JP3767545B2 - Cylindrical vibration isolator - Google Patents

Cylindrical vibration isolator Download PDF

Info

Publication number
JP3767545B2
JP3767545B2 JP2002343097A JP2002343097A JP3767545B2 JP 3767545 B2 JP3767545 B2 JP 3767545B2 JP 2002343097 A JP2002343097 A JP 2002343097A JP 2002343097 A JP2002343097 A JP 2002343097A JP 3767545 B2 JP3767545 B2 JP 3767545B2
Authority
JP
Japan
Prior art keywords
outer cylinder
mating member
stepped
press
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343097A
Other languages
Japanese (ja)
Other versions
JP2004176803A (en
Inventor
和彦 加藤
淳一朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002343097A priority Critical patent/JP3767545B2/en
Priority to US10/718,987 priority patent/US7104533B2/en
Priority to DE10355062A priority patent/DE10355062A1/en
Publication of JP2004176803A publication Critical patent/JP2004176803A/en
Application granted granted Critical
Publication of JP3767545B2 publication Critical patent/JP3767545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ゴムブッシュを筒形の相手部材に圧入し、嵌合状態に保持するようになした筒形防振装置に関し、特にゴムブッシュの外筒が樹脂にて構成されたものに関する。
【0002】
【従来の技術】
従来より、剛性の外筒及び内筒と、それら外筒及び内筒間に配置されたゴム弾性体とを有するゴムブッシュを、外筒の外面において筒形の剛性の相手部材に圧入して、ゴムブッシュを相手部材にて嵌合状態に保持するようになした筒形防振装置が、自動車のトレーリングアームブッシュ,トルクロッドブッシュ等のサスペンションブッシュやエンジンマウント等として広く用いられている。
【0003】
この種の筒形防振装置は、従来ゴムブッシュの外筒,内筒,相手部材が何れも金属製であり、ゴムブッシュの外筒を所定の締め代で相手部材に圧入すると、外筒の外面と相手部材の内面との間に発生する強い摩擦力に基づいてゴムブッシュが相手部材から抜け防止される。
【0004】
ところで、近年ゴムブッシュの外筒を樹脂化することが検討されており、この場合、樹脂から成る外筒の弾性復元力が応力緩和により低下し、更に熱影響を受けることにより大きく応力緩和を生じ、初期には所定の締め代をもって圧入したとしても、その後の経時変化により外筒の相手部材に対する弾性復元力が低下し、抜き力が低下してしまう問題が内在する。
【0005】
この問題の対策の一例が下記特許文献1に開示されている。
図11はその具体例を示している。同図において200はゴムブッシュで、金属製の内筒202と、その外周面に一体に固着されたゴム弾性体204と、更にそのゴム弾性体204の外周面に一体に固着された樹脂製の外筒206とを有している。
208は金属製の筒形をなす相手部材で、ゴムブッシュ200は、この相手部材208内部に圧入されて嵌合状態に保持されている。
【0006】
樹脂製の外筒206及びゴム弾性体204は、それぞれ軸方向端部(図中下端部)にフランジ部210及び212を有しており、また外筒206は、これとは反対側の軸方向端部且つ相手部材208から軸方向に突き出した部分に、互いに逆方向に傾斜する傾斜面214,216を備えた、部分的に厚肉の係合部218を有している。
ゴムブッシュ200は、相手部材208への圧入後において、この係合部218が相手部材208の軸端に係合することによって相手部材208から抜け防止される。
【0007】
【特許文献1】
実開平5−77637号公報
【0008】
【発明が解決しようとする課題】
しかしながら図11に示す筒形防振装置の場合、外筒206の一部、詳しくは係合部218の部分が相手部材208から軸方向に突き出し、外部に露出して外気に曝されていることから劣化を生じ易い問題の外、相手部材208から突き出して露出した部分に飛び石等が当ったりして割れを生じ易い問題がある。
更にこの筒形防振装置の場合、必然的にゴムブッシュ200の軸方向長が相手部材208よりも長くなければならず、形状的な制約を受ける問題がある。
【0009】
更にこの例の筒形防振装置の場合、外筒206が割れを生じない範囲で最大の締め代をもって外筒206を相手部材208に圧入することが望ましいが、この場合相手部材208との嵌合部分において最大の締め代を設定すると、圧入時に部分的な厚肉部分である係合部218の部分が過大に縮径させられることとなって、同部分で割れを生じ易いといった問題がある。
一方で係合部218の部分で割れを生じないように圧入時の締め代を設定すると、圧入後において外筒206の、相手部材208との嵌合部分での締め代が不足してしまうといった問題を生ずる。
【0010】
【課題を解決するための手段】
本発明の筒形防振装置はこのような課題を解決するために案出されたものである。
而して請求項1のものは、樹脂製の外筒と、内筒と、それら外筒及び内筒間に配置されたゴム弾性体とを有するゴムブッシュを、該外筒の外面において筒形の剛性の相手部材に圧入して該ゴムブッシュを該相手部材にて嵌合状態に保持するようになした筒形防振装置において、前記相手部材の内面に、径方向外方に凹陥した形態の凹陥部を軸方向に部分的に形成して該相手部材の内面の形状を、該凹陥部と非凹陥部との境界部に段付部を有する段付形状となす一方、前記外筒の外面を該相手部材への圧入前の状態で前記非凹陥部よりも大径となし、樹脂の弾性変形を利用して該外筒を縮径させながら該相手部材内部に圧入し、該外筒の前記凹陥部に対向して位置する部分を圧入後の弾性復元力で拡径させて、該外筒の外面形状を前記相手部材の内面形状に倣った段付形状となし、該相手部材の段付部と該外筒の段付部とを軸方向に且つ抜け方向に互いに係合させたことを特徴とする。
【0011】
請求項2のものは、請求項1において、前記外筒の、前記凹陥部に対向して位置する部分の前記弾性復元力による拡径方向の戻り変形の変形量を他部よりも大となし、以って該外筒の外面形状を前記相手部材の内面形状に倣った段付形状となしたことを特徴とする。
【0012】
請求項3のものは、請求項1,2の何れかにおいて、前記外筒の外面を前記相手部材への圧入前の状態で実質的に軸方向のストレート形状となしてあることを特徴とする。
【0013】
請求項4のものは、請求項1〜3の何れかにおいて、前記凹陥部を軸方向の中間部に設けて、該凹陥部の軸方向両側の非凹陥部と該凹陥部との境界部に、軸方向に互いに逆向きをなす一対の段付部を形成してあることを特徴とする。
【0014】
請求項5のものは、請求項1〜4の何れかにおいて、前記相手部材を軸方向の分割構成とし、大径の内径を有する分割筒体にて前記凹陥部を形成したことを特徴とする。
【0015】
請求項6のものは、請求項1〜5の何れかにおいて、前記相手部材の内面には、径方向外方に凹陥した形態の凹陥部を周方向に部分的に形成して該相手部材の内面を周方向に段付部を有する段付形状となしてあることを特徴とする。
【0016】
請求項7のものは、請求項1〜6の何れかにおいて、前記凹陥部の内径を、圧入前の状態において前記外筒の対応する部分の最大外径と同等以下となしてあることを特徴とする。
