JP2003112938A - Producing device for optical fiber preform ingot and producing method therefor - Google Patents

Producing device for optical fiber preform ingot and producing method therefor

Info

Publication number
JP2003112938A
JP2003112938A JP2002221303A JP2002221303A JP2003112938A JP 2003112938 A JP2003112938 A JP 2003112938A JP 2002221303 A JP2002221303 A JP 2002221303A JP 2002221303 A JP2002221303 A JP 2002221303A JP 2003112938 A JP2003112938 A JP 2003112938A
Authority
JP
Japan
Prior art keywords
lower shaft
base material
optical fiber
bellows
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002221303A
Other languages
Japanese (ja)
Inventor
Masami Terajima
正美 寺嶋
Tadakatsu Shimada
忠克 島田
Seiichiro Otsuka
誠一郎 大塚
Hirobumi Kase
博文 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002221303A priority Critical patent/JP2003112938A/en
Publication of JP2003112938A publication Critical patent/JP2003112938A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Abstract

PROBLEM TO BE SOLVED: To provide a producing method for optical fiber preform ingot and a producing device therefor which can make soot preform to sintered glass by holding air-tightness in a furnace, prevent eccentricity and curving due to contraction on the density change and prevent the deformation in the longitudinal direction due to own weight which is easily caused in accordance with a progress of transparent glass-forming. SOLUTION: This device which produces preform ingot by allowing porous preform 1 having a clad part around the core part to be dewatered and come to transparent glass is provided with an upper rotation mechanism 2 which rotates the porous preform 1, a lower shaft rotating mechanism 8 which supports a lower end part of the porous preform 1 with a lower shaft 9 and rotates the lower shaft 9 synchronously with the upper rotation mechanism 2, and a vertical moving mechanism 15 of the lower shaft which moves the lower shaft 9 in the vertical direction and, therein, the surrounding of the lower shaft 9 is sealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス微粒子を堆
積して形成した多孔質母材(以下、スート母材と称す
る)を焼結し透明ガラス化する、良好な光学特性を有す
る光ファイバ母材インゴットの製造装置及び製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber mother material having good optical characteristics, which is obtained by sintering a porous mother material (hereinafter referred to as soot mother material) formed by depositing glass fine particles into a transparent glass. The present invention relates to a manufacturing apparatus and a manufacturing method for a material ingot.

【0002】[0002]

【従来の技術】光ファイバ母材インゴット(以下、単に
母材インゴットという)は、例えば、外付け法(OVD
法)により出発コア母材の表面に、SiCl4の火炎加水
分解反応で生じたスートを堆積させて、スート母材を製
造し、これを電気炉で焼結し、透明ガラス化して得られ
る。スート母材の焼結・透明ガラス化は、スート母材の
内部に残存しているガスを除去するために減圧され、さ
らに、脱水のためにハロゲンガスや、透明ガラス化時の
発泡を抑制するために、不活性ガスを炉内に供給しなが
ら行われる。
2. Description of the Related Art Optical fiber base material ingots (hereinafter simply referred to as base material ingots) are manufactured by, for example, an external attachment method (OVD).
Method) is used to deposit soot generated by the flame hydrolysis reaction of SiCl 4 on the surface of the starting core base material to produce a soot base material, which is sintered in an electric furnace to obtain transparent vitrification. The sintering and transparent vitrification of the soot base material is depressurized to remove the gas remaining inside the soot base material, and further suppresses halogen gas for dehydration and foaming during transparent vitrification. Therefore, it is performed while supplying an inert gas into the furnace.

【0003】このとき、スート母材は、その上部ダミー
部で把持して炉内に吊り下げられ、円周方向での焼結ガ
ラス化の均一性を保つために、回転されつつ焼結される
が、透明ガラス化が進むに従って、その自重で長手方向
に伸びたり、透明ガラス化時の密度変化によって偏芯や
湾曲等の変形を生じる。母材インゴットが変形している
と、これを紡糸して得られる光ファイバの光学特性に悪
影響をおよぼす。
At this time, the soot base material is grasped by the upper dummy part and suspended in the furnace, and is sintered while being rotated in order to maintain the uniformity of the sintered vitrification in the circumferential direction. However, as the transparent vitrification progresses, it is stretched in the longitudinal direction due to its own weight, and deformation such as eccentricity and bending occurs due to the density change during the transparent vitrification. If the base material ingot is deformed, it adversely affects the optical characteristics of the optical fiber obtained by spinning the ingot.

【0004】この対策として、スート母材をその下部ダ
ミー部で支持して焼結ガラス化を行なう方法が考えられ
たが、透明ガラス化の進行にともなう収縮により、スー
ト母材の下端部の位置が変位するため、炉内に供給する
ガスの漏洩を防止したり、減圧による外気の流入を防止
する気密保持は、周囲の高温によって軸受けの気密性を
維持するのが極めて困難で、気密性が変化すると、焼結
後の母材インゴットに気泡が残存するなどの問題があっ
た。
As a countermeasure against this, there has been considered a method of supporting the soot base material by a lower dummy part thereof and performing vitrification into a sintered body. However, due to shrinkage accompanying the progress of transparent vitrification, the position of the lower end portion of the soot base material Since it is displaced, it is extremely difficult to maintain the airtightness of the bearing due to the high temperature of the surroundings, so it is extremely difficult to maintain the airtightness of the bearing by preventing the leakage of the gas supplied to the furnace and the inflow of outside air due to depressurization. If changed, there was a problem that bubbles remained in the base material ingot after sintering.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題に
鑑みてなされたものであり、炉内の気密性を保持してス
ート母材を焼結ガラス化することができ、密度変化時の
収縮による偏芯や湾曲を防止し、かつ透明ガラス化の進
行にともなって生じやすい自重による長手方向の変形を
防止することのできる光ファイバ母材インゴットの製造
方法及び製造装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the soot base material can be sintered and vitrified while maintaining the airtightness in the furnace, and when the density changes. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus of an optical fiber preform ingot capable of preventing eccentricity and bending due to contraction and preventing deformation in the longitudinal direction due to its own weight which tends to occur with progress of transparent vitrification. I am trying.

【0006】[0006]

【課題を解決するための手段】本発明の母材インゴット
の製造装置は、コア部の周囲にクラッド部を有する多孔
質母材を脱水・透明ガラス化して母材インゴットを製造
する装置であって、該多孔質母材を回転させる上部回転
機構、多孔質母材の下端部を下軸で支持し、該下軸を上
部回転機構と同期して回転させる下軸回転機構、及び該
下軸を上下方向に移動させる下軸上下移動機構を有し、
下軸の周囲をシールしてなることを特徴としている。
The base material ingot manufacturing apparatus of the present invention is an apparatus for manufacturing a base material ingot by dehydrating and vitrifying a porous base material having a clad portion around a core portion. An upper rotation mechanism that rotates the porous base material, a lower shaft rotation mechanism that supports the lower end of the porous base material with a lower shaft, and rotates the lower shaft in synchronization with the upper rotation mechanism, and the lower shaft. It has a lower shaft vertical movement mechanism that moves vertically.
The feature is that the periphery of the lower shaft is sealed.

【0007】本発明においては、焼結ガラス化炉内の気
密性を保つために、多孔質母材の下端を支持する下軸を
回転させる下軸回転機構の軸受け摺動部に、磁気シール
軸受けを設け、該磁気シール軸受けと炉底との間に下軸
を覆うように下軸ジャバラが取り付けられ、これにより
多孔質母材の伸縮による磁気シール軸受けの長手方向の
変位を吸収し、かつ炉内の気密性が維持される。下軸回
転機構の周囲には調整ジャバラを設け、該調整ジャバラ
内の雰囲気と炉内雰囲気とを連通させることにより、炉
内減圧時に生じる調整ジャバラと前記下軸ジャバラとが
互いに逆方向に収縮しようとする応力を相殺させること
ができる。下軸ジャバラの横断面積と調整ジャバラの総
横断面積とは同一とされる。
In the present invention, in order to maintain the airtightness in the sintering and vitrification furnace, the magnetic seal bearing is attached to the bearing sliding portion of the lower shaft rotating mechanism for rotating the lower shaft supporting the lower end of the porous base material. And a lower shaft bellows is attached between the magnetic seal bearing and the furnace bottom so as to cover the lower shaft, thereby absorbing the displacement in the longitudinal direction of the magnetic seal bearing due to the expansion and contraction of the porous base material, and The airtightness inside is maintained. An adjustment bellows is provided around the lower shaft rotating mechanism, and the atmosphere inside the adjustment bellows and the atmosphere inside the furnace are communicated with each other, so that the adjustment bellows generated when the pressure inside the furnace is reduced and the lower shaft bellows may contract in opposite directions. It is possible to cancel the stress. The cross-sectional area of the lower shaft bellows and the total cross-sectional area of the adjusting bellows are the same.

【0008】下軸の下方には、下軸が受ける荷重を検知
する重量センサー、例えば、ロードセルを設け、該重量
センサーの負荷量の変化により下軸の長手方向への変位
量が検知される。さらに、下軸を上下方向に移動させる
下軸上下移動機構が設けられ、これにより下軸が受ける
荷重を検出する重量センサーの表示負荷が一定となるよ
うに制御される。
Below the lower shaft, a weight sensor for detecting the load applied to the lower shaft, for example, a load cell, is provided, and the amount of displacement of the lower shaft in the longitudinal direction is detected by the change in the load amount of the weight sensor. Further, a lower shaft vertical movement mechanism for moving the lower shaft in the vertical direction is provided, and by this, the display load of the weight sensor for detecting the load received by the lower shaft is controlled to be constant.

【0009】本発明の母材インゴットの製造方法は、コ
ア部の周囲にクラッド部を有する多孔質母材を脱水・透
明ガラス化して母材インゴットを製造する方法におい
て、多孔質母材の下端部を下軸で支持し、該下軸を多孔
質母材と同期して回転させると共に多孔質母材の伸縮に
追随させ、下軸の周囲をシールして炉内の気密性を維持
することを特徴としている。
The method for producing a base material ingot according to the present invention is a method for producing a base material ingot by dehydrating and vitrifying a porous base material having a clad portion around a core portion to produce a base material ingot. Is supported by a lower shaft, the lower shaft is rotated in synchronization with the porous base material, and the expansion and contraction of the porous base material is followed, and the periphery of the lower shaft is sealed to maintain airtightness in the furnace. It has a feature.

【0010】[0010]

【発明の実施の形態】上記したように焼結ガラス化時に
は、自重により長手方向に変形を生じたり、密度変化に
よる偏芯や湾曲が起こり、光ファイバ用ガラス母材の光
学特性に大きく影響していた。そこで、母材インゴット
を延伸加工して光ファイバ用プリフォームとしたとき
に、変形による光学特性不良がなく、残存気泡も少ない
光ファイバ用ガラス母材を製造する方法を鋭意検討した
結果、スート母材の下端部を軸受けで支持し、長手方向
の変形を抑制しながら下軸を変位させ、下軸を上部回転
機構と同期して回転させることにより、自重によるスー
ト母材の変形を防止し得ることを見出し、下軸回転機構
にかかる負荷をロードセル等の荷重センサーで検知し、
予め設定した荷重を維持するように下軸の位置を補正す
ることにより、スート母材の収縮による偏芯や湾曲等の
変形は防止された。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, when sintered and vitrified, deformation occurs in the longitudinal direction due to its own weight, and eccentricity and curvature occur due to density change, which greatly affects the optical characteristics of the glass preform for optical fibers. Was there. Therefore, when a preform for an optical fiber was formed by stretching the base material ingot, there was no optical characteristic defect due to deformation, and as a result of diligent examination of a method for producing a glass base material for an optical fiber with few remaining bubbles, a soot base material was obtained. By supporting the lower end of the material with a bearing, displacing the lower shaft while suppressing deformation in the longitudinal direction, and rotating the lower shaft in synchronization with the upper rotation mechanism, it is possible to prevent deformation of the soot base material due to its own weight. Finding that, the load on the lower shaft rotation mechanism is detected by a load sensor such as a load cell,
By correcting the position of the lower shaft so as to maintain the preset load, deformation such as eccentricity or bending due to contraction of the soot base material was prevented.

【0011】さらに、下軸の変位により、軸受け摺動部
が長手方向へ摺動するが、このときの軸受け摺動部の気
密性の維持については、下軸に磁気シール軸受けを取り
付け、この磁気シール軸受けを下軸の周囲を覆うように
設けた下軸ジャバラで支持することにより焼結ガラス化
炉内の気密性を保つことができ、残存気泡の少ない母材
インゴットが得られ、本発明を完成した。
Further, due to the displacement of the lower shaft, the bearing sliding portion slides in the longitudinal direction. To maintain the airtightness of the bearing sliding portion at this time, a magnetic seal bearing is attached to the lower shaft. By supporting the seal bearing by the lower shaft bellows provided so as to cover the periphery of the lower shaft, the airtightness in the sintering and vitrification furnace can be maintained, and a base material ingot with few remaining bubbles can be obtained. completed.

【0012】なお、下軸ジャバラは炉底に固定され、下
軸ジャバラ内の雰囲気は炉内に通じているため、炉内を
減圧すると、下軸ジャバラ内の雰囲気も同時に減圧さ
れ、下軸ジャバラを収縮させようとする応力が発生す
る。この問題に対しては、下軸回転機構の周囲に調整ジ
ャバラを設け、該調整ジャバラ内と下軸ジャバラ内の雰
囲気とを炉内雰囲気を介して連通させることにより、調
整ジャバラに、下軸ジャバラの収縮方向とは反対の方向
に収縮しようとする応力が発生し、両応力を相殺させる
ことができる。このとき、下軸ジャバラの横断面積と調
整ジャバラの総横断面積とを同一にすることが重要であ
り、これにより下軸ジャバラと調整ジャバラに大きさが
同じで方向が反対の応力が発生し、両応力の相殺が可能
となる。
Since the lower shaft bellows is fixed to the bottom of the furnace and the atmosphere in the lower shaft bellows communicates with the inside of the furnace, when the pressure in the furnace is reduced, the atmosphere in the lower shaft bellows is also reduced at the same time. A stress is generated that tries to shrink the. To solve this problem, an adjusting bellows is provided around the lower shaft rotating mechanism, and the atmosphere in the adjusting bellows and the atmosphere in the lower shaft bellows are communicated with each other through the atmosphere in the furnace. A stress that tries to shrink in the direction opposite to the shrinking direction of is generated, and both stresses can be offset. At this time, it is important to make the cross-sectional area of the lower shaft bellows and the total cross-sectional area of the adjustment bellows the same, which causes stresses of the same size but opposite directions in the lower shaft bellows and the adjustment bellows. Both stresses can be offset.

【0013】[0013]

【実施例】(実施例1)図1、2は、本発明の母材イン
ゴットの製造装置の一例を示したものである。シングル
モード光ファイバ用に屈折率が調整された外径25mm
φ、長さ1200mmのコア用石英ガラス棒の両端に石
英ガラス製ダミー部を溶接し、これを密閉型反応炉内に
設置して、SiCl4の火炎加水分解で発生したガラス
微粒子を堆積させ、外径が230mmφのスート母材を
製造した。このスート母材1を、図1に示すように、密
閉型焼結ガラス化装置の上部回転機構2に、上部ダミー
部3を把持して焼結ガラス化炉4内に吊り下げ、焼結・
透明ガラス化を行った。なお、符号5は下部ダミー部、
符号6は加熱用ヒーター、符号7はガス導入及び排気用
ノズルである。
(Embodiment 1) FIGS. 1 and 2 show an example of an apparatus for manufacturing a base material ingot according to the present invention. Outer diameter of 25 mm with refractive index adjusted for single mode optical fiber
A quartz glass dummy rod for core having a φ and a length of 1200 mm was welded to both ends of a quartz glass rod, which was placed in a closed reactor to deposit glass particles generated by flame hydrolysis of SiCl 4 , A soot base material having an outer diameter of 230 mmφ was manufactured. As shown in FIG. 1, the soot base material 1 is held in an upper rotating mechanism 2 of a hermetically-sealed sinter vitrification device, and an upper dummy part 3 is grasped and suspended in a sinter vitrification furnace 4 to sinter and
Transparent vitrification was performed. Reference numeral 5 is a lower dummy part,
Reference numeral 6 is a heater for heating, and reference numeral 7 is a nozzle for introducing and exhausting gas.

【0014】図2は、図1の要部を拡大して示す概略図
であり、下部ダミー部5の下端部は、下軸9の上端に取
り付けられた支持部材10によって支持されている。下
軸9の下端部にはこれを回転させる下軸回転機構8が設
けられ、さらに、下軸9に磁気シール軸受け11を取り
付け、この磁気シール軸受け11と焼結ガラス化炉4の
炉底12との間に下軸9の周囲を覆うように下軸ジャバ
ラ13を取り付け、炉内の気密性を維持した。
FIG. 2 is an enlarged schematic view of the main part of FIG. 1, and the lower end of the lower dummy part 5 is supported by a support member 10 attached to the upper end of the lower shaft 9. A lower shaft rotating mechanism 8 for rotating the lower shaft 9 is provided at a lower end portion of the lower shaft 9. Further, a magnetic seal bearing 11 is attached to the lower shaft 9, and the magnetic seal bearing 11 and a furnace bottom 12 of the sintered vitrification furnace 4 are provided. A lower shaft bellows 13 was attached between the upper and lower shafts so as to cover the lower shaft 9, and the airtightness inside the furnace was maintained.

【0015】下軸回転機構8の下部にはロードセル14
が設置されている。下部ダミー部5の下端部が下軸9の
上端に取り付けられた支持部材10に当接し、ロードセ
ル14の荷重表示が1kgを示すまで、下軸9を下軸上
下移動機構15により上昇させる。なお、ロードセル1
4の荷重表示は、予め、下軸回転機構8、下軸9、支持
部材10、磁気シール軸受け11及び下軸ジャバラ13
の重量をキャンセルしておき、スート母材1の荷重のみ
を検出するようにしておく。
A load cell 14 is provided below the lower shaft rotating mechanism 8.
Is installed. The lower shaft 9 is raised by the lower shaft vertical movement mechanism 15 until the lower end of the lower dummy part 5 abuts on the support member 10 attached to the upper end of the lower shaft 9 and the load display of the load cell 14 shows 1 kg. The load cell 1
The load display of No. 4 is performed in advance by the lower shaft rotating mechanism 8, the lower shaft 9, the support member 10, the magnetic seal bearing 11, and the lower shaft bellows 13.
The weight of No. 1 is canceled and only the load of the soot base material 1 is detected.

【0016】スート母材1の焼結に際しては、焼結ガラ
ス化炉4の内部雰囲気を不活性ガスであるHeで置換
し、スート母材1を上部回転機構2により3rpmの速
度で回転させた。このとき、下軸9も下軸回転機構8に
より上部回転機構2の回転速度と同期を取りながら3r
pmの速度で回転させた。温度制御装置(図示を省略)
により加熱用ヒーター6で焼結ガラス化炉内の温度を1
000℃まで上昇させ、スート母材1の温度が安定する
まで、およそ30分程この状態を維持した後、真空装置
(図示を省略)でガス導入及び排気用ノズル7から排気
を行い、ゲージ圧0 Mpaから約1時間をかけて−0.
09Mpaまで減圧した。
When the soot base material 1 is sintered, the internal atmosphere of the sintering and vitrification furnace 4 is replaced with He as an inert gas, and the soot base material 1 is rotated by the upper rotating mechanism 2 at a speed of 3 rpm. . At this time, the lower shaft 9 is also rotated by the lower shaft rotating mechanism 8 for 3r while synchronizing with the rotation speed of the upper rotating mechanism 2.
It was rotated at a speed of pm. Temperature controller (not shown)
The heater 6 for heating the temperature in the sintering and vitrification furnace to 1
After raising the temperature to 000 ° C and maintaining this state for about 30 minutes until the temperature of the soot base material 1 stabilizes, gas is introduced and exhausted from the exhaust nozzle 7 with a vacuum device (not shown), and the gauge pressure is increased. It takes about 1 hour from 0 Mpa to −0.
The pressure was reduced to 09 Mpa.

【0017】この状態を1時間維持した後、ガス導入及
び排気用ノズル7からHeを約1時間かけて導入し、ゲ
ージ圧0 Mpaまで戻した。再度、真空装置でガス導
入及び排気用ノズル7から排気を行い、ゲージ圧0Mp
aから約1時間をかけて−0.098Mpaまで減圧
し、この状態を維持しながら加熱用ヒーター6で炉内の
温度を1520℃まで上昇させた。
After maintaining this state for 1 hour, He was introduced from the gas introduction / exhaust nozzle 7 for about 1 hour, and the gauge pressure was returned to 0 Mpa. Again, the gas is introduced and exhausted from the exhaust nozzle 7 with a vacuum device, and the gauge pressure is 0 Mp.
The pressure was reduced from -a to -0.098 Mpa over about 1 hour, and the temperature in the furnace was raised to 1520 ° C by the heater 6 for heating while maintaining this state.

【0018】スート母材1は、温度が上昇するに従い、
透明ガラス化の過程で嵩密度が上昇して収縮し、そのま
まではロードセル14にかかる負荷が減少するが、ロー
ドセル14の表示荷重が1kgを維持するように、下軸
上下移動機構15によって下軸9の位置は制御され、こ
れにともない下軸は32mm上昇した。さらにガラス化
が進行すると、自重で長手方向に伸びる現象が現れ、そ
のままではロードセル14にかかる負荷が増加するが、
ロードセル14の表示荷重が1kgを維持するように下
軸上下移動機構15によって下軸9の位置が制御され、
徐々に下降した。焼結・透明ガラス化が完了するまで8
時間を要したが、このとき下軸上下移動機構15の位置
は、焼結開始時よりも18mm上昇していた。
As the soot base material 1 increases in temperature,
The bulk density increases and contracts in the process of transparent vitrification, and the load applied to the load cell 14 decreases as it is, but the lower shaft vertical movement mechanism 15 is used to maintain the display load of the load cell 14 at 1 kg. The position of was controlled and the lower shaft was raised by 32 mm. As the vitrification further progresses, a phenomenon in which it stretches in the longitudinal direction due to its own weight appears, and if it is left as it is, the load applied to the load cell 14 increases.
The position of the lower shaft 9 is controlled by the lower shaft vertical movement mechanism 15 so that the display load of the load cell 14 is maintained at 1 kg.
Gradually descended. 8 until completion of sintering and transparent vitrification
It took time, but at this time, the position of the lower shaft vertical movement mechanism 15 was raised by 18 mm from the start of sintering.

【0019】下軸上下移動機構15の上下動により下軸
9は変位するが、この変位は下軸ジャバラ(SUS 316L
製)13で追従できる程度であり、下軸9の回転による
摺動も磁気シール軸受け11により気密性は保たれた。
焼結・透明ガラス化の完了した母材インゴットを視認検
査したところ、ガラス化された部分に湾曲や偏芯、泡等
は見られず、従来の製造方法で生じる欠点は大幅に改善
された。
The lower shaft 9 is displaced by the vertical movement of the lower shaft vertical movement mechanism 15. This displacement is caused by the lower shaft bellows (SUS 316L).
13), and airtightness was maintained by the magnetic seal bearing 11 even when sliding due to rotation of the lower shaft 9.
Visual inspection of the base material ingot, which had been sintered and made into vitrified glass, showed no bending, eccentricity, bubbles, etc. in the vitrified portion, and the drawbacks caused by the conventional manufacturing method were greatly improved.

【0020】(実施例2)図3,4に示した密閉型焼結
ガラス化装置を用いて、実施例1で得たスート母材1の
焼結ガラス化を行った。スート母材1を上部回転機構2
により上部ダミー部3を把持して焼結ガラス化炉4内に
吊り下げ、次に、ロードセル14上に載置された下軸回
転機構8を下軸上下移動機構15により上昇させて、ス
ート母材1の下部ダミー部5を下軸9の上端に設けた支
持部材10で支持した。なお、ロードセル14の表示荷
重は、実施例1と同様に、予めスート母材1の荷重のみ
を検出するように風袋を除去した。その上で、支持部材
10での支持負荷がロードセル14の表示荷重で1kg
になるように、下軸上下移動機構15で調整した。
(Example 2) The soot base material 1 obtained in Example 1 was sintered and vitrified by using the closed type sintered vitrification apparatus shown in FIGS. Soot base material 1 and upper rotation mechanism 2
The upper dummy part 3 is gripped and suspended in the sintering and vitrification furnace 4, and then the lower shaft rotating mechanism 8 mounted on the load cell 14 is lifted by the lower shaft vertical moving mechanism 15 to move the soot mother. The lower dummy portion 5 of the material 1 was supported by the support member 10 provided on the upper end of the lower shaft 9. Regarding the display load of the load cell 14, the tare was removed in advance so that only the load of the soot base material 1 was detected, as in Example 1. Then, the supporting load on the supporting member 10 is 1 kg at the display load of the load cell 14.
The lower shaft up-and-down moving mechanism 15 was adjusted so that

【0021】下軸9の位置は、焼結ガラス化が進むにつ
れて変位するが、下軸9を覆うように設けられた下軸ジ
ャバラ13と磁気シール軸受け11により、炉内の気密
は維持される。なお、使用した下軸ジャバラ13の横断
面積は78.6cm2である。炉内を減圧して行くと下軸
ジャバラ13が収縮して、下軸9を引き上げる応力が働
き、この応力に相当する重量分、ロードセル14の表示
が小さくなる。この下軸9を引き上げる応力は、下軸回
転機構8に調整ジャバラ16を設けて相殺した。
Although the position of the lower shaft 9 is displaced as the sintering and vitrification progresses, the airtightness inside the furnace is maintained by the lower shaft bellows 13 and the magnetic seal bearing 11 provided so as to cover the lower shaft 9. . The cross-sectional area of the lower shaft bellows 13 used is 78.6 cm 2 . As the inside of the furnace is depressurized, the lower shaft bellows 13 contracts, and the stress for pulling up the lower shaft 9 works, and the display of the load cell 14 becomes smaller by the weight corresponding to this stress. The stress for pulling up the lower shaft 9 was offset by providing the adjusting bellows 16 on the lower shaft rotating mechanism 8.

【0022】具体的には、横断面積が39.3cm2の調
整ジャバラ16を2個設けて下軸回転機構8に連結し、
さらに、調整ジャバラ内と焼結ガラス化炉内との雰囲気
が連通するように連通管17で連結し、下軸ジャバラ内
と調整ジャバラ内との雰囲気圧力を同一にした。このよ
うな構成としたことにより、炉内を減圧すると、調整ジ
ャバラ16が下方に収縮する応力が発生するが、同時に
下軸ジャバラ13にも、上方に収縮する方向が反対で同
じ大きさの応力が発生し、両応力は相殺される。
Specifically, two adjusting bellows 16 having a cross-sectional area of 39.3 cm 2 are provided and connected to the lower shaft rotating mechanism 8,
Further, a communication pipe 17 was connected so that the atmosphere inside the adjusting bellows and the atmosphere inside the sintering vitrification furnace were communicated with each other, and the atmospheric pressures inside the lower shaft bellows and inside the adjusting bellows were made the same. With such a structure, when the pressure inside the furnace is reduced, the adjusting bellows 16 contracts downward, but at the same time, the lower shaft bellows 13 also has a stress of the same magnitude with the opposite contracting direction. Occurs and both stresses cancel each other out.

【0023】焼結ガラス化炉内の雰囲気を不活性ガスで
あるHeで置換し、スート母材1を上部回転機構2で3
rpmの速度で回転させた。このとき、下軸9も下軸回
転機構8により上部回転機構2の回転速度と同期をとり
ながら3rpmの速度で回転させた。炉内の温度は、加
熱用ヒーター6で1000℃まで上昇させ、図示を省略
した温度制御機構で制御した。スート母材1の温度が安
定するまでおよそ30分この状態を維持してから、図示
を省略した真空装置で、ガス導入及び排気用ノズル7か
ら排気を行い、ゲージ圧0 Mpaから約1時間をかけ
て−0.09 Mpaまで減圧した。この状態を維持しな
がら1時間放置し、ノズル7からHeを約1時間をかけ
て導入し、焼結ガラス化炉内の圧力をゲージ圧0 Mp
aまで戻した。
The atmosphere in the sintering and vitrification furnace was replaced with He, which is an inert gas, and the soot base material 1 was heated by the upper rotation mechanism 2 to 3
It was rotated at a speed of rpm. At this time, the lower shaft 9 was also rotated by the lower shaft rotating mechanism 8 at a speed of 3 rpm in synchronization with the rotation speed of the upper rotating mechanism 2. The temperature in the furnace was raised to 1000 ° C. by the heater 6 for heating and controlled by a temperature control mechanism (not shown). After maintaining this state for about 30 minutes until the temperature of the soot base material 1 stabilizes, the gas is introduced and exhausted from the exhaust nozzle 7 with a vacuum device (not shown), and about 1 hour from a gauge pressure of 0 Mpa. The pressure was reduced to -0.09 Mpa. While maintaining this state, it was left for 1 hour, He was introduced from the nozzle 7 for about 1 hour, and the pressure in the sintering and vitrification furnace was adjusted to a gauge pressure of 0 Mp.
It returned to a.

【0024】再度、ノズル7から真空装置で排気を行
い、ゲージ圧0 Mpaから約1時間をかけて−0.09
8 Mpaまで減圧した。この状態を維持しながら加熱
用ヒーター6で炉内の温度を1520℃まで上昇させ
た。スート母材1の温度上昇とともにガラス化が進行
し、嵩密度が上昇するが、このときスート母材1が収縮
する挙動が見られ、ロードセル14にかかる荷重が減少
し、下軸上下移動機構15が32mm上昇した。さら
に、ガラス化が進むと、今度は自重で長手方向に延びる
現象が現れ、下軸上下移動機構15は徐々に下降する
が、ロードセル14の荷重が5kgを維持するように制
御した。
The nozzle 7 is again evacuated by a vacuum device, and the gauge pressure is 0 Mpa, and the pressure is reduced to -0.09 in about 1 hour.
The pressure was reduced to 8 Mpa. While maintaining this state, the temperature inside the furnace was raised to 1520 ° C. by the heater 6 for heating. Although vitrification progresses and the bulk density rises as the temperature of the soot base material 1 rises, the soot base material 1 contracts at this time, the load applied to the load cell 14 decreases, and the lower shaft vertical movement mechanism 15 Rose 32 mm. Further, as vitrification progressed, a phenomenon of extending in the longitudinal direction due to its own weight appeared this time, and the lower shaft vertical movement mechanism 15 gradually descended, but the load of the load cell 14 was controlled to be maintained at 5 kg.

【0025】焼結ガラス化が完了するまで8時間を要し
た。このとき、下軸上下移動機構15は、スート母材1
取り付け初期の位置から19mm上昇していた。しか
し、この変位に対しても下軸ジャバラ(SUS316L製)13
が追従しており、減圧度の変化によって発生する下軸ジ
ャバラ13を収縮させる応力も、下軸回転機構8を引き
下げるように作用する2個の調整ジャバラ16によって
相殺され、ロードセル14の荷重表示は、母材が収縮・
延伸する挙動を正確に反映し、制御されていた。この
間、下軸9の回転による摺動部分の気密は、磁気シール
軸受け11によって保たれていた。
It took 8 hours to complete the sintering and vitrification. At this time, the lower shaft up-and-down moving mechanism 15 moves the soot base material 1
The height was 19 mm higher than the initial position. However, the lower shaft bellows (made of SUS316L) 13
The stress that contracts the lower shaft bellows 13 caused by the change in the degree of pressure reduction is canceled by the two adjusting bellows 16 that act to lower the lower shaft rotating mechanism 8, and the load display of the load cell 14 is , The base material shrinks
The stretching behavior was accurately reflected and controlled. During this time, the airtightness of the sliding portion due to the rotation of the lower shaft 9 was maintained by the magnetic seal bearing 11.

【0026】焼結ガラス化してでき上がった母材インゴ
ットを確認したところ、ガラス化された部分に湾曲・偏
芯、泡等は見られず、上記課題を大幅に改善するもので
あった。なお、焼結ガラス化して得た母材インゴットの
曲りや光学特性等を測定し、その結果を表1に示した。
When the base material ingot produced by sintering and vitrification was confirmed, no curvature, eccentricity, bubbles, etc. were observed in the vitrified portion, and the above problems were greatly improved. The bending, optical characteristics, etc. of the base material ingot obtained by sintering and vitrification were measured, and the results are shown in Table 1.

【0027】(比較例1)実施例1と同様にして製造し
たスート母材1を、図5に示す密閉型焼結ガラス化装置
内に、上部回転機構2で上部ダミー部3を把持して吊り
下げた。次に、焼結ガラス化炉4の内部を不活性ガスで
あるHeで置換し、スート母材1を上部回転機構2で3
rpmの速度で回転させた。温度制御装置(図示を省
略)により加熱用ヒーター6で炉内の温度を1000℃
まで上昇させ、スート母材1の温度が安定するまで、お
よそ30分程この状態を維持した。その後、真空装置
(図示を省略)でガス導入及び排気用ノズル7から排気
を行い、ゲージ圧0 Mpaから約1時間をかけて−0.
09Mpaまで減圧した。
(Comparative Example 1) The soot base material 1 produced in the same manner as in Example 1 was held in the closed type sintered vitrification apparatus shown in FIG. Hung. Next, the inside of the sintering and vitrification furnace 4 was replaced with He as an inert gas, and the soot base material 1 was heated by the upper rotation mechanism 2 to 3
It was rotated at a speed of rpm. The temperature in the furnace is set to 1000 ° C. by the heater 6 for heating by a temperature control device (not shown).
To about 30 minutes until the temperature of the soot base material 1 becomes stable. After that, the gas is introduced and exhausted from the exhaust nozzle 7 with a vacuum device (not shown), and it takes about 1 hour from a gauge pressure of 0 Mpa to −0.
The pressure was reduced to 09 Mpa.

【0028】この状態を1時間維持した後、ガス導入及
び排気用ノズル7からHeを約1時間をかけて導入し、
ゲージ圧0 Mpaまで戻した。再度、真空装置でガス
導入及び排気用ノズル7から排気を行い、ゲージ圧0M
paから約1時間をかけて−0.098Mpaまで減圧
し、この状態を維持しながら加熱用ヒーター6で炉内の
温度を1520℃まで上昇させた。スート母材1の焼結
・透明ガラス化が完了するまで8時間を要した。
After maintaining this state for 1 hour, He was introduced from the gas introduction / exhaust nozzle 7 for about 1 hour,
The gauge pressure was returned to 0 Mpa. The gas is introduced again by the vacuum device and exhausted from the exhaust nozzle 7, and the gauge pressure is 0M.
The pressure was reduced to -0.098 Mpa over about 1 hour from pa, and the temperature inside the furnace was raised to 1520 ° C by the heater 6 for heating while maintaining this state. It took 8 hours until the soot base material 1 was completely sintered and vitrified.

【0029】このようにして焼結・透明ガラス化された
母材インゴットは、焼結中、スート母材1の下部ダミー
部5が、実施例1,2のように下軸で固定されていなか
ったため軸ズレが起こり、目視で確認できる程の湾曲が
発生した。同様の実験を繰り返した結果、スート母材の
外径が大きくなるに従って、この傾向が顕著に現れるこ
とが判明した。
In the base material ingot thus sintered and vitrified, the lower dummy portion 5 of the soot base material 1 is not fixed by the lower shaft during the sintering as in Examples 1 and 2. As a result, axial misalignment occurred and bending that could be visually confirmed occurred. As a result of repeating the same experiment, it was found that this tendency becomes more remarkable as the outer diameter of the soot base material increases.

【0030】上記実施例1,2、比較例1で得られた焼
結・透明ガラス化後の母材インゴットの光学特性を測定
した結果を表1に示す。なお、表中の数値は、いずれも
10本の母材インゴットを測定して得た平均値であり、
湾曲欄の数値は、母材インゴットの両端(直胴部100
0mm)を支持して回転させたときの振れ幅である。泡
の発生状況欄における直径0.5mmφ以下の泡につい
ては目視で確認された数である。実施例1,2で得られ
た母材インゴットは、表1から明らかなように、湾曲の
程度、泡の発生状況、光学特性(特に、偏芯)のいずれ
においても、比較例1よりも優れていた。
Table 1 shows the results of measuring the optical characteristics of the base material ingots obtained in Examples 1 and 2 and Comparative Example 1 after sintering and transparent vitrification. The numerical values in the table are average values obtained by measuring 10 base metal ingots,
The values in the curved column are the both ends of the base material ingot (the straight body part 100
(0 mm) is the swing width when it is rotated while being supported. The number of bubbles having a diameter of 0.5 mm or less in the bubble generation column is the number visually confirmed. As is clear from Table 1, the base material ingots obtained in Examples 1 and 2 are superior to Comparative Example 1 in any of the degree of bending, the generation state of bubbles, and the optical characteristics (especially eccentricity). Was there.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明によれば、スート母材を焼結・透
明ガラス化する際に、スート母材を支持する下軸が受け
る荷重を制御することにより、透明ガラス化時に、スー
ト母材の収縮が原因で生じる偏芯や湾曲、自重による長
手方向の変形を防止し、さらに、下軸に磁気シール軸受
けを設け、この磁気シール軸受けと該焼結ガラス化炉の
底部との間に下軸の周囲を覆うようにジャバラを設ける
ことにより、減圧時の焼結ガラス化炉内の気密性を維持
し、さらに、炉内減圧時に生じる下軸ジャバラが収縮し
て下軸を引き上げようとする応力を、相反する方向に収
縮する調整ジャバラを設け、下軸にかかる負荷を適正に
制御することにより、ガラス化時に生じる偏芯や湾曲を
防止し、泡等が少なく光学特性にも優れた光ファイバ母
材インゴットを得ることができる。
According to the present invention, by controlling the load received by the lower shaft supporting the soot base material when the soot base material is sintered and made into transparent vitrification, the soot base material can be made at the time of transparent vitrification. Eccentricity, curvature, and longitudinal deformation due to its own weight caused by the contraction of the magnet, and a magnetic seal bearing is provided on the lower shaft.The magnetic seal bearing is installed between the magnetic seal bearing and the bottom of the sintered vitrification furnace. By providing the bellows so as to cover the periphery of the shaft, the airtightness in the sintering and vitrification furnace during depressurization is maintained, and further, the lower shaft bellows generated during depressurization in the furnace tries to pull up the lower shaft. By providing an adjustable bellows that contracts stress in opposite directions and properly controlling the load applied to the lower shaft, eccentricity and bending that occur during vitrification are prevented, and light with excellent optical characteristics with less bubbles etc. Obtained fiber base material ingot It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で使用した母材インゴットの製造装
置の一例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for manufacturing a base material ingot used in Example 1.

【図2】 図1に示す製造装置下部の下軸回転機構を拡
大して示す概略断面図である。
FIG. 2 is an enlarged schematic cross-sectional view showing a lower shaft rotating mechanism of a lower portion of the manufacturing apparatus shown in FIG.

【図3】 実施例2で使用した母材インゴットの製造装
置の一例を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing an example of an apparatus for manufacturing a base material ingot used in Example 2.

【図4】 図3に示す製造装置下部の下軸回転機構を拡
大して示す概略断面図である。
4 is a schematic cross-sectional view showing an enlarged lower shaft rotating mechanism of a lower portion of the manufacturing apparatus shown in FIG.

【図5】 比較例1で使用した製造装置を示す概略図で
ある。
5 is a schematic diagram showing a manufacturing apparatus used in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1.……スート母材、 2.……上部回転機構、 3.……上部ダミー部、 4.……焼結ガラス化炉、 5.……下部ダミー部、 6.……加熱用ヒーター、 7.……ガス導入及び排気用ノズル、 8.……下軸回転機構、 9.……下軸、 10.……支持部材、 11.……磁気シール軸受け、 12.……炉底、 13.……下軸ジャバラ、 14.……ロードセル、 15.……下軸上下移動機構、 16.……調整ジャバラ、 17.……連通管。 1. …… Soot base metal, 2. ...... Upper rotation mechanism, 3. ...... The upper dummy part, 4. ...... Sintered vitrification furnace, 5. ...... Lower dummy part, 6. ... Heating heater, 7. ... Nozzles for gas introduction and exhaust, 8. ...... Lower shaft rotation mechanism, 9. ...... Lower axis, Ten. ...... Supporting member, 11. ... Magnetic seal bearings, 12. ...... The hearth, 13. ...... Lower shaft bellows, 14. ...... Load cell, 15. ...... Lower shaft vertical movement mechanism, 16. ...... Adjustable bellows, 17. ...... Communication pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 誠一郎 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 加瀬 博文 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 4G021 CA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Seiichiro Otsuka             2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu             Gaku Kogyo Co., Ltd. Precision Materials Research Laboratory (72) Inventor Hirofumi Kase             2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu             Gaku Kogyo Co., Ltd. Precision Materials Research Laboratory F-term (reference) 4G021 CA12

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 コア部の周囲にクラッド部を有する多孔
質母材を脱水・透明ガラス化して母材インゴットを製造
する装置であって、該多孔質母材を回転させる上部回転
機構、多孔質母材の下端部を下軸で支持し、該下軸を上
部回転機構と同期して回転させる下軸回転機構、及び該
下軸を上下方向に移動させる下軸上下移動機構を有し、
下軸の周囲をシールしてなることを特徴とする光ファイ
バ母材インゴットの製造装置。
1. An apparatus for producing a base material ingot by dehydrating and vitrifying a porous base material having a clad portion around a core portion, wherein an upper rotating mechanism for rotating the porous base material, porous The lower end of the base material is supported by the lower shaft, and has a lower shaft rotating mechanism that rotates the lower shaft in synchronization with the upper rotating mechanism, and a lower shaft vertical moving mechanism that moves the lower shaft in the vertical direction,
An optical fiber preform ingot manufacturing apparatus, characterized in that the periphery of the lower shaft is sealed.
【請求項2】 多孔質母材の下端を支持する下軸を回転
させる下軸回転機構の軸受け摺動部に、磁気シール軸受
けを設け、該磁気シール軸受けと炉底との間に下軸を覆
うように下軸ジャバラを取り付けてなる請求項1に記載
の光ファイバ母材インゴットの製造装置。
2. A magnetic seal bearing is provided at a bearing sliding portion of a lower shaft rotating mechanism for rotating a lower shaft supporting a lower end of the porous base material, and the lower shaft is provided between the magnetic seal bearing and the furnace bottom. 2. The optical fiber preform ingot manufacturing apparatus according to claim 1, wherein a lower shaft bellows is attached so as to cover it.
【請求項3】 下軸回転機構の周囲に調整ジャバラを設
け、該調整ジャバラ内の雰囲気と炉内雰囲気とを連通し
てなる請求項1に記載の光ファイバ母材インゴットの製
造装置。
3. The optical fiber preform ingot manufacturing apparatus according to claim 1, wherein an adjusting bellows is provided around the lower shaft rotating mechanism, and an atmosphere in the adjusting bellows communicates with an atmosphere in the furnace.
【請求項4】 下軸ジャバラの横断面積と調整ジャバラ
の総横断面積とが同一に設けられている請求項1乃至3
のいずれかに記載の光ファイバ母材インゴットの製造装
置。
4. The cross-sectional area of the lower shaft bellows and the total cross-sectional area of the adjusting bellows are the same.
An apparatus for manufacturing an optical fiber preform ingot according to any one of 1.
【請求項5】 下軸の下方に、下軸が受ける荷重を検知
する重量センサーを有する請求項1乃至4のいずれかに
記載の光ファイバ母材インゴットの製造装置。
5. The apparatus for manufacturing an optical fiber preform ingot according to claim 1, further comprising a weight sensor below the lower shaft for detecting a load applied to the lower shaft.
【請求項6】 重量センサーがロードセルである請求項
5に記載の光ファイバ母材インゴットの製造装置。
6. The apparatus for manufacturing an optical fiber preform ingot according to claim 5, wherein the weight sensor is a load cell.
【請求項7】 下軸を上下方向に移動させる下軸上下移
動機構を有する請求項1乃至6のいずれかに記載の光フ
ァイバ母材インゴットの製造装置。
7. The optical fiber preform ingot manufacturing apparatus according to claim 1, further comprising a lower shaft vertical movement mechanism for moving the lower shaft in the vertical direction.
【請求項8】 コア部の周囲にクラッド部を有する多孔
質母材を脱水・透明ガラス化して母材インゴットを製造
する方法において、多孔質母材の下端部を下軸で支持
し、該下軸を多孔質母材と同期して回転させると共に多
孔質母材の伸縮に追随させ、下軸の周囲をシールして炉
内の気密性を維持することを特徴とする光ファイバ母材
インゴットの製造方法。
8. A method of producing a base material ingot by dehydrating and vitrifying a porous base material having a clad portion around a core portion, wherein a lower end portion of the porous base material is supported by a lower shaft, While rotating the shaft in synchronization with the porous preform and following the expansion and contraction of the porous preform, the circumference of the lower shaft is sealed to maintain the airtightness in the furnace. Production method.
【請求項9】 多孔質母材の下端を支持する下軸を回転
させる下軸回転機構の軸受け摺動部に、磁気シール軸受
けを設け、該磁気シール軸受けと炉底との間に下軸を覆
うように下軸ジャバラを取り付け、該下軸ジャバラによ
り多孔質母材の伸縮による磁気シール軸受けの長手方向
の変位を吸収し、炉内の気密性を維持する請求項8に記
載の光ファイバ母材インゴットの製造方法。
9. A magnetic seal bearing is provided on a bearing sliding portion of a lower shaft rotating mechanism for rotating a lower shaft supporting a lower end of the porous base material, and the lower shaft is provided between the magnetic seal bearing and the furnace bottom. The optical fiber mother board according to claim 8, wherein a lower shaft bellows is attached so as to cover, and the lower shaft bellows absorbs displacement in the longitudinal direction of the magnetic seal bearing due to expansion and contraction of the porous base material, thereby maintaining hermeticity in the furnace. Method of manufacturing lumber ingot.
【請求項10】 下軸回転機構の周囲に調整ジャバラを
設け、該調整ジャバラ内の雰囲気と炉内雰囲気とを連通
させることにより、炉内減圧時に生じる調整ジャバラと
下軸ジャバラとが互いに逆方向に収縮しようとする応力
を相殺させる請求項8又は9に記載の光ファイバ母材イ
ンゴットの製造方法。
10. An adjusting bellows is provided around the lower shaft rotating mechanism, and the atmosphere in the adjusting bellows and the atmosphere in the furnace are communicated with each other, whereby the adjusting bellows and the lower shaft bellows generated in depressurizing the furnace are in opposite directions. The method for producing an optical fiber preform ingot according to claim 8 or 9, wherein the stress that tends to shrink is canceled out.
【請求項11】 下軸ジャバラの横断面積と調整ジャバ
ラの総横断面積とが同一に設けられている請求項8乃至
10のいずれかに記載の光ファイバ母材インゴットの製
造方法。
11. The method for manufacturing an optical fiber preform ingot according to claim 8, wherein the lower shaft bellows and the adjustment bellows have the same cross-sectional area.
【請求項12】 下軸の下方に、下軸が受ける荷重を検
知する重量センサーを設け、該重量センサーの負荷量の
変化により下軸の長手方向への変位量を検知する請求項
8乃至11のいずれかに記載の光ファイバ母材インゴッ
トの製造方法。
12. A weight sensor for detecting a load applied to the lower shaft is provided below the lower shaft, and a displacement amount of the lower shaft in a longitudinal direction is detected by a change in a load amount of the weight sensor. A method for manufacturing an optical fiber preform ingot according to any one of 1.
【請求項13】 重量センサーがロードセルである請求
項12に記載の光ファイバ母材インゴットの製造方法。
13. The method of manufacturing an optical fiber preform ingot according to claim 12, wherein the weight sensor is a load cell.
【請求項14】 下軸を上下方向に移動させる下軸上下
移動機構を設け、下軸が受ける荷重を検出可能に設置さ
れた重量センサーの表示負荷が一定となるように、該下
軸上下移動機構を制御する請求項8乃至13のいずれか
に記載の光ファイバ母材インゴットの製造方法。
14. A lower shaft vertical movement mechanism for moving the lower shaft in the vertical direction is provided, and the lower shaft is vertically moved so that the display load of a weight sensor installed to detect the load received by the lower shaft becomes constant. The method for manufacturing an optical fiber preform ingot according to claim 8, wherein the mechanism is controlled.
JP2002221303A 2001-07-30 2002-07-30 Producing device for optical fiber preform ingot and producing method therefor Pending JP2003112938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221303A JP2003112938A (en) 2001-07-30 2002-07-30 Producing device for optical fiber preform ingot and producing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001229241 2001-07-30
JP2001-229241 2001-07-30
JP2002221303A JP2003112938A (en) 2001-07-30 2002-07-30 Producing device for optical fiber preform ingot and producing method therefor

Publications (1)

Publication Number Publication Date
JP2003112938A true JP2003112938A (en) 2003-04-18

Family

ID=26619521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221303A Pending JP2003112938A (en) 2001-07-30 2002-07-30 Producing device for optical fiber preform ingot and producing method therefor

Country Status (1)

Country Link
JP (1) JP2003112938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090017A (en) * 2008-10-10 2010-04-22 Fujikura Ltd Apparatus and method for manufacturing optical fiber preform
CN107255602A (en) * 2017-06-06 2017-10-17 烽火通信科技股份有限公司 The method and device of the loose volume density of on-line measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090017A (en) * 2008-10-10 2010-04-22 Fujikura Ltd Apparatus and method for manufacturing optical fiber preform
CN107255602A (en) * 2017-06-06 2017-10-17 烽火通信科技股份有限公司 The method and device of the loose volume density of on-line measurement

Similar Documents

Publication Publication Date Title
EP0578244B1 (en) Method for drawing glass preform for optical fiber
JP5096141B2 (en) Method for manufacturing quartz glass hollow cylinder
JP3406107B2 (en) Manufacturing method of quartz glass
US8393179B2 (en) Method for producing a semifinished product from synthetic quartz glass
US10807901B2 (en) Method for producing an optical blank from synthetic quartz glass
JP3437480B2 (en) Adjustment method of glass base material stretching device
JP2008506626A5 (en)
JP2003112938A (en) Producing device for optical fiber preform ingot and producing method therefor
EP2876091A1 (en) Furnace for sintering silica soot bodies
JP5454609B2 (en) Jig for synthetic quartz glass production
JP3198291B2 (en) Processing method and processing apparatus for optical fiber preform
JP3987462B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
KR100506221B1 (en) Method and apparatus for sintering gel tube
JP2836302B2 (en) Method for manufacturing glass articles
JP3777983B2 (en) Method for manufacturing glass article
JP2012507468A (en) Method for manufacturing optical components and cylindrical semi-finished product
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JP2003212561A (en) Method and apparatus for manufacturing glass preform
JP2004224655A (en) Apparatus and method of transparently vitrifying optical fiber preform
JPH03109230A (en) Production of optical fiber preform
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP3687625B2 (en) Manufacturing method of glass base material
JP6622977B2 (en) Optical fiber preform manufacturing method
CN114262148A (en) Method for producing glass substrate for optical fiber
JP2009007227A (en) Method of manufacturing transparent glass body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061211