JP3777822B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3777822B2
JP3777822B2 JP26212698A JP26212698A JP3777822B2 JP 3777822 B2 JP3777822 B2 JP 3777822B2 JP 26212698 A JP26212698 A JP 26212698A JP 26212698 A JP26212698 A JP 26212698A JP 3777822 B2 JP3777822 B2 JP 3777822B2
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor chip
external electrode
region
conductive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26212698A
Other languages
Japanese (ja)
Other versions
JP2000091366A (en
Inventor
敏紀 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26212698A priority Critical patent/JP3777822B2/en
Publication of JP2000091366A publication Critical patent/JP2000091366A/en
Application granted granted Critical
Publication of JP3777822B2 publication Critical patent/JP3777822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップを搭載し、樹脂封止して形成される半導体装置の製造方法、および半導体装置に関する。
【0002】
【従来の技術】
従来の半導体装置の一例として、図7に示す構造がある。この技術は、半導体装置用導電性板としてのリードフレーム1上に半導体チップ2を接着剤3を用いて設置し、導電性ワイヤ4を用いて半導体チップ2とリードフレーム1とを接続する。次いで、チップ周囲をトランスファーモールドと呼ばれる技術を使い樹脂5で封止し、この封止樹脂5の側端面より突出したリードフレーム1の部分をクランク状に折り曲げることにより半導体装置6を製造する。
【0003】
【発明が解決しようとする課題】
しかしながら、このような半導体装置は、以下のような課題を有する。
【0004】
すなわち、トランスファーモールド技術を用いるために、モールド用の金型やその駆動装置、また、リードフレーム1を曲げるための金型とその駆動装置が必要であり、非常に大きな設備投資を必要としている。また、リードフレーム1を半導体装置毎に折り曲げるために、工数が多くかかり、半導体装置が高価になる。また、リードフレーム1が樹脂5より突出していることにより、半導体装置が大きくなり、実装した場合に大きな面積を基板上で必要とし、製品としての小型化が困難である。
【0005】
本発明は、このような従来技術の課題を解決するものであり、その目的とするところは、従来に比して大幅に小型、薄型にすることができ、特に集積度の高い半導体装置とその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の半導体装置の製造方法は、以下の内容を特徴とするものである。
【0010】
1枚の導電性板上に複数の半導体装置構成要素の領域を設定し、前記導電性板の片面にて前記半導体装置構成要素の各領域において少なくとも半導体チップ搭載領域の周囲に配置される外部電極端子形成領域を残してその周囲に薄肉部を形成するエッチング工程と、
各半導体装置構成要素の各領域にて前記薄肉部の半導体チップ搭載領域上に半導体チップを搭載する工程と、
前記半導体チップと前記外部電極端子形成領域とを電気的に導通させるボンディング工程と、
前記導電性板の半導体チップ搭載面側にて半導体チップおよび外部電極端子を内包する樹脂封止工程と、
前記導電性板の非エッチング面側から少なくとも当該導電性板の薄肉部相当厚さ分を研削除去することにより前記半導体チップ搭載領域と外部電極形成領域相互間とを分離させる工程と、
前記半導体装置構成要素の複数個をユニット単位として分断処理するとともに、ユニット内の外部電極端子形成領域を厚み方向に切断することにより、封止樹脂のコーナ部に外部電極端子をL字形状に臨ませる工程と、
からなることを特徴とする。
【0011】
また、1枚の導電性板上に複数の半導体装置構成要素の領域を設定し、前記導電性板の片面にて前記半導体装置構成要素の各領域において少なくとも半導体チップ搭載領域の周囲に配置される外部電極端子形成領域を残してその周囲に薄肉部を形成するエッチング工程と、
各半導体装置構成要素の各領域にて前記薄肉部の半導体チップ搭載領域上に半導体チップを搭載する工程と、
前記半導体チップと前記外部電極端子形成領域とを電気的に導通させるボンディング工程と、
前記導電性板の半導体チップ搭載面側にて半導体チップおよび外部電極端子を内包する樹脂封止工程と、
前記導電性板の非エッチング面側から少なくとも当該導電性板の薄肉部相当厚さ分を研削除去することにより前記半導体チップ搭載領域と外部電極形成領域相互間とを分離させる工程と、
前記半導体装置構成要素の複数個をユニット単位として分断処理するとともに、ユニット内の外部電極端子形成領域を厚み方向に切断することにより、封止樹脂のコーナ部に外部電極端子をL字形状に臨ませる工程と、
半導体装置ユニット単位に分断されたパッケージユニットを貼り合わせ接合して一体化する工程と、
からなることを特徴とする。
【0012】
【発明の実施の形態】
以下に、本発明に係る半導体装置の製造方法および半導体装置の具体的実施の形態を図面を参照して詳細に説明する。
【0013】
図1は第1の実施形態に係る半導体装置の製造工程を示し、図2は同方法によって製造された半導体装置を示し、図3は同半導体装置をハンダ実装した状態の正面図を示している。
【0014】
まず、第1実施形態に係る半導体装置が図2に示されている。図示のように、この半導体装置10は、一対の半導体パッケージ12を貼り合わせて1つの半導体装置として構成したものである。半導体パッケージ12を一つのチップサイズパッケージ(CSP)として作成し、製造された一対の半導体パッケージ12同士を接合一体化することにより一つの半導体装置10を作成するようにしている。
【0015】
まず、半導体パッケージ12は樹脂14により半導体チップ16を封止して構成されている。すなわち、半導体チップ16の入出力電極パッド18と、当該チップ16の片側に片寄せて配列された外部電極端子20とがボンディングワイヤ22により電気的に導通されている。半導体チップ16におけるボンディング側の全体を覆って樹脂封止するとともに、チップ16の裏面側は封止樹脂14から露出するように形成されている。チップ16の一部が露出している封止樹脂14の一面のコーナ部分にて、前記外部電極端子20がL字状に露出するように形成させている。このような半導体パッケージ12を一対を準備し、これらをボンディングワイヤ22側が対面するようにして接着結合することで半導体装置10を作成している。このとき、半導体装置10における一平面の両縁辺に前記外部電極端子20の配列するように接合して貼り合わせ一体化するのである。
【0016】
このような半導体装置10を製造する工程を図1を参照して説明する。まず、図1(1)に示しているように、これは複数の半導体装置を複数同時に製造するためのもので、複数の装置構成要素を形成できるような平面積を有する例えば銅板製導電性板24を準備する。この導電性板24には装置構成要素単位ごとに半導体チップ搭載領域Cの1辺部に沿って配置される外部電極端子形成領域Tのみをランド部として残し、図1(2)に示しているように、その周囲に等方性エッチングにより表面層が除去された薄肉部26を形成し、この薄肉部26は非エッチング面側からの研削により前記外部電極端子形成領域Tの相互間を分離可能な深さに設定し、ランド部は隣接するパッケージ構成要素の外部電極端子形成部と共用するようにしている。
【0017】
この導電性板24では、半導体チップ16を搭載する部分を薄肉部26とし、外部電極端子形成部201の両側の位置に半導体チップ16を搭載するようにしている。この搭載領域は、薄肉部26の表面の一部である。厚肉部突起箇所である外部電極端子形成部201は、半導体チップ16の入出力電極パッド18からワイヤ22などで接続される部分となる。外部電極端子形成部201は、独立した突起になるように薄肉部26より厚くしてあるとともに、隣接するパッケージ構成要素と共用するようにしているため、幅寸法は隣接するチップ16からのボンディングワイヤ22をそれぞれ溶着できるスペースを確保できるように設定する。また、外部電極形成部201の一部あるいは全部の上面には、ボンディングの際の接合性の向上の為に、図1(3)に示しているように、導電性めっき28を施す場合がある。
【0018】
同じく、図1(3)の断面図に示すように、導電性板24のダイ付け部(ダイパッド)の上に半導体チップ16を接着剤30などを用いて搭載し、続いて、図1(4)に示しているように、半導体チップ16の入出力電極パッド18と導電性板24の外部電極形成部201の上部平坦部を導電性ワイヤ22を用い接続する。
【0019】
その後、図1(5)に示すように導電性板24の上の突起が存在する面、すなわち半導体チップ16の搭載面のダイ付け部(ダイパッド)、外部電極形成部201、半導体チップ16、導電性ワイヤ22の全てを覆うように、樹脂14にて全体を封止する。封止したのち、導電性板24を薄肉部26側、すなわち樹脂封止されていない面すなわち非エッチング面側から、導電性板24が露出している面から研削(あるいはカッティング)する。その際の研削は、薄肉部24が完全になくなるまで行う。すなわち、外部電極端子20が電気的に完全に独立する厚み方向の研削面32に示す位置まで研削する。この場合、半導体チップ16の底面は、外部電極端子形成部201の上面より下方の位置にある為に、研削面32まで研削する際には、半導体チップ16の下面の一部は研削されることになる(図1(5)参照)。
【0020】
ところで、図1(5)から明らかなように、この実施例では複数のパッケージ要素単位が平面状に多数同時に形成されるため、これらを分離するための厚み方向の分断位置を外部電極端子形成部201を中央から分断するように分断線34と、隣接半導体チップ16同士の分断線36が設定されている。これにより、各半導体パッケージ12の一方のコーナ部分に図2に示すようなL字形状の外部電極端子20が形成される。図示のように、実施形態では、L字形外部電極端子20は、エッチング深さにもよるが、直方体のパッケージにおける長辺に沿った側端面側で長く、パッケージ裏面に露出した面すなわち半導体チップが露出したつ面が短くなるように設定されている。
【0021】
なお、上記実施例では、外部電極端子形成部201を半導体チップ16の片側だけに片寄せて配置し、これにワイヤボンディングして樹脂封止させ、導伝板24の研削による電極分離と、厚み方向に沿って装置単位間を分離する分断線34、36で外部電極端子形成部201の分断とチップ16間分断とによってパッケージ要素を分割するような位置に設定したものである。
【0022】
このような研磨・分割処理により、図1(6)に示しているように、半導体パッケージ12が多数作成される。このパッケージ12は、当該パッケージ12の片側の側縁にのみ外部電極端子20が配置形成される。このようにして製造された半導体パッケージ12を一対の組み合わせとして、これらを背中合わせ状態、すなわちワイヤボンディングを施した面どうしを接着剤38により接合一体化して半導体装置10が出来上がる。
【0023】
このような半導体装置10は、図3に示すように、パッケージを立設して基板実装することができ、基板40への実装面積を小さくすることができる利点がある。特に、コーナL型の外部電極端子20はハンダ溶着した場合の溶着面積が大きいため、フィレット42が確実に形成されて安定した実装を行なえる。
【0024】
このように当該実施形態では半導体装置の高集積化が実現でき、また、個々にパッケージを作成した後に合体接合するので、良品を選別してから合体させることが可能となり、歩留まりの向上効果が高い。なお、半導体チップ52の電極54は図2において2列構造のものへの適用例を示したが、近年ではチップ電極は中央1列のものも存在するので、このような中央配列のチップを用いることで分散処理が可能となる。
【0025】
次に、図4および図5には第2の実施形態に係る半導体装置の製造方法の説明図と、当該方法により製造された半導体装置50の斜視図を示す。この第2の実施形態に係る半導体装置50は、半導体チップ52の電極54と外部電極端子56とをワイヤ58で電気的導通を図って構成される半導体パッケージ要素60を複数直列に連接配列して樹脂62で封止するとともに、前記封止樹脂62のコーナ外表面部に前記外部電極端子56をL字状に露出形成させて構成している。
【0026】
このような半導体装置50は、図4に示しているように、導電板64を複数の領域に区分し、各区分領域に各々半導体パッケージ要素60を形成する。このとき、共通の外部電極端子形成部501を挟んで対象に各要素60を配置すると共に、これらに連続的に直列した配列となるようにして、半導体パッケージ要素60がマトリックス状に配列するように構築する。チップ52、外部電極端子56、これらの導電用ワイヤ58の接続、樹脂封入の処理は図1に示したものと同様の工程を経て行なわれる。この実施形態ではマトリックス状に複数の半導体パッケージ要素60を同時に配列している点が図1の場合と異なる。なお、上記複数のエッチングを形成しようとする方法は等方性エッチングとして行なうことが望ましい。等方性エッチングであるためエッチング領域は奥に進むほどえぐれた状態となる。したがって、薄肉部から立設した状態にある非エッチング領域は、表面側に至るにしたがって迫り出し、オーバハング状態となる。このため後工程で樹脂封止が行われるが、樹脂内への埋め込み側の相当直径が大きくなり、これがアンカとして作用するために薄肉部を研削除去して島として残されても樹脂から抜け出ることが防止される このように配列された半導体パッケージ要素60を2個1組のユニットとして半導体装置50が構成されるように、図4に示している分離線66、68にしたがって分離するのである。なお、1組となるパッケージ要素60の数は2個に限らず、2以上の複数のパッケージ要素60を1組のユニットとすることができるのは当然である。これによって図5に示される半導体装置50が製造できる。更に、この図5の半導体装置50同士を一体接合することで形成された例が図6の半導体装置70である。このように構成することで、完成した半導体装置50,70はメモリユニットとしてそのまま基板ソケットに入れて用いるようにすることが可能である。
【0027】
このような実施形態によれば、従来のメモリボードに用いられるメモリユニットに代わって極めて小型化したメモリとして使用することができる。また、メモリカードに用いる場合、従来のメモリボードではパッケージの製造の後に基板実装を行なってメモリカードが完成したが、この実施形態ではパッケージの製造と同時にメモリカードとして完成するので、工程が簡易になる効果がある。
【0028】
【発明の効果】
以上説明したように、本発明によれば、予め銅板などからなる導伝板に、半導体チップ搭載領域の片側に外部電極端子形成部に相当する部分を残していわゆるハーフエッチングを行ない、チップ搭載と、残されたランドとをワイヤボンディングし、樹脂封止を行ない、外部電極端子形成部を分断して樹脂のコーナ部分にL字型の電極ができるようにした半導体パッケージ要素を一対貼り合わせて一つの半導体装置とし、または直列に一体成形し、あるいはそれを貼り合わせて接合一体化した半導体装置としたので、チップサイズパッケージが接合、連接した集積度の高い半導体装置とすることができる。この種の半導体装置のパッケージサイズを大幅に小さく、薄型化しつつ、このような小型で薄型の半導体装置を簡便な方法により製造することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る半導体装置の製造方法の工程図である。
【図2】同方法により製造された半導体装置の断面図と斜視図である。
【図3】同半導体装置の実装状態の説明図である。
【図4】第2実施形態に係る製造方法を説明するためのもので、導電板に半導体パッケージ要素を配列した平面図である。
【図5】同方法により製造された半導体装置の斜視図である。
【図6】第3実施形態の係る半導体装置の斜視図である。
【図7】従来の半導体装置の断面図である。
【符号の説明】
10 半導体装置
12 半導体パッケージ
14 封止樹脂
16 半導体チップ
18 入出力電極パッド
20 外部電極端子
201 外部電極端子形成部
22 ボンディングワイヤ
24 導電性板
26 薄肉部
28 導電性めっき
30 接着剤
32 研削面
34 分断線
36 分断線
38 接着剤
40 実装基板
42 ハンダフィレット
50 第2実施形態の半導体装置
52 半導体チップ
54 電極パッド
56 外部電極端子
58 ワイヤ
60 半導体パッケージ要素
62 封止樹脂
64 導電板
66 分断線
68 分断線
70 第3実施形態の半導体装置
74 放電ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device on which a semiconductor chip is mounted and formed by resin sealing, and the semiconductor device.
[0002]
[Prior art]
As an example of a conventional semiconductor device, there is a structure shown in FIG. In this technique, a semiconductor chip 2 is placed on a lead frame 1 as a conductive plate for a semiconductor device using an adhesive 3, and the semiconductor chip 2 and the lead frame 1 are connected using a conductive wire 4. Next, the periphery of the chip is sealed with a resin 5 using a technique called transfer molding, and the portion of the lead frame 1 protruding from the side end surface of the sealing resin 5 is bent into a crank shape, thereby manufacturing the semiconductor device 6.
[0003]
[Problems to be solved by the invention]
However, such a semiconductor device has the following problems.
[0004]
That is, in order to use the transfer molding technique, a mold for molding and its driving device, and a mold for bending the lead frame 1 and its driving device are required, which requires a very large capital investment. Further, since the lead frame 1 is bent for each semiconductor device, a lot of man-hours are required and the semiconductor device becomes expensive. Further, since the lead frame 1 protrudes from the resin 5, the semiconductor device becomes large and requires a large area on the substrate when mounted, making it difficult to reduce the size of the product.
[0005]
The present invention solves such problems of the prior art, and the object of the present invention is to make it possible to make the device significantly smaller and thinner than conventional ones. It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a semiconductor device of the present invention is characterized by the following contents.
[0010]
A plurality of semiconductor device component regions are set on one conductive plate, and external electrodes are arranged on at least the periphery of the semiconductor chip mounting region in each region of the semiconductor device component on one side of the conductive plate. An etching step of forming a thin portion around the terminal forming region,
Mounting a semiconductor chip on the semiconductor chip mounting region of the thin portion in each region of each semiconductor device component;
A bonding step of electrically connecting the semiconductor chip and the external electrode terminal formation region;
A resin sealing step including the semiconductor chip and the external electrode terminal on the semiconductor chip mounting surface side of the conductive plate;
Separating the semiconductor chip mounting region and the external electrode forming region by grinding and removing at least the thickness corresponding to the thin portion of the conductive plate from the non-etched surface side of the conductive plate;
A plurality of the semiconductor device components are divided into unit units, and the external electrode terminal forming region in the unit is cut in the thickness direction so that the external electrode terminals are exposed in an L shape at the corner of the sealing resin. And the process
It is characterized by comprising.
[0011]
Also, a plurality of semiconductor device component regions are set on one conductive plate, and are arranged at least around the semiconductor chip mounting region in each region of the semiconductor device component on one side of the conductive plate. Etching process to form a thin portion around the external electrode terminal forming region,
Mounting a semiconductor chip on the semiconductor chip mounting region of the thin portion in each region of each semiconductor device component;
A bonding step of electrically connecting the semiconductor chip and the external electrode terminal formation region;
A resin sealing step including the semiconductor chip and the external electrode terminal on the semiconductor chip mounting surface side of the conductive plate;
Separating the semiconductor chip mounting region and the external electrode forming region by grinding and removing at least the thickness corresponding to the thin portion of the conductive plate from the non-etched surface side of the conductive plate;
A plurality of the semiconductor device components are divided into unit units, and the external electrode terminal forming region in the unit is cut in the thickness direction so that the external electrode terminals are exposed in an L shape at the corner of the sealing resin. And the process
A process of pasting and joining the package units divided into semiconductor device units and integrating them;
It is characterized by comprising.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for manufacturing a semiconductor device and a specific embodiment of the semiconductor device according to the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a manufacturing process of the semiconductor device according to the first embodiment, FIG. 2 shows a semiconductor device manufactured by the method, and FIG. 3 shows a front view of the semiconductor device in a solder-mounted state. .
[0014]
First, the semiconductor device according to the first embodiment is shown in FIG. As shown in the figure, the semiconductor device 10 is configured as a single semiconductor device by bonding a pair of semiconductor packages 12 together. The semiconductor package 12 is produced as one chip size package (CSP), and one semiconductor device 10 is produced by joining and integrating the pair of manufactured semiconductor packages 12 together.
[0015]
First, the semiconductor package 12 is configured by sealing a semiconductor chip 16 with a resin 14. That is, the input / output electrode pad 18 of the semiconductor chip 16 and the external electrode terminal 20 arranged so as to be shifted to one side of the chip 16 are electrically connected by the bonding wire 22. The entire bonding side of the semiconductor chip 16 is covered and resin-sealed, and the back side of the chip 16 is formed so as to be exposed from the sealing resin 14. The external electrode terminal 20 is formed to be exposed in an L shape at a corner portion of one surface of the sealing resin 14 where a part of the chip 16 is exposed. A pair of such semiconductor packages 12 is prepared, and these are bonded and bonded so that the bonding wires 22 face each other, thereby forming the semiconductor device 10. At this time, the external electrode terminals 20 are joined and bonded together so as to be arranged on both edges of one plane of the semiconductor device 10.
[0016]
A process of manufacturing such a semiconductor device 10 will be described with reference to FIG. First, as shown in FIG. 1 (1), this is for manufacturing a plurality of semiconductor devices at the same time, and has a flat area capable of forming a plurality of device components, for example, a copper plate conductive plate. Prepare 24. In this conductive plate 24, only the external electrode terminal forming region T disposed along one side of the semiconductor chip mounting region C is left as a land portion for each device component unit, and is shown in FIG. As described above, a thin portion 26 from which the surface layer has been removed is formed by isotropic etching, and the thin portion 26 can be separated from the external electrode terminal formation region T by grinding from the non-etched surface side. The land portion is shared with the external electrode terminal forming portion of the adjacent package component.
[0017]
In this conductive plate 24, the portion on which the semiconductor chip 16 is mounted is a thin portion 26, and the semiconductor chip 16 is mounted at positions on both sides of the external electrode terminal forming portion 201. This mounting region is a part of the surface of the thin portion 26. The external electrode terminal forming portion 201 which is a thick portion protruding portion is a portion connected from the input / output electrode pad 18 of the semiconductor chip 16 by a wire 22 or the like. The external electrode terminal forming portion 201 is thicker than the thin portion 26 so as to be an independent protrusion, and is shared with an adjacent package component. Therefore, the width dimension is a bonding wire from the adjacent chip 16. It sets so that the space which can each weld 22 can be ensured. Further, as shown in FIG. 1 (3), conductive plating 28 may be applied to a part or all of the upper surface of the external electrode forming portion 201 in order to improve the bondability at the time of bonding. .
[0018]
Similarly, as shown in the cross-sectional view of FIG. 1 (3), the semiconductor chip 16 is mounted on the die attaching portion (die pad) of the conductive plate 24 using an adhesive 30 or the like, and subsequently, FIG. ), The input / output electrode pad 18 of the semiconductor chip 16 and the upper flat portion of the external electrode forming portion 201 of the conductive plate 24 are connected using the conductive wire 22.
[0019]
Thereafter, as shown in FIG. 1 (5), the surface on which the protrusion on the conductive plate 24 exists, that is, the die attachment portion (die pad) on the mounting surface of the semiconductor chip 16, the external electrode forming portion 201, the semiconductor chip 16, the conductive The whole is sealed with resin 14 so as to cover all of the conductive wire 22. After sealing, the conductive plate 24 is ground (or cut) from the thin-walled portion 26 side, that is, from the surface not sealed with resin, that is, from the non-etched surface side, from the surface where the conductive plate 24 is exposed. Grinding is performed until the thin portion 24 is completely removed. That is, the external electrode terminal 20 is ground to the position shown on the grinding surface 32 in the thickness direction in which it is completely completely independent. In this case, since the bottom surface of the semiconductor chip 16 is located below the top surface of the external electrode terminal forming portion 201, when grinding to the grinding surface 32, a part of the bottom surface of the semiconductor chip 16 is ground. (See FIG. 1 (5)).
[0020]
By the way, as apparent from FIG. 1 (5), in this embodiment, a plurality of package element units are simultaneously formed in a planar shape, so that the dividing position in the thickness direction for separating them is set as the external electrode terminal forming portion. A dividing line 34 and a dividing line 36 between adjacent semiconductor chips 16 are set so as to divide 201 from the center. As a result, an L-shaped external electrode terminal 20 as shown in FIG. 2 is formed at one corner of each semiconductor package 12. As illustrated, in the embodiment, the L-shaped external electrode terminal 20 is long on the side end surface side along the long side of the rectangular parallelepiped package, depending on the etching depth, and the surface exposed to the package back surface, that is, the semiconductor chip is The exposed surface is set to be shorter.
[0021]
In the above-described embodiment, the external electrode terminal forming portion 201 is arranged only on one side of the semiconductor chip 16 and is wire-bonded to this to be resin-sealed. The package elements are set to be divided by dividing the external electrode terminal forming portion 201 and dividing the chip 16 by dividing lines 34 and 36 separating the device units along the direction.
[0022]
As shown in FIG. 1 (6), a large number of semiconductor packages 12 are formed by such polishing / division processing. In the package 12, the external electrode terminals 20 are arranged and formed only on one side edge of the package 12. A pair of combinations of the semiconductor packages 12 manufactured as described above are combined, and the semiconductor devices 10 are completed by bonding them back to back, that is, the surfaces subjected to wire bonding are bonded and integrated by an adhesive 38.
[0023]
As shown in FIG. 3, such a semiconductor device 10 has an advantage that a package can be erected and mounted on a substrate, and a mounting area on the substrate 40 can be reduced. In particular, since the corner L-type external electrode terminal 20 has a large welding area when soldered, the fillet 42 is reliably formed and stable mounting can be performed.
[0024]
As described above, in this embodiment, high integration of the semiconductor device can be realized, and the unitary joining is performed after the packages are individually formed. Therefore, it is possible to select the non-defective products and combine them, and the effect of improving the yield is high. . In FIG. 2, the electrode 54 of the semiconductor chip 52 is applied to a two-row structure. However, in recent years, there is a chip electrode having one central row. This enables distributed processing.
[0025]
Next, FIGS. 4 and 5 are explanatory views of the method for manufacturing the semiconductor device according to the second embodiment and a perspective view of the semiconductor device 50 manufactured by the method. In the semiconductor device 50 according to the second embodiment, a plurality of semiconductor package elements 60 configured by electrically connecting the electrodes 54 of the semiconductor chip 52 and the external electrode terminals 56 with wires 58 are connected in series. The external electrode terminal 56 is exposed and formed in an L shape on the outer surface of the corner of the sealing resin 62 while being sealed with the resin 62.
[0026]
In such a semiconductor device 50, as shown in FIG. 4, the conductive plate 64 is divided into a plurality of regions, and a semiconductor package element 60 is formed in each of the divided regions. At this time, the elements 60 are arranged on the target with the common external electrode terminal forming portion 501 sandwiched therebetween, and the semiconductor package elements 60 are arranged in a matrix so as to be arranged in series in series. To construct. The chip 52, the external electrode terminal 56, the connection of these conductive wires 58, and the resin sealing process are performed through the same steps as shown in FIG. This embodiment is different from the case of FIG. 1 in that a plurality of semiconductor package elements 60 are arranged in a matrix at the same time. Note that the method for forming the plurality of etchings is preferably performed as isotropic etching. Since it is isotropic etching, the etching region becomes deeper as it goes deeper. Accordingly, the non-etched region standing from the thin wall portion is pushed out toward the surface side and becomes an overhang state. For this reason, resin sealing is performed in a later process, but the equivalent diameter on the embedding side in the resin becomes large, and this acts as an anchor, so that even if the thin part is ground and removed as an island, it will escape from the resin. The semiconductor package elements 60 arranged in this way are separated according to the separation lines 66 and 68 shown in FIG. 4 so that the semiconductor device 50 is configured as a set of two units. Note that the number of package elements 60 in one set is not limited to two, and it is natural that two or more package elements 60 can be used as one set of units. Thereby, the semiconductor device 50 shown in FIG. 5 can be manufactured. Further, an example formed by integrally joining the semiconductor devices 50 of FIG. 5 is the semiconductor device 70 of FIG. With such a configuration, the completed semiconductor devices 50 and 70 can be used as they are in a substrate socket as a memory unit.
[0027]
According to such an embodiment, the memory unit used in the conventional memory board can be used as a very miniaturized memory. In the case of use in a memory card, the memory card is completed by mounting the substrate after manufacturing the package in the conventional memory board. However, in this embodiment, the memory card is completed simultaneously with the manufacture of the package, so that the process is simplified. There is an effect.
[0028]
【The invention's effect】
As described above, according to the present invention, so-called half-etching is performed on a conductive plate made of a copper plate or the like in advance, leaving a portion corresponding to the external electrode terminal forming portion on one side of the semiconductor chip mounting region, and chip mounting. Then, the remaining lands are wire-bonded, resin-sealed, and the external electrode terminal forming portion is divided so that an L-shaped electrode is formed at the resin corner portion. Since the semiconductor devices are formed as one semiconductor device, or are integrally formed in series, or are bonded and joined together, a highly integrated semiconductor device in which chip size packages are joined and connected can be obtained. Such a small and thin semiconductor device can be manufactured by a simple method while greatly reducing the package size of this type of semiconductor device.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for manufacturing a semiconductor device according to a first embodiment.
FIG. 2 is a cross-sectional view and a perspective view of a semiconductor device manufactured by the same method.
FIG. 3 is an explanatory diagram of a mounting state of the semiconductor device;
FIG. 4 is a plan view for explaining a manufacturing method according to a second embodiment, in which semiconductor package elements are arranged on a conductive plate.
FIG. 5 is a perspective view of a semiconductor device manufactured by the same method.
FIG. 6 is a perspective view of a semiconductor device according to a third embodiment.
FIG. 7 is a cross-sectional view of a conventional semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Semiconductor device 12 Semiconductor package 14 Sealing resin 16 Semiconductor chip 18 Input / output electrode pad 20 External electrode terminal 201 External electrode terminal formation part 22 Bonding wire 24 Conductive plate 26 Thin part 28 Conductive plating 30 Adhesive 32 Grinding surface 34 minutes Disconnection 36 Disconnection line 38 Adhesive 40 Mounting substrate 42 Solder fillet 50 Semiconductor device 52 of the second embodiment 52 Semiconductor chip 54 Electrode pad 56 External electrode terminal 58 Wire 60 Semiconductor package element 62 Sealing resin 64 Conductive plate 66 Disconnection line 68 Disconnection line 70 Semiconductor Device 74 Discharge Unit of Third Embodiment

Claims (2)

1枚の導電性板上に複数の半導体装置構成要素の領域を設定し、前記導電性板の片面にて前記半導体装置構成要素の各領域において少なくとも半導体チップ搭載領域の周囲に配置される外部電極端子形成領域を残してその周囲に薄肉部を形成するエッチング工程と、
各半導体装置構成要素の各領域にて前記薄肉部の半導体チップ搭載領域上に半導体チップを搭載する工程と、
前記半導体チップと前記外部電極端子形成領域とを電気的に導通させるボンディング工程と、
前記導電性板の半導体チップ搭載面側にて半導体チップおよび外部電極端子を内包する樹脂封止工程と、
前記導電性板の非エッチング面側から少なくとも当該導電性板の薄肉部相当厚さ分を研削除去することにより前記半導体チップ搭載領域と外部電極形成領域相互間とを分離させる工程と、
前記半導体装置構成要素の複数個をユニット単位として分断処理するとともに、ユニット内の外部電極端子形成領域を厚み方向に切断することにより、封止樹脂のコーナ部に外部電極端子をL字形状に臨ませる工程と、
からなることを特徴とする半導体装置の製造方法。
A plurality of semiconductor device component regions are set on one conductive plate, and external electrodes are arranged on at least the periphery of the semiconductor chip mounting region in each region of the semiconductor device component on one side of the conductive plate. An etching step of forming a thin portion around the terminal forming region,
Mounting a semiconductor chip on the semiconductor chip mounting region of the thin portion in each region of each semiconductor device component;
A bonding step of electrically connecting the semiconductor chip and the external electrode terminal formation region;
A resin sealing step including the semiconductor chip and the external electrode terminal on the semiconductor chip mounting surface side of the conductive plate;
Separating the semiconductor chip mounting region and the external electrode forming region by grinding and removing at least the thickness corresponding to the thin portion of the conductive plate from the non-etched surface side of the conductive plate;
A plurality of the semiconductor device components are divided into unit units, and the external electrode terminal forming region in the unit is cut in the thickness direction so that the external electrode terminals are exposed in an L shape at the corner of the sealing resin. And the process
A method for manufacturing a semiconductor device, comprising:
1枚の導電性板上に複数の半導体装置構成要素の領域を設定し、前記導電性板の片面にて前記半導体装置構成要素の各領域において少なくとも半導体チップ搭載領域の周囲に配置される外部電極端子形成領域を残してその周囲に薄肉部を形成するエッチング工程と、
各半導体装置構成要素の各領域にて前記薄肉部の半導体チップ搭載領域上に半導体チップを搭載する工程と、
前記半導体チップと前記外部電極端子形成領域とを電気的に導通させるボンディング工程と、
前記導電性板の半導体チップ搭載面側にて半導体チップおよび外部電極端子を内包する樹脂封止工程と、
前記導電性板の非エッチング面側から少なくとも当該導電性板の薄肉部相当厚さ分を研削除去することにより前記半導体チップ搭載領域と外部電極形成領域相互間とを分離させる工程と、
前記半導体装置構成要素の複数個をユニット単位として分断処理するとともに、ユニット内の外部電極端子形成領域を厚み方向に切断することにより、封止樹脂のコーナ部に外部電極端子をL字形状に臨ませる工程と、
半導体装置ユニット単位に分断されたパッケージユニットを貼り合わせ接合して一体化する工程と、
からなることを特徴とする半導体装置の製造方法。
A plurality of semiconductor device component regions are set on one conductive plate, and external electrodes are arranged on at least the periphery of the semiconductor chip mounting region in each region of the semiconductor device component on one side of the conductive plate. An etching step of forming a thin portion around the terminal forming region,
Mounting a semiconductor chip on the semiconductor chip mounting region of the thin portion in each region of each semiconductor device component;
A bonding step of electrically connecting the semiconductor chip and the external electrode terminal formation region;
A resin sealing step including the semiconductor chip and the external electrode terminal on the semiconductor chip mounting surface side of the conductive plate;
Separating the semiconductor chip mounting region and the external electrode forming region by grinding and removing at least the thickness corresponding to the thin portion of the conductive plate from the non-etched surface side of the conductive plate;
A plurality of the semiconductor device components are divided into unit units, and the external electrode terminal forming region in the unit is cut in the thickness direction so that the external electrode terminals are exposed in an L shape at the corner of the sealing resin. And the process
A process of pasting and joining the package units divided into semiconductor device units and integrating them;
A method for manufacturing a semiconductor device, comprising:
JP26212698A 1998-09-16 1998-09-16 Manufacturing method of semiconductor device Expired - Lifetime JP3777822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26212698A JP3777822B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26212698A JP3777822B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006003305A Division JP4218684B2 (en) 2006-01-11 2006-01-11 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000091366A JP2000091366A (en) 2000-03-31
JP3777822B2 true JP3777822B2 (en) 2006-05-24

Family

ID=17371422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26212698A Expired - Lifetime JP3777822B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3777822B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118080A (en) * 2000-10-06 2002-04-19 Disco Abrasive Syst Ltd Method of dividing semiconductor plate and cutting blade

Also Published As

Publication number Publication date
JP2000091366A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3521758B2 (en) Method for manufacturing semiconductor device
JP3420153B2 (en) Semiconductor device and manufacturing method thereof
JP4731021B2 (en) Semiconductor device manufacturing method and semiconductor device
US7615859B2 (en) Thin semiconductor package having stackable lead frame and method of manufacturing the same
KR100294719B1 (en) Molded semiconductor device and method for manufacturing the same, lead frame
US6720207B2 (en) Leadframe, resin-molded semiconductor device including the leadframe, method of making the leadframe and method for manufacturing the device
US6803254B2 (en) Wire bonding method for a semiconductor package
US7968376B2 (en) Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US9583455B2 (en) Semiconductor device
JPH06209069A (en) Semiconductor package and its manufacture
JPH06244360A (en) Semiconductor device
KR19990006158A (en) Ball grid array package
US7095096B1 (en) Microarray lead frame
JP2000294715A (en) Semiconductor device and manufacture thereof
US20210384151A1 (en) Semiconductor devices and methods of manufacturing semiconductor devices
US7126209B2 (en) Lead frame, resin-encapsulated semiconductor device, and method of producing the same
JP3777822B2 (en) Manufacturing method of semiconductor device
JP4218684B2 (en) Semiconductor device and manufacturing method thereof
TWI467729B (en) Package structure for radio frequency and manufacturing method thereof
JP4798199B2 (en) Manufacturing method of semiconductor device
JP4353935B2 (en) Leadless package semiconductor device
JP2006066551A5 (en)
JP4651218B2 (en) Manufacturing method of semiconductor device
KR100566780B1 (en) Method for fabricating stacked multi-chip package and stacked multi-chip package using the same
KR100325291B1 (en) structure for LEAD in stack type semiconductor-package and method of manufacture in stack type semiconductor-package use to this LEAD

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7