JP3766554B2 - Directional coupler - Google Patents

Directional coupler Download PDF

Info

Publication number
JP3766554B2
JP3766554B2 JP33636198A JP33636198A JP3766554B2 JP 3766554 B2 JP3766554 B2 JP 3766554B2 JP 33636198 A JP33636198 A JP 33636198A JP 33636198 A JP33636198 A JP 33636198A JP 3766554 B2 JP3766554 B2 JP 3766554B2
Authority
JP
Japan
Prior art keywords
conductor
directional coupler
line
line conductor
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33636198A
Other languages
Japanese (ja)
Other versions
JP2000165116A (en
Inventor
隆行 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33636198A priority Critical patent/JP3766554B2/en
Publication of JP2000165116A publication Critical patent/JP2000165116A/en
Application granted granted Critical
Publication of JP3766554B2 publication Critical patent/JP3766554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波帯およびミリ波帯で用いられる混合器や検出器・電力増幅器等に利用される線路導体を用いた方向性結合器に関するものである。
【0002】
【従来の技術】
マイクロ波帯およびミリ波帯で用いられる混合器や検出器・電力増幅器等に利用されるストリップ導体等の線路導体を用いた方向性結合器として、従来より、図5に示す様な構成のものが知られている。
【0003】
図5は従来の方向性結合器の構成の例を示す斜視図である。この方向性結合器によれば、接地導体2が形成された誘電体基板1上に、それぞれコの字形状で折り曲げられて近接配置された2本のストリップ導体3・4が、結合部において互いに所定間隔だけ離れて電磁的に結合するように形成されている。
【0004】
このような方向性結合器において大きな結合量を得ようとする場合には、その2本のストリップ導体3・4による結合部の間隔を小さくする必要がある。
【0005】
【発明が解決しようとする課題】
しかしながら、図5に示すような構成の方向性結合器において、2本のストリップ導体3・4による結合部について同一の間隔を保ちかつその間隔を小さくすることは、実際の製造上非常に難しく、良好な特性のものを安定して作製することが困難であるという問題点があった。
【0006】
そこで、この問題点を解決するために、大きな結合量を得ることができ、しかも製作が容易である方向性結合器として、例えば特開昭60−4306号公報ならびに特開平4−26201 号公報において、図6に斜視図で示すような構成の方向性結合器が提案されている。
【0007】
図6に示す方向性結合器において、11は誘電体基板、12は誘電体基板11の下面に形成された接地導体、13は誘電体基板11上に形成された第1のストリップ導体、14は第1のストリップ導体13上に配置された、所定の広がりを有する絶縁体でなる薄膜、15は絶縁体でなる薄膜14上に第1のストリップ導体13と隣接させて配置した第2のストリップ導体である。
【0008】
このようなブロードサイド型と言われる方向性結合器によれば、第1のストリップ導体13と第2のストリップ導体15とが絶縁体からなる薄膜14を介して互いに重なりあって配置されていることから、2本のストリップ導体13・15の間隔を小さくすることが可能となり、これによって大きな結合量を得ることができる利点があるというものである。
【0009】
また、結合部における第1のストリップ導体13と第2のストリップ導体15の線路長を互いに異なるように設定することにより、所定の位相差を有する方向性結合器を構成することができるというものである。
【0010】
しかしながら、この図6に示すような方向性結合器では、2本のストリップ導体13・15が接地導体12に対して異なった位置にあり異なった接地状態にあるので、各ストリップ導体13・15の実効インピーダンスが異なることとなり、その結果、良好なアイソレーション特性を得ることが困難であるという問題があった。
【0011】
さらに、2本のストリップ導体13・15の重なり量によっても結合量を変化させるため、製作の際に2本のストリップ導体13・15の重なり量がわずかでもずれることにより所望の結合量よりずれてしまうこととなり、所望の特性を有する方向性結合器を安定して作製することが困難であるという問題点があった。
【0012】
本発明は、上記従来技術の問題点に鑑みて案出されたものであり、その目的は、線路導体を用いた方向性結合器について、アイソレーション特性が良く、かつ製造の際の線路導体の位置ずれによる特性変化の少ない方向性結合器を提供することにある。
【0013】
【課題を解決するための手段】
本発明の方向性結合器は、誘電体基板の上面に外部線路導体を、下面に接地導体を形成するとともに、前記外部線路導体と前記接地導体との間に位置する前記誘電体基板の内部に、前記外部線路導体と電磁結合され、且つ前記外部線路導体よりも線路幅の狭い内部線路導体を配置して成ることを特徴とするものである。
【0014】
【発明の実施の形態】
本発明によれば、内部線路導体と外部線路導体とを誘電体基板の誘電体層を介して電磁的に結合するように配置したことから、2つの線路導体の間隔を小さくして大きな結合量を得ることができるとともに、2つの線路導体の重なり量で結合量が決まるのに対して外部線路導体よりも線路幅の狭い内部線路導体とした、すなわち、接地導体と外部線路導体との間に位置する内部線路導体の線路幅より外部線路導体の線路幅を広くしたことから、その線路幅の差の範囲内で作製の際に2つの線路導体の積層位置ずれが生じても内部線路導体は外部線路導体と接地導体との間に所定の重なり量で位置させることができ、位置ずれによる特性変化を抑制することができる。
【0015】
以下、本発明の方向性結合器について図面に基づいて説明する。
【0016】
図1は本発明の方向性結合器の実施の形態の一例を示す斜視図であり、図2はそのA−A線断面図である。これらの図において、21は誘電体基板、22は誘電体基板21の裏面に形成された接地導体、23は誘電体基板上に形成された内部線路導体、24は内部線路導体23上に誘電体層を介して電磁的に結合するように形成された外部線路導体である。また、W1は内部線路導体23の線路幅を、W2は外部線路導体24の線路幅を示しており、h1は接地導体22から内部線路導体23までの距離を、h2は接地導体22から外部線路導体24までの距離を示している。そして、本発明においては、結合部における線路導体の線路幅を、内部線路導体23の線路幅W1より外部線路導体24の線路幅W2を広く、すなわちW1<W2としたことが特徴である。
【0017】
なお、ここでは、内部線路導体23を形成した誘電体基板と内部線路導体23と外部線路導体24との間の誘電体層を一体として誘電体基板21とした例、すなわち内部線路導体23を誘電体基板21の内部に内層線路導体として形成した例を示している。これに限らず、内部線路導体23を誘電体基板上に形成し、その上に少なくとも結合部を覆うように誘電体層を形成し、さらにその上に外部線路導体24を重ねるようにして形成してもよい。
【0018】
一般的に、高周波部品は、所定の入力インピーダンスおよび出力インピーダンス(例えば50Ω)に合った特性インピーダンスに設計する必要がある。この特性インピーダンスをZ0 、信号線のもつインダクタンス成分をL、信号線と接地導体間の容量成分をCとした場合、Z0 =√L/√Cの関係がある。
【0019】
本発明の方向性結合器における特性インピーダンスは実効インピーダンスZeff と言われる。内部および外部線路導体23・24の持つインダクタンス成分を各々L1・L2とし、内部および外部線路導体23・24と接地導体22と間の容量成分を各々C1・C2とした場合、各々の線路導体23・24の実効インピーダンスZeff1およびZeff2は、簡易的に次のように経験式で、
Zeff1≒√L1/√C1、 Zeff2≒√L2/√C2
と表わされる。
【0020】
ここで、図2に示すように内部線路導体23の線路幅および接地導体22からの距離をそれぞれW1・h1とし、外部線路導体24の線路幅および接地導体22からの距離をそれぞれW2・h2としたとき、W1≧W2であるとすると、各線路導体23・24の接地導体22からの距離はh1<h2であるため、L1<L2、C1>C2である。その結果、Zeff1<Zeff2となり、Zeff1とZeff2とは必ず異なるため、方向性結合器のアイソレーション特性が劣化してしまう。
【0021】
これに対し、本発明の方向性結合器によれば、W1<W2としたことからL1>L2であるが、C1・C2の関係は線路幅によって大きく調整することができるため、Zeff1とZeff2との差はW1≧W2の場合より小さくなるか、またはZeff1とZeff2とがほぼ等しくなる。その結果、入出力部のインピーダンス不整合による高周波信号の反射等が抑制されるため、アイソレーション特性の優れた方向性結合器が得られる。
【0022】
また、ブロードサイド型方向性結合器における2つの線路導体の結合量は内部および外部線路導体23・24の重なり量で決まるため、W1<W2とした場合、その差W2−W1の範囲内のパターンずれでは重なり量は変化しないこととなるため、パターンずれによる結合量の変化はW1=W2あるいはW1>W2の場合よりも軽減されることとなり、位置ずれによる特性変化を小さく抑えることができる。
【0023】
このような線路幅W1・W2としては、方向性結合器の小型化の観点から、W1≦0.2 mmに設定することが好ましく、さらに、線路導体の位置ずれによる特性の変化を抑えるという観点から、W2≧W1+0.1 mm(ずれ量)に設定することが好ましい。
【0024】
また、線路幅W1・W2と各線路導体23・24の接地導体22からの距離との関係については、小型化・高結合の観点より、h2−h1≦0.2 mmに設定することが好ましい。
【0025】
なお、内部線路導体23と外部線路導体24との結合部における線路長や各導体の厚み・各導体を形成する材料については、線路長は小型化の観点より10mm以下とすることが好ましく(ただし、長くても問題はない)、導体の厚みは一般的な厚みとして約20μm程度であればよく、導体材料は銅のような低抵抗導体等、このような高周波用電子部品に通常使用されるものであればよい。
【0026】
【実施例】
本発明の方向性結合器として、図1および図2に示した構成で、誘電体基板21に比誘電率εr =5.6 のガラスセラミックスを用いてW1=0.13mm・W2=0.28mm・h1=0.2 mm・h2=0.3 mmとし、これにより本発明の方向性結合器の試料Aを得た。
【0027】
また、同様に、比誘電率εr =5.6 のガラスセラミックス誘電体基板を用いてW1=W2=0.13mm・h1=0.2 mm・h2=0.3 mmとし、これにより比較例としての従来の方向性結合器の試料Bを得た。
【0028】
これらの試料A・Bについて、高周波2.5 次元電磁界シミュレータ「モーメンタム(ヒューレットパッカード社製)」により、アイソレーション特性を求めた。その結果を図3に線図で示す。図3において横軸は500 MHz〜1.5 GHzの周波数を、縦軸はアイソレーション(単位:dB)を表わし、実線および破線はそれぞれ試料Aおよび試料Bのアイソレーションの周波数特性を示している。
【0029】
図3の結果により、試料Bより試料Aの方が低い値を示しており、試料Aの方がアイソレーション(絶縁)特性が優れていることが分かる。これにより、本発明の方向性結合器によれば、内部線路導体の線路幅W1よりも外部線路導体の線路幅W2を広くしたことから、良好なアイソレーション特性が得られることが確認できた。
【0030】
次に、線路導体の位置ずれに対する特性変化を調べるため、前記試料Aに対して同じ誘電体基板21を用いてW1=0.13mm・W2=0.28mm・h1=0.2 mm・h2=0.3 mm・内部線路導体23と外部線路導体24のずれ量を0.1 mmとし、これにより本発明の方向性結合器の試料A’を得た。
【0031】
また、同様に従来の方向性結合器の試料Bに対して同じ誘電体基板を用いてW1=W2=0.13mm・h1=0.2 mm・h2=0.3 mm・線路導体のずれ量を0.1 mmとし、これにより比較例としての従来の方向性結合器の試料B’を得た。
【0032】
そして、これら試料A・A’・B・B’について、高周波2.5 次元電磁界シミュレータ「モーメンタム(ヒューレットパッカード社製)」により、それぞれの結合特性を評価した。その結果を図4に線図で示す。図4において横軸は500 MHz〜1.5 GHzの周波数を、縦軸は結合量(単位:dB)を表わし、実線および破線はそれぞれ試料A・A’および試料B・B’のアイソレーションの周波数特性を示している。
【0033】
図4の結果より、試料B−B’間の差と試料A−A’間の差とを見ると試料A−A’間の差の方が小さく、すなわち本発明の方向性結合器の試料の方が線路導体のパターン位置ずれに対する特性変化が小さいことが分かる。また、アイソレーション特性についても同様に、本発明の方向性結合器によれば、線路導体の位置ずれに対する特性変化が従来の方向性結合器に比べて小さなものであった。
【0034】
これにより、本発明の方向性結合器によれば、内部線路導体の線路幅W1よりも外部線路導体の線路幅W2を広くしたことから、線路導体の位置ずれに対する特性変化を小さく抑えることができ、所望の特性の方向性結合器を安定して作製できることが分かる。
【0035】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることは何ら差し支えない。
【0036】
【発明の効果】
以上のように、本発明の方向性結合器によれば、誘電体基板の上面に外部線路導体を、下面に接地導体を形成するとともに、外部線路導体と接地導体との間に位置する誘電体基板の内部に、外部線路導体と電磁結合された内部線路導体を配置するように形成された方向性結合器において、内部線路導体と外部線路導体とを誘電体基板の誘電体層を介して電磁的に結合するように配置したことから2つの線路導体の間隔を小さくして大きな結合量を得ることができるとともに、内部線路導体の線路幅を外部線路導体の線路幅よりも狭くしたことから、2つの線路導体の積層位置ずれが生じても内部線路導体は外部線路導体と接地導体との間に所定の重なり量を確保させることができ、アイソレーション特性が良好で、位置ずれによる特性変化を抑制することができるものとなる。
【0037】
以上により、本発明によれば、線路導体を用いたブロードサイド型の方向性結合器について、アイソレーション特性が良く、かつ製造の際の線路導体の位置ずれによる特性変化の少ない方向性結合器を提供することができた。
【図面の簡単な説明】
【図1】本発明の方向性結合器の実施の形態の例を示す斜視図である。
【図2】図1のA−A線断面図である。
【図3】方向性結合器のアイソレーション特性を示す線図である。
【図4】方向性結合器の結合特性を示す線図である。
【図5】従来の方向性結合器の例を示す斜視図である。
【図6】従来の方向性結合器の他の例を示す斜視図である。
【符号の説明】
21・・・・・誘電体基板
22・・・・・接地導体
23・・・・・内部線路導体
24・・・・・外部線路導体
W1・・・・内部線路導体の線路幅
W2・・・・外部線路導体の線路幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a directional coupler using a line conductor used for a mixer, a detector, a power amplifier or the like used in a microwave band and a millimeter wave band.
[0002]
[Prior art]
As a directional coupler using a line conductor such as a strip conductor used for a mixer, a detector, a power amplifier, etc. used in a microwave band and a millimeter wave band, a structure as shown in FIG. It has been known.
[0003]
FIG. 5 is a perspective view showing an example of the configuration of a conventional directional coupler. According to this directional coupler, two strip conductors 3 and 4 that are bent in the shape of a U and placed close to each other on the dielectric substrate 1 on which the ground conductor 2 is formed are connected to each other at the coupling portion. It is formed so as to be electromagnetically coupled at a predetermined interval.
[0004]
In order to obtain a large amount of coupling in such a directional coupler, it is necessary to reduce the distance between the coupling portions of the two strip conductors 3 and 4.
[0005]
[Problems to be solved by the invention]
However, in the directional coupler configured as shown in FIG. 5, it is very difficult to actually maintain and reduce the distance between the joint portions of the two strip conductors 3 and 4 in actual production. There was a problem that it was difficult to stably produce a product having good characteristics.
[0006]
In order to solve this problem, a directional coupler that can obtain a large coupling amount and is easy to manufacture is disclosed in, for example, Japanese Patent Laid-Open Nos. 60-4306 and 4-26201. A directional coupler configured as shown in a perspective view in FIG. 6 has been proposed.
[0007]
In the directional coupler shown in FIG. 6, 11 is a dielectric substrate, 12 is a ground conductor formed on the lower surface of the dielectric substrate 11, 13 is a first strip conductor formed on the dielectric substrate 11, and 14 is A thin film made of an insulator having a predetermined spread disposed on the first strip conductor 13, and 15 a second strip conductor arranged adjacent to the first strip conductor 13 on the thin film 14 made of an insulator. It is.
[0008]
According to such a directional coupler referred to as a broadside type, the first strip conductor 13 and the second strip conductor 15 are arranged so as to overlap each other via a thin film 14 made of an insulator. Thus, the distance between the two strip conductors 13 and 15 can be reduced, and this provides an advantage that a large coupling amount can be obtained.
[0009]
Further, by setting the line lengths of the first strip conductor 13 and the second strip conductor 15 in the coupling portion to be different from each other, a directional coupler having a predetermined phase difference can be configured. is there.
[0010]
However, in the directional coupler as shown in FIG. 6, the two strip conductors 13 and 15 are at different positions with respect to the ground conductor 12 and are in different ground states. As a result, there is a problem that it is difficult to obtain good isolation characteristics.
[0011]
Furthermore, since the coupling amount is changed depending on the amount of overlap between the two strip conductors 13 and 15, the amount of overlap between the two strip conductors 13 and 15 is slightly deviated from the desired coupling amount during manufacture. Thus, there is a problem that it is difficult to stably produce a directional coupler having desired characteristics.
[0012]
The present invention has been devised in view of the above problems of the prior art, and its purpose is to provide a directional coupler using a line conductor that has good isolation characteristics and is suitable for a line conductor during manufacture. An object of the present invention is to provide a directional coupler with little characteristic change due to displacement.
[0013]
[Means for Solving the Problems]
The directional coupler according to the present invention includes an external line conductor formed on an upper surface of a dielectric substrate, and a ground conductor formed on a lower surface, and the dielectric substrate located between the external line conductor and the ground conductor. An internal line conductor that is electromagnetically coupled to the external line conductor and has a narrower line width than the external line conductor is disposed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, since the internal line conductor and the external line conductor are arranged so as to be electromagnetically coupled via the dielectric layer of the dielectric substrate, the distance between the two line conductors can be reduced to increase the coupling amount. While the amount of coupling is determined by the amount of overlap between the two line conductors, the inner line conductor is narrower than the external line conductor, that is, between the ground conductor and the external line conductor. Since the line width of the external line conductor is made wider than the line width of the positioned internal line conductor, the internal line conductor is It is possible to position the external line conductor and the ground conductor with a predetermined overlap amount, and it is possible to suppress the characteristic change due to the positional deviation.
[0015]
Hereinafter, a directional coupler according to the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a perspective view showing an example of an embodiment of a directional coupler according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA. In these figures, 21 is a dielectric substrate, 22 is a ground conductor formed on the back surface of the dielectric substrate 21, 23 is an internal line conductor formed on the dielectric substrate, and 24 is a dielectric on the internal line conductor 23. An external line conductor formed to be electromagnetically coupled through a layer. W1 indicates the line width of the internal line conductor 23, W2 indicates the line width of the external line conductor 24, h1 indicates the distance from the ground conductor 22 to the internal line conductor 23, and h2 indicates the distance from the ground conductor 22 to the external line. The distance to the conductor 24 is shown. In the present invention, the line width of the line conductor in the coupling portion is characterized by the line width W2 of the external line conductor 24 being wider than the line width W1 of the internal line conductor 23, that is, W1 <W2.
[0017]
In this example, the dielectric substrate on which the internal line conductor 23 is formed and the dielectric layer between the internal line conductor 23 and the external line conductor 24 are integrated into the dielectric substrate 21, that is, the internal line conductor 23 is dielectric. An example in which an inner layer line conductor is formed inside the body substrate 21 is shown. Not limited to this, the internal line conductor 23 is formed on a dielectric substrate, a dielectric layer is formed thereon so as to cover at least the coupling portion, and an external line conductor 24 is further stacked thereon. May be.
[0018]
Generally, a high frequency component needs to be designed to have a characteristic impedance that matches a predetermined input impedance and output impedance (for example, 50Ω). When this characteristic impedance is Z0, the inductance component of the signal line is L, and the capacitance component between the signal line and the ground conductor is C, there is a relationship of Z0 = √L / √C.
[0019]
The characteristic impedance in the directional coupler of the present invention is called effective impedance Zeff. When the inductance components of the internal and external line conductors 23 and 24 are L1 and L2, respectively, and the capacitance components between the internal and external line conductors 23 and 24 and the ground conductor 22 are C1 and C2, respectively, each line conductor 23 The effective impedance Zeff1 and Zeff2 of 24 are simply empirical formulas as follows:
Zeff1 ≒ √L1 / √C1, Zeff2 ≒ √L2 / √C2
It is expressed as
[0020]
Here, as shown in FIG. 2, the line width of the internal line conductor 23 and the distance from the ground conductor 22 are respectively W1 · h1, and the line width of the external line conductor 24 and the distance from the ground conductor 22 are respectively W2 · h2. When W1 ≧ W2, the distances from the ground conductors 22 of the line conductors 23 and 24 are h1 <h2, so L1 <L2 and C1> C2. As a result, Zeff1 <Zeff2, and Zeff1 and Zeff2 are always different from each other, so that the isolation characteristic of the directional coupler is deteriorated.
[0021]
On the other hand, according to the directional coupler of the present invention, since W1 <W2, L1> L2, but since the relationship between C1 and C2 can be largely adjusted by the line width, Zeff1 and Zeff2 Is smaller than the case of W1 ≧ W2, or Zeff1 and Zeff2 are substantially equal. As a result, reflection of a high-frequency signal due to impedance mismatch in the input / output unit is suppressed, so that a directional coupler having excellent isolation characteristics can be obtained.
[0022]
Further, since the coupling amount of the two line conductors in the broadside type directional coupler is determined by the overlapping amount of the internal and external line conductors 23 and 24, when W1 <W2, the pattern within the range of the difference W2-W1 Since the amount of overlap does not change due to the deviation, the change in the coupling amount due to the pattern deviation is reduced as compared with the case of W1 = W2 or W1> W2, and the characteristic change due to the position deviation can be suppressed to be small.
[0023]
As such line widths W1 and W2, it is preferable to set W1 ≦ 0.2 mm from the viewpoint of miniaturization of the directional coupler, and further, from the viewpoint of suppressing a change in characteristics due to misalignment of the line conductor, It is preferable to set W2 ≧ W1 + 0.1 mm (deviation amount).
[0024]
The relationship between the line widths W1 and W2 and the distances of the line conductors 23 and 24 from the ground conductor 22 is preferably set to h2−h1 ≦ 0.2 mm from the viewpoint of miniaturization and high coupling.
[0025]
The line length at the joint between the internal line conductor 23 and the external line conductor 24, the thickness of each conductor, and the material forming each conductor is preferably 10 mm or less from the viewpoint of miniaturization (however, However, the conductor thickness may be about 20 μm as a general thickness, and the conductor material is usually used for such high-frequency electronic components such as a low resistance conductor such as copper. Anything is acceptable.
[0026]
【Example】
As the directional coupler according to the present invention, W1 = 0.13 mm · W2 = 0.28 mm · h1 = using glass ceramics having a relative dielectric constant ε r = 5.6 for the dielectric substrate 21 in the configuration shown in FIGS. 0.2 mm · h2 = 0.3 mm, thereby obtaining a sample A of the directional coupler of the present invention.
[0027]
Similarly, W1 = W2 = 0.13 mm · h1 = 0.2 mm · h2 = 0.3 mm using a glass-ceramic dielectric substrate having a relative dielectric constant ε r = 5.6, thereby making a conventional directional coupling as a comparative example. A sample B of the vessel was obtained.
[0028]
With respect to these samples A and B, isolation characteristics were obtained using a high-frequency 2.5-dimensional electromagnetic field simulator “Momentum (manufactured by Hewlett-Packard)”. The results are shown graphically in FIG. In FIG. 3, the horizontal axis represents the frequency of 500 MHz to 1.5 GHz, the vertical axis represents the isolation (unit: dB), and the solid line and the broken line represent the frequency characteristics of the isolation of the sample A and the sample B, respectively.
[0029]
The result of FIG. 3 shows that the value of Sample A is lower than that of Sample B, and that Sample A has better isolation (insulation) characteristics. Thereby, according to the directional coupler of this invention, since the line width W2 of the external line conductor was made wider than the line width W1 of the internal line conductor, it was confirmed that good isolation characteristics were obtained.
[0030]
Next, in order to investigate the characteristic change with respect to the positional deviation of the line conductor, W1 = 0.13 mm / W2 = 0.28 mm / h1 = 0.2 mm / h2 = 0.3 mm / internal using the same dielectric substrate 21 for the sample A The deviation amount between the line conductor 23 and the external line conductor 24 was set to 0.1 mm, thereby obtaining a sample A ′ of the directional coupler of the present invention.
[0031]
Similarly, using the same dielectric substrate for the sample B of the conventional directional coupler, W1 = W2 = 0.13 mm, h1 = 0.2 mm, h2 = 0.3 mm, and the deviation amount of the line conductor is 0.1 mm. As a result, a sample B ′ of a conventional directional coupler as a comparative example was obtained.
[0032]
And about these sample A * A '* B * B', each high-frequency 2.5-dimensional electromagnetic field simulator "Momentum" (made by Hewlett-Packard) evaluated each coupling characteristic. The results are shown graphically in FIG. In FIG. 4, the horizontal axis represents the frequency of 500 MHz to 1.5 GHz, the vertical axis represents the amount of coupling (unit: dB), and the solid line and the broken line represent the frequency characteristics of sample A · A ′ and sample B · B ′, respectively. Is shown.
[0033]
From the results shown in FIG. 4, when the difference between the samples BB ′ and the sample AA ′ is viewed, the difference between the samples AA ′ is smaller, that is, the sample of the directional coupler of the present invention. It can be seen that the characteristic change with respect to the pattern position deviation of the line conductor is smaller. Similarly, with regard to the isolation characteristic, according to the directional coupler of the present invention, the characteristic change with respect to the positional deviation of the line conductor is smaller than that of the conventional directional coupler.
[0034]
Thus, according to the directional coupler of the present invention, since the line width W2 of the external line conductor is made wider than the line width W1 of the internal line conductor, the characteristic change with respect to the positional deviation of the line conductor can be suppressed small. It can be seen that a directional coupler having desired characteristics can be stably produced.
[0035]
It should be noted that the present invention is not limited to the examples of the embodiments described above, and various modifications and improvements can be added without departing from the scope of the present invention.
[0036]
【The invention's effect】
As described above, according to the directional coupler of the present invention, the external line conductor is formed on the upper surface of the dielectric substrate, the ground conductor is formed on the lower surface, and the dielectric located between the external line conductor and the ground conductor. In a directional coupler formed so that an internal line conductor electromagnetically coupled to an external line conductor is disposed inside the substrate, the internal line conductor and the external line conductor are electromagnetically coupled via the dielectric layer of the dielectric substrate. Since the distance between the two line conductors can be reduced to obtain a large amount of coupling because it is arranged so as to be coupled, the line width of the internal line conductor is made narrower than the line width of the external line conductor, Even if there is a misalignment between the two line conductors, the inner line conductor can ensure a certain amount of overlap between the outer line conductor and the ground conductor, has good isolation characteristics, and changes in characteristics due to misalignment. The ones that can win.
[0037]
As described above, according to the present invention, a broad-side type directional coupler using a line conductor has a good isolation characteristic and a directional coupler with little characteristic change due to a position deviation of the line conductor during manufacture. Could be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a directional coupler according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a diagram showing isolation characteristics of a directional coupler.
FIG. 4 is a diagram showing coupling characteristics of a directional coupler.
FIG. 5 is a perspective view showing an example of a conventional directional coupler.
FIG. 6 is a perspective view showing another example of a conventional directional coupler.
[Explanation of symbols]
21 ... Dielectric substrate
22 ・ ・ ・ ・ ・ Grounding conductor
23 ・ ・ ・ ・ ・ Internal line conductor
24 ... External line conductor W1 ... Line width W2 of internal line conductor ... Line width of external line conductor

Claims (1)

誘電体基板の上面に外部線路導体を、下面に接地導体を形成するとともに、前記外部線路導体と前記接地導体との間に位置する前記誘電体基板の内部に、前記外部線路導体と電磁結合され、且つ前記外部線路導体よりも線路幅の狭い内部線路導体を配置して成ることを特徴とする方向性結合器。 An external line conductor is formed on the upper surface of the dielectric substrate, and a ground conductor is formed on the lower surface, and the external line conductor is electromagnetically coupled to the inside of the dielectric substrate located between the external line conductor and the ground conductor. A directional coupler comprising an internal line conductor having a line width narrower than that of the external line conductor .
JP33636198A 1998-11-26 1998-11-26 Directional coupler Expired - Fee Related JP3766554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33636198A JP3766554B2 (en) 1998-11-26 1998-11-26 Directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33636198A JP3766554B2 (en) 1998-11-26 1998-11-26 Directional coupler

Publications (2)

Publication Number Publication Date
JP2000165116A JP2000165116A (en) 2000-06-16
JP3766554B2 true JP3766554B2 (en) 2006-04-12

Family

ID=18298350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33636198A Expired - Fee Related JP3766554B2 (en) 1998-11-26 1998-11-26 Directional coupler

Country Status (1)

Country Link
JP (1) JP3766554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544775B1 (en) 2012-11-29 2015-08-17 지멘스 악티엔게젤샤프트 Directional couplerin particular having high coupling attenuation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651401B2 (en) * 2001-03-16 2005-05-25 株式会社村田製作所 Directional coupler
JP2003156644A (en) 2001-11-21 2003-05-30 Seiko Epson Corp Directional coupler and device for optical communication
SE522404C2 (en) 2001-11-30 2004-02-10 Ericsson Telefon Ab L M directional Couplers
KR20040042102A (en) * 2002-11-13 2004-05-20 전자부품연구원 Surface mounted device(SMD) type inner structure of a directional coupler
WO2012016087A2 (en) 2010-07-29 2012-02-02 Skyworks Solutions, Inc. Reducing coupling coefficient variation in couplers
WO2016006676A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 High-frequency module
CN109687084A (en) * 2018-12-24 2019-04-26 贵州航天计量测试技术研究所 A kind of high-power 3dB power combing distributor
CN110011020B (en) * 2019-04-11 2021-12-03 上海剑桥科技股份有限公司 PCB coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544775B1 (en) 2012-11-29 2015-08-17 지멘스 악티엔게젤샤프트 Directional couplerin particular having high coupling attenuation

Also Published As

Publication number Publication date
JP2000165116A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US6121930A (en) Microstrip antenna and a device including said antenna
US7336142B2 (en) High frequency component
JP2001339207A (en) Antenna feeding line and antenna module using the same
JP2004112131A (en) Flat circuit waveguide connection structure
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3766554B2 (en) Directional coupler
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
KR100739382B1 (en) Non-Radiative Microstrip Line
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JPH08162812A (en) High frequency coupler
JP2005051330A (en) Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package
JPH0537213A (en) Microwave coupling line
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP3383542B2 (en) Coupling structure of dielectric waveguide line
JP3439973B2 (en) Branch structure of dielectric waveguide
JPH11308025A (en) Directional coupler
JP4439423B2 (en) antenna
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3351366B2 (en) High frequency transmission line and method of manufacturing the same
JP3517097B2 (en) Branch structure of dielectric waveguide
JP7409778B2 (en) waveguide slot antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees