JP3771364B2 - 光ct装置及び画像再構成方法 - Google Patents

光ct装置及び画像再構成方法 Download PDF

Info

Publication number
JP3771364B2
JP3771364B2 JP34298597A JP34298597A JP3771364B2 JP 3771364 B2 JP3771364 B2 JP 3771364B2 JP 34298597 A JP34298597 A JP 34298597A JP 34298597 A JP34298597 A JP 34298597A JP 3771364 B2 JP3771364 B2 JP 3771364B2
Authority
JP
Japan
Prior art keywords
light
optical
measurement target
container
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34298597A
Other languages
English (en)
Other versions
JPH11173976A (ja
Inventor
悦子 大前
之雄 上田
豊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP34298597A priority Critical patent/JP3771364B2/ja
Priority claimed from PCT/JP1999/002960 external-priority patent/WO2000075633A1/ja
Publication of JPH11173976A publication Critical patent/JPH11173976A/ja
Application granted granted Critical
Publication of JP3771364B2 publication Critical patent/JP3771364B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体等の測定対象部位に光を投射し、その透過光の光学特性に関する特徴量から測定対象部位の光学特性に関する特徴量の空間的分布を計算する光CT装置及び画像再構成方法に関するものである。
【0002】
【従来の技術】
現在医療用画像診断装置として、X線CT、超音波CT、MRIなどが用いられている。それらに加えて最近は、近赤外光が生体組織に対して高い透過性を有すること、生体組織中の酸素濃度を計測し得ること、X線などと比較して安全なことなどの理由で、光CTが注目を集めている。
【0003】
光CT装置は主に、測定対象部位の各箇所に光を投射する光投射部、光投射部から投射され、測定対象部位内部を透過して成る透過光強度を計測する光検出部、計測された光強度及び光路から測定対象部位内部の吸収係数分布画像を再構成する演算部とから構成されている。
【0004】
画像再構成方法としては、例えばR.L.Barbourらによる以下の方法が知られている("Imaging of Multiple Targets in Dence Scattering Media"(H.L.Graber,J.Chang,R.L.Barbour,SPIE Vol.2570,p.219-p.234))。すなわち、測定対象部位表面の複数の箇所から測定対象部位に向かって光を投射し、同じく測定対象部位表面の複数の箇所で検出された透過光強度と、測定対象部位を複数の微小体積要素に分割した場合の各体積要素において計算された光路長から、各体積要素の吸収物質濃度を求める方法である。この際に、測定対象部位と外形が等しく、かつ、内部に吸収のない別ファントムを用いて、検出光量(透過光強度)の基準値を測定することが必要となる。
【0005】
また、光投射部と測定対象部位との間に、測定対象部位とほぼ同様の屈折率、及び、散乱係数を有する媒体(以下光学的インターフェース材という)を入れ、測定対象部位表面における光の反射、散乱等を防止し、計測精度を上げることが、例えば特開平6−129984号公報に開示されている。
【0006】
【発明が解決しようとする課題】
上記画像再構成方法において、各体積要素の吸収物質濃度を求めることが可能となり、求められた濃度を例えば濃淡画像で表示することにより、測定対象部位内部の吸収係数分布画像を再構成することができる。
【0007】
しかし、上記画像再構成方法及び上記画像再構成方法を用いる光CT装置には以下のような問題点が有る。
【0008】
第1に、上記画像再構成方法においては、基準となる検出光量を測定するために、測定対象部位と同一の外形を有し、かつ、内部に吸収のない別ファントムを作成する必要がある。従って、異なる測定対象部位の計測を行う場合は異なる別ファントムを作成しなくてはならないため、測定時間が著しく増加する。また、測定対象部位が生体のように複雑な構造を有する場合は、このような別ファントムの作成は計測精度上困難であり、現実的ではない。
【0009】
第2に、上記画像再構成方法においては、測定対象部位を複数の微小体積要素に分割した場合の各体積要素において計算された光路長を用いて測定対象部位内部の吸収係数分布画像を再構成するため、外形が異なる測定対象部位の計測を行う場合は、再度測定対象部位を複数の微小体積要素に分割し、各体積要素における光路長を計算し直さなければならない。従って、画像再構成に著しい時間を必要とする。
【0010】
本発明は、上記問題点を解決し、測定対象部位内部の吸収係数分布画像を精度よくかつ高速に再構成することが可能な光CT装置及び画像再構成方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の光CT装置は、内部に光透過性の媒体が入れられた容器と、容器の1以上の部位から、容器の内部に光を投射する投光手段と、容器の1以上の部位で、投光手段によって投射された光を検出する光検出手段と、容器の内部に媒体が入れられている状態で、投光手段及び光検出手段を用いて実測された、媒体を透過して成る透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で、投光手段及び光検出手段を用いて実測された、媒体および/または測定対象部位を透過して成る透過光の光学特性に関する特徴量の比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算する演算手段とを備えることを特徴としている。
【0012】
上記構成のように、一定形状の容器を用い、媒体を満たした状態で計測した透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で計測した透過光の光学特性に関する特徴量との比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算することにより、測定対象部位と同形・同質の別ファントムを作成して基準光量を計測する必要が無くなる。
【0013】
また、本発明の光CT装置は、演算手段が、容器の内部を複数個の体積要素に分割された集合体モデルとみなすと共に、投光手段及び光検出手段を用いた場合における、各体積要素の光学特性に関する特徴量の変化が光検出手段によって検出される透過光の光学特性に関する特徴量に及ぼす影響度を計算する第1の演算手段と、容器の内部に媒体が入れられている状態で、投光手段及び光検出手段を用いて実測された、媒体を透過して成る透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で、投光手段及び光検出手段を用いて実測された、媒体および/または測定対象部位を透過して成る透過光の光学特性に関する特徴量とを比較した量を計算する第2の演算手段と、第1の演算手段により求められた影響度と、第2の演算手段により求められた光学特性に関する特徴量を比較した量から、各体積要素の光学特性に関する特徴量を演算することにより、測定対象部位の光学特性に関する特徴量の空間的分布を計算する第3の演算手段とを備えることを特徴とすることが好適である。
【0014】
上記構成のように、一定形状の容器の内部空間を体積要素に分割して各体積要素の影響度を計算しておけば、測定対象部位の形状等が変化しても、影響度の再計算が不要となる。
【0015】
また、本発明の光CT装置は、透過光の光学特性に関する特徴量が、透過光の光強度であることを特徴としてもよい。
【0016】
また、本発明の光CT装置は、測定対象部位の光学特性に関する特徴量が、測定対象部位の吸収係数であることを特徴としてもよい。
【0017】
また、本発明の光CT装置は、媒体の光学特性が測定対象部位の光学特性の平均値とほぼ等しいことを特徴とすることが好適である。
【0018】
また、、本発明の光CT装置は、媒体の吸収係数が測定対象部位の吸収係数の平均値とほぼ等しいことを特徴とすることが好適である。
【0019】
また、本発明の光CT装置は、媒体の散乱係数が測定対象部位の散乱係数の平均値とほぼ等しいことを特徴とすることが好適である。
【0020】
また、本発明の光CT装置は、媒体の屈折率が測定対象部位の屈折率の平均値とほぼ等しいことを特徴とすることが好適である。
【0021】
また、本発明の光CT装置は、媒体の旋光度が測定対象部位の旋光度の平均値とほぼ等しいことを特徴とすることが好適である。
【0022】
また、本発明の光CT装置は、媒体の偏光度が測定対象部位の偏光度の平均値とほぼ等しいことを特徴とすることが好適である。
【0023】
吸収係数、散乱係数、屈折率、旋光度、偏光度等の光学特性が測定対象部位のそれら(平均値)とほぼ等しい媒体を用いることで、測定対象部位表面における光の反射、散乱等を防止し、計測精度を上げることができ、さらに、従来のイメージング方法と比較して、イメージングの精度をあげることができる。
【0024】
また、本発明の光CT装置は、容器の開口部に、外部からの光を遮光する遮光手段をさらに有することを特徴とすることが好適である。
【0025】
上記構成とすることで、外部から容器内に侵入する光を遮光し、計測精度を向上させることができる。
【0026】
また、本発明の光CT装置は、容器の内部を減圧する減圧手段をさらに有することを特徴とすることが好適である。
【0027】
上記構成とすることで、乳房などの測定対象部位の体積を広げて測定することが可能となる。
【0028】
上記課題を解決するために、本発明の画像再構成方法は、光透過性の媒体が内部に入れられた容器の1以上の部位から、投光手段を用いて容器の内部に光を投射し、投光手段によって投射された光を、容器の1以上の部位で、光検出手段を用いて検出し、媒体を透過して成る透過光の光学特性に関する特徴量を得る第1の計測工程と、容器の内部に入れられた媒体の一部を測定対象部位に置き換えた状態で、容器の1以上の部位から、投光手段を用いて容器の内部に光を投射し、投光手段によって投射された光を、容器の1以上の部位で、光検出手段を用いて検出し、媒体および/または測定対象部位を透過して成る透過光の光学特性に関する特徴量を得る第2の計測工程と、第1の計測工程で得た透過光の光学特性に関する特徴量と、第2の計測工程で得た光学特性に関する特徴量の比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算する演算工程とを備えたことを特徴としている。
【0029】
上記構成のように、一定形状の容器を用い、媒体を満たした状態で計測した透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で計測した透過光の光学特性に関する特徴量との比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算することにより、測定対象部位と同形・同質の別ファントムを作成して基準光量を計測する必要が無くなる。
【0030】
また、本発明の画像再構成方法は、演算工程が、容器の内部を複数個の体積要素に分割された集合体モデルとみなすと共に、投光手段及び光検出手段を用いた場合における、各体積要素の光学特性に関する特徴量の変化が光検出手段によって検出される透過光の光学特性に関する特徴量に及ぼす影響度を計算する第1の演算工程と、容器の内部に媒体が入れられている状態で、投光手段及び光検出手段を用いて実測された、媒体を透過して成る透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で、投光手段及び光検出手段を用いて実測された、媒体および/または測定対象部位を透過して成る透過光の光学特性に関する特徴量とを比較した量を計算する第2の演算工程と、第1の演算工程により求められた影響度と、第2の演算工程により求められた光学特性に関する特徴量とを比較した量から、各体積要素の光学特性に関する特徴量を演算することにより、測定対象部位の光学特性に関する特徴量の空間的分布を計算する第3の演算工程とを備えたことを特徴とすることが好適である。
【0031】
上記構成のように、一定形状の容器の内部空間を体積要素に分割して各体積要素の影響度を計算しておけば、測定対象部位の形状等が変化しても、影響度の再計算が不要となる。
【0032】
また、本発明の画像再構成方法は、透過光の光学特性に関する特徴量が、透過光の光強度であることを特徴としてもよい。
【0033】
また、本発明の画像再構成方法は、測定対象部位の光学特性に関する特徴量が、測定対象部位の吸収係数であることを特徴としてもよい。
【0034】
また、本発明の画像再構成方法は、媒体の光学特性が測定対象部位の光学特性の平均値とほぼ等しいことを特徴とすることが好適である。
【0035】
また、本発明の画像再構成方法は、媒体の吸収係数が測定対象部位の吸収係数の平均値とほぼ等しいことを特徴とすることが好適である。
【0036】
また、本発明の画像再構成方法は、媒体の散乱係数が測定対象部位の散乱係数の平均値とほぼ等しいことを特徴とすることが好適である。
【0037】
また、本発明の画像再構成方法は、媒体の屈折率が測定対象部位の屈折率の平均値とほぼ等しいことを特徴とすることが好適である。
【0038】
また、本発明の画像再構成方法は、媒体の旋光度が測定対象部位の旋光度の平均値とほぼ等しいことを特徴とすることが好適である。
【0039】
また、本発明の画像再構成方法は、媒体の偏光度が測定対象部位の偏光度の平均値とほぼ等しいことを特徴とすることが好適である。
【0040】
吸収係数、散乱係数、屈折率、旋光度、偏光度等の光学特性が測定対象部位のそれら(平均値)とほぼ等しい媒体を用いることで、測定対象部位表面における光の反射、散乱等を防止し、計測精度を上げることができ、さらに、従来のイメージング方法と比較して、イメージングの精度をあげることができる。
【0041】
【発明の実施の形態】
本発明の実施形態に係る光CT装置を図面を用いて説明する。まず本発明の実施形態に係る光CT装置の構成について説明する。図1は、本発明の実施形態に係る光CT装置のシステム構成図、図2は、本発明の実施形態に係る光CT装置の使用状態を表す図、図3は、本発明の実施形態に係る光CT装置の容器周辺の構成図である。光CT装置10は、主に、測定対象部位200を入れる容器12、容器12の内部に光を投射する投光部、投光部によって投射された光を検出する光検出部及び、光検出部によって検出された検出光量から測定対象部位200の吸収係数の空間的分布を計算する演算/制御部14から構成されている。
【0042】
容器12は、測定すべき測定対象部位200(本実施形態においては、図2に示すように測定対象部位200として女性の乳房を想定している)を十分に収容できる大きさを有しており、上面に開口部を持った円筒形状となっている。容器12の側面には、n(nは2以上の整数)個の光投射/検出口16が、容器12の深さ方向及び周回方向の異なった位置に3次元的に配置されており(図3参照)、ここから容器12内の様々な深さ、様々な方向へ光を投射することが可能となっているとともに、容器12内の様々な深さ、様々な方向からの光を検出することが可能となっている。また、容器12は、遮光性の材料から形成されており、光投射/検出口16以外から容器12の内部に光が入射することを防止している。さらに、容器12の開口部は、遮光板18で覆うことが可能となっており、開口部から容器12の内部に光が入射することを防止している。
【0043】
容器12の内部には、光学的インターフェース材20が満たされている。光学的インターフェース材20は、測定対象部位200と容器12との間隙を埋めることによって測定対象部位200の表面における光学特性の不連続性を減少させる役目を果たす物質である。具体的には、吸収係数、散乱係数、屈折率、旋光度、偏光度等の光学特性のうち1つ以上の特性を、測定対象部位200の吸収係数の平均値、散乱係数の平均値、屈折率の平均値、旋光度の平均値、偏光度の平均値等とほぼ等しくした媒体を言い、測定対象部位200が人体の場合は、例えば、屈折率が生体とほぼ等しい水に、散乱係数についてはシリカ、イントラリピッド(脂肪乳剤)等、吸収係数については特定波長で特有の吸収係数を有するインク等、旋光度、偏光度についてはグルコースや果糖等を溶かし、光学特性を測定対象部位200に合わせたものなどが用いられる。ここで、”ほぼ等しい”とは、計測精度等の観点から同一あるいは同一とみなせることを意味する。
【0044】
投光部は、光源22と光スイッチ24とから構成される。光源22は、半導体レーザを用いており、投射光を供給できるようになっている。また、光スイッチ24は、1入力n出力の光スイッチであり、光源用光ファイバ26を介して入力された光を、個別排他的に上記n個の光投射/検出口16に導くべく、各光投射/検出口16に接続された投射用光ファイバ28のうちいずれか1本を選択し、光源22と接続できるようになっている。
【0045】
光検出部は、n個の光検出器30と、各光検出器の入力部前段に配置されたシャッター32から構成されている。n個の光検出器30には、n個の光投射/検出口16から検出用光ファイバ34を介して検出光がそれぞれ入力され、各光投射/検出口16における光強度を個別排他的に検出することができるようになっている。
【0046】
また、検出器30の後段には、検出器30によって検出された光強度をA/D変換して演算/制御部14に入力するための信号処理回路36が設けられている。
【0047】
演算/制御部14は、容器10の内部に光学的インターフェース材20が満たされている状態で、各検出器30によって実測された光強度信号と、光学的インターフェース材20の一部を測定対象部位200に置き換えた状態で、各検出器30によって実測された光強度信号の比較に基づいて、測定対象部位200の吸収係数の空間的分布を求める機能を有している。具体的なアルゴリズムについては、後述の画像再構成方法の説明において詳細に述べる。演算/制御部14はまた、光源22の発光、光スイッチ24の動作及びシャッター32の開閉を制御する機能を有している。
【0048】
光CT装置10はさらに、記録/表示部38を有しており、検出した光強度信号を一時的に格納することができるとともに、演算/制御部14によって計算された測定対象部位200の吸収係数の空間的分布を濃淡表示、色分け表示などにより可視化することが可能となっている。
【0049】
続いて、本実施形態に係る画像再構成方法の基本原理について説明する。図4は、吸収係数が均一な媒質を光が透過する様子を表した図、図5は、吸収係数が不均一な媒質を光が透過する様子を表した図である。簡単のため、散乱吸収体である媒質を二次元的に広がる正方形と考え、この媒質をN(=25)個の等しい大きさの正方形の体積要素(二次元であるので、正確には面積要素)に分割する。個々の体積要素内においては吸収係数が一定と考え、斜線部等で示された体積要素は他の体積要素と比較して吸収係数が異なると考える。
【0050】
図4に示すような吸収係数が均一(吸収係数はμa)な媒体の一点から、媒体内部に光が投射され、一点で出力光を検出する場合に検出光量Sは、入射光量I、各体積要素の影響度Wj(j=1〜N)、散乱及び反射等によって入射光が媒体の外に出る割合を示す減衰定数Dsrを用いて、
【数1】
Figure 0003771364
と表される。ここで、各体積要素の影響度とは、ある一点から光を投射し、ある一点で光を検出する場合に、各体積要素の吸収係数の変化に伴う検出光量の変化割合をいい、具体的な算出方法は後述する。
【0051】
次に、図5に示すように、体積要素毎に異なる吸収係数μaj(j=1〜N)を有する媒体の各体積要素の吸収係数を、基準の吸収係数μa、及び、各体積要素の吸収係数のμaからの変化分Δμaj(j=1〜N)を用いて
【数2】
Figure 0003771364
と表し、減数定数Dsrは吸収係数が均一の場合と変わらないとすると、この場合の検出光量Oは、
【数3】
Figure 0003771364
のように表される。従って、式(3)の両辺の対数をとることで、以下の式が導かれる。
【0052】
【数4】
Figure 0003771364
ここで、式(4)は、吸収係数が均一な媒体の一点から投射され、一点に出力された光の検出光量S(以下基準光量Sという)、吸収係数が均一でない媒体の一点から投射され、一点に出力された光の検出光量O(以下測定光量Oという)、各体積要素内の影響度Wj(j=1〜N)、及び、各体積要素の吸収係数のμaからの変化分Δμaj(j=1〜N)の関数となる。上記変数のうち、基準光量S及び測定光量Oは計測によって得られ、各体積要素の影響度Wj(j=1〜N)は、計算によって得られる(詳細は後述する)ため、未知数は、各体積要素の吸収係数のμaからの変化分Δμaj(j=1〜N)のN個のみとなる。従って、異なる光投射点・光検出点の組について式(4)に示す方程式をN個連立させることにより、N個のΔμajを求めることが可能となり、媒体の吸収係数の空間的分布が計算できることになる。
【0053】
具体的には、第i番目(i=1〜N)の光投射点・光検出点の組における基準光量をSi、検出光量をOi、各体積要素の影響度Wij(j=1〜N)とすると、式(4)は式(5)のように表される。
【0054】
【数5】
Figure 0003771364
ここで、全てのiについて式(5)を並べ、行列の形式で表すと、
【数6】
Figure 0003771364
となる。
【0055】
従って、N個のΔμaj、すなわち媒体の吸収係数の空間的分布が式(7)のように求めることができる。
【0056】
【数7】
Figure 0003771364
ここで、各体積要素の影響度Wij(j=1〜N)の求め方について説明する。各体積要素に入射する連続光(光束)の定常光拡散方程式は、
【数8】
Figure 0003771364
で表される。また、媒体の内部と外部との境界条件は、
【数9】
Figure 0003771364
としている。尚、添字BLは、媒体の内部と外部との境界を表すものとする。また、式(9)は、この境界で光が完全に吸収されてしまう様な条件、例えば、媒体の周囲が真黒に塗られた状態と等価である。
【0057】
式(8)及び(9)を用いて、各光投射点・光検出点の組、すなわち第i番目(i=1〜N)の光投射点・光検出点の組に対して光の透過シミュレーション(以下第1のシミュレーションという)を行うことにより、検出光強度を計算する。但し、第1のシミュレーションでは、媒体は一定の吸収係数μaを有すると仮定し、更に、上記式(8) において完全拡散を想定することとし、容器10の大きさも1/μs’より大きいとする。第1のシミュレーションによって得られた第i番目(i=1〜N)の光投射点・光検出点の組における検出光量をdi0とする。
【0058】
続いて、式(8)及び(9)を用いて、第2のシミュレーションを行う。第2のシミュレーションでは、媒体の一つの体積要素が、吸収係数μaと異なる吸収係数μa+Δμaを有すると仮定し、各光投射点・光検出点の組に対して光の透過シミュレーションを行う。例えばΔμa=0.01mm-1とする。ことにより、検出光強度を計算する。第i番目(i=1〜N)の光投射点・光検出点の組に対して、第j番目(j=1〜N)の体積要素の吸収係数を変化させた場合の検出光量をdijとする。
【0059】
上記第1のシミュレーション及び第2のシミュレーションによって計算された検出光量を用いて各体積要素の影響度Wijは、式(10)の様に表される。
【0060】
【数10】
Figure 0003771364
従って、式(10)からWijが求まり、その結果、式(7)から、吸収係数の空間的分布が計算されることになる。
【0061】
次に、図3を参照しながら本発明の実施形態に係る画像再構成方法について説明する。本実施形態に係る画像再構成方法は、容器10の内部が光学的インターフェース材20で満たされた状態で、基準光量を計測する第1の計測工程と、容器10の内部に入れられた光学的インターフェース材20の一部を測定対象部位200(例えば人間の乳房)に置き換えた状態で、測定光量Oを計測する第2の計測工程と、基準光量Sと測定光量Oの比較に基づいて、測定対象部位200の吸収係数の空間的分布を演算する演算工程とを含んでいる。
【0062】
第1の計測工程では、基準光量Sを計測する。まず、容器10の内部空間を体積要素に分割する。分割する体積要素の数は、求めるべき吸収係数に必要な空間的分解能、並びに、演算/制御部14及び記録/表示部38の処理能力等を考慮して、任意に決めることができる。すなわち、測定対象部位200の吸収係数分布を高い分解能で計測したい場合は、分割する体積要素数を多くすればよいし、分解能よりも計測速度及び処理速度を優先させたい場合は分割する体積要素数を少なくすればよい。また、容器10の内部空間の体積要素への分割は、基準光量S及び測定光量Oの計測後に行うことも可能であるが、分割した体積要素の数だけ未知数が発生し、その結果、分割した体積要素の数と等しい個数の方程式を立てることが望ましいため、あらかじめ分割する体積要素の個数を決定しておくことが好適である。
【0063】
容器10の内部空間を体積要素に分割した後、実際の計測を行う。容器10の内部を既知の吸収係数μaを有する光学的インターフェース材20で満たし、光投射/検出口16以外からの光の侵入を防止するために、容器10の開口部を遮光板18を用いて遮蔽する。この状態で、光源22から投射された光は、光スイッチ24を切り換えることにより各光投射/検出口16a〜16hから個別排他的に容器10の内部に投射される。光源22における投射光の発光及び光スイッチ24の切換は、演算/制御部14によって制御される。
【0064】
容器10の内部に投射された光は、光投射/検出口16から光検出器30に導かれ、各光投射/検出口16a〜16hに入射する光量は個別排他的に検出される。このとき、光を投射する位置の光投射/検出口16に入射する検出光強度が著しく大きい場合には、光検出器30を保護するため、該当する位置のシャッター32を閉じることが好ましい。
【0065】
図3に示すように、8個の光投射/検出口16a〜16hを有する場合は、光投射点・光検出点の組として、8×8=64通りの組み合わせが考えられる。ただし、投射口と検出口が同じ位置である組み合わせ(例えば光投射/検出口16aから光を投射し、同じく光投射/検出口16aで光を検出する組み合わせ)で、入射する検出光強度が著しく大きくなる場合は、上記理由によりシャッター32が閉じられているので、計測値は得られない。また、投射口と検出口が相互に反対の位置である組み合わせ(例えば光投射/検出口16aから光を投射して光投射/検出口16eで光を検出する組み合わせと光投射/検出口16eから光を投射して光投射/検出口16aで光を検出する組み合わせ)は、得られるデータが同じものとなるため、どちらか片方を除外する。一般的には、このような光の相反定理が成り立つ場合は、どちらか片方を除外してもよいが、成り立たない場合はそれぞれを別データとして扱う。
【0066】
上記の光投射点・光検出点の組の中から、分割した体積要素の数と同数個の光投射点・光検出点の組を任意に選択して計測が行われると、i番目の組における検出光量は、信号処理回路36でA/D変換され、基準光量Siとして演算/制御部14に入力されるとともに、記憶/表示部38に格納される。
【0067】
第2の計測工程では、測定光量Oを計測する。計測の方法は、基本的には上記基準光量Sの計測と同様であり、基準光量Sの計測時に選択された光投射点・光検出点の組について、検出光量を計測する。ただし、測定光量Oの計測時には、容器10の内部に入れられた光学的インターフェース材20の一部を測定対象部位200に置き換えて計測を行う。計測が行われると、i番目の組における検出光量は、信号処理回路36でA/D変換され、測定光量Oiとして演算/制御部14に入力されるとともに、記憶/表示部38に格納される。
【0068】
測定対象部位200である人の乳房は、図2に示すように容器10の内部に入れられる。この場合は、容器10の開口部全体を遮蔽板18で遮蔽することはできないが、必要に応じて、測定対象部位200と容器10の開口部の縁部との間を遮蔽板18で覆うことも可能である。
【0069】
演算工程は、各体積要素の影響度を演算する第1の演算工程と、基準光量Siと測定光量Oiを比較した量を計算する第2の演算工程と、第1の演算工程により求められた各体積要素の影響度と、第2の演算工程により求められた光強度を比較した量から、各体積要素の吸収係数を計算する第3の演算工程とを含んでいる。
【0070】
第1の演算工程は、i番目の光投射点・光検出点の組における、j番目の体積要素の影響度Wijを計算する工程である。Wijの具体的な計算方法はすでに示したとおりである。この計算によって、式(11)に示すようなN×Nの影響度行列[W]が求まる。
【0071】
【数11】
Figure 0003771364
第2の演算工程では、i番目の光投射点・光検出点の組における基準光量Siと測定光量Oiを比較した量が計算される。具体的には、この比較した量として、基準光量Siの自然対数値と測定光量Oiの自然対数値との差が各光投射点・光検出点の組について計算され、式(12)に示すようなN×1の測定行列[SO]が求まる。
【0072】
【数12】
Figure 0003771364
第3の演算工程では、上記第1の演算工程において計算された影響度行列[W]と上記第2の演算工程において計算された測定行列[SO]から、式(7)を用いて、各体積要素の吸収係数を計算する。ここで、式(7)から求められる量は、正確に言えば基準吸収係数μaからの変化量であるが、光学的インターフェース材20の吸収係数μaが既知であるので、容易に吸収係数の絶対値が得られることになる。
【0073】
上記のように求められた各体積要素の吸収係数は、記録/表示部38から吸収係数分布画像として出力される。
【0074】
さらに、本発明の実施形態に係る光CT装置及び画像再構成方法の効果について説明する。本発明の光CT装置及び画像再構成方法は、一定形状の容器10を用い、容器10に光学的インターフェース材20を満たした状態で基準光量を計測し、光学的インターフェース材20の一部を測定対象部位200に置き換えた状態で測定光量を計測するため、測定対象部位200と同形で内部に吸収のない別ファントムを作成して基準光量の計測を行う必要が無くなり、計測精度が向上するとともに、異なる測定対象部位200の計測を行う場合の測定時間を大幅に短縮することができる。さらに、一旦、一定形状の容器10の内部空間を体積要素に分割して各体積要素の影響度を計算しておけば、別の測定対象部位200の測定を行う場合等、測定対象部位200の形状等が変化しても、影響度行列の再計算が不要であり、極めて高速な画像再構成が可能となる。
【0075】
また、本発明の光CT装置及び画像再構成方法は、光投射/検出口16と測定対象部位200との間隙に光学的インターフェース材20を挿入していることにより、光漏れの防止、測定対象部位200への圧迫から生じるうっ血等による内部血液代謝の変化の防止、測定対象部位200の表面における反射等の防止が実現でき、高精度の計測が可能となる。
【0076】
さらに、上記のように、測定時間が短縮でき、測定対象部位200への圧迫から生じる圧痛や跡が残ることを防止できることから、被験者の精神的負担・肉体的負担を軽減することが可能となる。
【0077】
また、光学的インターフェース材20を用いることで、光源22から指向性の強い、高エネルギーの光が発せられたとしても、この光は光学的インターフェース材20内で散乱し、測定対象部位には、安全かつ多量の光を照射することが可能となる。
【0078】
上記実施形態においては、式(4)に示す方程式の個数が体積要素の個数と等しい場合について説明したが、方程式の個数が、体積要素の個数より少ない場合、あるいは多い場合であっても、特異値分解法等を用いることにより、特異な問題を非特異な問題に変換できるため、測定対象部位200の吸収係数の空間的分布を求めることは可能である。
【0079】
また、上記実施形態において、光源22には半導体レーザを用いていたが、これは、固体レーザ、色素レーザ、気体レーザを用いてもよい。さらに、LEDや白色光源からの光を波長選択器によって波長選択した光を用いてもよい。
【0080】
上記実施形態においては、投射光として連続光を用いた際の解析方法を述べていたが、パルス光を用いる時間分解分光法(TRS)で得られる時間分解波形のモーメントを求める解析方法、位相変調光を用いる位相差法(PMS)の解析法を利用する場合に関しては、例えば、"performance of an interative reconst-ruction algorithm for near infrared absorption and scatter imaging"(S.R.Arridge,M.Schweiger,M.Hiraoka,D.t.Delpy,SPIE Vol.1888,p.360-p.371)、"Fo-rward and Inverse Calculations for 3-D Frequency-Domain Diffuse Optical Tomography"(Brain W.Pogue,Michael S.Patterson and Tom J.Farrell,SPIE Vol.2389,p.328-p.339)に記載されている方法を用いてもよい。
【0081】
また、投射光は単一の波長の光だけでなく、2種類以上の波長の光を選択的に使用することも可能である。その場合は、波長可変レーザを使用するか、波長選択器を用いて使用波長を切り換えるか、図6に示すように波長λ1〜λnの光を投射する光源40と、各光源40を選択的に切り換えることにより波長を選択する光スイッチ42を有する光源14を用いることができる。
【0082】
また、上記実施形態の光CT装置10においては、光投射口と光検出口を複数個ずつ、かつ、同数個(n個)備えていたが、要求される計測精度を満たせば、光投射口を1つにし、光検出口のみを複数個設けることもできる。同様に、光検出口を1つにし、光投射口のみを複数個設けることも可能である。
【0083】
さらに、本実施形態は、測定対象部位200として人間の乳房を考えていたが、他にも頭、手、足、胴体等を計測する場合にも同様に使用できる。
【0084】
光学的インターフェース材20に関して言えば、時間経過により固化するような液状、ジェル状の材質のものを使用することもできる。時間経過により固化する材質からなる光学的インターフェース材20を用いることにより、測定部を固定することができ、計測精度が向上するとともに、楽な姿勢で計測ができるため、被験者の負担を減少させることができる。
【0085】
また、本実施形態で用いた光学的インターフェース材20は、その光学的特性、すなわち吸収係数、散乱係数、屈折率、旋光度、偏光度等のうち1つ以上の特性を、測定対象部位200の吸収係数の平均値、散乱係数の平均値、屈折率の平均値、旋光度の平均値、偏光度の平均値等とほぼ等しく合わせた材質のものを用いていたが、これは測定対象部位200の吸収係数、散乱係数、屈折率、旋光度、偏光度等がほぼ等しいものでなくても、吸収係数、散乱係数、屈折率、旋光度、偏光度等が既知のもので有れば、既知の値を用いた補正を施すことにより、測定対象部位200の吸収係数の空間的分布を求めることができる。
【0086】
また、例えばレーザスキャンのように、測定対象部位200の3次元形状を測定する方法を併せて用いることで、光学的インターフェース材20の充填された部分に既知の吸収係数を用いることができ、式(7)を解く際の計算精度が向上する。さらに、光学的インターフェース材20の入れられた部分を1つの体積要素とみなすことができ、分割すべき体積要素の個数を減らすことができる。
【0087】
さらに上記実施形態においては測定対象部位200の吸収係数を測定していたが、測定対象部位200の散乱係数、屈折率、蛍光特性等の測定にも応用することが可能である。
【0088】
また、上記実施形態においては、透過光の光強度を用いて測定対象部位200の吸収係数を測定していたが、これは、透過光の位相、時間分解波形を用いた測定にも応用することが可能である。
【0089】
続いて、本実施形態に係る光CT装置において用いる容器の変形例について説明する。図7に容器の第1の変形例を示す。この容器50は、内部を減圧することができる容器である。容器50は、光学的インターフェース材20が内部に入れられており、測定対象部位200を入れることができるような開口部を有している。容器50の底部には光学的インターフェース材20を外部に吸引する吸引口50aが設けられており、配管を介してバルブ52、ポンプ54及び液貯め漕56が設けられている。また、容器50には、容器50の内部の光学的インターフェース材20の圧力を計測するための圧力計58が設けられている。
【0090】
容器50を使用する場合は、容器50内に光学的インターフェース材20を入れ、さらに測定対象部位200を入れた状態で、バルブ52を開け、ポンプ54を用いて容器50の内部の光学的インターフェース材20を液貯め漕56の方向に吸引する。この際、測定対象部位200に害を及ぼすような過剰な圧力がかからないように、容器50の内部の圧力を圧力計58で監視することができる。測定対象部位200の計測が終了したら、液貯め漕56から容器50の方向に光学的インターフェース材20を戻すこともできるようになっている。
【0091】
上記構成の容器50を用いることで、乳房を測定対象部位200とした乳ガンの検査の場合においては、乳房が小さい場合、減圧することによって、測定体積を増やして広範囲に計測できる。また、容器50を腋窩をも挿入できる形状とした場合は、容器50の内部を減圧することによって、肋骨と肉とを引き離すことができ、ガンが発生しやすいリンパ節付近なども精度よく計測することが可能となる。
【0092】
図8に容器の第2の変形例を示す。図8に示す容器60には、容器60の内部に入れられた光学的インターフェース材20を攪拌するためのプロペラ62と、このプロペラを駆動するモータ64が備えられている。
【0093】
プロペラ62を用いて光学的インターフェース材20を攪拌することにより、容器60の内部の光学的インターフェース材20の状態を均一にし、計測誤差を減少させることが可能となる。このほかに光学的インターフェース材20を攪拌する方法としては、容器60の内壁に微小な孔を設け、この孔から容器60の内部に気流または水流を吹き出させることなども考えられる。
【0094】
図9に容器の第3の変形例を示す。図9に示す容器66は、外部からの光を遮光するために、容器の開口部に変形可能な遮光部材を有するものである。容器66の開口部の縁部には、遮光性の材質からなる空気袋68が設けられている。この空気袋68は、バルブ70を介してエアボンベ72に接続されており、空気袋68に空気を注入することが可能となっている。空気袋68への空気の注入量はバルブ70の後段に設けられた流量計74で計測可能となっており、また、空気袋68内の圧力を計測するための圧力計76も設けられている。
【0095】
この容器66においては、エアボンベ72から注入された空気によって空気袋68が膨張し、この膨張した空気袋68が容器66の開口部と測定対象部位200との間隙を覆うことにより、計測誤差の原因となる外部から侵入する光を完全に遮断することが可能となる。また、測定対象部位200の一部が容器66の開口部の縁部に直接あたることが無くなり、接触部の圧痛、圧迫が軽減される。
【0096】
図10に容器の第4の変形例を示す。基本的な構造は、上記第3の変形例である容器66と同様に、容器の開口部に変形可能な遮光部材を有するものであるが、第3の変形例である容器66が一つの開口部を有していたのに対して、本変形例の容器78は、2つの開口部を有する点が異なっている。
【0097】
2つ以上の開口部を有する容器を用いることにより腕や足、胴体などを容器内に貫通させて挿入することが可能となり、腕や足、胴体の中央部などを測定することが可能となる。
【0098】
図11に容器の第5の変形例を示す。本変形例の容器は、例えば腹部の測定のように、入射面と同一の面で、拡散反射光を測定する場合に使用されるものである。容器80は、一つの底面のみ開口した円柱形状を有し、開口していない方の底面に光投射/検出用の光ファイバ82が設けられた第1の部分80aと、両底面が開口し、測定したい測定対象部位200内部の深さと等しい高さを持った円柱形状を有した第2の部分80bと、遮光性板80cから構成される。
【0099】
この容器80を用いて、基準光量Sを測定するときには、第1の部分80aの開口部と第2の部分80bの一方の開口部とを接続し、第1の部分80a及び第2の部分80bの内部に光学的インターフェース材20を入れ、第2の部分80bの他方の開口部を遮光性板80cで塞いだ状態で計測を行う。
【0100】
一方、測定光量Oの計測時は、図12に示すように、第1の部分80aの内部に光学的インターフェース材20を入れ、開口部を測定対象部位200の表面に接触させた状態で計測を行う。
【0101】
この容器を用いることにより、一定の形状の容器の内部に入れることのできない測定対象部位200の内部の吸収係数についても測定することが可能となる。
【0102】
図13に容器の第6の変形例を示す。本変形例の容器は、光学的インターフェース材20の温度を均一に保持することのできる容器である。容器84は、保温効果を有する材質で形成されており、内部に入れられた光学的インターフェース材20を、ポンプ86を介してヒータ88及び冷却装置90に循環させることができる構成となっている。循環路の途中には温度センサ92が設けられており、この温度センサ92の出力に基づき、図示しない外部コンピュータなどによって、ヒータ88及び冷却装置90が制御される。
【0103】
このような容器84を用いることで、光学的インターフェース材20の温度を一定に保つことができ、温度変化による計測誤差を削減することができるとともに、被験者に不快感を与えないようにすることができるようになる。
【0104】
図14に容器の第7の変形例を示す。本変形例の容器は、計測後の容器内部に付着した光学的インターフェース材20を除去可能とした容器である。容器94にはバルブ96を介してポンプ98及び洗浄液タンク100が接続されており、洗浄液注入口94aから容器94の内部に洗浄液を供給することが可能となっている。また、内部に洗浄水を蓄えた溶液タンク102を備え、容器94内に洗浄水を供給し、容器94の内部及び測定対象部位200を洗浄することができるようになっている。さらに、容器94の側壁にはファン104が設けられており、容器94の内部及び測定対象部位200を乾燥させることができるようになっている。
【0105】
図15に容器の第8の変形例を示す。本変形例の容器は、例えば前腕部の計測を行う場合に用いられるものである。容器106は、遮光性の材質からなり、変形しない円筒状の容器外壁106aと、透明の材質からなり、変形可能な複数の袋106bから構成される。各袋106bにはチューブ108が接続されており、バルブ110を介してポンプ112及び光学的インターフェース材20が蓄えられている液貯漕114に接続されている。また、袋106b内の圧力を計測するための圧力計116も設けられている。
【0106】
容器106を使用する場合は、前腕部等の測定対象部位200を容器106内に挿入した状態でバルブ110を開け、ポンプ112を用いて、袋106bが容器外壁106aと測定対象部位200との間隙を埋める程度まで、光学的インターフェース材20を液貯漕114から各袋106b内に注入する。圧力計116によって、光学的インターフェース材20の注入時には、測定対象部位200に害を及ぼすような過剰な圧力がかかっているか否かを監視することができ、また、計測時においても光学的インターフェース材20の内圧が均一に保たれているかどうかを監視することができる。
【0107】
上記の容器106を用いることにより、光学的インターフェース材20が容器106の外部に漏れることもなく、容器の交換、保管等が容易になる。また、測定対象部位200に光学的インターフェース材20が直接接触することが無いため、不快感が無く、また運動時のように激しく状態が変化する場合にも適する。
【0108】
また、上記各変形例において、容器の形状は円筒型としていたが、この形状は測定対象部位200の形状、及び計測、演算の容易性等を考慮して円錐型、お椀型等様々な形状に変更することが可能である。
【0109】
【発明の効果】
本発明の光CT装置及び画像再構成方法は、一定形状の容器を用い、媒体を満たした状態で計測した透過光の光学特性に関する特徴量と、媒体の一部を測定対象部位に置き換えた状態で計測した透過光の光学特性に関する特徴量の比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算するため、測定対象部位と同形で内部に吸収のない別ファントムを作成して基準量を計測する必要が無くなり、計測精度が向上するとともに、異なる測定対象部位の計測を行う場合の測定時間を大幅に短縮することができる。さらに、一旦、一定形状の容器の内部空間を体積要素に分割して各体積要素の影響度を計算しておけば、測定対象部位の形状等が変化しても、影響度の再計算が不要であり、極めて高速な画像再構成が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光CT装置のシステム構成図である。
【図2】本発明の実施形態に係る光CT装置の使用状態を表す図である。
【図3】本発明の実施形態に係る光CT装置の容器周辺の構成図である。
【図4】吸収係数が均一な媒質を光が透過する様子を表した図である。
【図5】吸収係数が不均一な媒質を光が透過する様子を表した図である。
【図6】波長選択スイッチの構成図である。
【図7】容器の第1の変形例を表す図である。
【図8】容器の第2の変形例を表す図である。
【図9】容器の第3の変形例を表す図である。
【図10】容器の第4の変形例を表す図である。
【図11】容器の第5の変形例を表す図である。
【図12】第5の変形例の容器の使用状態を表す図である。
【図13】容器の第6の変形例を表す図である。
【図14】容器の第7の変形例を表す図である。
【図15】容器の第8の変形例を表す図である。
【符号の説明】
10…光CT装置、12…容器、14…演算/制御部、16…光投射/検出口、18…遮光板、20…光学的インターフェース材、22…光源、24…光スイッチ、26…光源用光ファイバ、28…投射用光ファイバ、30…光検出器、32…シャッター、34…検出用光ファイバ、36…信号処理回路、38…記録/表示部、40…光源、42…光スイッチ、50…容器、52…バルブ、54…ポンプ、56…液貯漕、58…圧力計、60…容器、62…プロペラ、64…モータ、66…容器、68…空気袋、70…バルブ、72…エアボンベ、74…流量計、76…圧力計、78…容器、80…容器、82…光ファイバ、84…容器、86…ポンプ、88…ヒータ、90…冷却装置、92…温度センサ、94…容器、96…バルブ、98…ポンプ、100…洗浄液タンク、102…溶液タンク、104…ファン、106…容器、108…チューブ、110…バルブ、112…ポンプ、114…液貯漕、200…測定対象部位

Claims (22)

  1. 内部に光透過性の媒体が入れられた容器と、
    前記容器の1以上の部位から、前記容器の内部に光を投射する投光手段と、
    前記容器の1以上の部位で、前記投光手段によって投射された光を検出する光検出手段と、
    前記容器の内部に前記媒体が入れられている状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体を透過して成る透過光の光学特性に関する特徴量と、前記媒体の一部を測定対象部位に置き換えた状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体および/または前記測定対象部位を透過して成る透過光の光学特性に関する特徴量の比較に基づいて、測定対象部位の光学特性に関する特徴量の空間的分布を計算する演算手段と、
    を備えることを特徴とする光CT装置。
  2. 前記演算手段は、
    前記容器の内部を複数個の体積要素に分割された集合体モデルとみなすと共に、前記投光手段及び前記光検出手段を用いた場合における、前記各体積要素の光学特性に関する特徴量の変化が前記光検出手段によって検出される透過光の光学特性に関する特徴量に及ぼす影響度を計算する第1の演算手段と、
    前記容器の内部に前記媒体が入れられている状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体を透過して成る透過光の光学特性に関する特徴量と、前記媒体の一部を測定対象部位に置き換えた状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体および/または前記測定対象部位を透過して成る透過光の光学特性に関する特徴量とを比較した量を計算する第2の演算手段と、
    前記第1の演算手段により求められた影響度と、前記第2の演算手段により求められた光学特性に関する特徴量を比較した量から、前記各体積要素の光学特性に関する特徴量を演算することにより、測定対象部位の光学特性に関する特徴量の空間的分布を計算する第3の演算手段と、
    を備えることを特徴とする請求項1に記載の光CT装置。
  3. 前記透過光の光学特性に関する特徴量は、透過光の光強度である、
    ことを特徴とする請求項1または2に記載の光CT装置。
  4. 前記測定対象部位の光学特性に関する特徴量は、測定対象部位の吸収係数である、
    ことを特徴とする請求項1〜3のいずれか1項に記載の光CT装置。
  5. 前記媒体は、光学特性が前記測定対象部位の光学特性の平均値とほぼ等しい、
    ことを特徴とする請求項1〜4のいずれか1項に記載の光CT装置。
  6. 前記媒体は、吸収係数が前記測定対象部位の吸収係数の平均値とほぼ等しい、
    ことを特徴とする請求項1〜5のいずれか1項に記載の光CT装置。
  7. 前記媒体は、散乱係数が前記測定対象部位の散乱係数の平均値とほぼ等しい、
    ことを特徴とする請求項1〜6のいずれか1項に記載の光CT装置。
  8. 前記媒体は、屈折率が前記測定対象部位の屈折率の平均値とほぼ等しい、
    ことを特徴とする請求項1〜7のいずれか1項に記載の光CT装置。
  9. 前記媒体は、旋光度が前記測定対象部位の旋光度の平均値とほぼ等しい、
    ことを特徴とする請求項1〜8のいずれか1項に記載の光CT装置。
  10. 前記媒体は、偏光度が前記測定対象部位の偏光度の平均値とほぼ等しい、
    ことを特徴とする請求項1〜9のいずれか1項に記載の光CT装置。
  11. 前記容器の開口部に、外部からの光を遮光する遮光手段をさらに有する、
    ことを特徴とする請求項1〜10のいずれか1項に記載の光CT装置。
  12. 前記容器の内部を減圧する減圧手段をさらに有する、
    ことを特徴とする請求項1〜11のいずれか1項に記載の光CT装置。
  13. 光透過性の媒体が内部に入れられた容器の1以上の部位から、投光手段を用いて前記容器の内部に光を投射し、
    前記投光手段によって投射された光を、前記容器の1以上の部位で、光検出手段を用いて検出し、
    前記媒体を透過して成る透過光の光学特性に関する特徴量を得る第1の計測工程と、
    前記容器の内部に入れられた前記媒体の一部を測定対象部位に置き換えた状態で、
    前記容器の1以上の部位から、投光手段を用いて前記容器の内部に光を投射し、
    前記投光手段によって投射された光を、前記容器の1以上の部位で、光検出手段を用いて検出し、
    前記媒体および/または前記測定対象部位を透過して成る透過光の光学特性に関する特徴量を得る第2の計測工程と、
    前記第1の計測工程で得た透過光の光学特性に関する特徴量と、前記第2の計測工程で得た光学特性に関する特徴量の比較に基づいて、前記測定対象部位の光学特性に関する特徴量の空間的分布を計算する演算工程と、
    を備えたことを特徴とする画像再構成方法。
  14. 前記演算工程は、
    前記容器の内部を複数個の体積要素に分割された集合体モデルとみなすと共に、前記投光手段及び前記光検出手段を用いた場合における、前記各体積要素の光学特性に関する特徴量の変化が前記光検出手段によって検出される透過光の光学特性に関する特徴量に及ぼす影響度を計算する第1の演算工程と、
    前記容器の内部に前記媒体が入れられている状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体を透過して成る透過光の光学特性に関する特徴量と、前記媒体の一部を測定対象部位に置き換えた状態で、前記投光手段及び前記光検出手段を用いて実測された、前記媒体および/または前記測定対象部位を透過して成る透過光の光学特性に関する特徴量とを比較した量を計算する第2の演算工程と、
    前記第1の演算工程により求められた影響度と、前記第2の演算工程により求められた光学特性に関する特徴量とを比較した量から、前記各体積要素の光学特性に関する特徴量を演算することにより、測定対象部位の光学特性に関する特徴量の空間的分布を計算する第3の演算工程と、
    を備えたことを特徴とする請求項13に記載の画像再構成方法。
  15. 前記透過光の光学特性に関する特徴量は、透過光の光強度である、
    ことを特徴とする請求項13または14に記載の画像再構成方法。
  16. 前記測定対象部位の光学特性に関する特徴量は、測定対象部位の吸収係数である、
    ことを特徴とする請求項13〜15のいずれか1項に記載の画像再構成方法。
  17. 前記媒体は、光学特性が前記測定対象部位の光学特性の平均値とほぼ等しい、
    ことを特徴とする請求項13〜16のいずれか1項に記載の画像再構成方法。
  18. 前記媒体は、吸収係数が前記測定対象部位の吸収係数の平均値とほぼ等しい、
    ことを特徴とする請求項13〜17のいずれか1項に記載の画像再構成方法。
  19. 前記媒体は、散乱係数が前記測定対象部位の散乱係数の平均値とほぼ等しい、
    ことを特徴とする請求項13〜18のいずれか1項に記載の画像再構成方法。
  20. 前記媒体は、屈折率が前記測定対象部位の屈折率の平均値とほぼ等しい、
    ことを特徴とする請求項13〜19のいずれか1項に記載の画像再構成方法。
  21. 前記媒体は、旋光度が前記測定対象部位の旋光度の平均値とほぼ等しい、
    ことを特徴とする請求項13〜20のいずれか1項に記載の画像再構成方法。
  22. 前記媒体は、偏光度が前記測定対象部位の偏光度の平均値とほぼ等しい、
    ことを特徴とする請求項13〜21のいずれか1項に記載の画像再構成方法。
JP34298597A 1997-12-12 1997-12-12 光ct装置及び画像再構成方法 Expired - Lifetime JP3771364B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34298597A JP3771364B2 (ja) 1997-12-12 1997-12-12 光ct装置及び画像再構成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34298597A JP3771364B2 (ja) 1997-12-12 1997-12-12 光ct装置及び画像再構成方法
PCT/JP1999/002960 WO2000075633A1 (fr) 1997-12-12 1999-06-03 Dispositif optique ct et procede de reformation d'images

Publications (2)

Publication Number Publication Date
JPH11173976A JPH11173976A (ja) 1999-07-02
JP3771364B2 true JP3771364B2 (ja) 2006-04-26

Family

ID=26440143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34298597A Expired - Lifetime JP3771364B2 (ja) 1997-12-12 1997-12-12 光ct装置及び画像再構成方法

Country Status (1)

Country Link
JP (1) JP3771364B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054278A1 (ja) 2007-10-24 2009-04-30 Hamamatsu Photonics K.K. 生体計測装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001262937A1 (en) * 2000-05-09 2001-11-20 Imaging Diagnostic Systems, Inc. Medical optical imaging scanner using multiple wavelength simultaneous data acquisition for breast imaging
US6615063B1 (en) * 2000-11-27 2003-09-02 The General Hospital Corporation Fluorescence-mediated molecular tomography
US7383076B2 (en) 2000-11-27 2008-06-03 The General Hospital Corporation Fluorescence-mediated molecular tomography
CA2447262A1 (en) * 2001-05-17 2002-11-21 Xenogen Corporation Method and apparatus for determining target depth, brightness and size within a body region
EP1514093B1 (en) 2002-06-04 2021-04-28 Visen Medical, Inc. Imaging volumes with arbitrary geometries in non-contact tomography
US7616985B2 (en) 2002-07-16 2009-11-10 Xenogen Corporation Method and apparatus for 3-D imaging of internal light sources
DE10255013B4 (de) * 2002-11-25 2004-12-09 Siemens Ag Verfahren und Vorrichtung zur Lokalisierung von Licht emittierenden Bereichen
US7647091B2 (en) 2003-02-05 2010-01-12 The General Hospital Corporation Method and system for free space optical tomography of diffuse media
EP1864611A4 (en) * 2005-04-01 2013-09-04 Keizi Shibuya MAMMARY EXAMINATION SYSTEM
JP5396684B2 (ja) * 2006-06-14 2014-01-22 株式会社島津製作所 核医学診断装置およびエミッションデータの吸収補正方法
US10775308B2 (en) 2006-08-24 2020-09-15 Xenogen Corporation Apparatus and methods for determining optical tissue properties
US10335038B2 (en) 2006-08-24 2019-07-02 Xenogen Corporation Spectral unmixing for in-vivo imaging
JP2010502981A (ja) * 2006-09-07 2010-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 受容ボリュームのための適合させられた縁部を用いた光トモグラフィ測定
JP5081660B2 (ja) * 2008-02-18 2012-11-28 浜松ホトニクス株式会社 乳房撮像装置
JP2011521747A (ja) * 2008-06-02 2011-07-28 ライトラブ イメージング, インコーポレイテッド 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法
US8401623B2 (en) * 2008-09-26 2013-03-19 Koninklijke Philips Electronics N.V. Detection chamber with variable volume
JP5283525B2 (ja) 2009-01-30 2013-09-04 富士フイルム株式会社 光断層情報の生成方法、光断層情報生成装置及び光断層情報の生成プログラム
JP5274492B2 (ja) 2009-01-30 2013-08-28 富士フイルム株式会社 計測対象保持具、生体保持具及び光計測装置
JP5648957B2 (ja) 2010-10-22 2015-01-07 浜松ホトニクス株式会社 乳房計測装置
JP5907039B2 (ja) * 2012-10-22 2016-04-20 株式会社島津製作所 蛍光像再構成方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054278A1 (ja) 2007-10-24 2009-04-30 Hamamatsu Photonics K.K. 生体計測装置
US8279443B2 (en) 2007-10-24 2012-10-02 Hamamatsu Photonics K.K. Bioinstrumentation apparatus

Also Published As

Publication number Publication date
JPH11173976A (ja) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3771364B2 (ja) 光ct装置及び画像再構成方法
JP3662376B2 (ja) 内部特性分布の計測方法および装置
Brooksby et al. Magnetic resonance-guided near-infrared tomography of the breast
US5813988A (en) Time-resolved diffusion tomographic imaging in highly scattering turbid media
JP6174656B2 (ja) 対象体の立体実時間光音響撮像用の手持ち式装置及び方法
US20090240138A1 (en) Diffuse Optical Tomography System and Method of Use
Arridge et al. A method for three‐dimensional time‐resolved optical tomography
US8886284B2 (en) Devices and methods for combined optical and magnetic resonance imaging
US6687532B2 (en) Optical CT apparatus and image reconstructing method
MX2014010832A (es) Mapeo estadistico en un sistema de imagenologia optoacustica.
WO2009077947A2 (en) Method for detecting the presence of inhomogeneities in an interior of a turbid medium and device for imaging the interior of turbid media
JPH0829329A (ja) 吸収物質濃度の空間分布画像化方法
Yan et al. A gantry-based tri-modality system for bioluminescence tomography
BRPI0708897A2 (pt) dispositivo e mÉtodo para gerar imagem de um meio turvo, e, produto de programa de computador
EP1207385B1 (en) Optical ct device and method of image reformation
JP5420163B2 (ja) 生体計測装置
Dierkes et al. Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data
Chacko et al. Three-dimensional reconstruction of transillumination tomographic images of human breast phantoms by red and infrared lasers
Zhang et al. ART-TV algorithm for diffuse correlation tomography blood flow imaging
JP3730927B2 (ja) 吸収物質濃度空間分布画像化装置
Applegate et al. Real-time handheld probe tracking and image formation using digital frequency-domain diffuse optical spectroscopy
Scherleitner et al. Optical tomography imaging based on higher order Born approximation of diffuse photon density waves
EP1609410B1 (en) Optical CT apparatus
Nouizi et al. 3D modeling for solving forward model of no-contact fluorescence diffuse optical tomography method
Xu et al. Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term