【0017】
【作用及び発明の効果】
以上のように本発明は、相手部材の内面の形状を、凹陥部を有する段付形状となし、ゴムブッシュにおける樹脂製の外筒の外面を、圧入により樹脂の弾性変形を利用して相手部材の内面の形状に倣った段付形状となし、それらの段付部をゴムブッシュの抜け方向に係合させたもので、本発明によれば、それら外筒及び相手部材の段付部の係合作用によってゴムブッシュの抜き力を効果的に高め得、ゴムブッシュの抜けを良好に防止することができる。
【0018】
本発明は、相手部材の内面と外筒の外面とを係合させるものであり、従って外筒が相手部材から軸方向に突出しない形態で筒形防振装置を構成することが可能となる。
そしてこのようになした場合、外筒の、相手部材から突き出した部分が外気に曝されて劣化し、また飛び石等が当って割れを生じる等の問題を解決することができる。
またゴムブッシュを相手部材よりも長くすることの制約が除かれて筒形防振装置の設計の自由度が増す効果が得られる。
【0019】
本発明においては、外筒の、凹陥部に対向して位置する部分の弾性復元力による拡径方向の戻り変形の変形量を他部よりも大となすことによって、外筒の外面形状を相手部材の内面形状に倣った段付形状となすことができる(請求項2)。
更に外筒の外面を相手部材への圧入前の状態で実質的に軸方向のストレート形状となしておくことができる(請求項3)。
【0020】
このように外筒の外面を軸方向のストレート形状とすることで、図11に示す筒形防振装置における問題、即ち外筒206に径方向外方に突出する部分的な厚肉部を形成することによって、圧入の際に同部分が過度に縮径方向に締め付けられ、割れを生じてしまうといった問題を解決することができる。
【0021】
請求項4は、上記凹陥部を軸方向の中間部に設けて、その凹陥部の軸方向両側の非凹陥部との境界部に、軸方向において互いに逆向きをなす一対の段付部を形成したもので、この場合、相手部材に圧入されたゴムブッシュは、相手部材に対し軸方向且つ互いに逆方向に係合した状態となり、何れの方向に対しても良好に抜け防止される。
本発明は、特に外筒がフランジ部を有しない形態のものに適用して効果が大である。
【0022】
請求項5は、相手部材を軸方向に複数分割し、そして大径の内径を有する分割筒体にて前記凹陥部を形成したもので、このようになすことで容易に相手部材の内面に凹陥部及び段付部を形成することができる。
【0023】
本発明においてはまた、相手部材の内面に凹陥部を周方向に部分的に形成しておくことができ(請求項6)、この場合、相手部材とそこに圧入されたゴムブッシュとを周方向に係合させ得て、同方向の相対移動を阻止することが可能となる。
【0024】
本発明ではまた上記凹陥部の内径を、圧入前の状態において上記外筒の対応する部分の最大外径と同等以下となしておくことができる(請求項7)。
【0025】
【実施例】
次に本発明の実施例を図面に基づいて詳しく説明する。
この例は自動車のトーションビーム式リヤサスペンションにおけるトレーリングアームと車体との連結部分に用いられる筒形防振装置の例で、図2はゴムブッシュ10を、図3は図2のゴムブッシュ10を圧入すべき相手部材12を、図1は図3の相手部材12に図2のゴムブッシュ10を圧入して組み付けた状態をそれぞれ示している。
尚、図1において14は相手部材12から延び出したアームである。
【0026】
図2に示しているように、ゴムブッシュ10は円筒形状をなす内筒16と、同じく円筒形状をなす外筒18と、それらの間に配置されて内筒16及び外筒18を弾性的に連結するゴム弾性体20とを有している。
ここで内筒16は金属製とされ、また外筒18は樹脂製とされている。
尚、内筒16については剛性のある樹脂を用いることも可能である。
またゴム弾性体20には、同図に示しているように一対の空所(すぐり)22が軸方向に沿って形成されている。
【0027】
外筒18には、図2(B)に示しているように軸方向一端(図中左端)にフランジ部24が形成されており、またこれに対応してゴム弾性体20にも軸方向一端にフランジ部26が形成されている。
【0028】
ここでゴムブッシュ10は、図4に示す外筒18の外径、詳しくはフランジ部24を除いた部分の外径dが直径67mmとされている。
また外筒18の軸方向長、詳しくはフランジ部24を除いた部分の軸方向長lが、相手部材12の軸方向長Lとほぼ同等とされている。
【0029】
尚本例において、外筒18を構成する樹脂としては各種のものを用いることができる。
詳しくは、かかる外筒18の構成樹脂として熱可塑性樹脂や熱硬化性樹脂等を用いることができ、その中でも振動入力に対する耐衝撃強度や外筒18としての成形性に優れる熱可塑性樹脂が好適に用いられる。
【0030】
また熱可塑性樹脂材料としてはポリアミド(芳香族ポリアミドや変性ポリアミドを含む),ポリエステル(変性ポリエステルを含む),ポリプロピレン,ポリカーボネート,ポリアセタール,ポリフェニレンサルファイド,変性ポリフェニレンエーテル等があり、その中でも強度や充填材による補強効果,コストのバランスに優れるポリアミドが好適に用いられる。
【0031】
またそのような樹脂材料を補強するために樹脂材料に配合ないしは混合される充填材としてガラス繊維,炭素繊維,アラミド繊維,ボロン繊維,アルミナ繊維,金属繊維,炭化珪素繊維,ガラスビーズ,ウィスカー,ワラスナイト,カオリナイト,タルク,マイカ,カーボンナノチューブ他、珪酸マグネシウム若しくは珪酸アルミニウムの層で構成される層状フィロ珪酸塩、例えばモンモリロナイト,ヘクトライト,バーミキュライト,ハロサイト等があるが、その中でも補強効果の高さやコストの点からガラス繊維が好適に用いられる。
また使用部位によっては充填材のない非強化樹脂材料も用いることができる。
本例の外筒18の樹脂材料は、ポリアミド66(PA66)に充填材としてガラス繊維30%を混合したものを用いている。
【0032】
一方図3に示す相手部材12は、全体としてゴムブッシュ10に対応した円筒形状をなしている。
ここで相手部材12はその全体が金属にて構成されている。
【0033】
図3(B)に示しているように、相手部材12にはその内面に軸方向半分に亘って径方向外方に凹陥する形態の凹陥部28が環状に形成されており、かかる凹陥部28と非凹陥部30との境界に段付部32が形成されている。
【0034】
ここで凹陥部28の内径D(図4参照)は、圧入前のゴムブッシュ10の外筒18の外径dと等しい寸法とされている。
一方非凹陥部30の内径Dは、外筒18の外径dよりも小さい寸法、具体的にはここでは直径65mmの寸法とされている。
尚、凹陥部28の軸方向長Lは、全体の軸方向長Lに対して丁度1/2の寸法とされている。但しLの寸法は適宜変更可能である。
【0035】
本例の筒形防振装置では、図4に示すようにしてゴムブッシュ10を相手部材12内部に軸方向に圧入して、ゴムブッシュ10を相手部材12にて嵌合状態に保持するようにする。
このとき、樹脂製の外筒18は弾性変形を伴って縮径しつつその外面において相手部材12の内部に圧入される。
そして圧入後、外筒18の相手部材12における凹陥部28に対向して位置する部分が弾性復元力によって拡径し、凹陥部28内に部分的に入り込んだ状態となる。
【0036】
そして外筒18の外面形状は相手部材12の内面形状に倣った段付形状に変形する。
詳しくは、図1において凹陥部28に対応した部分が大径部34、非凹陥部30に対応した部分が小径部36をなす段付形状に変形し、そして外筒18における段付部38が、相手部材12の内面に形成された段付部32に対して軸方向且つ抜け方向、即ち図中左向きに係合した状態となる。
そしてこれら段付部32と38との係合作用によって、ゴムブッシュ10の相手部材12からの高い抜き力が得られ、ゴムブッシュ10が良好に抜け防止される。
【0037】
因みに図5は、図1〜図4に示す実施例品の抜き力を図6(B),(C)に示す比較例品1及び比較例品2(但し相手部材12-1,12-2のみ開示)との比較において示したものである。
【0038】
ここで比較例品1は、図6(A)に示す実施例品の相手部材12と異なって、相手部材12-1の内面に凹陥部28及び段付部32を設けず、その内面の形状を軸方向のストレート形状となしたものである。
尚その内径はDで、上記実施例の非凹陥部30の内径と同等である。
また比較例品2は、相手部材12-2の内面をブラスト処理して表面粗さを粗くしたものである(通常は表面粗さが数μmであるのに対しここでは30μm程度の表面粗さとしている)。
【0039】
図5において、(A)は圧入後に常温放置した場合の抜き力の経時変化の測定結果であり、また(B)は熱間放置(80℃)した場合の抜き力の経時変化の測定結果である。
【0040】
図5(A)の常温放置の場合の結果において、比較例品2は初期抜き力が高く、その分、時間経過後(500時間経過後)も高い抜き力を保持している。
また比較例品1は初期抜き力が低い分だけ、時間経過後の抜き力は低くなっている。
これに対し実施例品の場合、初期抜き力が低いために時間経過後の抜き力は比較例品2に比べれば低くなっているが、初期抜き力に対する時間経過後の抜き力の低下率(経時変化率)は比較例品1,比較例品2に比べて格段と優れている。
【0041】
一方図5(B)の熱間放置の場合、比較例品1,比較例品2ともに経時変化による抜き力は大幅に低下しているにも拘わらず、実施例品の場合、抜き力の低下は少なく抑えられている。
【0042】
以上のように本例の筒形防振装置の場合、外筒18及び相手部材12の各段付部32,38の係合作用によって、ゴムブッシュ10の抜き力を効果的に高め得、ゴムブッシュ10が相手部材12から抜けるのを良好に防止することができる。
【0043】
また本例ではゴムブッシュ10の外筒18を相手部材12から軸方向に突出させず、相手部材12の内面で外筒18を軸方向に係合させていることから、図11に示す従来の筒形防振装置のように、相手部材208から外筒206が外部に露出することによって劣化し、或いはまたそこに飛び石等が当って外筒206が割れを生じるといった不具合を生じない。
【0044】
またゴムブッシュ10を相手部材12よりも必ず長くしなければならないといった制約がなく、筒形防振装置の設計の自由度が増す利点が得られる。
また本例では、外筒18の外面が軸方向にストレート形状をなしているため、図11に示す筒形防振装置における問題、即ち外筒206に径方向外方に突出する部分的な厚肉部を形成することによって、圧入の際に同部分が過度に縮径方向に締め付けられ、割れを生じてしまうといった問題を解決することができる。
【0045】
図7は本発明の他の実施例を示している。
この内(A)は、相手部材12における段付部32をテーパ状に形成した例で、また(B)は相手部材12を分割筒体18Aと18Bとの2分割構成とし、内径の大きな分割筒体18Bによって凹陥部28を形成し、そしてその凹陥部28と非凹陥部30との境界に段付部32を形成した例である。
【0046】
更にまた(C)は、相手部材12を分割筒体18C,18D,18Eの3分割構成とし、そして軸方向の中間部に位置する内径の最も大きな分割筒体18Dにて凹陥部28を形成し、凹陥部28とその軸方向両側の非凹陥部30との境界に、軸方向において互いに向きが逆となる一対の段付部32を形成した例である。
【0047】
これら図7(B),(C)に示すように、相手部材12を軸方向に複数分割し、そして大径の内径を有する分割筒体18B,18Dにて凹陥部28を形成するようになした場合、容易に筒形の相手部材12の内面に凹陥部28及び段付部32を形成することができる。
【0048】
また図7(C)の場合、相手部材12に圧入されたゴムブッシュ10が、軸方向且つ互いに反対向きの両方向に抜止めされた状態となり、従って図7(C)によれば、ゴムブッシュ10がフランジ部24を有しないものであっても、即ちフランジ部24による相手部材12への当接によって、軸方向の抜けを防止するといったことができない場合であっても、相手部材12内部に圧入されたゴムブッシュ10を支障なく軸方向の両方向に抜け防止することができる。
【0049】
図8は本発明の更に他の実施例を示したもので、この例は相手部材12の内面に且つ周方向に沿って、径方向外方に凹陥する形態の凹陥部40と非凹陥部42とを交互に設け、それら凹陥部40と非凹陥部42との境界に段付部44を形成したものである。
【0050】
相手部材12の内面をこのような段付形状になしておいた場合、そこに圧入したゴムブッシュ10の樹脂製の外筒18が、その内面形状に倣った形状に変形し、これによってゴムブッシュ10が相手部材12に対し周方向に強く拘束された状態となる。
【0051】
以上は外筒18の外面を軸方向のストレート形状となした例であるが、外筒18の外面を軸方向の非ストレート形状となすことも可能である。
図9はその具体例を示している。
図9(B)において(イ)は外筒18の外面形状の、凹陥部28に対向する部分の軸方向の一部を径方向外方に突出する周方向の環状の突出部46として形成した例である。
【0052】
また(ロ)は外筒18の外面形状を、フランジ部24から反対側の軸方向端に向って外径が漸次増大した後、一定軸方向長に亘って同じ外径を保ち、その後外径が漸次小となるような形状で形成し、以って相手部材12における非凹陥部30から凹陥部28にかけて外筒18の外面形状を径方向外方に突出する突出部48として形成した例を示している。
【0053】
更に(ハ)は外筒18の外面形状をフランジ部24から反対側の軸方向端に向って外径が漸次増大するような形状で形成した例を示している。
更に(ニ)は外筒18の外面形状を微細な凹凸50を有する形状に形成した例を示している。
【0054】
一方図10は外筒18の内面形状を非ストレート形状となした例を示したもので、この内(B)(イ)は外筒18の内面形状の、凹陥部28に対向する部分の軸方向の一部を部分的に径方向内方に突出させて成る周方向の環状の突出部52として形成した例を示している。
また(ロ)は外筒18の内面形状の、凹陥部28に対向する部分をほぼ全体的に径方向内方に且つ周方向に環状に突出させて成る突出部54として形成した例を示している。
【0055】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明は上記自動車のトーションビーム式リヤサスペンションにおける筒形防振装置以外の各種筒形防振装置に適用することが可能であるなど、その趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。
【図面の簡単な説明】
【図1】本発明の一実施例である筒形防振装置を示す図である。
【図2】同実施例におけるゴムブッシュを圧入前の状態で示す図である。(A):(B)の左側面図である。
(B):(A)のB−B断面図である。
【図3】同実施例における相手部材を示す図である。
【図4】同実施例におけるゴムブッシュと相手部材との寸法関係を圧入方向とともに示す図である。
【図5】本実施例におけるゴムブッシュの抜き力の経時変化を比較例とともに示す図である。
【図6】図5の測定に用いた比較例品における相手部材の内面形状を実施例品のそれと比較して示した図である。
【図7】本発明の更に他の各実施例の要部を示した図である。
【図8】本発明の更に他の実施例の要部を示した図である。
【図9】本発明の更に他の各実施例の要部を示した図である。
【図10】本発明の更に他の各実施例の要部を示した図である。
【図11】従来の筒形防振装置の一例を示す図である。
【符号の説明】
10 ゴムブッシュ
12 相手部材
16 内筒
18 外筒
18A,18B,18C,18D,18E 分割筒体
20 ゴム弾性体
28,40 凹陥部
30,42 非凹陥部
32,38,44 段付部
外筒の外径
凹陥部の内径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical vibration isolator in which a rubber bush is press-fitted into a cylindrical mating member and held in a fitted state, and particularly relates to a rubber bush whose outer cylinder is made of resin.
[0002]
[Prior art]
Conventionally, a rubber bush having a rigid outer cylinder and an inner cylinder, and a rubber elastic body disposed between the outer cylinder and the inner cylinder, is press-fitted into a cylindrical rigid counterpart member on the outer surface of the outer cylinder, 2. Description of the Related Art Cylindrical vibration damping devices that hold a rubber bush in a mating state with a mating member are widely used as suspension bushes such as a trailing arm bush and a torque rod bush of an automobile, an engine mount, and the like.
[0003]
In this type of cylindrical vibration isolator, the outer cylinder, the inner cylinder, and the mating member of the rubber bush are all made of metal, and when the outer cylinder of the rubber bush is press-fitted into the mating member with a predetermined tightening allowance, The rubber bush is prevented from coming off from the mating member based on a strong frictional force generated between the outer surface and the inner surface of the mating member.
[0004]
By the way, in recent years, it has been studied to use an outer cylinder of the rubber bush as a resin. In this case, the elastic restoring force of the outer cylinder made of resin is reduced due to stress relaxation, and the stress is greatly reduced due to thermal influence. Even if it is press-fitted with a predetermined allowance at the initial stage, there is a problem that the elastic restoring force against the mating member of the outer cylinder is lowered due to the subsequent change with time, and the pulling force is lowered.
[0005]
An example of a countermeasure for this problem is disclosed in Patent Document 1 below.
FIG. 11 shows a specific example thereof. In the figure, reference numeral 200 denotes a rubber bush, which is made of a metal inner cylinder 202, a rubber elastic body 204 that is integrally fixed to the outer peripheral surface thereof, and a resin made of resin that is integrally fixed to the outer peripheral surface of the rubber elastic body 204. And an outer cylinder 206.
Reference numeral 208 denotes a mating member made of a metal cylinder, and the rubber bush 200 is press-fitted into the mating member 208 and held in a fitted state.
[0006]
The resin-made outer cylinder 206 and the rubber elastic body 204 have flange portions 210 and 212 at axial end portions (lower end portions in the drawing), respectively, and the outer cylinder 206 has an axial direction opposite to this. An end portion and a portion protruding in the axial direction from the counterpart member 208 have a partially thick engaging portion 218 provided with inclined surfaces 214 and 216 inclined in opposite directions.
The rubber bushing 200 is prevented from coming off the mating member 208 when the engaging portion 218 engages the shaft end of the mating member 208 after press-fitting into the mating member 208.
[0007]
[Patent Document 1]
Japanese Utility Model Publication No. 5-77737
[Problems to be solved by the invention]
However, in the case of the cylindrical vibration isolator shown in FIG. 11, a part of the outer cylinder 206, specifically, the engaging part 218 protrudes from the mating member 208 in the axial direction and is exposed to the outside by being exposed to the outside. In addition to the problem of being easily deteriorated, there is a problem that a stepping stone or the like protrudes from the mating member 208 and hits a stepped stone or the like to cause a crack.
Further, in the case of this cylindrical vibration isolator, the length of the rubber bush 200 in the axial direction is necessarily longer than that of the mating member 208, and there is a problem that the shape is restricted.
[0009]
Further, in the case of the cylindrical vibration isolator of this example, it is desirable to press-fit the outer cylinder 206 into the mating member 208 with the maximum tightening margin within a range in which the outer cylinder 206 does not crack. If the maximum tightening allowance is set in the joint portion, the portion of the engaging portion 218 that is a partial thick portion at the time of press-fitting is excessively reduced in diameter, and there is a problem that cracks are likely to occur in the same portion. .
On the other hand, if the tightening allowance at the time of press-fitting is set so as not to cause cracks at the engaging portion 218, the tightening allowance at the fitting portion of the outer cylinder 206 with the mating member 208 will be insufficient after the press-fitting. Cause problems.
[0010]
[Means for Solving the Problems]
The cylindrical vibration isolator of the present invention has been devised to solve such problems.
Thus, according to the first aspect of the present invention, a rubber bush having a resin outer cylinder, an inner cylinder, and a rubber elastic body disposed between the outer cylinder and the inner cylinder is formed into a cylindrical shape on the outer surface of the outer cylinder. In a cylindrical vibration isolator that is press-fitted into a mating member of the above-mentioned rigidity so as to hold the rubber bush in a fitted state with the mating member, a configuration in which the inner surface of the mating member is recessed radially outward And forming the shape of the inner surface of the mating member into a stepped shape having a stepped portion at the boundary between the recessed portion and the non-recessed portion. The outer surface has a diameter larger than that of the non-recessed portion before being pressed into the mating member, and the outer cylinder is press-fitted into the mating member while reducing the diameter of the outer cylinder using elastic deformation of resin. The portion of the outer cylinder is expanded by the elastic restoring force after press-fitting, and the outer surface shape of the outer cylinder is changed to the counterpart member. It stepped shape and without which following the inner surface shape, characterized in that engaged with each other and a stepped portion of the stepped portion and the outer cylinder of the mating member and omission direction in the axial direction.
[0011]
According to a second aspect of the present invention, in the first aspect, the amount of return deformation in the diameter-enlarging direction due to the elastic restoring force of the portion of the outer cylinder facing the recessed portion is larger than that of the other portions. Thus, the outer surface shape of the outer cylinder is a stepped shape that follows the inner surface shape of the mating member.
[0012]
According to a third aspect of the present invention, in any one of the first and second aspects, the outer surface of the outer cylinder has a substantially axial straight shape before being press-fitted into the mating member. .
[0013]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the concave portion is provided in an intermediate portion in the axial direction, and a boundary portion between the non-concave portion and the concave portion on both axial sides of the concave portion is provided. A pair of stepped portions that are opposite to each other in the axial direction are formed.
[0014]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the counterpart member is divided in the axial direction, and the recessed portion is formed by a divided cylindrical body having a large inner diameter. .
[0015]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the inner surface of the mating member is partially formed in the circumferential direction with a concave portion that is recessed radially outward. The inner surface has a stepped shape having a stepped portion in the circumferential direction.
[0016]
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the inner diameter of the recessed portion is equal to or less than a maximum outer diameter of a corresponding portion of the outer cylinder in a state before press-fitting. And
[0017]
[Operation and effect of the invention]
As described above, in the present invention, the shape of the inner surface of the mating member is a stepped shape having a recessed portion, and the mating member is made by utilizing the elastic deformation of the resin by press-fitting the outer surface of the resin outer cylinder in the rubber bush. A stepped shape that follows the shape of the inner surface of the rubber bushing, and the stepped portions are engaged in the direction in which the rubber bushing is pulled out. The pulling force of the rubber bush can be effectively increased by the combined action, and the rubber bush can be satisfactorily prevented from coming off.
[0018]
According to the present invention, the inner surface of the mating member and the outer surface of the outer cylinder are engaged. Therefore, the cylindrical vibration isolator can be configured in a form in which the outer cylinder does not protrude in the axial direction from the mating member.
And when it does in this way, the problem that the part which protruded from the other party member of the outer cylinder is exposed to external air, deteriorates, and a stepping stone etc. hits and a crack etc. can be solved.
Further, the restriction of making the rubber bush longer than the counterpart member is removed, and the effect of increasing the degree of freedom in designing the cylindrical vibration isolator can be obtained.
[0019]
In the present invention, the outer surface shape of the outer cylinder is controlled by increasing the amount of return deformation in the diameter-enlarging direction due to the elastic restoring force of the portion of the outer cylinder facing the recessed portion more than the other parts. A stepped shape that follows the shape of the inner surface of the member can be obtained.
Furthermore, the outer surface of the outer cylinder can be formed into a substantially straight shape in the axial direction before being pressed into the mating member.
[0020]
In this way, by forming the outer surface of the outer cylinder in a straight shape in the axial direction, a problem with the cylindrical vibration isolator shown in FIG. 11, that is, a partial thick portion protruding radially outward in the outer cylinder 206 is formed. By doing so, it is possible to solve the problem that the same portion is excessively tightened in the direction of diameter reduction during the press-fitting and causes cracking.
[0021]
According to a fourth aspect of the present invention, the concave portion is provided in an intermediate portion in the axial direction, and a pair of stepped portions that are opposite to each other in the axial direction is formed at a boundary portion between the concave portion and the non-concave portion on both sides in the axial direction. Therefore, in this case, the rubber bush press-fitted into the mating member is engaged with the mating member in the axial direction and in the opposite directions, and can be prevented from coming off in any direction.
The present invention is particularly effective when applied to a configuration in which the outer cylinder does not have a flange portion.
[0022]
According to a fifth aspect of the present invention, the mating member is divided into a plurality of parts in the axial direction, and the recessed portion is formed by a divided cylindrical body having a large inner diameter. A part and a stepped part can be formed.
[0023]
In the present invention, a recessed portion can be partially formed in the circumferential direction on the inner surface of the mating member (Claim 6). In this case, the mating member and the rubber bush press-fitted therein are circumferentially arranged. The relative movement in the same direction can be prevented.
[0024]
In the present invention, the inner diameter of the recessed portion can be made equal to or less than the maximum outer diameter of the corresponding portion of the outer cylinder in a state before press-fitting (Claim 7).
[0025]
【Example】
Next, embodiments of the present invention will be described in detail with reference to the drawings.
This example is an example of a cylindrical vibration isolator used in a connecting portion between a trailing arm and a vehicle body in a torsion beam type rear suspension of an automobile. FIG. 2 is press-fitted with a rubber bush 10 and FIG. 3 is press-fitted with a rubber bush 10 in FIG. FIG. 1 shows a state in which the rubber member 10 to be pressed is assembled into the mating member 12 shown in FIG.
In FIG. 1, reference numeral 14 denotes an arm extending from the mating member 12.
[0026]
As shown in FIG. 2, the rubber bush 10 includes a cylindrical inner cylinder 16, a cylindrical outer cylinder 18, and an inner cylinder 16 and an outer cylinder 18 that are disposed between the inner cylinder 16 and the outer cylinder 18. And a rubber elastic body 20 to be connected.
Here, the inner cylinder 16 is made of metal, and the outer cylinder 18 is made of resin.
For the inner cylinder 16, a rigid resin can be used.
The rubber elastic body 20 is formed with a pair of voids (straight) 22 along the axial direction as shown in FIG.
[0027]
As shown in FIG. 2B, the outer cylinder 18 is formed with a flange portion 24 at one end in the axial direction (left end in the figure), and the rubber elastic body 20 also has one end in the axial direction corresponding thereto. A flange portion 26 is formed on the bottom.
[0028]
Here the rubber bushing 10 has an outer diameter of the outer cylinder 18 shown in Figure 4, details outer diameter d 1 of the portion excluding the flange portion 24 is the diameter 67 mm.
The axial length of the outer tube 18, specifically axial length l 1 of the portion excluding the flange portion 24 is substantially the same as the axial length L 1 of the mating member 12.
[0029]
In this example, various resins can be used as the resin constituting the outer cylinder 18.
Specifically, a thermoplastic resin, a thermosetting resin, or the like can be used as a constituent resin of the outer cylinder 18, and among them, a thermoplastic resin excellent in impact strength against vibration input and moldability as the outer cylinder 18 is preferable. Used.
[0030]
Thermoplastic resin materials include polyamide (including aromatic polyamide and modified polyamide), polyester (including modified polyester), polypropylene, polycarbonate, polyacetal, polyphenylene sulfide, and modified polyphenylene ether. A polyamide having an excellent balance between reinforcing effect and cost is preferably used.
[0031]
In addition, glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, metal fiber, silicon carbide fiber, glass beads, whiskers, and wollastonite are used as fillers to be blended or mixed with resin materials to reinforce such resin materials. , Kaolinite, talc, mica, carbon nanotubes, etc., and layered phyllosilicates composed of magnesium silicate or aluminum silicate layers such as montmorillonite, hectorite, vermiculite, halosite, etc. Glass fiber is preferably used from the viewpoint of cost.
Depending on the use site, a non-reinforced resin material without a filler can also be used.
As the resin material of the outer cylinder 18 in this example, a material obtained by mixing 30% glass fiber as a filler in polyamide 66 (PA66) is used.
[0032]
On the other hand, the mating member 12 shown in FIG. 3 has a cylindrical shape corresponding to the rubber bush 10 as a whole.
Here, the entire counterpart member 12 is made of metal.
[0033]
As shown in FIG. 3 (B), the mating member 12 is formed with an annular recess 28 in the form of a recess in the radially outward direction on the inner surface of the mating member 12. A stepped portion 32 is formed at the boundary between the concave portion 30 and the non-recessed portion 30.
[0034]
Here, the inner diameter D 2 (see FIG. 4) of the recessed portion 28 is the same as the outer diameter d 1 of the outer cylinder 18 of the rubber bush 10 before press-fitting.
Meanwhile the inner diameter D 1 of the non-recessed portion 30 is smaller than the outer diameter d 1 of the outer cylinder 18, wherein is specifically is sized with a diameter 65 mm.
Incidentally, the axial length L 2 of the recessed portion 28 is exactly half the size with respect to the axial direction length L 1 of the total. However the dimensions of the L 2 can be appropriately changed.
[0035]
In the cylindrical vibration isolator of this example, as shown in FIG. 4, the rubber bush 10 is pressed into the mating member 12 in the axial direction so that the mating member 12 holds the rubber bush 10 in a fitted state. To do.
At this time, the resin outer cylinder 18 is press-fitted into the mating member 12 on the outer surface thereof while being reduced in diameter with elastic deformation.
Then, after the press-fitting, the portion of the outer member 18 that faces the recessed portion 28 of the counterpart member 12 is expanded in diameter by the elastic restoring force and partially enters the recessed portion 28.
[0036]
The outer surface shape of the outer cylinder 18 is deformed into a stepped shape following the inner surface shape of the mating member 12.
Specifically, in FIG. 1, the portion corresponding to the recessed portion 28 is deformed into a stepped shape in which the portion corresponding to the large diameter portion 34 and the portion corresponding to the non-recessed portion 30 forms the small diameter portion 36, and the stepped portion 38 in the outer cylinder 18 is formed. In this state, the stepped portion 32 formed on the inner surface of the mating member 12 is engaged in the axial direction and the withdrawal direction, that is, in the left direction in the figure.
The engaging action of the stepped portions 32 and 38 provides a high pulling force from the mating member 12 of the rubber bush 10 and prevents the rubber bush 10 from coming off well.
[0037]
Incidentally, FIG. 5 shows the pulling force of the example product shown in FIGS. 1 to 4 as Comparative Example Product 1 and Comparative Example Product 2 (the mating members 12-1, 12-2 shown in FIGS. 6B and 6C). Only disclosed).
[0038]
Here, unlike the counterpart member 12 of the example product shown in FIG. 6 (A), the comparative example product 1 is not provided with the recessed portion 28 and the stepped portion 32 on the inner surface of the counterpart member 12-1, but the shape of the inner surface thereof. Is a straight shape in the axial direction.
Note that the inner diameter is D 1, is equivalent to the inner diameter of the non-recessed portions 30 of the above embodiment.
The comparative product 2 is obtained by blasting the inner surface of the mating member 12-2 to roughen the surface roughness (normally the surface roughness is several μm, but here the surface roughness is about 30 μm). )
[0039]
In FIG. 5, (A) is the measurement result of the change over time of the pulling force when left at room temperature after press-fitting, and (B) is the measurement result of the change over time of the pulling force when left standing hot (80 ° C.). is there.
[0040]
In the result of standing at room temperature in FIG. 5A, the comparative example product 2 has a high initial pulling force, and accordingly, a high pulling force is maintained even after a lapse of time (after 500 hours).
Further, the comparative example product 1 has a lower pulling force after the lapse of time by a lower initial pulling force.
On the other hand, in the case of the example product, since the initial pulling force is low, the pulling force after the lapse of time is lower than that of the comparative example product 2, but the decrease rate of the pulling force after the lapse of time with respect to the initial pulling force ( The rate of change over time) is much better than Comparative Example Product 1 and Comparative Example Product 2.
[0041]
On the other hand, in the case of being left in the hot state in FIG. 5B, in both the comparative product 1 and the comparative product 2, the pulling force due to the change over time is greatly reduced, but in the case of the example product, the pulling force is decreased. Has been kept low.
[0042]
As described above, in the case of the cylindrical vibration isolator of this example, the pulling force of the rubber bush 10 can be effectively increased by the engaging action of the stepped portions 32 and 38 of the outer cylinder 18 and the mating member 12, and the rubber It is possible to satisfactorily prevent the bush 10 from coming off the counterpart member 12.
[0043]
Further, in this example, the outer cylinder 18 of the rubber bush 10 is not protruded from the mating member 12 in the axial direction, and the outer cylinder 18 is engaged in the axial direction on the inner surface of the mating member 12. As in the case of the cylindrical vibration isolator, the outer cylinder 206 is deteriorated by being exposed to the outside from the mating member 208, or another problem such as a stepping stone hitting the outer cylinder 206 and causing the outer cylinder 206 to crack does not occur.
[0044]
Further, there is no restriction that the rubber bush 10 must be longer than the counterpart member 12, and an advantage of increasing the degree of freedom in designing the cylindrical vibration isolator can be obtained.
Further, in this example, since the outer surface of the outer cylinder 18 has a straight shape in the axial direction, there is a problem in the cylindrical vibration isolator shown in FIG. 11, that is, a partial thickness that protrudes radially outward from the outer cylinder 206. By forming the flesh portion, it is possible to solve the problem that the same portion is excessively tightened in the direction of reduced diameter during the press-fitting and a crack occurs.
[0045]
FIG. 7 shows another embodiment of the present invention.
Among these, (A) is an example in which the stepped portion 32 of the mating member 12 is formed in a tapered shape, and (B) is a bipartition configuration in which the mating member 12 is divided into divided cylindrical bodies 18A and 18B, and a large inner diameter is divided. In this example, a recessed portion 28 is formed by the cylindrical body 18B, and a stepped portion 32 is formed at the boundary between the recessed portion 28 and the non-recessed portion 30.
[0046]
Further, in (C), the counterpart member 12 is divided into three divided cylinders 18C, 18D, and 18E, and the recessed portion 28 is formed by the divided cylinder 18D having the largest inner diameter located at the intermediate portion in the axial direction. This is an example in which a pair of stepped portions 32 whose directions are opposite to each other in the axial direction are formed at the boundary between the recessed portion 28 and the non-recessed portion 30 on both sides in the axial direction.
[0047]
As shown in FIGS. 7B and 7C, the mating member 12 is divided into a plurality of parts in the axial direction, and the recessed portions 28 are formed by the divided cylinders 18B and 18D having a large inner diameter. In this case, the recessed portion 28 and the stepped portion 32 can be easily formed on the inner surface of the cylindrical mating member 12.
[0048]
In the case of FIG. 7C, the rubber bush 10 press-fitted into the mating member 12 is held in the axial direction and in both directions opposite to each other. Therefore, according to FIG. 7C, the rubber bush 10 Even if the flange member 24 does not have the flange portion 24, that is, even if the flange portion 24 cannot contact the mating member 12 due to contact with the mating member 12, it can be press-fitted into the mating member 12 inside. The rubber bush 10 thus made can be prevented from coming off in both axial directions without hindrance.
[0049]
FIG. 8 shows still another embodiment of the present invention. In this example, a recessed portion 40 and a non-recessed portion 42 are formed so as to be recessed radially outwardly on the inner surface of the mating member 12 along the circumferential direction. Are provided alternately, and a stepped portion 44 is formed at the boundary between the recessed portion 40 and the non-recessed portion 42.
[0050]
When the inner surface of the mating member 12 has such a stepped shape, the resin-made outer cylinder 18 of the rubber bush 10 press-fitted therein is deformed into a shape that follows the inner surface shape, thereby the rubber bush. 10 is in a state of being strongly restrained in the circumferential direction with respect to the counterpart member 12.
[0051]
The above is an example in which the outer surface of the outer cylinder 18 has a straight shape in the axial direction, but the outer surface of the outer cylinder 18 can also have a non-straight shape in the axial direction.
FIG. 9 shows a specific example thereof.
In FIG. 9 (B), (a) is formed as a circumferential annular projecting portion 46 projecting radially outward from a part of the outer surface of the outer cylinder 18 facing the recessed portion 28 in the axial direction. It is an example.
[0052]
(B) shows the shape of the outer surface of the outer cylinder 18, and after the outer diameter gradually increases from the flange portion 24 toward the opposite axial end, the same outer diameter is maintained over a certain axial length. Is formed in a shape that gradually becomes smaller, so that the outer surface shape of the outer cylinder 18 is formed as a protruding portion 48 that protrudes radially outward from the non-recessed portion 30 to the recessed portion 28 in the counterpart member 12. Show.
[0053]
Further, (c) shows an example in which the outer surface shape of the outer cylinder 18 is formed in such a shape that the outer diameter gradually increases from the flange portion 24 toward the opposite axial end.
Further, (d) shows an example in which the outer surface shape of the outer cylinder 18 is formed into a shape having fine irregularities 50.
[0054]
On the other hand, FIG. 10 shows an example in which the inner surface shape of the outer cylinder 18 is a non-straight shape. Among these, (B) and (A) are the axes of the inner surface shape of the outer cylinder 18 facing the recessed portion 28. An example is shown in which a part of the direction is formed as a circumferential annular projecting portion 52 that is partially projected radially inward.
(B) shows an example in which the portion of the inner shape of the outer cylinder 18 facing the recessed portion 28 is formed as a protruding portion 54 that protrudes in a generally radially inward and circumferentially annular manner. Yes.
[0055]
Although the embodiment of the present invention has been described in detail above, this is only an example, and the present invention can be applied to various cylindrical vibration isolators other than the cylindrical vibration isolator in the torsion beam type rear suspension of the automobile. For example, it can be configured in various forms without departing from the spirit thereof.
[Brief description of the drawings]
FIG. 1 is a view showing a cylindrical vibration isolator according to an embodiment of the present invention.
FIG. 2 is a view showing a rubber bush in the same embodiment before press-fitting. (A): It is a left view of (B).
(B): It is BB sectional drawing of (A).
FIG. 3 is a view showing a mating member in the same embodiment.
FIG. 4 is a view showing a dimensional relationship between a rubber bush and a mating member in the same embodiment together with a press-fitting direction.
FIG. 5 is a view showing a change with time of a pulling force of a rubber bush in this example together with a comparative example.
6 is a view showing the inner surface shape of the mating member in the comparative example product used for the measurement of FIG. 5 in comparison with that of the example product. FIG.
FIG. 7 is a view showing a main part of still another embodiment of the present invention.
FIG. 8 is a view showing a main part of still another embodiment of the present invention.
FIG. 9 is a view showing a main part of still another embodiment of the present invention.
FIG. 10 is a view showing a main part of still another embodiment of the present invention.
FIG. 11 is a diagram showing an example of a conventional cylindrical vibration isolator.
[Explanation of symbols]
10 Rubber bush 12 Mating member 16 Inner cylinder 18 Outer cylinder 18A, 18B, 18C, 18D, 18E Split cylinder 20 Rubber elastic body 28, 40 Depressed part 30, 42 Non-recessed part 32, 38, 44 Stepped part d 1 Out inner diameter of the outer diameter D 2 recess of the cylinder

Claims (7)

樹脂製の外筒と、内筒と、それら外筒及び内筒間に配置されたゴム弾性体とを有するゴムブッシュを、該外筒の外面において筒形の剛性の相手部材に圧入して該ゴムブッシュを該相手部材にて嵌合状態に保持するようになした筒形防振装置において、
前記相手部材の内面に、径方向外方に凹陥した形態の凹陥部を軸方向に部分的に形成して該相手部材の内面の形状を、該凹陥部と非凹陥部との境界部に段付部を有する段付形状となす一方、前記外筒の外面を該相手部材への圧入前の状態で前記非凹陥部よりも大径となし、樹脂の弾性変形を利用して該外筒を縮径させながら該相手部材内部に圧入し、該外筒の前記凹陥部に対向して位置する部分を圧入後の弾性復元力で拡径させて、該外筒の外面形状を前記相手部材の内面形状に倣った段付形状となし、該相手部材の段付部と該外筒の段付部とを軸方向に且つ抜け方向に互いに係合させたことを特徴とする筒形防振装置。
A rubber bush having a resin outer cylinder, an inner cylinder, and a rubber elastic body disposed between the outer cylinder and the inner cylinder is press-fitted into a cylindrical rigid counterpart member on the outer surface of the outer cylinder. In the cylindrical vibration isolator adapted to hold the rubber bush in the mating state with the mating member,
On the inner surface of the mating member, a concave portion that is recessed radially outward is partially formed in the axial direction so that the shape of the inner surface of the mating member is stepped on the boundary between the concave portion and the non-concave portion. The outer surface of the outer cylinder is made larger in diameter than the non-recessed portion in a state before being press-fitted into the mating member, and the outer cylinder is formed using elastic deformation of resin. Press-fitting into the mating member while reducing the diameter, and expanding the diameter of the portion of the outer cylinder facing the recessed portion with the elastic restoring force after press-fitting, thereby changing the outer surface shape of the outer cylinder to that of the mating member A cylindrical vibration isolator having a stepped shape following the inner surface shape, wherein the stepped portion of the mating member and the stepped portion of the outer cylinder are engaged with each other in the axial direction and in the withdrawal direction. .
請求項1において、前記外筒の、前記凹陥部に対向して位置する部分の前記弾性復元力による拡径方向の戻り変形の変形量を他部よりも大となし、以って該外筒の外面形状を前記相手部材の内面形状に倣った段付形状となしたことを特徴とする筒形防振装置。2. The outer cylinder according to claim 1, wherein the outer cylinder has a larger amount of return deformation in the diameter-expanding direction due to the elastic restoring force of a portion of the outer cylinder facing the recessed portion than the other section. A cylindrical anti-vibration device characterized in that the outer surface shape is a stepped shape following the inner surface shape of the mating member. 請求項1,2の何れかにおいて、前記外筒の外面を前記相手部材への圧入前の状態で実質的に軸方向のストレート形状となしてあることを特徴とする筒形防振装置。The cylindrical vibration isolator according to any one of claims 1 and 2, wherein the outer surface of the outer cylinder has a substantially axial straight shape before being press-fitted into the mating member. 請求項1〜3の何れかにおいて、前記凹陥部を軸方向の中間部に設けて、該凹陥部の軸方向両側の非凹陥部と該凹陥部との境界部に、軸方向に互いに逆向きをなす一対の段付部を形成してあることを特徴とする筒形防振装置。4. The method according to claim 1, wherein the concave portion is provided in an intermediate portion in the axial direction, and is opposite to each other in the axial direction at a boundary portion between the non-concave portion on both sides in the axial direction of the concave portion and the concave portion. A cylindrical vibration isolator characterized by forming a pair of stepped portions. 請求項1〜4の何れかにおいて、前記相手部材を軸方向の分割構成とし、大径の内径を有する分割筒体にて前記凹陥部を形成したことを特徴とする筒形防振装置。The cylindrical vibration isolator according to any one of claims 1 to 4, wherein the mating member is divided in the axial direction, and the recessed portion is formed by a divided cylindrical body having a large inner diameter. 請求項1〜5の何れかにおいて、前記相手部材の内面には、径方向外方に凹陥した形態の凹陥部を周方向に部分的に形成して該相手部材の内面を周方向に段付部を有する段付形状となしてあることを特徴とする筒形防振装置。6. The inner surface of the mating member according to any one of claims 1 to 5, wherein the inner surface of the mating member is partially formed in the circumferential direction so as to be recessed radially outward, and the inner surface of the mating member is stepped in the circumferential direction. A cylindrical vibration isolator having a stepped shape having a portion. 請求項1〜6の何れかにおいて、前記凹陥部の内径を、圧入前の状態において前記外筒の対応する部分の最大外径と同等以下となしてあることを特徴とする筒形防振装置。7. The cylindrical vibration isolator according to claim 1, wherein an inner diameter of the recessed portion is equal to or less than a maximum outer diameter of a corresponding portion of the outer cylinder in a state before press-fitting. .
JP2002343097A 2002-11-26 2002-11-26 Cylindrical vibration isolator Expired - Fee Related JP3767545B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002343097A JP3767545B2 (en) 2002-11-26 2002-11-26 Cylindrical vibration isolator
US10/718,987 US7104533B2 (en) 2002-11-26 2003-11-21 Cylindrical vibration damping device
DE10355062A DE10355062A1 (en) 2002-11-26 2003-11-25 Cylindrical vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343097A JP3767545B2 (en) 2002-11-26 2002-11-26 Cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2004176803A JP2004176803A (en) 2004-06-24
JP3767545B2 true JP3767545B2 (en) 2006-04-19

Family

ID=32704952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343097A Expired - Fee Related JP3767545B2 (en) 2002-11-26 2002-11-26 Cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP3767545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210025A (en) * 2009-03-11 2010-09-24 Bridgestone Corp Vibration control device, and method of manufacturing the same
WO2010110399A1 (en) 2009-03-25 2010-09-30 株式会社ブリヂストン Vibration proof structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533763B2 (en) * 2005-01-21 2010-09-01 倉敷化工株式会社 Vibration isolator and assembly method thereof
JP4771168B2 (en) * 2006-12-06 2011-09-14 株式会社デンソー Valve timing adjustment device
JP5291981B2 (en) * 2008-04-28 2013-09-18 株式会社ブリヂストン Sleeve fitting structure of vibration isolator
JP2009270700A (en) * 2008-05-12 2009-11-19 Bridgestone Corp Elastic bush and its manufacturing method
JP5363360B2 (en) 2009-01-29 2013-12-11 東海ゴム工業株式会社 Bush assembly manufacturing method and vibration isolating rubber bush
JP5567463B2 (en) * 2010-12-16 2014-08-06 株式会社ブリヂストン Vibration isolator
ES2548703T3 (en) * 2011-03-09 2015-10-20 Fm Energie Gmbh & Co. Kg Bushing presumable by material displacement and bearing equipped with this bushing
JP5829822B2 (en) * 2011-03-22 2015-12-09 株式会社ブリヂストン Vibration isolator
JP6000104B2 (en) * 2012-12-14 2016-09-28 ダイハツ工業株式会社 Mount member
JP6807052B2 (en) * 2017-01-19 2021-01-06 いすゞ自動車株式会社 How to assemble the torque rod and the torque rod to the assembly target
DE102021205347B3 (en) 2021-05-26 2022-09-08 Volkswagen Aktiengesellschaft Elastomeric composite bearing, bearing arrangement and method for manufacturing an outer sleeve of an elastomeric composite bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210025A (en) * 2009-03-11 2010-09-24 Bridgestone Corp Vibration control device, and method of manufacturing the same
WO2010110399A1 (en) 2009-03-25 2010-09-30 株式会社ブリヂストン Vibration proof structure
US8939440B2 (en) 2009-03-25 2015-01-27 Bridgestone Corporation Vibration absorption device

Also Published As

Publication number Publication date
JP2004176803A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP6867138B2 (en) Anti-vibration bush
JP3767545B2 (en) Cylindrical vibration isolator
US7104533B2 (en) Cylindrical vibration damping device
CN1080849C (en) Mechanical coupling for elastic axial and radial constraint with torsional freedom, especially for elastic pivots and suspensions and the like
JP2008223920A (en) Vibration control bush and vibration control bush assembly
JP2002295560A (en) Cylindrical rubber mount
KR101648427B1 (en) Dynamic damper
JP6783135B2 (en) Cylindrical anti-vibration device
WO2016047395A1 (en) Tubular antivibration device
JP5095577B2 (en) Anti-vibration connecting rod
JP2006283870A (en) Torque rod
JP2007333029A (en) Torque rod
JP6257389B2 (en) Cylindrical vibration isolator and manufacturing method thereof
JP4694815B2 (en) Torque rod and manufacturing method thereof
JP4016836B2 (en) Cylindrical vibration isolator
JP7094199B2 (en) Anti-vibration bush
JP4218358B2 (en) Cylindrical vibration isolator
JP2004028267A (en) Vibration isolating bush
JPH10274268A (en) Vibration isolation bush and bush assembly
US20180065436A1 (en) Suspension arm and manufacturing method thereof
JP2006189096A (en) Torque rod
JP2018159455A (en) Cylindrical vibration damper
JP2007263154A (en) Vibration absorbing bush assembly
JP2005344764A (en) Vibration control bush
JP2011241931A (en) Vibration control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees