diameter and the central portion with a small diameter.
[0026]
(Example 2)
In the same manner as in Example 1, 40 g / min of silicon tetrachloride, 160 to 200 l / min of hydrogen, and 80 to 100 l / mim of oxygen were supplied from the burner below the target to deposit 1000 mm of porous silica glass. In depositing the porous base material, the bulk density at the A portion is 0.30 cm 3 until the target ascending speed is adjusted to 100 mm in the longitudinal direction from the start position of the porous body production by adjusting the oxyhydrogen supply amount. The bulk density of the portion B from the position where 100 mm is deposited to the previous 400 mm is continuously changed from 0.40 cm 3 to 0.40 cm 3 . and 40 cm 3 constant, then linearly changed and 0.30 cm 3 in D portion from the time obtained by 600mm deposited to be ahead of 900mm deposition, the E part of the last 900mm~1000mm was 0.30 cm 3. As a result, a porous silica glass base material having a diameter of 250 mm and a length of 1000 mm was obtained. The bulk density of the porous base material at a predetermined distance from the tip of the base material of the porous base material is as shown in Table 2, and the bulk density is large at the center and small at the upper and lower ends.
[0027]
Next, this porous base material was made transparent by sintering from the tip of the porous body in the same manner as in Example 1 at 1500 ° C. in a helium atmosphere. As a result, an ingot of 114 mm diameter × 500 mm long synthetic quartz glass was obtained. The diameter variation in the length direction of the ingot was as shown in Table 2.
[0028]
[Table 2]
Figure 0003711219
[0029]
As is clear from the results in Table 2, by increasing the bulk density at the center of the porous body, the variation in the diameter of the quartz glass ingot sintered and made transparent is as small as 1 mm or less and is almost uniform. An ingot having a diameter can be obtained.
[0030]
(Comparative Example 1)
In the same manner as in Example 2, 40 g / min of silicon tetrachloride, 160 l / min of hydrogen and 80 l / mim of oxygen were supplied from the burner below the target, and a porous silica glass body having a length of 1000 mm was deposited. In depositing the porous body, the oxyhydrogen gas supply amount was kept constant. The bulk density of this porous matrix was constant at 0.30 g / cm 3 . Next, this porous base material was made transparent by sintering at 1500 ° C. in a helium atmosphere. Sintering was performed in the same manner as in Example 1, and the porous base material was inserted from the top of the furnace and gradually lowered, and the sintering was sequentially performed from the tip of the porous base material. As a result, an ingot of synthetic quartz glass having a diameter of 110 mm and a length of 500 mm was obtained. This ingot was thick in the vicinity of the tip and the target and the diameter of the central portion was thin. The variation of the diameter was as shown in Table 2. As can be seen in Table 2, the glass ingot of the comparative example had a difference of 8 mm between the upper end portion and the lower end portion of the thick portion and the thin central portion.
[0031]
【The invention's effect】
According to the present invention described above, the bulk density at the center of the base material is adjusted to be higher than that at the upper end and the lower end by adjusting the moving speed of the base material and / or the oxyhydrogen gas supply amount at the stage of manufacturing the synthetic quartz glass base material. Since the size is increased, the synthetic quartz glass ingot obtained by heating and sintering the same can be reduced in the thickness diameter between the central portion and the upper end portion or the lower end portion. Therefore, when manufacturing a core tube using this synthetic quartz glass ingot, it is possible to reduce the outer peripheral grinding work before the pipe making, and to greatly reduce the cost. It was.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a conventional method for producing a DAV method porous silica glass base material.
FIG. 2 is an explanatory view showing a method for performing a transparent treatment by heating and sintering a porous silica glass base material produced by the method shown in FIG. 1 in a transparent furnace.
FIG. 3 is an explanatory view showing a method for manufacturing a tubular body by machining from a synthetic quartz glass ingot obtained by the method shown in FIG. 3;
FIG. 4 is a diagram showing the bulk density of a porous silica glass base material (porous body) and the ratio of the ingot diameter to the porous body.
FIG. 5 is a diagram showing the relationship between the oxygen supply amount, the growth rate of the porous matrix, and the bulk density.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Furnace, 2 ... Target, 3 ... Multi-tube burner, 4 ... Multi gas, 5 ... Silica glass base material, 6 ... Transparent furnace, 7 ... Synthetic quartz glass ingot, 10 ... Grinding wheel, 11 ... Drill, 12 ... Center.

Claims (5)

反応炉内に懸垂されて回転、上昇するターゲットに、珪素を含む原料ガスおよび酸水素ガスを供給し原料ガスを加水分解して前記ターゲットに多孔質シリカガスを堆積させるVAD合成石英ガラス母材製法で多孔質シリカガラス母材を形成し、この母材を透明化炉内で焼結し透明化して合成石英ガラスインゴットを製造するにあたり、回転、上昇するターゲットに堆積して形成された多孔質シリカガラス母材の移動速度および/又は酸水素ガス供給量を調整して、多孔質シリカガラス母材のかさ密度を0.2〜1.0g/cmとし、しかも前記母材の中央部のかさ密度を上端部および下端部のかさ密度より大きくすることにより、多孔質シリカガラス母材を焼結し透明化して得られる合成石英ガラスインゴットの中央部と上端部又は下端部の太さ径の差を少なくすることを特徴とする合成石英ガラスインゴットの製造方法。A VAD synthetic quartz glass base material manufacturing method in which a source gas containing silicon and an oxyhydrogen gas are supplied to a target suspended and rotated and raised in a reaction furnace to hydrolyze the source gas and deposit a porous silica gas on the target. Porous silica glass formed by depositing on a rotating and rising target when a porous silica glass base material is formed, and this base material is sintered and transparentized in a transparentizing furnace to produce a synthetic silica glass ingot The bulk density of the porous silica glass base material is adjusted to 0.2 to 1.0 g / cm 3 by adjusting the moving speed of the base material and / or the oxyhydrogen gas supply amount, and the bulk density of the central part of the base material Is made larger than the bulk density of the upper end portion and the lower end portion to sinter the porous silica glass base material and make it transparent to obtain a central portion and an upper end portion or a lower end portion of a synthetic quartz glass ingot. A method for producing a synthetic quartz glass ingot, characterized in that the difference in the diameter of the glass is reduced. 多孔質シリカガラス母材形成のために供給される酸水素ガスの水素に対する酸素の割合(酸素/水素)を容積比で0.4〜0.6とすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法。The ratio (oxygen / hydrogen) of oxygen to hydrogen of oxyhydrogen gas supplied for forming a porous silica glass base material is 0.4 to 0.6 in volume ratio. A method for producing a synthetic quartz glass ingot. ターゲットに堆積された多孔質シリカガラス母材の中央部の移動速度を、母材の上端部および下端部の移動速度と比較して遅くすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法。  The synthetic silica glass ingot according to claim 1, wherein the moving speed of the central portion of the porous silica glass base material deposited on the target is made slower than the moving speed of the upper end portion and the lower end portion of the base material. Manufacturing method. 多孔質シリカガラス母材のかさ密度が、母材中央部と上端部又は下端部とで少なくとも0.11g/cm以上の差があるようにすることを特徴とする請求項1記載の合成石英ガラスインゴットの製造方法。2. The synthetic quartz according to claim 1, wherein the bulk density of the porous silica glass base material has a difference of at least 0.11 g / cm 3 or more between the center portion of the base material and the upper end portion or the lower end portion. A method for producing a glass ingot. 合成石英ガラスインゴットが炉心管用である請求項1ないし4のいずれかに記載の合成石英ガラスインゴットの製造方法。The method for producing a synthetic quartz glass ingot according to any one of claims 1 to 4, wherein the synthetic quartz glass ingot is for a furnace core tube.
JP31704599A 1999-11-08 1999-11-08 Method for producing synthetic quartz glass ingot Expired - Fee Related JP3711219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31704599A JP3711219B2 (en) 1999-11-08 1999-11-08 Method for producing synthetic quartz glass ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31704599A JP3711219B2 (en) 1999-11-08 1999-11-08 Method for producing synthetic quartz glass ingot

Publications (2)

Publication Number Publication Date
JP2001139333A JP2001139333A (en) 2001-05-22
JP3711219B2 true JP3711219B2 (en) 2005-11-02

Family

ID=18083811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31704599A Expired - Fee Related JP3711219B2 (en) 1999-11-08 1999-11-08 Method for producing synthetic quartz glass ingot

Country Status (1)

Country Link
JP (1) JP3711219B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506681B2 (en) * 2006-02-13 2010-07-21 住友電気工業株式会社 Manufacturing method of glass base material
JP5867976B2 (en) * 2006-06-26 2016-02-24 信越化学工業株式会社 Optical fiber preform manufacturing method

Also Published As

Publication number Publication date
JP2001139333A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
KR20090064303A (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
JP3711219B2 (en) Method for producing synthetic quartz glass ingot
JP2013234078A (en) Method of manufacturing porous glass deposit for optical fiber
JP3777983B2 (en) Method for manufacturing glass article
JP2005263557A (en) Method and apparatus for sintering porous glass preform
CN1031067A (en) Thick-walled transparent quartz-glass tube manufacture method and device
JP6784016B2 (en) Manufacturing method of base material for optical fiber
JP4271125B2 (en) Optical fiber preform drawing method
JPH05270848A (en) Production of synthetic quartz glass molding
JP4691008B2 (en) Optical fiber manufacturing method
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP4472308B2 (en) Method for producing porous quartz base material
JP2022103702A (en) Quartz glass crucible and method for manufacturing the same
JP4128831B2 (en) Optical fiber preform manufacturing method
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP2008239454A (en) Method for producing synthetic silica glass
JP3977082B2 (en) Optical fiber preform manufacturing method
JPH06144841A (en) Glass rod for porous glass preform
JP4506681B2 (en) Manufacturing method of glass base material
RU2005696C1 (en) Process for making quartz glass blanks
JP3587032B2 (en) Manufacturing method of optical fiber preform
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP2003286034A (en) Method for manufacturing glass preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees