JP3776930B2 - 圧縮により波長可変としたファイバグレーティング - Google Patents
圧縮により波長可変としたファイバグレーティング Download PDFInfo
- Publication number
- JP3776930B2 JP3776930B2 JP50901996A JP50901996A JP3776930B2 JP 3776930 B2 JP3776930 B2 JP 3776930B2 JP 50901996 A JP50901996 A JP 50901996A JP 50901996 A JP50901996 A JP 50901996A JP 3776930 B2 JP3776930 B2 JP 3776930B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- wavelength
- predetermined range
- reflective element
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006835 compression Effects 0.000 title claims description 29
- 238000007906 compression Methods 0.000 title claims description 29
- 239000000835 fiber Substances 0.000 title description 84
- 230000003287 optical effect Effects 0.000 claims description 14
- 239000013307 optical fiber Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 4
- 230000001902 propagating effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02195—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
- G02B6/022—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
- G02B6/29322—Diffractive elements of the tunable type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4215—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Optical Communication System (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Lasers (AREA)
Description
同時係属中の米国特許出願、(UTCドケット番号No.R−3864)、名称“圧縮により波長可変としたファイバレーザ”が、本願と同時に出願されており、上記出願についても本願における開示内容に関連する内容を含んでいる。
技術分野
本発明は、ブラッググレーティングに関し、より詳細には、波長可変ブラッググレーティングに関する。
背景技術
オプティカルファイバの分野においては、一つ以上のブラッググレーティングをオプティカルファイバコア中に埋め込むことが知られている。ブラッググレーティングは、そこに入射した光線の所定の波長バンドを反射させ、また、その残りの光線を透過させるようになっていることが知られている。また、ブラッググレーティングは、例えばセンサデバイスやファイバ通信用部品等多くの用途を有していることが知られている。これらは、波長可変反射要素を提供することができ、ファイバセンサ内でのトランスデューサ要素、ファイバのための波長制御デバイス、半導体、固体レーザ等、通信システムにおける波長分割マルチプレクサ(WDM)部品、波長アナライザ、信号処理システム部品、その他の用途において使用することができる。上記デバイスの多くは、上記ファイバグレーティング要素が大きな波長可変範囲を有していればより一層改善されることになる。
ファイバブラッググレーティングは、上記ファイバグレーティングを伸長させることで波長可変(変化)させることができる。例えば、このための一つの技術としては、上記グレーティングに圧電式伸長機(可変器)を取り付け、印可電圧に依存させつつ伸長させたり、又は、上記グレーティングを電圧が印可されると伸長する円筒状のマンドレルに巻き付ける等の方法があるが、これらについては、モーレイ(Morey)等に付与された米国特許第5,007,705号に開示のものである。これらとは別の多くの伸長技術が用いられているが、これらについては上述の特許においても論じられている。
しかしながら、上記ファイバが伸長される量(引っ張り歪みが与えられる量)、すなわちその最大波長可変領域は、上記ファイバの引っ張り強度により制限されていた。特にブラッググレーティングが伸長される場合には、上記ブラッググレーティング反射波長範囲は、1.55μm波長領域において約1.2ナノメータ(nm)/ミリストレイン(millistrain)で変化することが知られている。典型的な通信用グレードのオプティカルファイバ及び導波路は、石英すなわち二酸化ケイ素(SiO2)によって製造されており、これは、ヤング弾性率が1.02x107PSIである。従って、50kpsiで規格試験される典型的なオプティカルファイバについては、長期間安全に加えられるには最大歪みの約1/2%((ΔL/L)*100;上式中、Lは、伸長されるファイバの長さである。)が、上記ファイバを現実に破断させてしまうような上記ファイバ強度の劣化を生じさせずに加えられるにすぎない。これは、上記引っ張り歪みによるブラッググレーティング波長可変最大量を約5nmに制限してしまうこととなる。
これとは別に、ファイバグレーティングは、温度変化によっても波長可変とすることができる。この場合には、ブラッググレーティングを加熱し、これらの要素を膨張させて屈折率の変化を生じさせる。温度に対する上記ブラッグ反射波長の変化は、約0.011nm/℃である。このような温度波長可変は、上記ブラッググレーティングの反射率の大きさが劣化するという悪影響があり、これは、熱アニーリングが生じてしまうことによるものである。この様な劣化は、上記グレーティングの有効性を低減させてしまうことになる。特定のファイバ、製造方法、ファイバへのコーティング及びグレーティングの規格に応じて、約200℃を超える高い温度で著しいグレーティングの劣化が発生してしまうので、上記ファイバグレーティングの現実的な波長可変幅は、約2nmに制限されてしまう。
しかしながら、多くの用途においては、できるだけ広い波長可変範囲で波長可変なファイバブラッググレーティングを提供することが望まれていた。
発明の開示
本発明の目的は、波長可変幅の広いファイバブラッググレーティングを提供することにある。
本発明に従えば、波長可変反射要素は、反射波長において入射光線を反射させる反射要素と、上記反射要素を圧縮して上記反射波長を変化させるための圧縮手段と、を有している。
さらに本発明によれば、上記波長可変要素は、ブラッググレーティングを有している。
本発明は、従来の波長可変ファイバグレーティングに対して著しい改良が加えられているものであるが、これは、圧縮応力を引っ張り応力(すなわち、上記グレーティングを伸長させるものである)に変えて用いることにより、上記ファイバグレーティングを、例えば45ナノメータ(nm)といったより広い範囲で連続的に波長可変とすることを可能とするものである。これは、主として、上記オプティカルファイバが、引っ張りよりも圧縮に対して23倍も強いことに起因しており、このことによって従来よりもより大きな波長可変範囲が達成されるものである。また、我々は鋭意検討の結果、上記波長可変性は、両方向(すなわち、圧縮方向及び弛緩方向)に繰り返すことができることを見いだしたのである。
本発明の上記目的及びその他の目的、特徴及び効果については、添付の図面を用いて説明する代表的な実施例の説明によってより明確となろう。
【図面の簡単な説明】
図1は、本発明の圧縮による波長可変ファイバグレーティングの実施例を示した概略的なブロック図である。
図2は、本発明の圧縮による波長可変ファイバグレーティングについて、圧縮応力に対して反射波長をグラフとした図である。
図3は、本発明の圧縮ファイバグレーティングを圧縮するための圧縮デバイスの分解斜視図である。
図4は、本発明の圧縮による波長可変ファイバグレーティングを圧縮するための圧縮デバイスの一部分解斜視図である。
図5は、一端がブロックされ、かつ、内部をファイバがスライドできるようにされた本発明の固定フェルールの側面図である。
発明の最良の実施態様
図1には、ポンプ光源10、例えばレーザダイオード等を示しているが、これは、オプティカルファイバ14に対して広い波長範囲の光信号12を与えている。このソース信号12は、良く知られた2x2波長分割マルチプレクサ(WDM)18のポート16に供給される。上記ソース信号12は、上記入力光線が所定量、例えば50%だけカップリングされて、上記WDM18の上記出力ポート20へ送られ、上記ファイバ24への光学的信号22となる。上記オプティカルファイバ24に対し、このファイバ24(例えば直径が約125μmのSiO2製オプティカルファイバ)内に埋め込まれたブラッググレーティング26へと入射が行われる。上記ファイバグレーティングは、グレン(Glenn)等の米国特許第4,725,110号、名称“ファイバ光学部品内にグレーティングを埋め込む方法”において開示のものと類似してはいるが、所望によりいかなる波長可変グレーティングを使用することもできる。上記ファイバグレーティング26は、反射波長λbを中心とした所定の波長幅を有する光線28を反射し、上記入射光線22のうちの残された波長(所定の光学的範囲の)を通過させるが、これをファイバ34に沿ったライン30によって示している。上記ファイバ24,34は、上記グレーティングが埋め込まれた同一のファイバである。
上記反射信号28は、上記ファイバ24に沿って進行して行き、上記ポート20において上記カップラ18に再度入射する。上記カップラ18は、上記光線28の所定量(例えば50%)をライン37によって示されるようにファイバ36に沿ってポート35へとカップルさせる。上記ファイバ36は、スペクトラムアナライザ38に導かれており、このスペクトラムアナライザ38は、上記ソース10の波長領域にわたった上記グレーティング26の上記光学的波長反射プロファイルを示した電気的信号をライン40に与えるようになっている。
上記光線12の残りの部分例えば50%は、ライン46で示されているようにファイバ44に沿ってポート42へとカップルされている。上記ファイバ44は、角度を付けられた面によって端部48が形成されており、及び/又は上記ポート42においていかなる光線でも上記カップラ18へと反射されて戻らないよう、アンチリフレクションコートが施されている。オプティカルアイソレータ50は、上記ファイバ14に沿って備えられていても良く、上記信号28が、上記ポート16へとカップルして上記ソース10を損傷又は攪乱させないようにしている。
上記ファイバグレーティング26は、ファイバ圧縮デバイス90内に通され(より詳細には後述する)、正確にその長手方向軸に沿って上記ファイバの圧縮が行われるようになっているとともに、上記ファイバがバックリングしないようにされている。通常、上記圧縮デバイス90は、上記ファイバ24が通される可動ピストン92と、上記ファイバ34が同様に通される固定部分94と、を有している。上記ピストン92と上記ピストン94の間に、上記ファイバグレーティング26がフェルールを介して通されている(図1には図示せず)。上記ファイバ24は、上記可動ピストン92へと固定され(例えば膠又はエポキシ樹脂による)、上記固定部分94は、また、上記ファイバ34に取り付けられている。ステッパモータ98は、機械的リンケージ100によって上記ピストン92へと連結されていて、上記ピストン92を動かし、かつ、上記ファイバグレーティング26を、長手方向に圧縮して上記反射信号28の波長を可変としている。上記ステッパモータ98は、高分解能400ステップ/回転のステッパモータであり、10,000ステップ/回転のマイクロステッピングモードで駆動できる例えば、メルグリオ(Melles Griot)製のナノムーバ(NANO−MOVER)マイクロポジショナシステムを挙げることができる。このシステムによれば、リニア変位分解能を+/−50nm/ステップ、及び波長分解能を+/−2ピコメートル、すなわち、1550nmにおいて周波数を+/−250MHzとすることができる。
上記ステッパモータ98は、ステッパモータ駆動回路104からのライン102を介した電気的信号によって駆動されている。上記ドライブ回路104は、既知の電気機器を有していて、上記ステッパモータ98、従って、上記ピストン92をライン106の電気信号に対応して、所望するブラッグ波長λbに対応した所望の位置へと駆動させるに必要な駆動信号を与えている。
図2に示すように、我々は、上記オプティカルファイバの主要成分となっている石英(SiO2)が、約23倍引っ張りに対するよりも圧縮に対して強いことを見いだした。これによって圧縮により、より広い波長可変領域が得られることがわかる。特にわれわれは、0から425kpsiの印加応力範囲、すなわち4.2%の圧縮歪み((ΔL/L)*100;上式中Lは、圧縮するファイバ長さである)にわたって、波長可変領域が45nmであることを見いだした。これは、上記ファイバに約3.6kgの力(負荷)を加えることによって得られたものである。これは、従来のファイバグレーティング波長可変技術によって報告されてきた波長可変範囲よりもかなり大きなものとなっている。さらにこの圧縮は、上記ファイバを伸長させる従来技術において発生する、ファイバ損傷のリスクがない。また、所望により別の波長及び/又は大きな圧縮領域を使用することもできる。また、より高い圧縮値において、ある種のノンリニア特性が発生した場合でも、上記したようなノンリニア性を考慮に入れて、上記ステッパモータ等、力を加えるデバイスを補償することで、従来よりもかなり大きな波長領域において予測可能な波長可変性を与えることができる。
ここで、図3及び図4には、図1で前述した上記ファイバ圧縮デバイス90の一つの実施例を示すが、これは、約3.75インチ、すなわち、9.53cmの長さを有し、かつ、上記デバイス90を支持するためのベース200を備えている。上記ファイバ24は、金属チューブ(又はスリーブ)202を通して供給され、この金属チューブは上記ピストン92に取り付けられている。上記ピストン92は、約3.5cmの長さを有しており、上記ベース200内の半円形のガイド204に沿ってスライドするようになっている。上記ファイバ24は、上記チューブ202の長さに沿って上記チューブ202に取り付けられており、上記ファイバグレーティングの圧縮中に上記ファイバ24がスライドしてしまうのを防止している。上記ファイバ24は、上記ガイド202を出て、上記ファイバグレーティング26(図示せず)は、連なった3つのフェルール206を介して通されている。上記フェルールは、それぞれが約1.3cmの長さを有し、所定の均等な約1mmの離間(ギャップ)208をそれぞれの間に有している。この様にすることによって、固定されていない部分のファイバ部分を上記圧縮領域外へと突き出させることができ、ファイバのバックリングの可能性を最低限とすることができる。
上記複数のフェルールは、上記ベース200内の半円形トラック209に沿って自在にスライドするようにされている。上記ファイバグレーティング26の出力としての上記ファイバ34は、上記ベース200に取り付けられている別の金属チューブ210に送られる。また、上記ファイバ34は、上記チューブ210の長さにわたって上記チューブ210に固定されており、上記ファイバ34が、上記ファイバ34の圧縮中にスライドしてしまわないようにしている。溝221を備えたカバー220は、上記フェルール206の頂部に設けられていて、それらを安定化させているとともに、それらを“クラムシェル”型の配置で整列させている。圧縮が行われる全ギャップは、約3cmである。これと別の圧縮長さであっても所望により用いることができる。また、上記フェルール、上記ピストン92、ベース200及び上記圧縮デバイス90のこれらとは別の部品すべてについて、別のサイズ及び離間を所望により用いることができる。また、上記離間208は、所望により圧縮される上記全ファイバのほとんどにわたって形成されるように設定することもできる。さらに、上記圧縮ファイバが開放された場合に、上記フェルールの離間208にスプリング(図示せず)を使用して、上記フェルール206をそれらの本来の位置に戻してやることもできる。
上記チューブ202は、さらに、上記ピストンにカバー226によって固定されており、上記ピストン92は、上側に覆いかぶさっているアーム222,224によって上記ガイド204に保持されている。また、上記チューブ210は、カバー228によってさらに上記ベース200に取り付けられている。上記チューブ入り口202及び上記チューブの出口210における上記ファイバの破断を可能な限り低減させるため、上記ファイバは、上記チューブの上記端部までは接着すべきではなく、それぞれのチューブ端に至る以前に上記接着が終わっているようにするべきである。この様にすることによって、上記チューブが、上記圧縮デバイス90の上記入り口点及び上記出口点において上記ファイバに加えられる歪みの量を規制するシースとして機能することになる。
図3、図4に示すような3つのフェルールを使用するかわりに、所望により、より多く、又は、より少ないフェルールを使用することもできる。また、上記複数のフェルールをスライドさせるかわりに、それらの一つ又はそれ以上を上記ベース200に固定して、上記ファイバがそれらの内部をスライドするようにしても良い。さらに、上記グレーティング26は、例えば、プラスチックコーティング等いかなるコーティングも引き剥がされていても良く、又、適切に上記コーティングが圧縮できるようにされていれば上記コーティングが所望により上記ファイバ上に残されていても良い。
さらにまた、上記グレーティング26の双方の出力を使用するかわりに、上記グレーティングとして、所望に応より反射モードで使用することもできる。この場合には、上記ファイバ34は、上記圧縮デバイス90には必要ではない。
図5には、上記ファイバの両端を固定するかわりに、固定された一つの端部を有するファイバグレーティングを用いた場合に、上記ファイバ300の未使用端部が、固定された(動かない)フェルール302を介して通され、上記フェルール304の一端においてホールが、硬い面(又はプレート)306によってブロックされているのが示されている。上記プレート306が石英製であれば、上記ファイバ300の端部からの反射は、最低化することができる。
上記ファイバグレーティング26のオプティカルファイバは(図1)、いかなるガラス(例えばSiO2、燐酸ガラス、又は、これらとは別のガラス)又は、ガラス及びプラスチック、又は、単なるプラスチックで製造されていても良い。また、オプティカルファイバのかわりに、光を収容し、増幅可能なものであれば、例えば平面導波路といったいかなる別の光導波路を使用していても良い。また、ブラッググレーティングのかわりに、反射波長が圧縮力を加えることで可変とされるいかなる反射型光学要素であっても所望に応じて使用することができる。さらに、知られているように、ファイバブラッググレーティングは、反射または透過型のいずれも使用することができる。本願の開示は、反射波長のシフトを考慮して行ってきたが、本発明は、透過を用いても等しく使用することができる。
また、本発明は、圧縮デバイス90(図1)についてのいくつかの特定の実施例をもって説明してきたが、上記ファイバを長手方向軸に圧縮できるいかなるデバイスであっても、上記ファイバをバックリングさせることなく圧縮させられるようなものであれば使用できる。さらに、上記ステッパモータ98を使用するかわりに、上記ファイバグレーティングの上記長手方向軸に沿って長手方向の圧縮力を加え、反射波長を変化させることができるいかなる装置であっても所望により使用することができる。
Claims (17)
- 入射光線を規制し、かつ、伝搬させるための光導波路と、
前記入射光線を反射波長において反射させるための前記光導波路に埋め込まれた反射要素と、
所定範囲より大きな波長可変範囲に亘って前記反射要素の前記反射波長を変化させるように前記反射要素を圧縮するための圧縮手段と、
を備え、
前記所定範囲が少なくとも5nmであることを特徴とする波長可変反射要素。 - 前記所定範囲が10nmであることを特徴とする請求項1に記載の波長可変反射要素。
- 前記所定範囲が15nmであることを特徴とする請求項1に記載の波長可変反射要素。
- 前記所定範囲が20nmであることを特徴とする請求項1に記載の波長可変反射要素。
- 前記所定範囲が30nmであることを特徴とする請求項1に記載の波長可変反射要素。
- 前記反射要素は、ブラッググレーティングを有していることを特徴とする請求項1〜5のいずれかに記載の波長可変反射要素。
- 前記光導波路は、オプティカルファイバであることを特徴とする請求項1〜5のいずれかに記載の波長可変反射要素。
- 前記光導波路は、石英を有していることを特徴とする請求項1〜5のいずれかに記載の波長可変反射要素。
- 内部に反射要素が埋め込まれた光導波路を圧縮して、前記反射要素の反射波長を変化させ、かつ、前記反射波長を所定範囲を越えて可変とする圧縮ステップを有し、前記所定範囲が少なくとも5nmであることを特徴とする反射要素の反射波長可変方法。
- 前記所定範囲が10nmであることを特徴とする請求項9に記載の方法。
- 前記所定範囲が15nmであることを特徴とする請求項9に記載の方法。
- 前記所定範囲が20nmであることを特徴とする請求項9に記載の方法。
- 前記所定範囲が30nmであることを特徴とする請求項9に記載の方法。
- 前記圧縮ステップは、さらにブラッググレーティングを圧縮するステップを有することを特徴とする請求項9〜13のいずれかに記載の方法。
- 前記反射要素は、埋め込まれたブラッググレーティングを有することを特徴とする請求項9〜13のいずれかに記載の方法。
- 前記光導波路は、石英を有していることを特徴とすることを特徴とする請求項9〜13のいずれかに記載の方法。
- 前記光導波路は、オプティカルファイバであることを特徴とする請求項9〜13のいずれかに記載の波長可変反射要素。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/316,183 | 1994-09-30 | ||
US08/316,183 US5469520A (en) | 1994-09-30 | 1994-09-30 | Compression-tuned fiber grating |
PCT/US1995/012146 WO1996010765A1 (en) | 1994-09-30 | 1995-09-21 | Compression-tuned fiber grating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10505920A JPH10505920A (ja) | 1998-06-09 |
JP3776930B2 true JP3776930B2 (ja) | 2006-05-24 |
Family
ID=23227887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50901996A Expired - Lifetime JP3776930B2 (ja) | 1994-09-30 | 1995-09-21 | 圧縮により波長可変としたファイバグレーティング |
Country Status (7)
Country | Link |
---|---|
US (1) | US5469520A (ja) |
EP (1) | EP0783718B1 (ja) |
JP (1) | JP3776930B2 (ja) |
CA (1) | CA2200723C (ja) |
DE (1) | DE69526357T2 (ja) |
ES (1) | ES2173199T3 (ja) |
WO (1) | WO1996010765A1 (ja) |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5548671A (en) * | 1994-10-13 | 1996-08-20 | Northern Telecom Limited | Programmable, differential wavelength discriminator |
JP3097492B2 (ja) * | 1995-04-17 | 2000-10-10 | 住友電気工業株式会社 | レーザ光源とその製作方法 |
US6111681A (en) | 1996-02-23 | 2000-08-29 | Ciena Corporation | WDM optical communication systems with wavelength-stabilized optical selectors |
US5774619A (en) * | 1996-05-15 | 1998-06-30 | Hughes Electronics Corporation | Precision deformation mechanism and method |
US5912910A (en) * | 1996-05-17 | 1999-06-15 | Sdl, Inc. | High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices |
US6218661B1 (en) | 1996-09-09 | 2001-04-17 | Schlumberger Technology Corporation | Methods and apparatus for mechanically enhancing the sensitivity of transversely loaded fiber optic sensors |
JPH10206753A (ja) * | 1997-01-28 | 1998-08-07 | Nec Corp | 波長可変光デバイス |
US5978119A (en) * | 1997-02-18 | 1999-11-02 | Lucent Technologies Inc. | System and method for synchronizing an optical source and a router in a wavelength division multiplexed fiber optic network |
US5914972A (en) * | 1997-03-24 | 1999-06-22 | Sdl, Inc. | Thermal compensators for waveguide DBR laser sources |
US6188705B1 (en) | 1997-05-16 | 2001-02-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber grating coupled light source capable of tunable, single frequency operation |
US6078709A (en) * | 1997-11-12 | 2000-06-20 | Lucent Technologies Inc. | Method and apparatus for monitoring multi-wavelength optical systems |
US5982791A (en) * | 1998-01-14 | 1999-11-09 | Hewlett-Packard Company | Wavelength tracking in adjustable optical systems |
JPH11284263A (ja) * | 1998-01-30 | 1999-10-15 | Hitachi Cable Ltd | 超広帯域波長分散補償デバイス,およびそれを用いた光通信システム |
DE19808222A1 (de) | 1998-02-27 | 1999-09-02 | Abb Research Ltd | Faser-Bragg-Gitter Drucksensor mit integrierbarem Faser-Bragg-Gitter Temperatursensor |
EP1059878B1 (en) | 1998-03-05 | 2005-11-09 | Gil M. Vardi | Optical-acoustic imaging device |
JP3468097B2 (ja) * | 1998-03-17 | 2003-11-17 | 日立電線株式会社 | 超広帯域波長分散補償・増幅デバイス |
JP2002507760A (ja) | 1998-03-17 | 2002-03-12 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 受動補償光ファイバ |
US6507693B2 (en) | 1998-05-06 | 2003-01-14 | Cidra Corporation | Optical filter device having creep-resistant optical fiber attachments |
JP3682374B2 (ja) * | 1998-07-07 | 2005-08-10 | 古河電気工業株式会社 | 光ファイバ型光部品 |
CA2349422A1 (en) | 1998-11-06 | 2000-05-18 | Corning Incorporated | Athermal optical waveguide grating device |
US6422084B1 (en) | 1998-12-04 | 2002-07-23 | Weatherford/Lamb, Inc. | Bragg grating pressure sensor |
US6452667B1 (en) | 1998-12-04 | 2002-09-17 | Weatherford/Lamb Inc. | Pressure-isolated bragg grating temperature sensor |
JP4522588B2 (ja) * | 1998-12-04 | 2010-08-11 | シドラ コーポレイション | 圧縮同調式のブラッグ回折格子およびレーザ |
US6298184B1 (en) * | 1998-12-04 | 2001-10-02 | Cidra Corporation | Method and apparatus for forming a tube-encased bragg grating |
WO2000037969A2 (en) * | 1998-12-04 | 2000-06-29 | Cidra Corporation | Compression-tuned bragg grating and laser |
US6982996B1 (en) | 1999-12-06 | 2006-01-03 | Weatherford/Lamb, Inc. | Large diameter optical waveguide, grating, and laser |
US6763043B2 (en) * | 1998-12-04 | 2004-07-13 | Cidra Corporation | Tunable grating-based dispersion compensator |
US6490931B1 (en) | 1998-12-04 | 2002-12-10 | Weatherford/Lamb, Inc. | Fused tension-based fiber grating pressure sensor |
US6229827B1 (en) | 1998-12-04 | 2001-05-08 | Cidra Corporation | Compression-tuned bragg grating and laser |
US6278811B1 (en) | 1998-12-04 | 2001-08-21 | Arthur D. Hay | Fiber optic bragg grating pressure sensor |
US6597711B2 (en) * | 1998-12-04 | 2003-07-22 | Cidra Corporation | Bragg grating-based laser |
US6810178B2 (en) * | 1998-12-04 | 2004-10-26 | Cidra Corporation | Large diameter optical waveguide having blazed grating therein |
US6792009B2 (en) | 1998-12-04 | 2004-09-14 | Cidra Corporation | Tunable grating-based channel filter parking device |
US6621957B1 (en) | 2000-03-16 | 2003-09-16 | Cidra Corporation | Temperature compensated optical device |
AU756444B2 (en) | 1998-12-04 | 2003-01-16 | Weatherford Technology Holdings, Llc | Bragg grating pressure sensor |
US6249624B1 (en) | 1998-12-04 | 2001-06-19 | Cidra Corporation | Method and apparatus for forming a Bragg grating with high intensity light |
EP1145059B1 (en) * | 1998-12-04 | 2004-04-21 | CiDra Corporation | Tube-encased fiber grating |
US6865194B1 (en) | 1998-12-04 | 2005-03-08 | Cidra Corporation | Strain-isolated Bragg grating temperature sensor |
US6310990B1 (en) | 2000-03-16 | 2001-10-30 | Cidra Corporation | Tunable optical structure featuring feedback control |
US6271766B1 (en) | 1998-12-23 | 2001-08-07 | Cidra Corporation | Distributed selectable latent fiber optic sensors |
GB9828584D0 (en) | 1998-12-23 | 1999-02-17 | Qps Technology Inc | Method for nonlinear, post tunable, temperature compensation package of fiber bragg gratings |
AU2528200A (en) * | 1999-02-12 | 2000-08-29 | Jds Uniphase Corporation | Method and apparatus for thermal control of bragg grating devices |
GB9903450D0 (en) * | 1999-02-16 | 1999-04-07 | Oxford Fiber Optic Tools Ltd | Wavelength turntable power meter |
GB2346965B (en) | 1999-02-18 | 2002-01-16 | Oxford Fiber Optic Tools Ltd | Fibre optic grating sensor |
US6317528B1 (en) | 1999-08-23 | 2001-11-13 | Corning Incorporated | Temperature compensated integrated planar bragg grating, and method of formation |
US6996316B2 (en) * | 1999-09-20 | 2006-02-07 | Cidra Corporation | Large diameter D-shaped optical waveguide and coupler |
US6439055B1 (en) | 1999-11-15 | 2002-08-27 | Weatherford/Lamb, Inc. | Pressure sensor assembly structure to insulate a pressure sensing device from harsh environments |
US6449402B1 (en) | 1999-11-19 | 2002-09-10 | Finisar Corporation | Method and apparatus for compensating an optical filter |
US6403949B1 (en) | 1999-11-23 | 2002-06-11 | Cidra Corporation | Method and apparatus for correcting systematic error in a wavelength measuring device |
US6462329B1 (en) | 1999-11-23 | 2002-10-08 | Cidra Corporation | Fiber bragg grating reference sensor for precise reference temperature measurement |
US6346702B1 (en) | 1999-12-10 | 2002-02-12 | Cidra Corporation | Fiber bragg grating peak detection system and method |
US6389200B1 (en) * | 1999-12-28 | 2002-05-14 | Alcatel Usa Sourcing, L.P. | Wide tuning range fiber bragg grating filter (FBGF) using muscle wire |
US6626043B1 (en) | 2000-01-31 | 2003-09-30 | Weatherford/Lamb, Inc. | Fluid diffusion resistant glass-encased fiber optic sensor |
US6356684B1 (en) | 2000-04-14 | 2002-03-12 | General Dynamics Advanced Technology Systems, Inc. | Adjustable optical fiber grating dispersion compensators |
US6477309B2 (en) * | 2000-06-13 | 2002-11-05 | Bti Photonics Inc. | Temperature-compensating arrangements and methods for optical fiber |
US6374015B1 (en) * | 2000-08-01 | 2002-04-16 | Rich Key Technologies Limited | Temperature-compensating device with tunable mechanism for optical fiber gratings |
US6396982B1 (en) * | 2000-08-01 | 2002-05-28 | Rich Key Technologies Limited | Bimetal-based temperature stabilized multi-FBG package with tunable mechanism |
TW476013B (en) | 2000-08-07 | 2002-02-11 | Ind Tech Res Inst | Electric fiber grating filter with switchable central wavelength |
US6594410B2 (en) | 2000-08-26 | 2003-07-15 | Cidra Corporation | Wide range tunable optical filter |
US7386204B1 (en) | 2000-08-26 | 2008-06-10 | Cidra Corporation | Optical filter having a shaped filter function |
US6453108B1 (en) | 2000-09-30 | 2002-09-17 | Cidra Corporation | Athermal bragg grating package with course and fine mechanical tuning |
US6580855B1 (en) * | 2000-10-10 | 2003-06-17 | The United States Of America As Represented By The Secretary Of The Navy | Bandwidth tunable gratings for dynamic dispersion compensation in lightwave |
US6470036B1 (en) * | 2000-11-03 | 2002-10-22 | Cidra Corporation | Tunable external cavity semiconductor laser incorporating a tunable bragg grating |
US6594288B1 (en) | 2000-11-06 | 2003-07-15 | Cidra Corporation | Tunable raman laser and amplifier |
US6594081B2 (en) | 2000-12-29 | 2003-07-15 | Cidra Corporation | Actuator mechanism for tuning an optical device |
US6360042B1 (en) * | 2001-01-31 | 2002-03-19 | Pin Long | Tunable optical fiber gratings device |
US6826343B2 (en) * | 2001-03-16 | 2004-11-30 | Cidra Corporation | Multi-core waveguide |
US6778735B2 (en) * | 2001-03-19 | 2004-08-17 | Micron Optics, Inc. | Tunable fiber Bragg gratings |
US6658171B2 (en) | 2001-06-14 | 2003-12-02 | Ericsson Telecomunicacoes S.A. | Optical fiber bragg grating polarizer |
EP1279975A1 (en) * | 2001-07-24 | 2003-01-29 | Alcatel | Device comprising a Bragg grating optical fiber tunable by a piezoelectric actuator |
US6738536B2 (en) * | 2001-12-20 | 2004-05-18 | Optinel Systems, Inc. | Wavelength tunable filter device for fiber optic systems |
JP2005502903A (ja) * | 2002-05-06 | 2005-01-27 | エリクソン テレコムニカソンイス ソシエダット アノニマ | 光ファイバーのブラッグ格子偏光器 |
US6888981B2 (en) * | 2002-09-13 | 2005-05-03 | Honeywell International Inc. | Wavelength division multiplexing coupler with loss element |
FR2845166B1 (fr) | 2002-09-30 | 2004-10-29 | Commissariat Energie Atomique | Dispositif d'accord d'un reseau de bragg, par compression au moyen d'un actionneur piezoelectrique |
US7245789B2 (en) | 2002-10-07 | 2007-07-17 | Vascular Imaging Corporation | Systems and methods for minimally-invasive optical-acoustic imaging |
EP1558955A4 (en) * | 2002-10-15 | 2006-04-19 | Micron Optics Inc | FABRY-PEROT FIBER FILTERS WITHOUT PLATE |
US7063466B2 (en) * | 2002-12-20 | 2006-06-20 | Micron Optics, Inc. | Selectable and tunable ferrule holder for a fiber Fabry-Perot filter |
US6982997B1 (en) | 2003-09-16 | 2006-01-03 | Np Photonics, Inc. | Single-frequency narrow linewidth 1μm fiber laser |
US7003199B2 (en) * | 2003-12-26 | 2006-02-21 | Korea Institute Of Science And Technology | Tunable dispersion compensator for optical communication system |
CA2526604C (en) * | 2004-11-12 | 2014-01-07 | Robert B. Walker | Optical device incorporating a tilted bragg grating |
US7599588B2 (en) | 2005-11-22 | 2009-10-06 | Vascular Imaging Corporation | Optical imaging probe connector |
US20070201793A1 (en) * | 2006-02-17 | 2007-08-30 | Charles Askins | Multi-core optical fiber and method of making and using same |
US7801403B2 (en) * | 2007-10-30 | 2010-09-21 | Fei Luo | Optical fiber grating tuning device and optical systems employing same |
US8560048B2 (en) | 2008-10-02 | 2013-10-15 | Vascular Imaging Corporation | Optical ultrasound receiver |
CN101718904B (zh) * | 2009-11-23 | 2011-08-31 | 北京交通大学 | 用于光纤光栅或光纤受激布里渊散射的多维调节装置 |
BR112015026520B1 (pt) | 2013-05-14 | 2020-12-08 | Mitsubishi Heavy Industries, Ltd. | estrutura ligada e método de detecção de condição de ligação |
US10345515B2 (en) | 2015-01-15 | 2019-07-09 | Mitsubishi Heavy Industries, Ltd. | Bonded structure, method for manufacturing the same, and bonding state detection method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3338053A1 (de) * | 1983-10-20 | 1985-05-02 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Vorrichtung zur veraenderung von phase und/oder polarisation der in einem lichtwellenleiter verlaufenden lichtwelle und verfahren zur herstellung einer solchen vorrichtung |
US4636031A (en) * | 1983-10-28 | 1987-01-13 | Chevron Research Company | Process of tuning a grated optical fiber and the tuned optical fiber |
JP2521708B2 (ja) * | 1984-08-13 | 1996-08-07 | ユナイテッド テクノロジーズ コーポレーション | 光ファイバ内に格子を形成する方法 |
US4900119A (en) * | 1988-04-01 | 1990-02-13 | Canadian Patents & Development Ltd. | Wavelength selective optical devices using optical directional coupler |
US5007705A (en) * | 1989-12-26 | 1991-04-16 | United Technologies Corporation | Variable optical fiber Bragg filter arrangement |
US5042898A (en) * | 1989-12-26 | 1991-08-27 | United Technologies Corporation | Incorporated Bragg filter temperature compensated optical waveguide device |
GB9007912D0 (en) * | 1990-04-06 | 1990-06-06 | British Telecomm | A method of forming a refractive index grating in an optical waveguide |
GB9024326D0 (en) * | 1990-11-08 | 1990-12-19 | British Telecomm | Method of forming optical fibre gratings |
US5367589A (en) * | 1993-10-22 | 1994-11-22 | At&T Bell Laboratories | Optical fiber package |
-
1994
- 1994-09-30 US US08/316,183 patent/US5469520A/en not_active Expired - Lifetime
-
1995
- 1995-09-21 EP EP95935072A patent/EP0783718B1/en not_active Expired - Lifetime
- 1995-09-21 ES ES95935072T patent/ES2173199T3/es not_active Expired - Lifetime
- 1995-09-21 JP JP50901996A patent/JP3776930B2/ja not_active Expired - Lifetime
- 1995-09-21 DE DE69526357T patent/DE69526357T2/de not_active Expired - Lifetime
- 1995-09-21 WO PCT/US1995/012146 patent/WO1996010765A1/en active IP Right Grant
- 1995-09-21 CA CA002200723A patent/CA2200723C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69526357D1 (de) | 2002-05-16 |
WO1996010765A1 (en) | 1996-04-11 |
CA2200723C (en) | 2006-08-22 |
DE69526357T2 (de) | 2002-10-17 |
EP0783718B1 (en) | 2002-04-10 |
ES2173199T3 (es) | 2002-10-16 |
US5469520A (en) | 1995-11-21 |
CA2200723A1 (en) | 1996-04-11 |
EP0783718A1 (en) | 1997-07-16 |
JPH10505920A (ja) | 1998-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3776930B2 (ja) | 圧縮により波長可変としたファイバグレーティング | |
JP3824323B2 (ja) | 圧縮により波長可変としたファイバレーザ | |
CA2134958C (en) | Apparatus and method of bragg intra-grating strain control | |
US6826343B2 (en) | Multi-core waveguide | |
EP1135701B1 (en) | Compression-tuned bragg grating and laser | |
Mohammad et al. | Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression | |
US5699468A (en) | Bragg grating variable optical attenuator | |
US4830451A (en) | Technique and apparatus for fabricating a fiber Fabry-Perot etalon | |
US6381388B1 (en) | Chromatic dispersion compensation | |
US7801403B2 (en) | Optical fiber grating tuning device and optical systems employing same | |
WO1991010151A1 (en) | Incorporated bragg filter temperature compensated optical waveguide device | |
CA2215078A1 (en) | Optical coupler | |
WO2000037969A2 (en) | Compression-tuned bragg grating and laser | |
WO2001090805A2 (en) | Tunable filter with core mode blocker | |
US20030185509A1 (en) | Optical grating-based filter | |
US20030215185A1 (en) | Large diameter optical waveguide having long period grating therein | |
US6757462B2 (en) | Bragg grating filter optical waveguide device | |
US6396855B1 (en) | Fibre gratings | |
WO1997031289A1 (en) | Apparatus and method for controlling the spectral response of a waveguide bragg grating | |
US20130272656A1 (en) | Double-Sided Compression-Tuned Fiber Bragg Grating | |
RU2730879C1 (ru) | Устройство для перестройки длины волны генерации волоконного лазера | |
US6658171B2 (en) | Optical fiber bragg grating polarizer | |
CA2291385A1 (en) | Tunable optical fiber gratings device | |
Yi et al. | Fiber optic transversal filter design based on spectral tapping of broadband light using fiber gratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20050927 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050927 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20051114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060224 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |