JP3766941B2 - Seismic reinforcement method for existing buildings - Google Patents

Seismic reinforcement method for existing buildings Download PDF

Info

Publication number
JP3766941B2
JP3766941B2 JP24786597A JP24786597A JP3766941B2 JP 3766941 B2 JP3766941 B2 JP 3766941B2 JP 24786597 A JP24786597 A JP 24786597A JP 24786597 A JP24786597 A JP 24786597A JP 3766941 B2 JP3766941 B2 JP 3766941B2
Authority
JP
Japan
Prior art keywords
existing
block
blocks
beams
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24786597A
Other languages
Japanese (ja)
Other versions
JPH1171907A (en
Inventor
耕司 村田
牧人 沢村
洋文 金子
靖昌 宮内
邦宏 野上
馨 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP24786597A priority Critical patent/JP3766941B2/en
Publication of JPH1171907A publication Critical patent/JPH1171907A/en
Application granted granted Critical
Publication of JP3766941B2 publication Critical patent/JP3766941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、既存建築物の耐震補強方法、特に、鉄製のブロックを用いて耐力壁を構築する既存建築物の耐震補強方法に関する。
【0002】
【従来の技術】
建築物の制振方法には、例えば、次の▲1▼及び▲2▼のようなものがある。
▲1▼複数個の孔を軟鋼製ブロックに一定の間隔をおいてこれを水平に貫通させて設け、各孔の側辺に塑性変形域を拡げるくびれ部を設けて、地震による振動エネルギーを吸収し得る弾塑性ダンパーをつくり、建築物の柱と梁とにより囲まれる空間内に壁を配して、この壁とその両側の柱との間及び前記壁とその上下の梁との間に隙間を設け、前記の上下梁の一方の梁と前記壁との間の隙間又は前記の両側柱と前記壁との間の隙間に、前記弾塑性ダンパーを配置し、この弾塑性ダンパーにより地震の振動エネルギーを吸収する制振方法(例えば、特開平8−277651号公報参照)。
▲2▼建築物の柱、梁間に設ける制振壁において、鋼板に上下方向に沿う複数のスリットを設け、該鋼板の上部及び下部を前記梁に対してそれぞれ固定し、前記鋼板の両側に、該鋼板の略全面を覆うプレキャストコンクリート板を、前記鋼板に対してその面方向の少なくとも水平方向に沿った変位が可能な状態に該鋼板の挿通孔に挿通した取付ボルトにて取り付け、かつ前記鋼板とプレキャストコンクリート板との間に粘性体を挾み込んで制振壁を構成し、この制振壁により地震の振動エネルギーを吸収する制振方法(例えば、実公平4−32454号公報参照)。
既存建築物の耐震補強方法には、例えば、次の▲3▼及び▲4▼のようなものがある。
▲3▼鉄筋コンクリート造等の既存建築物の架構を構成する既存柱及び既存梁に間隔をおいて多数のアンカー用鉄棒を植設し、前記架構の内側に金属枠体を配し、この金属枠体を前記アンカー用鉄棒を介して既存柱及び既存梁に取付け、前記金属枠体内に金属製のブレース材を配し、このブレース材の両端部等を金属枠体に固着し、ブレース材にて前記架構を補強する耐震補強方法。
▲4▼鉄筋コンクリート造等の既存建築物の架構の既存柱及び既存梁に間隔をおいて多数のアンカー用鉄筋を植設し、前記架構内に縦鉄筋と横鉄筋とからなる壁鉄筋を配し、この壁鉄筋をアンカー用鉄筋を介して既存柱及び既存梁に取付け、壁鉄筋の周囲に割裂防止筋を配し、壁鉄筋及び割裂防止筋の両側に型枠を配し、型枠間の隙間をモルタル又はコンクリートで埋め、モルタル又はコンクリートの硬化後に型枠を外し、耐震壁を構築する耐震補強方法。
【0003】
【発明が解決しようとする課題】
▲1▼の制振方法は、上下梁の一方の梁と壁との間に隙間又は両側柱と壁との間の隙間に、軟鋼製ブロックからなる弾塑性ダンパーを配置するため、上下梁の一方の梁と壁との間又は両側柱と壁との間に隙間が形成されるように、壁を構築する必要があり、建築物の重量が増加し、かつ施工性がよくないという欠点がある。
▲2▼の制振方法は、上下方向に沿う複数のスリットを設けた鋼板の上部及び下部を上側及び下側の梁に固定し、プレキャストコンクリート板を前記鋼板の両側に水平方向に沿った変位が可能な状態にボルトにて取り付け、前記鋼板とプレキャストコンクリート板との間に粘性体を挾み込んで制振壁を構成することが必要であり、制振壁の形成に手間がかかるだけでなく、建築物の重量が増加するという欠点がある。
上記▲3▼のブレースを新設する耐震補強方法は、架構への多数のアンカーの植設、架構への金属枠体の固定、ブレース材の金属枠体への取付等に多くの手間がかかるだけでなく、建物空間への金属枠体、ブレース材等の資材の搬入にも問題がある。
上記▲4▼の耐震壁を新設する耐震補強法は、架構への多数のアンカー用鉄筋の植設、壁鉄筋の架構への取付、壁鉄筋等の両側への型枠の設置、コンクリートの打設等に多くの手間がかかるだけでなく、建築物の重量が増加するという欠点があり、そのうえ、空間への壁鉄筋、型枠、コンクリート等の資材の搬入にも問題がある。
また、多量のコンクリートを使う耐震補強方法は、建築物自体の重量の上昇を招き、逆に既存建築物の耐震性を低下させることになる恐れがある。
この発明の解決しようとする課題は、上記▲1▼〜▲4▼のような従来技術が有している欠点を有しない既存建築物の耐震補強方法を提供すること、換言すると、耐力壁が重量増加を押えて施工性よく構築でき、工期の短縮等が図れる既存建築物の耐震補強方法を提供することにある。
【0004】
【課題を解決するための手段】
この発明の建築物の耐震補強方法は、鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロックの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分に配した各ブロックの内空部にモルタル等の充填材を充填することを特徴とするものである。
既存梁の上側に既存床が存在する場合には、「既存梁」という語は、既存梁の直上の既存床の部分をも含めるものとする。
また、この発明の建築物の耐震補強方法は、鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロツクの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、ブロックとして、鉄材にて構成された短い角筒体の内空部内にスチフナーを設けない無補強ブロックと、鉄材にて構成された短い角筒体の内空部にスチフナーを設けた補強ブロックとを用い、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分には補強ブロックを配置し、その他の部分には無補強ブロックを配置することを特徴とするものである
上記発明の好ましい実施形態では、補強ブロックの内空部にはモルタル等の充填材を充填してもよい
【0005】
この発明の耐震補強方法に用いるブロックは、例えば、次の()〜()のように構成する。
)鉄材にて構成された短い角筒体を、その上側の平面部と下側の平面部とを平行し、かつ左側の平面部と右側の平面部とを平行し、左側及び右側の平面部を上側及び下側の平面部に対して直角に配し、左側及び右側の平面部の上部を上側の平面部に連続させ、左側及び右側の平面部の下部を下側の平面部に連続させて構成し、上側及び下側の平面部の対応個所に少なくとも一つのボルト孔を設け、左側及び右側の平面部の対応個所にも少なくとも一つのボルト孔を設けて、ブロックを製作する。このブロックが無補強ブロックである。
)短い角筒体の左側及び右側の平面部の上部は弧状面部を介して上側の平面部に連続させ、左側及び右側の平面部の下部は弧状面部を介して下側の平面部に連続させる。
)前記の短い角筒体の内側の内空部内にその角筒体の中心軸線に対して直角に鋼板製のスチフナーを配し、このスチフナーの端を角筒体の平面部の内側面に溶接等の接合手段により接合して、ブロックを製作する。このブロックが補強ブロックである。
)短い角筒体の上側、下側、左側及び右側の平面部には、その角筒体の中心軸線に平行な2等分線上に少なくとも一つのボルト孔を設ける。
この発明の耐震補強方法は、既存建築物の左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、鉄材にて構成された短い角筒体からなる多数のブロックを積み重ねて耐力壁を構築するため、鉄筋コンクリート造、鉄骨鉄筋コンクリート造又は鉄骨造の既存建築物の耐震補強に適用できるものである。
【0006】
【実施例】
実施例は、図1〜図8に示され、この出願の発明を既存柱、既存梁等からなる架構を備えた既存建築物の耐震補強に適用した例である。
既存建築物1は、図8に示すように、鉄筋コンクリート造、鉄骨鉄筋コンクリート造又は鉄骨造により多層に建築され、多数(2本だけ図示)の既存柱2と多数(6本だけ図示)の既存梁3とが連結され、かつ既存梁3上に既存床4が設けられている。
【0007】
無補強ブロック10は、鋼板(鉄板)製であり、図1に示すように、その方向の辺の長さL方向の辺の長さLとが同じで、例えば、400mm程度であり、その奥行きの長さLが、例えば、200mm程度であり、その重量が、例えば、35Kg/個程度である鉄製の短い角筒体で構成されている。
すなわち、上側の平面部11と下側の平面部12とを平行し、かつ左側の平面部13と右側の平面部14とを平行し、左側及び右側の平面部13,14を上側及び下側の平面部11,12に対して直角に配し、左側及び右側の平面部13,14の上部を弧状面部15を介して上側の平面部11に連続させ、左側及び右側の平面部13,14の下部を弧状面部15を介して下側の平面部12に連続させて、短い角筒体になっている。
短い角筒体の各平面部11〜14の角筒体の軸線と平行な方向の2等分線上に、上側及び下側の平面部11,12の2つの対応位置にそれぞれボルト孔Bhを設け、左側及び右側の平面部13,14の2つの対応位置にそれぞれボルト孔Bhを設けて、ブロック10を製作する。
【0008】
大きな力が作用する部分に配する補強ブロック10Aは、鋼板(鉄板)製であり、その平面部11〜14、弧状面部15、ボルト孔Bh等の形状、寸法、位置等はブロック10と同じである。
鋼板製の角筒体の中空部の中央に、角部に切欠き16aのある4角形の鋼板製スチフナー16を角筒体の軸線に対して直角に配し、スチフナー16の4つの辺部16bを角筒体の平面部11〜14の内側面11a〜14aに溶接等の接合手段により接合して、補強ブロック10Aが製作される。
なお、図3に示す中空部内にモルタルMtを充填したブロック10又は図7に示す中空部内にモルタルMtを充填した補強ブロック10Aの重量は、例えば、100Kg/個程度である。
【0009】
次に、ブロック10,10Aを用いた既存建築物1の耐震補強方法を説明する。
図8に示すように、既存建築物1の既存梁3の直上の既存床4の上面(又は既存梁3の上面)を適宜の手段で平面にし、この平面上に多数のブロック10,10Aを、各ブロック10,10Aの端面が略面一になるように積み重ねる。
すなわち、図に示すように、左側の既存柱2の左側面と、右側の既存柱2の右側面と、上側の既存梁3の下面と、下側の既存梁3の直上の既存床4の上面とで囲まれる空間S内に、多数のブロック10,10Aを積み重ねて、仕切りを設ける。
多数のブロックのうち前記空間S内の既存柱2、既存梁3及び既存床4に面するものにスチフナーを設けた補強ブロック10Aを用い、また、図8に示す空間S内に積み重ねられる多数のブロックのうち筋かいとなる鎖線で示すV字状の位置(すなわち、2つの斜め線の位置)に対応するものに、スチフナーを設けた補強ブロック10Aを用いる。そして、その他のものにはスチフナーを設けない無補強ブロック10を用いる。
多数のブロック10,10A同士を接合する場合には、図6に示すように、それらの互いに対面するブロック10A,10の平面部11〜14同士を,そこに設けらた各ボルト孔BhにそれぞれボルトBを通し、各ボルトBのねじ部にそれぞれナットNをねじ込んで、接合する。
前記空間S内の既存柱2、既存梁3及び既存床4に面する各補強ブロック10Aの平面部11〜14は、接着剤又は接着性のある充填材17を用いて既存柱2、既存梁3及び既存床4に固着する。
【0010】
そして、図8に示すように、既存柱2、既存梁3及び既存床4に面して配置した各補強ブロック10A及び筋かいとなる鎖線で示すV字状の位置に配置した各補強ブロック10Aの内空部内には、モルタル、コンクリート等の充填材を充填する。
なお、図8に示す例における補強ブロック10Aの代りに無補強ブロック10を用い(すなわち、すべて無補強ブロック10を用いる)、既存柱2、既存梁3及び既存床4に面して配置した各補強ブロック10A及び筋かいとなる鎖線で示すV字状の位置に配置した各ブロック10の内空部内に、モルタル、コンクリート等の充填材を充填するようにしてもよい。
なお、ブロック10,10Aの方向の辺の長さL方向の辺の長さLとは異なっていてもよい。各平面部11〜14に設けるボルト孔の数及び位置は、図示の例に限定するものではない。
ブロック10,10Aは、例えば、これを構成する鋼板(鉄板)の厚さを調節することにより、その重量及び耐力を調節することができる。
ボルトBとしては、例えば、短円柱型の角のない頭部を備えたものを用い、ナットNとしては、例えば、短円柱型の角のないものを用いる。このようにすると、充填材を充填しないブロック10,11Aの内空部を、書籍、小物等の収納空間として利用する際に、その収納空間内に角張ったものがなくなり、使い勝手がよくなる。
【0011】
【発明の作用効果】
この発明は、特許請求の範囲の欄に記載した構成を備えることにより、次の(イ)〜()の効果を奏する。
(イ)請求項1記載の既存建築物の耐震補強法は、鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロツクの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分に配した各ブロツクの内空部にモルタル等の充填材を充填するから、次の(1)〜(4)の効果を奏する。
(1)施工性が向上し、工期が短縮され、コストダウンが可能になる。また、鉄材にて構成された短い角筒体からなるブロックを積み重ねで耐力壁をつくるから、施工が容易で、鉄筋コンクリート造の耐震壁に比べ、重量増加が少なく、基礎に与える影響が少ない。
(2)大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分に配した各ブロツクの内空部にモルタル等の充填材を充填するから、充填材を充填したブロツクの耐力が増大して、大きな耐力の耐力壁を容易に構築できる。
(3)モルタル等の充填材は、大きな力が作用するブロックの内空部にしか充填しないから、鉄筋コンクリート造の耐震壁に比べ、その重量増加が少なく(鉄筋コンクリート造の耐震壁の15%程度)、基礎に与える影響が少ない。
(4)その内空部にモルタル等の充填材を充填しないブロックの内空部は、書籍、小物等の収納空間として利用することができる。
【0012】
)請求項2に記載の既存建築物の耐震補強法は、鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロツクの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、ブロックとして、鉄材にて構成された短い角筒体の内空部内にスチフナーを設けない無補強ブロックと、鉄材にて構成された短い角筒体の内空部にスチフナーを設けた補強ブロックとを用い、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分には補強ブロックを配置し、その他の部分には無補強ブロックを配置するから、前記(1)及び(4)の効果の他に、次の(5)の効果を奏する。
(5)大きな力が作用する耐力壁の部分を補強ブロックで構成することにより、所望の耐力の耐力壁が容易に得られ、かつ耐力壁の総重量を抑えることができる。
(ハ)請求項3に記載の既存建築物の耐震補強法は、請求項2に記載の既存建築物の耐震補強法において、補強ブロックの内空部にモルタル等の充填材を充填するから、前記(1)及び(4)の効果の他に、次の(6)の効果を奏する。
(6)補強ブロックの内空部にモルタル等の充填材を充填するようにすると、補強ブロックが配置される既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分の耐力壁の耐力をさらに増大されることができる。
また、各補強ブロックの内空部にモルタル等の充填材を充填しても、各無補強ブロックの内空部にはモルタル等の充填材を充填しないから、前記(3)の効果と同様の作用効果を奏する。
【図面の簡単な説明】
【図1】 実施例の耐震補強方法に用いるスチフナーを設けない鉄製ブロックの正面図
【図2】 図1に示す鉄製ブロックの平面図
【図3】 図1及び図2に示す鉄製ブロックの内空部にモルタルを充填したものを縦断して示す側面図
【図4】 実施例の耐震補強方法に用いるスチフナーを設けた鉄製ブロックの正面図
【図5】 図4に示す鉄製ブロックの平面図
【図6】 図4及び図5に示す鉄製ブロック同士の接合部を横断して示す平面図
【図7】 図4及び図5に示す鉄製ブロックの内空部にモルタルを充填したものを縦断して示す側面図
【図8】 実施例の耐震補強方法により補強された既存柱、既存梁等からなる架構の正面図
【符号の説明】
1 既存建築物
2 既存柱
3 既存梁
4 既存床
10 無補強ブロック
10A 補強ブロック
11〜14 平面部
11a〜14a 内側面
15 弧状面部
16 スチフナー
16a 切欠き
16b 辺部
Bh ボルト孔
B ボルト
Mt モルタル
N ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic reinforcement method for an existing building, and more particularly to a seismic reinforcement method for an existing building in which a load bearing wall is constructed using an iron block.
[0002]
[Prior art]
Examples of building vibration control methods include the following (1) and (2).
(1) A plurality of holes are provided in a mild steel block with a certain distance between them and horizontally penetrated, and a constriction that expands the plastic deformation zone is provided on the side of each hole to absorb vibration energy from earthquakes. An elastic-plastic damper, and a wall is arranged in the space surrounded by the pillars and beams of the building, and there is a gap between the wall and the pillars on both sides and between the wall and the upper and lower beams. The elastic-plastic damper is disposed in a gap between one beam of the upper and lower beams and the wall or in a gap between the both side pillars and the wall, and the vibration of the earthquake is caused by the elastic-plastic damper. A vibration damping method that absorbs energy (for example, see Japanese Patent Application Laid-Open No. 8-277651).
(2) In the damping wall provided between the pillars and beams of the building, the steel plate is provided with a plurality of slits along the vertical direction, and the upper and lower portions of the steel plate are fixed to the beam, respectively, on both sides of the steel plate, A precast concrete plate that covers substantially the entire surface of the steel plate is attached with a mounting bolt that is inserted through the insertion hole of the steel plate so that the steel plate can be displaced along at least the horizontal direction of the steel plate, and the steel plate A damping method in which a viscous body is sandwiched between a precast concrete plate and a precast concrete plate to form a damping wall, and the vibration energy of the earthquake is absorbed by this damping wall (see, for example, Japanese Utility Model Publication No. 4-32454).
Examples of the seismic reinforcement method for existing buildings include the following (3) and (4).
(3) A large number of anchor bars are installed at intervals between existing columns and existing beams that constitute the frame of an existing building such as a reinforced concrete structure, and a metal frame is arranged inside the frame, and this metal frame A body is attached to an existing column and an existing beam through the iron bar for anchors, a metal brace material is arranged in the metal frame body, and both ends of the brace material are fixed to the metal frame body. A seismic reinforcement method for reinforcing the frame.
(4) Many anchor reinforcing bars are planted at intervals between existing columns and existing beams of existing building structures such as reinforced concrete structures, and wall reinforcing bars consisting of vertical reinforcing bars and horizontal reinforcing bars are placed in the frame. , This wall rebar is attached to the existing column and beam via the anchor rebar, the split bar is placed around the wall bar, the molds are placed on both sides of the wall bar and split bar, A seismic reinforcement method that fills the gaps with mortar or concrete, removes the formwork after the mortar or concrete is cured, and constructs a seismic wall.
[0003]
[Problems to be solved by the invention]
In the vibration damping method of (1), an elastic-plastic damper made of a soft steel block is placed in the gap between one beam of the upper and lower beams and the wall or in the gap between the both side columns and the wall. It is necessary to construct a wall so that a gap is formed between one beam and the wall or between both side pillars and the wall, which increases the weight of the building and has the disadvantage of poor workability. is there.
The vibration control method of (2) is to fix the upper and lower parts of the steel plate provided with a plurality of slits along the vertical direction to the upper and lower beams, and to displace the precast concrete plate along the horizontal direction on both sides of the steel plate. It is necessary to install a damping wall with bolts in such a state that it is possible to squeeze a viscous material between the steel plate and the precast concrete plate, and it takes time and effort to form the damping wall. However, there is a drawback that the weight of the building increases.
The seismic reinforcement method for newly installing the brace described in (3) above requires only a lot of work to plant a large number of anchors on the frame, fix the metal frame to the frame, and attach the brace material to the metal frame. In addition, there is a problem in carrying materials such as metal frames and braces into the building space.
The seismic reinforcement method for newly installing the seismic wall of (4) above is the installation of many anchor rebars to the frame, the installation of wall rebars to the frame, the installation of formwork on both sides of the wall rebar, and the placement of concrete. Not only does it take a lot of work to install, but it also has the disadvantage of increasing the weight of the building, and there are also problems in bringing materials such as wall rebar, formwork and concrete into the space.
Moreover, the seismic reinforcement method using a large amount of concrete may increase the weight of the building itself and conversely reduce the earthquake resistance of the existing building.
The problem to be solved by the present invention is to provide a seismic reinforcement method for existing buildings that does not have the disadvantages of the prior arts (1) to (4), in other words, An object of the present invention is to provide a seismic reinforcement method for an existing building that can be constructed with good workability by suppressing the increase in weight and shorten the construction period.
[0004]
[Means for Solving the Problems]
The method for seismic reinforcement of a building according to the present invention includes a large number of blocks composed of short rectangular cylinders made of iron in a space surrounded by left and right existing columns and upper and lower existing beams. Stack and form a partition so that the end faces of each block are substantially flush with each other, join the existing columns and the existing beams of the many blocks that make up this partition to the existing columns and existing beams, and In the seismic retrofitting method of existing buildings with existing columns and existing beams that join the mutually facing parts of many adjacent blocks to each other as a bearing wall , face existing columns and existing beams where large force acts A filling material such as mortar is filled in the inner space of each block arranged in the portion corresponding to the diagonal line or the diagonal line that becomes the straight line and the diagonal line .
If there is an existing floor above the existing beam, the term “existing beam” includes the part of the existing floor directly above the existing beam.
In addition, the method for seismic reinforcement of a building according to the present invention includes a large number of blocks composed of short rectangular cylinders made of iron, in a space surrounded by left and right existing columns and upper and lower existing beams. In addition, the blocks are stacked to form a partition so that the end faces of the blocks are substantially flush with each other, and the parts that face the existing columns and existing beams among the many blocks that constitute the partitions are joined to the existing columns and existing beams. In the seismic reinforcement method for existing buildings equipped with existing columns, existing beams, etc., which join the mutually facing parts of a number of adjacent blocks to each other as a bearing wall, a short block made of iron as a block An existing column on which a large force acts using a non-reinforcing block that does not provide a stiffener in the inner space of the rectangular tube and a reinforcing block that includes a stiffener in the inner space of a short rectangular tube made of iron Face to existing beam That the part and the corresponding part to the diagonal or oblique line to be struts arranged reinforcing block, the other part is characterized in placing the unreinforced block.
In a preferred embodiment of the invention, the inner space of the reinforcing block may be filled with a filler such as mortar.
[0005]
The block used for the seismic reinforcement method of this invention is comprised like following ( A )-( D ), for example.
( A ) A short rectangular tube made of iron, with the upper plane portion and the lower plane portion parallel to each other, the left plane portion and the right plane portion parallel to each other, and the left and right plane portions The plane portion is arranged at right angles to the upper and lower plane portions, the upper portions of the left and right plane portions are continuous with the upper plane portion, and the lower portions of the left and right plane portions are the lower plane portions. A block is manufactured by configuring the blocks in such a manner that at least one bolt hole is provided at a corresponding portion of the upper and lower plane portions, and at least one bolt hole is provided at a corresponding portion of the left and right plane portions. This block is an unreinforced block.
( B ) The upper portions of the left and right plane portions of the short rectangular cylinder are connected to the upper plane portion via the arc-shaped surface portion, and the lower portions of the left and right plane portions are connected to the lower plane portion via the arc-shaped surface portion. Make it continuous.
( C ) A stiffener made of a steel plate is disposed in the inner space of the short rectangular tube at right angles to the central axis of the rectangular tube, and the end of this stiffener is the inner surface of the flat portion of the rectangular tube The blocks are manufactured by joining them to each other by welding means. This block is a reinforcing block.
( D ) At least one bolt hole is provided on a bisector parallel to the central axis of the rectangular cylinder in the upper, lower, left and right plane portions of the short rectangular cylinder.
The seismic retrofitting method of the present invention comprises a large number of blocks made of short square cylinders made of iron in a space surrounded by left and right existing columns and upper and lower existing beams of an existing building. Since the bearing wall is constructed by stacking, it can be applied to seismic reinforcement of existing buildings of reinforced concrete, steel reinforced concrete, or steel.
[0006]
【Example】
An Example is shown by FIGS. 1-8, and is an example which applied the invention of this application to the seismic reinforcement of the existing building provided with the frame which consists of an existing pillar, an existing beam, etc. FIG.
As shown in FIG. 8, the existing building 1 is constructed in multiple layers by reinforced concrete, steel reinforced concrete, or steel, and includes a large number of existing pillars 2 (only two are shown) and a large number of existing beams (only six are shown). 3 and the existing floor 4 is provided on the existing beam 3.
[0007]
Unreinforced block 10 is made of steel plate (iron plate), as shown in FIG. 1, a and the length L 2 in the transverse direction of the side length L 1 and the longitudinal sides are the same, for example, 400 mm approximately and a, the length L 3 of the depth, for example, about 200 mm, its weight, for example, is composed of iron short square tubular body is 35 Kg / number of about.
That is, the upper plane portion 11 and the lower plane portion 12 are parallel, the left plane portion 13 and the right plane portion 14 are parallel, and the left and right plane portions 13 and 14 are the upper and lower sides. The left and right plane parts 13 and 14 are arranged at right angles to the plane parts 11 and 12, and the upper portions of the left and right plane parts 13 and 14 are connected to the upper plane part 11 via the arcuate surface part 15. Is formed into a short rectangular tube by connecting the lower portion thereof to the lower plane portion 12 via the arcuate surface portion 15.
Bolt holes Bh are respectively provided at two corresponding positions of the upper and lower plane parts 11 and 12 on a bisector in a direction parallel to the axis of the square cylinder of each flat part 11 to 14 of the short square cylinder. The block 10 is manufactured by providing bolt holes Bh at two corresponding positions of the left and right plane portions 13 and 14 respectively.
[0008]
The reinforcing block 10A disposed on the portion where a large force acts is made of a steel plate (iron plate), and the shape, size, position, etc. of the flat surface portions 11 to 14, the arc-shaped surface portion 15, the bolt hole Bh, etc. are the same as the block 10. is there.
The center of the hollow portion of the steel plate of the rectangular tube body, arranged at right angles quadrangular steel plate stiffeners 16 with a notch 16a at a corner with respect to the axis of the square tubular body, four sides of the stiffeners 16 The reinforcing block 10A is manufactured by joining 16b to the inner side surfaces 11a to 14a of the flat surface portions 11 to 14 of the rectangular tube body by joining means such as welding.
The weight of the block 10 in which the mortar Mt is filled in the hollow part shown in FIG. 3 or the reinforcing block 10A in which the mortar Mt is filled in the hollow part shown in FIG. 7 is about 100 kg / piece, for example.
[0009]
Next, the earthquake-proof reinforcement method of the existing building 1 using the blocks 10 and 10A is demonstrated.
As shown in FIG. 8, the upper surface of the existing floor 4 (or the upper surface of the existing beam 3) immediately above the existing beam 3 of the existing building 1 is made flat by an appropriate means, and a large number of blocks 10 and 10A are formed on this plane. The blocks 10 and 10A are stacked so that the end faces thereof are substantially flush with each other.
That is, as shown in FIG. 8 , the left side of the left existing column 2, the right side of the right existing column 2, the lower surface of the upper existing beam 3, and the existing floor 4 immediately above the lower existing beam 3. A large number of blocks 10 and 10A are stacked in a space S surrounded by the upper surface of each other to provide a partition.
Among the many blocks, a reinforcement block 10A provided with stiffeners on the ones facing the existing pillar 2, the existing beam 3 and the existing floor 4 in the space S is used, and a number of the blocks stacked in the space S shown in FIG. A reinforcing block 10A provided with a stiffener is used for a block corresponding to a V-shaped position indicated by a chain line (that is, a position of two oblique lines). And the unreinforced block 10 which does not provide a stiffener is used for others.
When joining a large number of blocks 10 and 10A, as shown in FIG. 6, the flat portions 11 to 14 of the blocks 10A and 10 facing each other are respectively connected to the bolt holes Bh provided there. Bolts B are passed, and nuts N are screwed into the screw portions of the respective bolts B to join them.
The flat portions 11 to 14 of the reinforcing blocks 10A facing the existing pillar 2, the existing beam 3 and the existing floor 4 in the space S are formed using an adhesive or an adhesive filler 17 with the existing pillar 2, the existing beam. 3 and the existing floor 4.
[0010]
And as shown in FIG. 8, each reinforcement block 10A arrange | positioned in the V-shaped position shown by the dotted line which becomes each reinforcement block 10A arrange | positioned facing the existing pillar 2, the existing beam 3, and the existing floor 4 The inner space is filled with a filler such as mortar or concrete.
In addition, it replaces with the reinforcement block 10A in the example shown in FIG. 8, uses the non-reinforcement block 10 (that is, uses all the non-reinforcement block 10), and each arrange | positions facing the existing pillar 2, the existing beam 3, and the existing floor 4 A filler such as mortar or concrete may be filled in the inner space of each block 10 arranged at the V-shaped position indicated by the reinforcing block 10A and the chain line that forms a line.
It may be different from the lateral sides of length L 1 and the length of the longitudinal sides L 2 blocks 10, 10A. The number and position of the bolt holes provided in the flat portions 11 to 14 are not limited to the illustrated example.
The blocks 10 and 10A can adjust the weight and proof stress by adjusting the thickness of the steel plate (iron plate) which comprises this, for example.
As the bolt B, for example, a short columnar type having a head without corners is used, and as the nut N, for example, a short columnar type having no corners is used. In this way, when the inner space of the blocks 10 and 11A not filled with the filler is used as a storage space for books, accessories, etc., there is no square space in the storage space, which improves usability.
[0011]
[Effects of the invention]
This invention has the following effects (a) to ( c ) by providing the configuration described in the claims.
(B) The seismic retrofitting method for an existing building according to claim 1 is made up of a number of blocks made of short square cylinders made of iron , and left and right existing columns and upper and lower existing beams. In the space surrounded by, each block is stacked so that the end faces of the blocks are substantially flush with each other, and a partition facing the existing columns and the existing beams among the many blocks constituting the partition In the seismic reinforcement method for existing buildings with existing columns, existing beams, etc., which are joined to existing beams and where adjacent parts of a number of adjacent blocks are joined together to form a bearing wall. Since the inner space of each block placed on the existing column and the part facing the existing beam and the part corresponding to the diagonal line or diagonal line to be a streak is filled with a filler such as mortar , the following (1) to (4 ).
(1) The workability is improved, the construction period is shortened, and the cost can be reduced. In addition, because the bearing wall is made by stacking blocks made of short square cylinders made of iron, construction is easy, and the weight increase is small compared to the reinforced concrete seismic wall, and the influence on the foundation is small.
(2) Since the inner space of each block placed on the existing pillar and the existing beam on which a large force acts and the portion corresponding to the diagonal line or diagonal line that becomes a streak is filled with a filler such as mortar, The proof stress of the block filled with the filler is increased, and a proof load wall with a large proof strength can be easily constructed.
(3) Since fillers such as mortar only fill the inner space of blocks where a large force acts, the weight increase is small compared to reinforced concrete earthquake resistant walls (about 15% of reinforced concrete earthquake resistant walls). , Less impact on the foundation.
(4) The inner space of the block in which the inner space is not filled with a filler such as mortar can be used as a storage space for books, accessories, and the like.
[0012]
( B ) The seismic retrofitting method for an existing building according to claim 2 is composed of a plurality of blocks made of short square cylinders made of iron, and left and right existing columns and upper and lower existing beams. In the space surrounded by, each block is stacked so that the end faces of the blocks are substantially flush with each other, and a partition facing the existing columns and the existing beams among the many blocks constituting the partition In the seismic retrofitting method for existing buildings with existing columns, existing beams, etc., which are joined to existing beams and where adjacent parts of a number of adjacent blocks are joined together to form bearing walls. Using a non-reinforcing block that does not provide stiffeners in the inner space of a short rectangular tube configured as described above, and a reinforcing block that provides stiffeners in the inner space of a short rectangular tube configured of iron, Existing pillars and existing Since the portions corresponding to the diagonal or oblique line to be partial and struts facing the beam is arranged a reinforcing block, the other part to place the unreinforced block, the effects of (1) and (4) In addition, the following effect (5) is achieved.
(5) By configuring the portion of the load-bearing wall on which a large force acts with the reinforcing block, a load-bearing wall having a desired load-bearing force can be easily obtained and the total weight of the load-bearing wall can be suppressed.
(C) The seismic strengthening method for an existing building according to claim 3 is the seismic strengthening method for an existing building according to claim 2, wherein the inner space of the reinforcing block is filled with a filler such as mortar. In addition to the effects (1) and (4), the following effect (6) is achieved.
(6) When the inner space of the reinforcing block is filled with a filler such as mortar, the existing column on which the reinforcing block is arranged, the part facing the existing beam, and the part corresponding to the diagonal line or diagonal line The yield strength of the bearing wall can be further increased.
Moreover, even if the inner space of each reinforcing block is filled with a filler such as mortar, the inner space of each non-reinforcing block is not filled with a filler such as mortar. Has an effect.
[Brief description of the drawings]
FIG. 1 is a front view of an iron block without a stiffener used in the seismic reinforcement method of the embodiment. FIG. 2 is a plan view of the iron block shown in FIG. 1. FIG. 3 is an inner space of the iron block shown in FIGS. Side view showing a section filled with mortar. Fig. 4 Front view of an iron block provided with a stiffener used in the seismic reinforcement method of the embodiment. Fig. 5 Plan view of the iron block shown in Fig. 4. 6] A plan view of the steel block shown in FIG. 4 and FIG. 5 across the joint between them [FIG. 7] FIG. 7 is a longitudinal cross-sectional view of the iron block shown in FIG. 4 and FIG. Side view [Fig. 8] Front view of a frame composed of existing columns, existing beams, etc. reinforced by the seismic reinforcement method of the embodiment [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Existing building 2 Existing pillar 3 Existing beam 4 Existing floor 10 Unreinforced block 10A Reinforced block 11-14 Plane part 11a-14a Inner side surface 15 Arc-shaped surface part 16 Stiffener 16a Notch 16b Side part Bh Bolt hole B Bolt Mt Mortar N Nut

Claims (3)

鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロックの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分に配した各ブロックの内空部にモルタル等の充填材を充填することを特徴とする既存建築物の耐震補強方法。The end faces of each block are substantially flush with each other in a space surrounded by the left and right existing pillars and the upper and lower existing beams, with a number of blocks made of short rectangular tubes made of iron. In addition, a partition is formed by stacking, and a part facing the existing column and the existing beam among a large number of blocks constituting the partition is joined to the existing column and the existing beam, and adjacent parts of a large number of adjacent blocks are connected to each other. In the seismic reinforcement method for existing buildings with existing columns, existing beams, etc., which are joined together as bearing walls, diagonal or diagonal lines that act as existing struts and parts that face the existing beams and struts A method for seismic reinforcement of an existing building, characterized in that a filling material such as mortar is filled in an inner space of each block arranged in a portion corresponding to. 鉄材にて構成された短い角筒体からなる多数のブロックを、左側及び右側の既存柱と上側及び下側の既存梁とで囲まれる空間内に、各ブロックの端面が略面一になるように、積み重ねて仕切りをつくり、この仕切りを構成する多数のブロックのうちの既存柱及び既存梁に面する部分を既存柱及び既存梁に接合し、かつ隣接する多数のブロックの互いに対面する部分同士を互いに接合して耐力壁とする既存柱、既存梁等を備えた既存建築物の耐震補強方法において、ブロックとして、鉄材にて構成された短い角筒体の内空部内にスチフナーを設けない無補強ブロックと、鉄材にて構成された短い角筒体の内空部にスチフナーを設けた補強ブロックとを用い、大きな力が作用する既存柱及び既存梁に面する部分及び筋かいとなる対角線又は斜め線に対応する部分には補強ブロックを配置し、その他の部分には無補強ブロックを配置することを特徴とする既存建築物の耐震補強方法。The end faces of each block are substantially flush with each other in a space surrounded by the left and right existing pillars and the upper and lower existing beams, with a number of blocks made of short rectangular tubes made of iron. In addition, a partition is formed by stacking, and a part facing the existing column and the existing beam among a large number of blocks constituting the partition is joined to the existing column and the existing beam, and adjacent parts of a large number of adjacent blocks are connected to each other. In the seismic retrofitting method for existing buildings with existing columns, existing beams, etc. that are joined together as bearing walls, no stiffener is provided in the inner space of a short rectangular tube made of iron as a block. Using a reinforcing block and a reinforcing block provided with a stiffener in the inner space of a short rectangular tube made of iron, a diagonal line or a striation that is a part that faces an existing column and an existing beam where a large force acts Diagonal line The corresponding parts are arranged a reinforcing block, Retrofit method of existing buildings to other portions, characterized by placing the unreinforced block. 補強ブロックの内空部にモルタル等の充填材を充填することを特徴とする請求項記載の既存建築物の耐震補強方法 3. The method for seismic reinforcement of an existing building according to claim 2 , wherein the inner space of the reinforcing block is filled with a filler such as mortar.
JP24786597A 1997-08-28 1997-08-28 Seismic reinforcement method for existing buildings Expired - Fee Related JP3766941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24786597A JP3766941B2 (en) 1997-08-28 1997-08-28 Seismic reinforcement method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24786597A JP3766941B2 (en) 1997-08-28 1997-08-28 Seismic reinforcement method for existing buildings

Publications (2)

Publication Number Publication Date
JPH1171907A JPH1171907A (en) 1999-03-16
JP3766941B2 true JP3766941B2 (en) 2006-04-19

Family

ID=17169795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24786597A Expired - Fee Related JP3766941B2 (en) 1997-08-28 1997-08-28 Seismic reinforcement method for existing buildings

Country Status (1)

Country Link
JP (1) JP3766941B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733447B2 (en) * 2005-07-11 2011-07-27 大成建設株式会社 Reinforcement wall
JP4590373B2 (en) * 2006-03-06 2010-12-01 大成建設株式会社 Structural wall
JP4797184B2 (en) * 2006-03-08 2011-10-19 清水建設株式会社 Seismic wall structure and construction method
JP5242019B2 (en) * 2006-05-11 2013-07-24 住友林業株式会社 Wall lighting housing
JP5120592B2 (en) * 2006-10-13 2013-01-16 清水建設株式会社 Seismic wall structure
JP4950615B2 (en) * 2006-10-17 2012-06-13 株式会社竹中工務店 Seismic wall structure
JP5091624B2 (en) * 2007-11-02 2012-12-05 大成建設株式会社 Reinforced structure
JP5313559B2 (en) * 2008-06-19 2013-10-09 株式会社竹中工務店 Seismic wall formation method
JP5967642B2 (en) * 2012-03-28 2016-08-10 株式会社グレイプ Building reinforcement structure
JP2016102363A (en) * 2014-11-28 2016-06-02 株式会社大林組 Reinforcement block

Also Published As

Publication number Publication date
JPH1171907A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
KR101901435B1 (en) Seismic rehabilitation method for openings of building of indirect connection method using corrugated steel plates
KR101565543B1 (en) A Joint Structures Between Steel Frame and Iron Concrete and A Joint Method
KR101920417B1 (en) Seismic retrofit structure
RU2585316C1 (en) Building construction method using angular wall panels and bearing angular wall panel for realising said method
JP3766941B2 (en) Seismic reinforcement method for existing buildings
CN111877546B (en) Fabricated frame beam-column wet joint with buckling restrained brace and construction method
JP4957295B2 (en) Seismic control pier structure
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP2988470B2 (en) Reinforcement structure of existing structure and reinforcement structure
JP2008266902A (en) Wall unit and earthquake-resistant wall
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP3817402B2 (en) RC seismic studs
JP2004156395A (en) Aseismatic strengthening method for existing building, and aseismatic strengthened structure
JP4660810B2 (en) Boundary beam damper
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
JP3766940B2 (en) Seismic reinforcement method for existing buildings
JP3040095U (en) Reinforcement structure and reinforcement member used therefor
JP3020021B2 (en) Building seismic retrofitting method
KR102496473B1 (en) Seismic Resistant Structure Attaching A External PC Wall Panel Having Anchor Through Hole And Construction Method Thereof
JP3830062B2 (en) Seismic reinforcement method for reinforced concrete buildings
JP2019035297A (en) Vibration control and aseismic reinforcement structure of a concrete structure
KR102239574B1 (en) Seismic retrofit system and construction method of concrete column using non-anchor and steel frame joint type
JPH1162265A (en) Aseismatic reinforcing method of existing building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees