JP3522120B2 - Connection structure of dielectric waveguide line - Google Patents

Connection structure of dielectric waveguide line

Info

Publication number
JP3522120B2
JP3522120B2 JP24428898A JP24428898A JP3522120B2 JP 3522120 B2 JP3522120 B2 JP 3522120B2 JP 24428898 A JP24428898 A JP 24428898A JP 24428898 A JP24428898 A JP 24428898A JP 3522120 B2 JP3522120 B2 JP 3522120B2
Authority
JP
Japan
Prior art keywords
dielectric waveguide
main conductor
dielectric
waveguide line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24428898A
Other languages
Japanese (ja)
Other versions
JP2000077912A (en
Inventor
健 竹之下
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24428898A priority Critical patent/JP3522120B2/en
Priority to US09/298,399 priority patent/US6515562B1/en
Priority to FR9905188A priority patent/FR2778024B1/en
Priority to DE19918567A priority patent/DE19918567C2/en
Publication of JP2000077912A publication Critical patent/JP2000077912A/en
Application granted granted Critical
Publication of JP3522120B2 publication Critical patent/JP3522120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate

Landscapes

  • Waveguides (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロ波帯やミリ
波帯等の高周波信号を伝達するための誘電体導波管線路
の接続構造に関し、特に、直交する2つの誘電体導波管
線路を接続して成る誘電体導波管線路の接続構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure of dielectric waveguide lines for transmitting high frequency signals in the microwave band, millimeter wave band, etc. The present invention relates to a connection structure of a dielectric waveguide line formed by connecting.

【0002】[0002]

【従来の技術】近年、マイクロ波帯やミリ波帯等の高周
波信号を用いた移動体通信および車間レーダ等の研究が
盛んに進められている。これらの高周波回路において高
周波信号を伝送するための伝送線路には小型で伝送損失
が小さいことが求められている。特に、高周波回路を構
成する基板上または基板内に形成できると小型化の面で
有利となることから、従来、そのような伝送線路として
ストリップ線路やマイクロストリップ線路・コプレーナ
線路・誘電体導波管線路等が用いられてきた。
2. Description of the Related Art In recent years, research on mobile communication and inter-vehicle radar using high-frequency signals in the microwave band, millimeter wave band, etc. has been actively pursued. In these high frequency circuits, transmission lines for transmitting high frequency signals are required to be small and have low transmission loss. In particular, since it is advantageous in terms of downsizing if it can be formed on or in a substrate that constitutes a high-frequency circuit, strip line, microstrip line, coplanar line, and dielectric waveguide have been conventionally used as such transmission lines. Railroads have been used.

【0003】これらのうちストリップ線路・マイクロス
トリップ線路・コプレーナ線路は誘電体基板と線路導体
層とグランド(接地)導体層とで構成されており、線路
導体層とグランド導体層の周囲の空間および誘電体基板
中を高周波信号の電磁波が伝播するものである。これら
の線路は30GHz帯域までの信号伝送に対しては問題な
いが、30GHz以上では伝送損失が生じやすいという問
題点がある。
Among these, the strip line, microstrip line, and coplanar line are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer, and the space around the line conductor layer and the ground conductor layer and the dielectric. An electromagnetic wave of a high frequency signal propagates through the body substrate. These lines have no problem for signal transmission up to the 30 GHz band, but have a problem that transmission loss tends to occur at 30 GHz or higher.

【0004】これに対して導波管型の伝送線路は30GH
z以上のミリ波帯域においても伝送損失が小さい点で有
利である。このような導波管の優れた伝送特性を活かし
た、誘電体多層基板内に形成可能な伝送線路として、誘
電体導波管線路が提案されている。
On the other hand, the waveguide type transmission line is 30 GH
It is advantageous in that the transmission loss is small even in the millimeter wave band of z or more. A dielectric waveguide line has been proposed as a transmission line that can be formed in a dielectric multilayer substrate by taking advantage of the excellent transmission characteristics of such a waveguide.

【0005】例えば、特開平6−53711 号公報におい
て、誘電体基板を一対の主導体層で挟み、さらに主導体
層間を接続する2列に配設された複数のビアホールによ
って側壁を形成した導波管線路が提案されている。この
導波管線路は誘電体材料の四方を一対の主導体層とビア
ホールによる疑似的な導体壁で囲むことによって導体壁
内の領域を信号伝送用の線路としたものである。このよ
うな構成によれば、構成がいたって簡単となって装置全
体の小型化も図り得るというものである。
For example, in Japanese Unexamined Patent Publication No. 6-53711, a waveguide in which a dielectric substrate is sandwiched between a pair of main conductor layers and side walls are formed by a plurality of via holes arranged in two rows connecting the main conductor layers Pipelines have been proposed. In this waveguide line, a region inside the conductor wall is used as a signal transmission line by surrounding the dielectric material on four sides with a pair of main conductor layers and a pseudo conductor wall composed of via holes. According to such a configuration, the configuration is very simple and the overall size of the device can be reduced.

【0006】さらに、本発明者は特願平8−229925号に
おいて誘電体基板中に形成した多層構造による誘電体導
波管線路を提案した。これは積層型導波管と呼ばれるも
のであり、前述のような誘電体導波管線路を誘電体層と
一対の主導体層と貫通導体群とで形成し、さらに貫通導
体群に加えて副導体層を形成することにより、電気的な
壁としての側壁を強化したものである。前述のような誘
電体導波管線路では導波管内に貫通導体に平行でない電
界が存在すると側壁から電界の漏れが発生するが、この
積層型導波管では副導体層があるためにこのような電界
の漏れが発生しない優れたものとなる。
Furthermore, the present inventor proposed in Japanese Patent Application No. 8-229925 a dielectric waveguide line having a multilayer structure formed in a dielectric substrate. This is called a laminated waveguide, and the dielectric waveguide line as described above is formed by a dielectric layer, a pair of main conductor layers, and a through conductor group, and a sub conductor is added in addition to the through conductor group. By forming the conductor layer, the side wall as an electric wall is reinforced. In the above-mentioned dielectric waveguide line, when an electric field that is not parallel to the through conductor exists in the waveguide, the electric field leaks from the side wall, but this laminated waveguide has a sub-conductor layer. It is excellent in that no electric field leakage occurs.

【0007】[0007]

【発明が解決しようとする課題】一般に、伝送線路を用
いて高周波回路を構成する場合、特にアレイアンテナの
給電線等を形成する場合等には、伝送線路の配線回路に
おいて伝送線路同士を接続し、あるいは分岐を設けるこ
とが必要となる。
Generally, when forming a high frequency circuit using transmission lines, particularly when forming a feeder line of an array antenna, etc., the transmission lines are connected to each other in a wiring circuit of the transmission lines. Or, it is necessary to provide a branch.

【0008】しかしながら、ストリップ線路やマイクロ
ストリップ線路・コプレーナ線路は線路導体層がグラン
ド導体層で完全に覆われていないため、伝送線路の途中
に分岐を設けるとその分岐から電磁波の放射が起こり、
伝送損失が大きくなるという問題点があった。
However, since the line conductor layer of the strip line, the microstrip line, and the coplanar line is not completely covered by the ground conductor layer, if a branch is provided in the middle of the transmission line, radiation of electromagnetic waves occurs from the branch.
There is a problem that the transmission loss becomes large.

【0009】また、誘電体導波管線路としては、例えば
誘電体線路を2枚のグランド導体板で挟持し、グランド
導体板間の誘電体線路以外の部分に空気が満たされた構
造のNRDガイドがある。これに分岐を設けるためには
屈曲した2本の線路を結合させて方向性結合器を形成す
る方法が用いられる。
As the dielectric waveguide line, for example, an NRD guide having a structure in which the dielectric line is sandwiched between two ground conductor plates and the portion between the ground conductor plates other than the dielectric line is filled with air. There is. In order to provide a branch to this, a method of forming a directional coupler by connecting two bent lines is used.

【0010】しかし、線路に屈曲部がある場合はその形
状によっては異なる伝播モードが発生して伝送損失が大
きくなることがあるため設計上の制約が大きいという問
題点があった。また、誘電体線路は通常フッ素樹脂等で
作製されているが、特に高周波領域で使用するものは線
路の寸法が小さくなるため、屈曲部等の加工が困難であ
り量産が難しいという問題点もあった。さらに、高周波
回路の配線として誘電体基板上または基板内に形成する
ことが困難であるという問題点もあった。
However, when the line has a bent portion, different propagation modes may occur depending on the shape of the bent portion, resulting in a large transmission loss. In addition, although the dielectric line is usually made of fluororesin, etc., especially for those used in the high frequency region, the dimension of the line is small, so there is a problem that the bending part is difficult to process and mass production is difficult. It was Further, there is a problem that it is difficult to form the wiring of the high frequency circuit on or in the dielectric substrate.

【0011】また、通常の導波管は金属の壁で囲まれた
空間を電磁波が伝播する構造となっており、誘電体によ
る損失がないため高周波での損失が小さく、分岐があっ
ても放射損失はないが、誘電体を利用した伝送線路と比
較して寸法が大きくなるという問題点があった。これに
対し、導波管内に比誘電率がεr の誘電体を充填した誘
電体導波管は通常の導波管の1/√εr の寸法で作製で
きるが、これも誘電体基板上または基板内に形成するこ
とが困難であるという問題点があった。
In addition, a normal waveguide has a structure in which electromagnetic waves propagate in a space surrounded by a metal wall. Since there is no loss due to a dielectric material, the loss at high frequencies is small, and even if there is a branch, it is radiated. Although there is no loss, there is a problem that the size becomes larger than that of a transmission line using a dielectric. On the other hand, a dielectric waveguide in which a dielectric with a relative permittivity of ε r is filled in the waveguide can be manufactured with a size of 1 / √ε r of a normal waveguide, but this is also on the dielectric substrate. Alternatively, there is a problem that it is difficult to form in the substrate.

【0012】さらに、特開平6−53711 号公報に提案さ
れたような誘電体導波管線路において、その一対の導体
層と2列のビアホールによる疑似的な導体壁で囲まれた
信号伝送用の線路に単純に分岐を設けた場合は、電磁界
に乱れが生じるため伝送損失が大きくなるという問題点
があった。
Furthermore, in a dielectric waveguide line as proposed in Japanese Patent Laid-Open No. 6-53711, a signal transmission line surrounded by a pseudo conductor wall by a pair of conductor layers and two rows of via holes is used. If the line is simply provided with a branch, the electromagnetic field is disturbed, resulting in a large transmission loss.

【0013】従って、誘電体基板内にアレイアンテナの
給電線等を形成するための分岐を設けた伝送線路の配線
回路を作製して高周波回路を構成するために、誘電体基
板内に形成でき、電磁波の放射が無く伝送損失が小さい
誘電体導波管線路の分岐構造が求められていた。
Therefore, in order to construct a high frequency circuit by producing a wiring circuit of a transmission line in which a branch for forming a feed line of an array antenna is formed in the dielectric substrate, it can be formed in the dielectric substrate, There has been a demand for a branched structure of a dielectric waveguide line that emits no electromagnetic waves and has a small transmission loss.

【0014】また、誘電体導波管線路は誘電体基板の平
面方向には自由に形成して配設できるが、小型化および
高集積化のためには上下に配置して形成された誘電体導
波管線路同士を容易に接続できる接続の実現が必要とな
る。
Further, the dielectric waveguide lines can be freely formed and arranged in the plane direction of the dielectric substrate, but for the purpose of downsizing and high integration, the dielectric waveguide lines are arranged one above the other. It is necessary to realize a connection that can easily connect the waveguide lines to each other.

【0015】本発明は上記事情に鑑みて案出されたもの
であり、その目的は、従来の多層化技術によって容易に
作製することのできる誘電体導波管線路において、誘電
体基板内に互いに直交するように上下に積層して形成さ
れた誘電体導波管線路同士を容易に接続することができ
る誘電体導波管線路の接続構造を提供することにある。
The present invention has been devised in view of the above circumstances, and an object thereof is to provide a dielectric waveguide line which can be easily manufactured by a conventional multi-layering technique with each other in a dielectric substrate. It is an object of the present invention to provide a dielectric waveguide line connection structure capable of easily connecting dielectric waveguide lines that are vertically stacked to be orthogonal to each other.

【0016】また、本発明の目的は、誘電体基板内に形
成でき、高周波信号の電磁波の放射・漏洩が無く、2つ
の誘電体導波管線路を交差させて結合することにより1
本の線路をT字状あるいは直交する3本の線路に伝送損
失が小さく良好な伝送特性で接続して分岐できる誘電体
導波管線路の接続構造を提供することにある。
Further, an object of the present invention is to be formed in a dielectric substrate without radiation and leakage of an electromagnetic wave of a high frequency signal, and by connecting two dielectric waveguide lines so as to cross each other.
An object of the present invention is to provide a connection structure of a dielectric waveguide line that can connect and branch three lines to three T-shaped or orthogonal lines with small transmission loss and good transmission characteristics.

【0017】[0017]

【課題を解決するための手段】本発明者は、上記の問題
点に対して検討を重ねた結果、誘電体基板内において下
層側に形成された誘電体導波管線路の上側の主導体層の
一部と、それに直交するように上層側に形成された誘電
体導波管線路の下側の主導体層の一部とを共有するよう
に2つの誘電体導波管線路を上下に重ねて形成し、その
共有させた主導体層の一部に高周波信号の結合用窓を主
導体層の非形成部として設けることにより、上下の誘電
体導波管線路を電磁的に結合して接続できることを見出
した。
As a result of repeated studies on the above problems, the present inventor has found that the main conductor layer on the upper side of the dielectric waveguide line formed on the lower layer side in the dielectric substrate. And two dielectric waveguide lines are vertically stacked so as to share a part of the main conductor layer on the lower side of the dielectric waveguide line formed on the upper layer side so as to be orthogonal thereto. The upper and lower dielectric waveguide lines are electromagnetically coupled and connected by forming a high-frequency signal coupling window as a non-formed portion of the main conductor layer in a part of the shared main conductor layer. I found that I could do it.

【0018】この接続構造によれば、一方の誘電体導波
管線路より入力された高周波信号を、結合用窓を通して
直交する他方の出力側の誘電体導波管線路において同位
相で2方向に伝播させることができる。このように2つ
の導波管線路の間に設ける導体非形成部である結合用の
窓は、従来より導波管線路においてベーテ孔と呼ばれ、
分岐構造もしくは方向性結合器に利用されているものと
同様のものである。
According to this connection structure, a high-frequency signal input from one of the dielectric waveguide lines is bi-directional in the same phase in the other dielectric waveguide line on the output side orthogonal to each other through the coupling window. Can be propagated. As described above, the coupling window, which is the conductor non-forming portion provided between the two waveguide lines, is conventionally called a Bethe hole in the waveguide line.
It is similar to that used in the branch structure or the directional coupler.

【0019】また本発明者は、2つの誘電体導波管線路
の接続部における誘電体導波管線路の幅を広くするか厚
みを薄くすることにより、その部分をインピーダンスマ
ッチング用の整合部としてインピーダンスの不連続性に
よる高周波信号の反射を低減できることも見出した。
Further, the inventor of the present invention enlarges the width or the thickness of the dielectric waveguide line at the connecting portion of the two dielectric waveguide lines to make that portion a matching part for impedance matching. It was also found that reflection of high frequency signals due to impedance discontinuity can be reduced.

【0020】本発明の誘電体導波管線路の接続構造は、
誘電体基板を挟持する一対の主導体層と、高周波信号の
伝送方向に信号波長の2分の1未満の繰り返し間隔で、
かつ前記伝送方向と直交する方向に所定の幅で前記主導
体層間を電気的に接続して形成された2列の側壁用貫通
導体群と、前記主導体層間に主導体層と平行に形成さ
れ、前記側壁用貫通導体群と電気的に接続された副導体
層とを具備して成り、前記主導体層、側壁用貫通導体群
および副導体層で囲まれた領域によって高周波信号を伝
送する誘電体導波管線路を2つ、前記高周波信号の伝送
方向が直交するように前記主導体層の一方を重ねて配置
するとともに、この重ねた部位の主導体層に結合用窓を
形成し、かつ前記高周波信号が入力される前記誘電体導
波管線路の前記結合用窓の中心から前記伝送方向に前記
高周波信号の管内波長以下の位置に、伝送方向の直交方
向に前記信号波長の2分の1未満の間隔で前記主導体層
間を電気的に接続して形成された端面用貫通導体群と、
前記主導体層間に主導体層と平行に形成され、前記副導
体層および前記端面用貫通導体群と電気的に接続された
端面用副導体層とを形成したことを特徴とするものであ
る。
The connection structure of the dielectric waveguide line of the present invention is
A pair of main conductor layers sandwiching the dielectric substrate, and a repeating interval of less than half the signal wavelength in the transmission direction of the high frequency signal,
In addition, two rows of sidewall through conductor groups formed by electrically connecting the main conductor layers with a predetermined width in a direction orthogonal to the transmission direction, and formed between the main conductor layers in parallel with the main conductor layers. A dielectric for transmitting a high-frequency signal by a region surrounded by the main conductor layer, the side wall through conductor group and the sub conductor layer, the sub conductor layer being electrically connected to the side wall through conductor group. Two body waveguide lines are arranged so that one of the main conductor layers is overlapped so that the transmission directions of the high frequency signals are orthogonal to each other, and a coupling window is formed in the main conductor layer at the overlapped portion, and From the center of the coupling window of the dielectric waveguide line to which the high frequency signal is input, to a position equal to or less than the guide wavelength of the high frequency signal in the transmission direction, and to the half of the signal wavelength in the direction orthogonal to the transmission direction. The main conductor layers are electrically connected at intervals of less than 1. And forming end faces through-conductor group,
An end face sub-conductor layer is formed between the main conductor layers in parallel with the main conductor layer and is electrically connected to the sub-conductor layer and the end face through conductor group.

【0021】[0021]

【0022】さらに、本発明の誘電体導波管線路の接続
構造は、上記構成において、前記誘電体導波管線路を重
ねた部位における誘電体導波管線路の前記2列の側壁用
貫通導体群の幅を前記所定の幅よりも広くしたことを特
徴とするものである。
Further, the connection structure of the dielectric waveguide line of the present invention has the above-mentioned structure, wherein the two rows of through conductors for the side walls of the dielectric waveguide line in the portion where the dielectric waveguide lines are overlapped. The width of the group is made wider than the predetermined width.

【0023】また、本発明の誘電体導波管線路の接続構
造は、上記構成において、前記誘電体導波管線路を重ね
た部位における誘電体導波管線路の前記一対の主導体層
の間隔を他の部位における間隔よりも狭くしたことを特
徴とするものである。
In addition, the connection structure of the dielectric waveguide lines of the present invention has the above-mentioned structure, in which the distance between the pair of main conductor layers of the dielectric waveguide lines in the portion where the dielectric waveguide lines are overlapped. Is narrower than the interval in other parts.

【0024】本発明の誘電体導波管線路の接続構造によ
れば、第1の誘電体導波管線路とそれに直交するように
重ねて配置される第2の誘電体導波管線路とを設けて、
両者の重ねた部位の主導体層に結合用窓を導体非形成部
として設け、かつ高周波信号が入力される誘電体導波管
線路の結合用窓の中心から伝送方向に高周波信号の管内
波長以下の位置に、伝送方向の直交方向に信号波長の2
分の1未満の間隔で主導体層間を電気的に接続して形成
された端面用貫通導体群と、主導体層間に主導体層と平
行に形成され、副導体層および端面用貫通導体群と電気
的に接続された端面用副導体層とを形成したことから、
2つの誘電体導波管線路は電磁界で結合され、一方の誘
電体導波管線路から入力された高周波信号は結合用窓を
介して他方の誘電体導波管線路にも伝播し、他方の誘電
体導波管線路において伝播できる方向が2つあるので、
高周波信号はその2つの方向に伝播してT字状に分岐さ
れることとなる。また、両方の誘電体導波管線路にそれ
ら端面用貫通導体群と端面用複導体層とを形成した場合
にはL字状に高周波信号を伝播できるものとなる。
According to the connection structure of the dielectric waveguide line of the present invention, the first dielectric waveguide line and the second dielectric waveguide line which are arranged so as to be orthogonal to the first dielectric waveguide line are provided. Provided,
A coupling window is provided as a conductor non-formation portion in the main conductor layer at the overlapping portion of both, and the wavelength is less than the guide wavelength of the high frequency signal in the transmission direction from the center of the coupling window of the dielectric waveguide line to which the high frequency signal is input. , The signal wavelength is 2 in the direction orthogonal to the transmission direction.
An end face through conductor group formed by electrically connecting the main conductor layers at intervals of less than one-half, and a sub conductor layer and an end face through conductor group formed in parallel with the main conductor layer between the main conductor layers. Since the sub conductor layer for the end face electrically connected is formed,
The two dielectric waveguide lines are coupled by an electromagnetic field, and the high frequency signal input from one of the dielectric waveguide lines propagates to the other dielectric waveguide line through the coupling window and the other. Since there are two directions that can propagate in the dielectric waveguide line of
The high frequency signal propagates in the two directions and is branched into a T shape. Further, when the end face through conductor group and the end face double conductor layer are formed on both of the dielectric waveguide lines, the high frequency signal can be propagated in an L shape.

【0025】[0025]

【0026】さらに、本発明の誘電体導波管線路の接続
構造によれば、上記構成において、誘電体導波管線路を
重ねた部位における少なくとも一方の誘電体導波管線路
についてその幅すなわち伝送方向と直交する方向の側壁
用貫通導体群の幅を広げるか、またはその厚みを薄くす
なわち一対の主導体層の間隔を狭くすることにより、接
続部における誘電体導波管線路のインピーダンスの不連
続を小さくして高周波信号の反射や伝送損失の小さい接
続を実現することができる。このように幅を広げること
および厚みを薄くすることは、両方の誘電体導波管線路
に適用しても、これらを組み合わせて適用してもよい。
Further, according to the connection structure of the dielectric waveguide line of the present invention, in the above structure, at least one of the dielectric waveguide lines in the portion where the dielectric waveguide lines are superposed has the width, that is, the transmission. The width of the sidewall through conductor group in the direction orthogonal to the direction is widened, or the thickness thereof is made thin, that is, the interval between the pair of main conductor layers is narrowed, so that the impedance discontinuity of the dielectric waveguide line at the connection portion becomes discontinuous. Can be reduced to realize a connection with high frequency signal reflection and low transmission loss. Such widening and thinning may be applied to both dielectric waveguide lines or a combination of these.

【0027】[0027]

【発明の実施の形態】以下、本発明の誘電体導波管線路
の接続構造について図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A connection structure for a dielectric waveguide line according to the present invention will be described below with reference to the drawings.

【0028】図1は本発明に用いる誘電体導波管線路の
構成例を説明するための概略斜視図である。図1におい
て、1は誘電体基板、2および3は誘電体基板1を挟持
する一対の主導体層、4は信号伝送方向に信号波長の2
分の1未満の繰り返し間隔cで、かつ信号伝送方向と直
交する方向に所定の幅bで一対の主導体層2・3間を電
気的に接続するように形成された2列の側壁用貫通導体
群である。また、5は側壁用貫通導体群4の各列を形成
する貫通導体同士を電気的に接続する、主導体層2・3
と平行に形成された副導体層である。6はこれら一対の
主導体層2・3と側壁用貫通導体群4および副導体層5
により形成される誘電体導波管線路である。このように
一対の主導体層2・3と側壁用貫通導体群4とで囲まれ
た領域に対してさらに副導体層5を形成することによ
り、誘電体導波管線路6の内部から見るとその側壁は側
壁用貫通導体群4と副導体層5とによって細かな格子状
になり、様々な方向の電磁波が遮蔽される。
FIG. 1 is a schematic perspective view for explaining a structural example of a dielectric waveguide line used in the present invention. In FIG. 1, 1 is a dielectric substrate, 2 and 3 are a pair of main conductor layers sandwiching the dielectric substrate 1, and 4 is a signal wavelength of 2 in the signal transmission direction.
Two rows of side wall penetrations formed to electrically connect between the pair of main conductor layers 2 and 3 with a repetition interval c of less than 1 / th and a predetermined width b in the direction orthogonal to the signal transmission direction. It is a conductor group. Further, 5 is a main conductor layer 2/3 which electrically connects the through conductors forming each row of the sidewall through conductor group 4.
Is a sub-conductor layer formed in parallel with. Reference numeral 6 denotes the pair of main conductor layers 2 and 3, the sidewall through conductor group 4 and the sub conductor layer 5.
It is a dielectric waveguide line formed by. When the sub conductor layer 5 is further formed in the region surrounded by the pair of main conductor layers 2 and 3 and the side wall through conductor group 4 as described above, when viewed from the inside of the dielectric waveguide line 6. The side wall is formed into a fine grid by the side wall through conductor group 4 and the sub conductor layer 5, and electromagnetic waves in various directions are shielded.

【0029】図1に示すように、所定の厚みaの誘電体
基板1を挟持する位置に一対の主導体層2・3が形成さ
れており、主導体層2・3は誘電体基板1の少なくとも
伝送線路形成位置を挟む上下面に形成されている。ま
た、主導体層2・3間には主導体層2と3とを電気的に
接続するスルーホール導体やビアホール導体等の貫通導
体が多数設けられ、これら多数の貫通導体により2列の
側壁用貫通導体群4を形成している。
As shown in FIG. 1, a pair of main conductor layers 2 and 3 are formed at positions sandwiching a dielectric substrate 1 having a predetermined thickness a, and the main conductor layers 2 and 3 are formed on the dielectric substrate 1. It is formed on the upper and lower surfaces sandwiching at least the transmission line formation position. Further, a large number of through conductors such as through-hole conductors and via-hole conductors for electrically connecting the main conductor layers 2 and 3 are provided between the main conductor layers 2 and 3, and these two through conductors are used for two rows of sidewalls. The through conductor group 4 is formed.

【0030】2列の貫通導体群4は、図示するように、
高周波信号の伝送方向すなわち線路形成方向に信号波長
の2分の1未満の所定の繰り返し間隔cで、かつ伝送方
向と直交する方向に所定の一定の間隔(幅)bをもって
形成されている。これにより、この誘電体導波管線路6
における電気的な側壁を形成している。
The two rows of through conductor groups 4 are, as shown in the drawing,
The high-frequency signal is formed in the transmission direction, that is, in the line formation direction, with a predetermined repeating interval c that is less than one-half of the signal wavelength and a predetermined constant interval (width) b in the direction orthogonal to the transmission direction. As a result, this dielectric waveguide line 6
Forming an electrical side wall at.

【0031】ここで、誘電体基板1の厚みaすなわち一
対の主導体層2・3間の間隔に対する制限は特にない
が、シングルモードで用いる場合には間隔bに対して2
分の1程度または2倍程度とすることがよく、図1の例
では誘電体導波管線路6のH面に当たる部分が主導体層
2・3で、E面に当たる部分が側壁用貫通導体群4およ
び副導体層5でそれぞれ形成される。また、間隔bに対
して厚みaを2倍程度とすれば、誘電体導波管線路6の
E面に当たる部分が主導体層2・3で、H面に当たる部
分が側壁用貫通導体群4および副導体層5でそれぞれ形
成されることとなる。
Here, there is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of main conductor layers 2 and 3, but when the single mode is used, the distance b is 2 times.
It is preferable to make it about one-half or about two times. In the example of FIG. 1, the portion corresponding to the H surface of the dielectric waveguide line 6 is the main conductor layers 2 and 3, and the portion corresponding to the E surface is the side wall through conductor group. 4 and the sub conductor layer 5 respectively. Further, if the thickness a is about twice as large as the distance b, the portion corresponding to the E surface of the dielectric waveguide line 6 is the main conductor layers 2 and 3, and the portion corresponding to the H surface is the sidewall through conductor group 4 and. Each of the sub conductor layers 5 will be formed.

【0032】また、間隔cが信号波長の2分の1未満の
間隔に設定されることで側壁用貫通導体群4により電気
的な壁が形成できる。この間隔cは、望ましくは信号波
長の4分の1未満である。
By setting the interval c to be less than half the signal wavelength, the side wall through conductor group 4 can form an electrical wall. This spacing c is preferably less than a quarter of the signal wavelength.

【0033】平行に配置された一対の主導体層2・3間
にはTEM波が伝播できるため、側壁用貫通導体群4の
各列における貫通導体の間隔cが信号波長λの2分の1
(λ/2)よりも大きいと、この誘電体導波管線路6に
電磁波を給電しても電磁波は側壁用貫通導体群4の間か
ら漏れてしまい、ここで作られる疑似的な導波管線路に
沿って伝播しない。しかし、側壁用貫通導体群4の間隔
cがλ/2よりも小さいと、電気的な側壁を形成するこ
ととなって電磁波は誘電体導波管線路6に対して垂直方
向に伝播することができず、反射しながら誘電体導波管
線路6の信号伝送方向に伝播される。その結果、図1の
ような構成によれば、一対の主導体層2・3と2列の側
壁用貫通導体群4および副導体層5とによって囲まれる
断面積がa×bのサイズの領域が誘電体導波管線路6と
なる。
Since a TEM wave can propagate between the pair of main conductor layers 2 and 3 arranged in parallel, the spacing c between the through conductors in each row of the sidewall through conductor group 4 is 1/2 the signal wavelength λ.
If it is larger than (λ / 2), the electromagnetic wave leaks from between the side wall through conductor groups 4 even if the electromagnetic wave is fed to the dielectric waveguide line 6, and the pseudo waveguide formed here. Does not propagate along the track. However, when the distance c between the sidewall through conductor groups 4 is smaller than λ / 2, an electrical sidewall is formed and electromagnetic waves can propagate in the direction perpendicular to the dielectric waveguide 6. However, it cannot be reflected and is propagated in the signal transmission direction of the dielectric waveguide line 6 while being reflected. As a result, according to the configuration as shown in FIG. 1, a region surrounded by the pair of main conductor layers 2 and 3 and the two rows of side wall through conductor groups 4 and sub conductor layers has a cross-sectional area of size a × b. Serves as the dielectric waveguide line 6.

【0034】図1に示した態様では側壁用貫通導体群4
は2列に形成したが、この側壁用貫通導体群4を4列あ
るいは6列に配設して、側壁用貫通導体群4による疑似
的な導体壁を2重・3重に形成することにより導体壁か
らの電磁波の漏れをより効果的に防止することもでき
る。
In the embodiment shown in FIG. 1, the sidewall through conductor group 4
Is formed in two rows. By arranging the side wall through conductor groups 4 in four rows or six rows, and forming the pseudo conductor walls by the side wall through conductor groups 4 in double or triple layers. It is also possible to more effectively prevent leakage of electromagnetic waves from the conductor wall.

【0035】このような誘電体導波管線路6によれば、
誘電体導波管による伝送線路となるので、誘電体基板1
の比誘電率をεr とするとその導波管サイズは通常の導
波管の1/√εr の大きさになる。従って、誘電体基板
1を構成する材料の比誘電率εr を大きいものとするほ
ど導波管サイズを小さくすることができて高周波回路の
小型化を図ることができ、高密度に配線が形成される多
層配線基板または半導体素子収納用パッケージあるいは
車間レーダの伝送線路としても利用可能な大きさの誘電
体導波管線路6とすることができる。
According to such a dielectric waveguide line 6,
Since the transmission line is a dielectric waveguide, the dielectric substrate 1
When the relative permittivity of is ε r , the waveguide size is 1 / √ε r of a normal waveguide. Therefore, the larger the relative permittivity ε r of the material forming the dielectric substrate 1 is, the smaller the size of the waveguide can be, and the size of the high frequency circuit can be reduced. It is possible to use the dielectric waveguide line 6 of a size that can be used as a transmission line for a multilayer wiring board, a package for housing semiconductor elements, or an inter-vehicle radar.

【0036】なお、側壁用貫通導体群4を構成する貫通
導体は前述のように信号波長の2分の1未満の繰り返し
間隔cで配設されており、この間隔cは良好な伝送特性
を実現するためには一定の繰り返し間隔とすることが望
ましいが、信号波長の2分の1未満の間隔であれば、適
宜変化させたりいくつかの値を組み合わせたりしてもよ
い。
As described above, the through conductors forming the sidewall through conductor group 4 are arranged at the repeating interval c which is less than one half of the signal wavelength, and this interval c realizes good transmission characteristics. In order to achieve this, it is desirable to set a constant repeating interval, but if the interval is less than ½ of the signal wavelength, it may be appropriately changed or some values may be combined.

【0037】このような誘電体導波管線路6を構成する
誘電体基板1としては、誘電体として機能し高周波信号
の伝送を妨げることのない特性を有するものであればと
りわけ限定するものではないが、伝送線路を形成する際
の精度および製造の容易性の点からは、誘電体基板1は
セラミックスから成ることが望ましい。
The dielectric substrate 1 constituting such a dielectric waveguide line 6 is not particularly limited as long as it functions as a dielectric and has characteristics that do not hinder the transmission of high frequency signals. However, it is desirable that the dielectric substrate 1 be made of ceramics from the viewpoint of accuracy and ease of manufacturing when forming the transmission line.

【0038】このようなセラミックスとしてはこれまで
様々な比誘電率を持つセラミックスが知られているが、
本発明に係る誘電体導波管線路によって高周波信号を伝
送するためには常誘電体であることが望ましい。これ
は、一般に強誘電体セラミックスは高周波領域では誘電
損失が大きく伝送損失が大きくなるためである。従っ
て、誘電体基板1の比誘電率εr は4〜100 程度が適当
である。
Ceramics having various relative dielectric constants have been known as such ceramics.
In order to transmit a high frequency signal by the dielectric waveguide line according to the present invention, a paraelectric material is desirable. This is because ferroelectric ceramics generally have large dielectric loss and high transmission loss in the high frequency region. Therefore, it is suitable that the dielectric constant ε r of the dielectric substrate 1 is about 4 to 100.

【0039】また、一般に多層配線基板や半導体素子収
納用パッケージあるいは車間レーダに形成される配線層
の線幅は最大でも1mm程度であることから、比誘電率
が100 の材料を用い、上部がH面すなわち磁界が上側の
面に平行に巻く電磁界分布になるように用いた場合は、
用いることのできる最小の周波数は15GHzと算出さ
れ、マイクロ波帯の領域でも利用可能となる。
In general, since the line width of a wiring layer formed in a multilayer wiring board, a package for housing a semiconductor element, or an inter-vehicle radar is about 1 mm at the maximum, a material having a relative permittivity of 100 is used and an upper portion is H. When used so that the surface, that is, the magnetic field, has an electromagnetic field distribution that winds parallel to the upper surface,
The minimum frequency that can be used is calculated as 15 GHz, and it can be used in the microwave band region.

【0040】一方、一般的に誘電体基板1として用いら
れる樹脂からなる誘電体は、比誘電率εr が2程度であ
るため、線幅が1mmの場合は約100 GHz以上でない
と利用することができないものとなる。
On the other hand, a dielectric made of resin generally used as the dielectric substrate 1 has a relative permittivity ε r of about 2, so if the line width is 1 mm, it must be about 100 GHz or more. Will not be possible.

【0041】また、このような常誘電体セラミックスの
中にはアルミナやシリカ等のように誘電正接が非常に小
さなものが多いが、全ての常誘電体セラミックスが利用
可能であるわけではない。誘電体導波管線路の場合は導
体による損失はほとんどなく、信号伝送時の損失のほと
んどは誘電体による損失である。その誘電体による損失
α(dB/m)は次のように表わされる。 α=27.3×tanδ/〔λ/{1−(λ/λc )2
1/2 〕 式中、tanδ:誘電体の誘電正接 λ :誘電体中の波長 λc :遮断波長 規格化された矩形導波管(WRJシリーズ)形状に準ず
ると、上式中の{1−(λ/λc )2 1/2 は0.75程度
である。
Although many paraelectric ceramics such as alumina and silica have a very small dielectric loss tangent, not all paraelectric ceramics can be used. In the case of the dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is due to the dielectric. The loss α (dB / m) due to the dielectric is expressed as follows. α = 27.3 × tan δ / [λ / {1- (λ / λc) 2 }
1/2 ] In the formula, tan δ: dielectric loss tangent of the dielectric λ: wavelength in the dielectric λc: cutoff wavelength According to the standardized rectangular waveguide (WRJ series) shape, {1- ( λ / λc) 2 } 1/2 is about 0.75.

【0042】従って、実用に供し得る伝送損失である−
100 dB/m以下にするには、次の関係が成立するよう
に誘電体を選択することが必要である。 f×εr 1/2 ×tanδ≦0.8 式中、fは使用する高周波信号の周波数(GHz)であ
る。
Therefore, the transmission loss can be put to practical use-
In order to achieve 100 dB / m or less, it is necessary to select a dielectric material so that the following relationship holds. f × ε r 1/2 × tan δ ≦ 0.8 In the formula, f is the frequency (GHz) of the high frequency signal used.

【0043】このような誘電体基板1としては、例えば
アルミナセラミックスやガラスセラミックス・窒化アル
ミニウムセラミックス等がある。これらによる誘電体基
板1は、例えばセラミックス原料粉末に適当な有機溶剤
・溶媒を添加混合して泥漿状になすとともに、これを従
来周知のドクターブレード法やカレンダーロール法等を
採用してシート状となすことによって複数枚のセラミッ
クグリーンシートを得て、しかる後、これらセラミック
グリーンシートの各々に適当な打ち抜き加工を施すとと
もにこれらを積層し、アルミナセラミックスの場合は15
00〜1700℃、ガラスセラミックスの場合は850 〜1000
℃、窒化アルミニウムセラミックスの場合は1600〜1900
℃の温度で焼成することによって製作される。
Examples of such a dielectric substrate 1 include alumina ceramics, glass ceramics and aluminum nitride ceramics. The dielectric substrate 1 made of these is formed into a slurry form by adding and mixing an appropriate organic solvent / solvent to the ceramic raw material powder, and is formed into a sheet form by adopting the conventionally known doctor blade method, calendar roll method, or the like. By doing so, a plurality of ceramic green sheets are obtained, and then each of these ceramic green sheets is appropriately punched and laminated, and in the case of alumina ceramics, 15
00 to 1700 ℃, 850 to 1000 for glass ceramics
° C, 1600 to 1900 for aluminum nitride ceramics
It is manufactured by firing at a temperature of ℃.

【0044】また、一対の主導体層2・3は、例えば誘
電体基板1がアルミナセラミックスから成る場合には、
タングステン等の金属粉末に適当なアルミナ・シリカ・
マグネシア等の酸化物や有機溶剤・溶媒等を添加混合し
てペースト状にしたものを用いて厚膜印刷法により少な
くとも伝送線路を完全に覆うようにセラミックグリーン
シート上に印刷し、しかる後、約1600℃の高温で焼成
し、厚み10〜15μm以上となるようにして形成する。な
お、金属粉末としては、ガラスセラミックスの場合は銅
・金・銀が、窒化アルミニウムセラミックスの場合はタ
ングステン・モリブデンが好適である。また、主導体層
2・3の厚みは一般的に5〜50μm程度とされる。
The pair of main conductor layers 2 and 3 are, for example, when the dielectric substrate 1 is made of alumina ceramics,
Alumina, silica, suitable for metal powder such as tungsten
Use a thick film printing method to print on a ceramic green sheet so as to completely cover at least the transmission line, using a paste made by adding and mixing oxides such as magnesia and organic solvents / solvents. It is fired at a high temperature of 1600 ° C. and formed to have a thickness of 10 to 15 μm or more. As the metal powder, copper / gold / silver is suitable for glass ceramics, and tungsten / molybdenum is suitable for aluminum nitride ceramics. The thickness of the main conductor layers 2 and 3 is generally about 5 to 50 μm.

【0045】また、側壁用貫通導体群4を構成する貫通
導体は、例えばビアホール導体やスルーホール導体等に
より形成すればよい。その断面形状は製作が容易な円形
の他、矩形や菱形等の多角形であってもよい。これら貫
通導体は、例えばセラミックグリーンシートに打ち抜き
加工を施して作製した貫通孔に主導体層2・3と同様の
金属ペーストを埋め込み、しかる後、誘電体基板1と同
時に焼成して形成する。なお、貫通導体は直径50〜300
μmが適当である。次に、このような誘電体導波管線路
を用いた、本発明の誘電体導波管線路の接続構造の実施
の形態の一例を図2に示す。
The penetrating conductors forming the side wall penetrating conductor group 4 may be formed of, for example, via-hole conductors or through-hole conductors. The cross-sectional shape may be a polygon such as a rectangle or a rhombus, as well as a circle which is easy to manufacture. These penetrating conductors are formed by, for example, embedding a metal paste similar to that of the main conductor layers 2 and 3 in a penetrating hole formed by punching a ceramic green sheet, and then firing the dielectric substrate 1 at the same time. The through conductor has a diameter of 50 to 300.
μm is suitable. Next, FIG. 2 shows an example of an embodiment of a connection structure for a dielectric waveguide line of the present invention, which uses such a dielectric waveguide line.

【0046】図2は一方の誘電体導波管線路の端部の上
に高周波信号の伝送方向が直交するように他方の誘電体
導波管線路を重ねて接続したものであり、図2(a)は
誘電体導波管線路を接続する前の状態を示す分解斜視
図、図2(b)は誘電体導波管線路を接続した状態を示
す斜視図、図2(c)は理解を容易にするために誘電体
導波管線路を輪郭で表示した状態の斜視図である。な
お、これらの図において図1と同様の箇所には同じ符号
を付してある。ただし、誘電体基板は表示を省略してあ
る。また、主導体層2の一部を破断して透視した状態で
示している。
FIG. 2 shows an arrangement in which one end of one dielectric waveguide line is connected to the other end of the dielectric waveguide line so that the transmission directions of high frequency signals are orthogonal to each other. a) is an exploded perspective view showing a state before connecting the dielectric waveguide lines, FIG. 2B is a perspective view showing a state where the dielectric waveguide lines are connected, and FIG. It is a perspective view of the state where the dielectric waveguide line was displayed by the outline for simplification. In these figures, the same parts as those in FIG. 1 are designated by the same reference numerals. However, the display of the dielectric substrate is omitted. In addition, a part of the main conductor layer 2 is cut away and is shown in a see-through state.

【0047】図2において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。そして、重ねて配置された部位の両者の主導体層
2および3には、導体層の非形成部として結合用窓7
(主導体層2・3中に斜線を施して示した)が設けられ
ている。
In FIG. 2, 2 and 3 are a pair of main conductor layers, 4
Is a two-row side wall through conductor group, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers is overlapped so that the transmission directions of high frequency signals are orthogonal to each other. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged in an overlapping manner. Then, in the main conductor layers 2 and 3 of both of the portions arranged in an overlapping manner, a coupling window 7 is formed as a conductor layer non-formation portion.
(Shown by hatching in the main conductor layers 2 and 3).

【0048】ここで、誘電体導波管線路6Aの主導体層
2と誘電体導波管線路6Bの主導体層3とは、重ねた部
位において共有させておいてその共有させた主導体層に
結合用窓7を形成すると、接続部において高周波信号の
良好な伝送特性が得られる点で好ましいものとなる。
Here, the main conductor layer 2 of the dielectric waveguide line 6A and the main conductor layer 3 of the dielectric waveguide line 6B are shared at the overlapping portions, and the shared main conductor layer. It is preferable to form the coupling window 7 in the point that good transmission characteristics of high frequency signals can be obtained at the connection portion.

【0049】また、この例では一方の誘電体導波管線路
6Aの端部に他方の誘電体導波管線路6Bを接続してお
り、誘電体導波管線路6Aには端面を形成するための端
面用貫通導体群8と端面用副導体層9とが形成されてい
る。端面用貫通導体群8は、誘電体導波管線路6Aの主
導体層2に設けた結合用窓7の中心から伝送方向に高周
波信号の管内波長以下の位置に、その誘電体導波管線路
6Aの伝送方向の直交方向に信号波長の2分の1未満の
繰り返し間隔で主導体層2・3間を電気的に接続して形
成されている。また、端面用副導体層9は、主導体層2
・3間に主導体層2・3と平行に形成され、副導体層5
および端面用貫通導体群8と電気的に接続されている。
Further, in this example, one end of the dielectric waveguide line 6A is connected to the other end of the dielectric waveguide line 6B, and an end face is formed on the dielectric waveguide line 6A. The end face through conductor group 8 and the end face sub-conductor layer 9 are formed. The end face penetrating conductor group 8 is disposed at a position equal to or less than the guide wavelength of the high frequency signal in the transmission direction from the center of the coupling window 7 provided in the main conductor layer 2 of the dielectric waveguide line 6A. 6A is formed by electrically connecting the main conductor layers 2 and 3 in a direction orthogonal to the transmission direction of 6A at a repeating interval of less than half the signal wavelength. In addition, the end surface sub-conductor layer 9 is the main conductor layer 2
Sub conductor layer 5 is formed between 3 and 3 in parallel with main conductor layers 2 and 3.
And the end face through conductor group 8 is electrically connected.

【0050】このように2つの誘電体導波管線路6A・
6Bを直交させ互いの主導体層2・3の一方を重ねて上
下に配置し、この重ねた部位の主導体層2・3に結合用
窓7を形成することにより、2つの誘電体導波管線路6
A・6Bは結合用窓7を介して電磁界で結合される。そ
して、この例ではT字状の誘電体導波管線路の分岐構造
を構成することとなり、誘電体導波管線路6Aのポート
10から入力された高周波信号は結合用窓7を介して誘電
体導波管線路6Bに伝播するとともにその2つの方向に
同位相で分岐され、それぞれポート11・12へ出力され
る。
Thus, the two dielectric waveguide lines 6A
6B are made orthogonal to each other, one of the main conductor layers 2 and 3 of each other is overlapped and arranged vertically, and a coupling window 7 is formed in the main conductor layers 2 and 3 of the overlapped portions to form two dielectric waveguides. Pipeline 6
A and 6B are coupled by an electromagnetic field through the coupling window 7. In this example, a T-shaped dielectric waveguide line branch structure is formed, and the port of the dielectric waveguide line 6A is formed.
The high-frequency signal input from 10 propagates through the coupling window 7 to the dielectric waveguide line 6B, is branched in the two directions in the same phase, and is output to the ports 11 and 12, respectively.

【0051】なお、誘電体導波管線路6Aに端面用貫通
導体群8および端面用副導体層9を形成せず、誘電体導
波管線路6Aの途中と誘電体導波管線路6Bの途中とを
接続すれば十字状の誘電体導波管線路の分岐構造を構成
することとなる。この場合、誘電体導波管線路6Aのポ
ート10から入力された高周波信号は、誘電体導波管線路
6Aを伝送するものと、結合用窓7を介して誘電体導波
管線路6Bに伝播してその2つの方向に同位相で分岐さ
れてそれぞれポート11・12へ伝送されるものとに分かれ
ることとなり、1本の線路を直交する3本の線路に分岐
できる誘電体導波管線路の分岐構造となる。
It should be noted that the end face through conductor group 8 and the end face sub-conductor layer 9 are not formed in the dielectric waveguide line 6A, and the middle of the dielectric waveguide line 6A and the middle of the dielectric waveguide line 6B. By connecting with, a branch structure of a cross-shaped dielectric waveguide line is constructed. In this case, the high-frequency signal input from the port 10 of the dielectric waveguide line 6A is propagated to the dielectric waveguide line 6B via the coupling window 7 and that transmitted through the dielectric waveguide line 6A. Then, it is divided into those which are branched in the two directions in the same phase and are respectively transmitted to the ports 11 and 12, and one of the dielectric waveguide lines that can branch into three lines that intersect at right angles. It has a branched structure.

【0052】このような本発明の誘電体導波管線路の接
続構造によれば、結合を給電ピンによって行なう従来の
導波管線路の接続構造の場合に比べて、誘電体基板1の
厚さによる特性の制限はない。また、誘電体基板1とな
るグリーンシートの積層前に2つの誘電体導波管線路6
A・6Bが重なる部位の主導体層2・3を印刷する際に
結合用窓7のパターンを形成できるので、生産性が高く
安価な製造が可能なものとなる。
According to the above-described dielectric waveguide line connection structure of the present invention, the thickness of the dielectric substrate 1 is larger than that of the conventional waveguide line connection structure in which the coupling is performed by the feed pin. There are no restrictions on the characteristics. In addition, before stacking the green sheets to be the dielectric substrate 1, two dielectric waveguide lines 6 are formed.
Since the pattern of the coupling window 7 can be formed when printing the main conductor layers 2 and 3 at the portions where A and 6B overlap, high productivity and low cost manufacturing are possible.

【0053】また、本発明の誘電体導波管線路の接続構
造によれば、一方の誘電体導波管線路6Aを伝播してき
た電磁波エネルギーは結合用窓7によって他方の誘電体
導波管線路6Bの電磁波エネルギーと直接に結合するの
で、抵抗成分による発熱等のようなエネルギーロスが発
生することがなく、伝送損失が小さい良好な伝送特性の
接続構造となる。
Further, according to the connection structure of the dielectric waveguide line of the present invention, the electromagnetic wave energy propagated through the one dielectric waveguide line 6A is coupled to the other dielectric waveguide line by the coupling window 7. Since it is directly coupled with the electromagnetic wave energy of 6B, an energy loss such as heat generation due to a resistance component does not occur, and a connection structure having a good transmission characteristic with a small transmission loss is obtained.

【0054】本発明の誘電体導波管線路の接続構造にお
いて結合用窓7を形成する場合、その位置・形状および
大きさについては、接続構造に要求される周波数特性・
結合量および反射量が複雑に関与する。このため、要求
される周波数特性を満足するように電磁界解析により繰
り返し計算することによって、所望の接続特性を有する
結合用窓7の位置・形状および大きさ等が決定されるこ
ととなる。
In the case where the coupling window 7 is formed in the dielectric waveguide line connection structure of the present invention, the position, shape and size of the coupling window 7 are defined by the frequency characteristics required for the connection structure.
The amount of binding and the amount of reflection are complicatedly involved. Therefore, the position, shape, size, etc. of the coupling window 7 having the desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.

【0055】また、本発明の誘電体導波管線路の接続構
造において、図2に示した誘電体導波管線路6Bのよう
に端面用貫通導体群8および端面用副導体層9を形成す
る場合、その位置は、要求された特性に応じて電磁界解
析により求めればよく、その特性が満足できればどこで
も良いが、結合用窓7の中心から管内波長以下の位置に
最適な位置がある。これは、端面の位置により結合用窓
7の中心における位相を調整するわけであるが、その位
相は管内波長λg毎に繰り返されるためである。
Further, in the connection structure of the dielectric waveguide line of the present invention, the end face through conductor group 8 and the end face sub-conductor layer 9 are formed like the dielectric waveguide line 6B shown in FIG. In that case, the position may be obtained by electromagnetic field analysis according to the required characteristics, and it may be anywhere as long as the characteristics are satisfied, but there is an optimum position at the position within the guide wavelength from the center of the coupling window 7. This is because the phase at the center of the coupling window 7 is adjusted depending on the position of the end face, and the phase is repeated for each in-tube wavelength λg.

【0056】また、端面用貫通導体群8および端面用副
導体層9による誘電体導波管線路6Aの端部は、必要に
応じて誘電体導波管線路6Bにも形成してもよい。例え
ば、図2のように誘電体導波管線路6Aの端部を形成す
るとともに誘電体導波管線路6Bにもそのポート11側に
端面用貫通導体群8および端面用副導体層9を形成して
端部を形成した場合には、誘電体導波管線路6Aのポー
ト10側から入力された電磁波は、結合用窓7を介して誘
電体導波管線路6Bに伝播し、誘電体導波管線路6Bの
ポート12側から出力される。つまり、この場合には下層
側の誘電体導波管線路6Aと上層側の誘電体導波管線路
6BとがL字状に接続された接続構造となる。
Further, the end portion of the dielectric waveguide line 6A formed by the end face penetrating conductor group 8 and the end face sub-conductor layer 9 may be formed also on the dielectric waveguide line 6B, if necessary. For example, as shown in FIG. 2, the end portion of the dielectric waveguide line 6A is formed, and the end face through conductor group 8 and the end face subconductor layer 9 are also formed on the port 11 side of the dielectric waveguide line 6B. When the end portion is formed by forming the end portion, the electromagnetic wave input from the port 10 side of the dielectric waveguide line 6A propagates to the dielectric waveguide line 6B via the coupling window 7 and the dielectric waveguide line 6B is formed. It is output from the port 12 side of the waveguide 6B. That is, in this case, the lower layer side dielectric waveguide line 6A and the upper layer side dielectric waveguide line 6B are connected in an L shape.

【0057】次に、図3に本発明の誘電体導波管線路の
接続構造の実施の形態の他の例を示す。
Next, FIG. 3 shows another example of the embodiment of the connection structure of the dielectric waveguide line of the present invention.

【0058】図3は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における下層側の
誘電体導波管線路の幅と結合用窓の幅とを広げたもので
あり、図3(a)は誘電体導波管線路を接続する前の状
態を示す分解斜視図、図3(b)は誘電体導波管線路を
接続した状態を示す斜視図、図3(c)は理解を容易に
するために誘電体導波管線路を輪郭で表示した状態の斜
視図である。なお、これらの図においても図1・図2と
同様の箇所には同じ符号を付してある。また、誘電体基
板は表示を省略してあり、主導体層2の一部を破断して
透視した状態で示している。
FIG. 3 shows that in the connection structure of the dielectric waveguide line similar to the example shown in FIG. 2, the width of the dielectric waveguide line on the lower layer side and the width of the coupling window in the connection portion are widened. 3A is an exploded perspective view showing a state before the dielectric waveguide line is connected, and FIG. 3B is a perspective view showing a state where the dielectric waveguide line is connected. FIG. 3C is a perspective view showing a state in which the dielectric waveguide line is displayed by a contour for easy understanding. In these figures, the same parts as those in FIGS. 1 and 2 are designated by the same reference numerals. Further, the dielectric substrate is not shown, and is shown in a state in which a part of the main conductor layer 2 is cut away and seen through.

【0059】図3において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、8は端面用貫通導体群、9は端面用副導体
層、10〜12はポートである。
In FIG. 3, reference numerals 2-3 designate a pair of main conductor layers, 4
Is a two-row side wall through conductor group, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers is overlapped so that the transmission directions of high frequency signals are orthogonal to each other. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged in an overlapping manner. Further, 8 is an end face through conductor group, 9 is an end face sub-conductor layer, and 10 to 12 are ports.

【0060】この例では、誘電体導波管線路6A・6B
を重ねた部位における下層側の誘電体導波管線路6Aの
2列の側壁用貫通導体群4の幅を前記所定の幅(図1に
示したb)よりも広くしてある。そして、重ねて配置さ
れた部位の両者の主導体層2および3には、導体層の非
形成部として結合用窓7(主導体層2・3中に斜線を施
して示した)が設けられている。この結合用窓7の幅、
ここでは誘電体導波管線路6Aの2列の側壁用貫通導体
群4の幅方向の開口寸法も、誘電体導波管線路6Aの2
列の側壁用貫通導体群4の幅に合わせるようにして広く
してある。
In this example, the dielectric waveguide lines 6A and 6B are used.
The widths of the two rows of the side wall through conductor groups 4 of the lower dielectric waveguide 6A in the overlapping portion are wider than the predetermined width (b shown in FIG. 1). Then, coupling windows 7 (shown by hatching in the main conductor layers 2 and 3) are provided in both main conductor layers 2 and 3 of the portions which are arranged so as to overlap each other as non-formation portions of the conductor layers. ing. The width of this coupling window 7,
Here, the opening size in the width direction of the two side wall through conductor groups 4 of the dielectric waveguide line 6A is also equal to that of the dielectric waveguide line 6A.
The width is widened so as to match the width of the through conductor group 4 for the side wall of the row.

【0061】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路6A・6Bの
接続部の幅、ここでは誘電体導波管線路6Aの2列の側
壁用貫通導体群4の幅方向の間隔と、結合用窓7の大き
さとを適切に変えることにより、誘電体導波管線路6A
・6Bの接続部での高周波信号の反射を低減でき、低損
失な接続構造が得られる。
As a result, the two dielectric waveguide lines 6A
6B is coupled by an electromagnetic field through the coupling window 7 and connected. As described above, the width of the connecting portion of the dielectric waveguide lines 6A and 6B, here, the widthwise interval between the sidewall through conductor groups 4 of the two rows of the dielectric waveguide lines 6A, and the coupling window 7 are formed. By appropriately changing the size of the dielectric waveguide line 6A.
The reflection of high frequency signals at the 6B connection can be reduced, and a low-loss connection structure can be obtained.

【0062】なお、このように誘電体導波管線路6A・
6Bを重ねた部位における2列の側壁用貫通導体群4の
幅を前記所定の幅bよりも広くする構成は、下層側の誘
電体導波管線路6Aでなく上層側の誘電体導波管線路6
Bに適用してもよく、両方の誘電体導波管線路6A・6
Bに適用してもよい。また、このように接続部において
2列の側壁用貫通導体群4の幅を前記所定の幅bよりも
広くする場合、その広くする幅はその所定の幅bの1〜
2倍の範囲で設定すればよい。
As described above, the dielectric waveguide line 6A
The configuration in which the widths of the sidewall through conductor groups 4 in the two rows in the portion where 6B are overlapped is made wider than the predetermined width b is not the lower dielectric waveguide line 6A but the upper dielectric waveguide. Track 6
B may be applied to both dielectric waveguide lines 6A and 6A.
It may be applied to B. In addition, when the widths of the two groups of sidewall through conductor groups 4 in the connecting portion are made wider than the predetermined width b, the width to be widened is 1 to the predetermined width b.
It may be set in the double range.

【0063】次に、図4に本発明の誘電体導波管線路の
接続構造の実施の形態のさらに他の例を示す。
Next, FIG. 4 shows still another example of the embodiment of the connection structure of the dielectric waveguide line of the present invention.

【0064】図4は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における下層側の
誘電体導波管線路の厚みを薄くしたものであり、図4
(a)は誘電体導波管線路を接続する前の状態を示す分
解斜視図、図4(b)は誘電体導波管線路を接続した状
態を示す斜視図、図4(c)は理解を容易にするために
誘電体導波管線路を輪郭で表示した状態の斜視図であ
る。なお、これらの図においても図1〜図3と同様の箇
所には同じ符号を付してある。また、誘電体基板は表示
を省略してあり、主導体層2の一部を破断して透視した
状態で示している。
FIG. 4 shows a dielectric waveguide line connection structure similar to the example shown in FIG. 2, in which the thickness of the dielectric waveguide line on the lower layer side in the connection portion is reduced.
4A is an exploded perspective view showing a state before connecting the dielectric waveguide lines, FIG. 4B is a perspective view showing a state in which the dielectric waveguide lines are connected, and FIG. FIG. 3 is a perspective view showing a state in which a dielectric waveguide line is displayed with a contour in order to facilitate the process. In these figures, the same parts as those in FIGS. 1 to 3 are designated by the same reference numerals. Further, the dielectric substrate is not shown, and is shown in a state in which a part of the main conductor layer 2 is cut away and seen through.

【0065】図4において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、7は結合用窓、8は端面用貫通導体群、9
は端面用副導体層、10〜12はポートである。
In FIG. 4, 2 and 3 are a pair of main conductor layers, 4
Is a two-row side wall through conductor group, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers is overlapped so that the transmission directions of high frequency signals are orthogonal to each other. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged in an overlapping manner. Further, 7 is a coupling window, 8 is an end face through conductor group, 9
Is a sub conductor layer for the end face, and 10 to 12 are ports.

【0066】この例では、誘電体導波管線路6A・6B
を重ねた部位における下層側の誘電体導波管線路6Aの
主導体層2を階段状に主導体層3側に近づけて形成する
ことにより、誘電体導波管線路6Aの厚みを薄く、すな
わち一対の主導体層2・3の間隔(誘電体導波管線路6
Aの主導体層2と誘電体導波管線路6Bの主導体層3と
を共有させた場合は誘電体導波管線路6Aの主導体層3
と誘電体導波管線路6Bの主導体層3の間隔)を他の部
位における間隔(図1に示したa)よりも狭くしてい
る。
In this example, the dielectric waveguide lines 6A and 6B are used.
By forming the main conductor layer 2 of the lower dielectric waveguide line 6A in the overlapping portion in a stepwise manner toward the main conductor layer 3 side, the thickness of the dielectric waveguide line 6A is reduced, that is, The distance between the pair of main conductor layers 2 and 3 (dielectric waveguide line 6
When the main conductor layer 2 of A and the main conductor layer 3 of the dielectric waveguide line 6B are shared, the main conductor layer 3 of the dielectric waveguide line 6A
And the distance between the main conductor layers 3 of the dielectric waveguide line 6B is narrower than the distance (a shown in FIG. 1) in other portions.

【0067】なお、このように階段状に高さを変えて形
成した主導体層2間(または誘電体導波管線路6Aの主
導体層2と誘電体導波管線路6Bの主導体層2間)は、
図4に示すように高さ方向に形成した導体層によって電
気的に接続してもよく、後述する主導体層接続用貫通導
体群により接続してもよい。
Between the main conductor layers 2 formed by changing the height in a stepwise manner (or between the main conductor layer 2 of the dielectric waveguide line 6A and the main conductor layer 2 of the dielectric waveguide line 6B). (Between)
It may be electrically connected by a conductor layer formed in the height direction as shown in FIG. 4, or may be connected by a main conductor layer connecting through conductor group described later.

【0068】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路の接続部近傍
の厚み、ここでは誘電体導波管線路6Aの主導体層2側
を異なる高さに形成して一対の主導体層2・3の間隔
(または誘電体導波管線路6Aの主導体層3と誘電体導
波管線路6Bの主導体層3の間隔)を他の部位における
間隔よりも狭くして適切に変えることにより、誘電体導
波管線路6A・6Bの接続部での高周波信号の反射を低
減でき、低損失な接続構造が得られる。
As a result, the two dielectric waveguide lines 6A
6B is coupled by an electromagnetic field through the coupling window 7 and connected. In this way, the thickness of the vicinity of the connecting portion of the dielectric waveguide line, here, the main conductor layer 2 side of the dielectric waveguide line 6A is formed to have different heights so that the pair of main conductor layers 2 and 3 are formed. The gap (or the gap between the main conductor layer 3 of the dielectric waveguide line 6A and the main conductor layer 3 of the dielectric waveguide line 6B) is made narrower than the gap at other portions to appropriately change the dielectric substance. The reflection of high frequency signals at the connection between the waveguide lines 6A and 6B can be reduced, and a low-loss connection structure can be obtained.

【0069】次に、図5に本発明の誘電体導波管線路の
接続構造の実施の形態のさらに他の例を示す。
Next, FIG. 5 shows still another example of the embodiment of the connection structure of the dielectric waveguide line of the present invention.

【0070】図5は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における上層側の
誘電体導波管線路の厚みを薄くしたものであり、図5
(a)は誘電体導波管線路を接続する前の状態を示す分
解斜視図、図5(b)は誘電体導波管線路を接続した状
態を示す斜視図、図5(c)は理解を容易にするために
誘電体導波管線路を輪郭で表示した状態の斜視図であ
る。なお、これらの図においても図1〜図4と同様の箇
所には同じ符号を付してある。また、誘電体基板は表示
を省略してあり、主導体層2の一部を破断して透視した
状態で示している。
FIG. 5 shows a dielectric waveguide line connection structure similar to the example shown in FIG. 2, in which the thickness of the dielectric waveguide line on the upper layer side in the connection portion is reduced.
5A is an exploded perspective view showing a state before connecting the dielectric waveguide lines, FIG. 5B is a perspective view showing a state where the dielectric waveguide lines are connected, and FIG. FIG. 3 is a perspective view showing a state in which a dielectric waveguide line is displayed with a contour in order to facilitate the process. In these figures, the same parts as those in FIGS. 1 to 4 are designated by the same reference numerals. Further, the dielectric substrate is not shown, and is shown in a state in which a part of the main conductor layer 2 is cut away and seen through.

【0071】図5において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、7は結合用窓、8は端面用貫通導体群、9
は端面用副導体層、10〜12はポートである。
In FIG. 5, 2 and 3 are a pair of main conductor layers, 4
Is a two-row side wall through conductor group, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers is overlapped so that the transmission directions of high frequency signals are orthogonal to each other. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged in an overlapping manner. Further, 7 is a coupling window, 8 is an end face through conductor group, 9
Is a sub conductor layer for the end face, and 10 to 12 are ports.

【0072】この例では、誘電体導波管線路6A・6B
を重ねた部位における上層側の誘電体導波管線路6Bの
主導体層2を階段状に主導体層3側に近づけて形成する
ことにより、誘電体導波管線路6Bの厚みを薄く、すな
わち一対の主導体層2・3の間隔を他の部位における間
隔(図1に示したa)よりも狭くしている。
In this example, the dielectric waveguide lines 6A and 6B are used.
By forming the main conductor layer 2 of the dielectric waveguide line 6B on the upper layer side in the overlapping portion so as to approach the main conductor layer 3 side in a stepwise manner, the thickness of the dielectric waveguide line 6B is reduced, that is, The distance between the pair of main conductor layers 2 and 3 is made narrower than the distance (a shown in FIG. 1) in other portions.

【0073】ここで、主導体層2は誘電体導波管線路6
A・6Bの接続部における部分を他の部位における部分
とは別の面、この例では副導体層5の1つと同じ平面に
導体層を形成し、接続部における主導体層2と他の部位
における主導体層2とを主導体層接続用貫通導体群13に
より電気的に接続している。このような主導体層接続用
貫通導体群13は、側壁用貫通導体群4や端面用貫通導体
群8と同様に、誘電体導波管線路6Bの伝送方向の直交
方向に信号波長の2分の1未満の繰り返し間隔で高さの
異なる主導体層2間を電気的に接続するように形成すれ
ばよい。
Here, the main conductor layer 2 is the dielectric waveguide line 6
The conductor layer is formed on the surface of the connection portion of A · 6B different from the portion of the other portion, that is, on the same plane as one of the sub-conductor layers 5 in this example, and the main conductor layer 2 and the other portion of the connection portion are formed. The main conductor layer 2 is electrically connected by the main conductor layer connecting through conductor group 13. Like the side wall through conductor group 4 and the end face through conductor group 8, the main conductor layer connecting through conductor group 13 has a signal wavelength divided into two parts in a direction orthogonal to the transmission direction of the dielectric waveguide 6B. The main conductor layers 2 having different heights may be formed so as to be electrically connected at a repeating interval of less than 1.

【0074】なお、この主導体層接続用貫通導体群13に
代えて、高さの異なる主導体層2間を高さ方向に形成し
た導体層により電気的に接続するようにしてもよい。
In place of the main conductor layer connecting through conductor group 13, main conductor layers 2 having different heights may be electrically connected by a conductor layer formed in the height direction.

【0075】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路の接続部近傍
の厚み、ここでは誘電体導波管線路6Bの主導体層2側
を異なる高さに形成して一対の主導体層2・3の間隔を
他の部位における間隔よりも狭くして適切に変えること
によっても、誘電体導波管線路6A・6Bの接続部での
高周波信号の反射を低減でき、低損失な接続構造が得ら
れる。
As a result, the two dielectric waveguide lines 6A
6B is coupled by an electromagnetic field through the coupling window 7 and connected. In this way, the thickness of the vicinity of the connecting portion of the dielectric waveguide line, here, the main conductor layer 2 side of the dielectric waveguide line 6B is formed to have different heights so that the pair of main conductor layers 2 and 3 is formed. By appropriately changing the gap to be narrower than the gap in other parts, reflection of high-frequency signals at the connecting portions of the dielectric waveguide lines 6A and 6B can be reduced, and a low-loss connection structure can be obtained.

【0076】以上のように、誘電体導波管線路6A・6
Bを重ねた部位における一対の主導体層2・3の間隔を
他の部位における間隔よりも狭くする構成は、下層側の
誘電体導波管線路6Aまたは上層側の誘電体導波管線路
6Bのいずれに適用してもよく、両方の誘電体導波管線
路6A・6Bに同時に適用してもよい。また、下層側の
誘電体導波管線路6Aの主導体層3の高さや上層側の誘
電体導波管線路6Bの主導体層3の高さを変えることに
より一対の主導体層2・3の間隔を変えてもよく、これ
らを適宜組み合わせてもよい。
As described above, the dielectric waveguide lines 6A.6
The structure in which the distance between the pair of main conductor layers 2 and 3 in the portion where B is overlapped is made narrower than the distance in the other portions is such that the lower-layer side dielectric waveguide line 6A or the upper-layer side dielectric waveguide line 6B. Or both dielectric waveguide lines 6A and 6B at the same time. Further, by changing the height of the main conductor layer 3 of the lower dielectric waveguide line 6A and the height of the main conductor layer 3 of the upper dielectric waveguide line 6B, a pair of main conductor layers 2 and 3 are formed. The intervals may be changed, and these may be appropriately combined.

【0077】なお、このように接続部において一対の主
導体層2・3の間隔を他の部位における間隔よりも狭く
する場合、その狭くする間隔は、他の部位における間隔
aの1/2〜1倍の範囲に設定すればよい。
When the distance between the pair of main conductor layers 2 and 3 in the connecting portion is made narrower than the distance in the other portion, the narrowing distance is 1/2 of the distance a in the other portion. It may be set in the range of 1 time.

【0078】[0078]

【実施例】〔例1〕図2に示した構成の本発明の誘電体
導波管線路の接続構造について、T字状の分岐を含む伝
送線路の伝送特性としてSパラメータのレベルおよび位
相の周波数特性を有限要素法により計算して算出した。
計算のための条件としては、主導体層2・3および貫通
導体の材料には導電率が5.8 ×107 (1/Ωm)の純銅
を用い、誘電体基板1にはホウ珪酸ガラス75重量%とア
ルミナ25重量%とを焼成して作製した比誘電率が5で誘
電正接が0.001 のガラスセラミックス焼結体を用い、誘
電体基板1の厚みaを0.62mm、貫通導体の直径を0.1
mm、側壁用貫通導体群4の繰り返し間隔cを0.25m
m、側壁用貫通導体群4の所定の幅bを1.2 mmとし、
伝送線路の長さは2.25mmとした。
Example 1 Regarding the connection structure of the dielectric waveguide line of the present invention having the configuration shown in FIG. 2, the transmission characteristics of the transmission line including the T-shaped branch are the S-parameter level and phase frequency. The characteristics were calculated by the finite element method.
As the conditions for calculation, pure copper having a conductivity of 5.8 × 10 7 (1 / Ωm) was used as the material for the main conductor layers 2 and 3 and the through conductor, and 75% by weight of borosilicate glass was used for the dielectric substrate 1. Using a glass-ceramic sintered body having a relative dielectric constant of 5 and a dielectric loss tangent of 0.001 produced by firing alumina and 25% by weight of alumina, the thickness a of the dielectric substrate 1 is 0.62 mm, and the diameter of the through conductor is 0.1.
mm, the repetition interval c of the sidewall through conductor group 4 is 0.25 m
m, the predetermined width b of the side wall through conductor group 4 is 1.2 mm,
The length of the transmission line was 2.25 mm.

【0079】また、副導体層5は主導体層3から0.154
mm・0.308 mm・0.462 mmの3箇所の位置に設けて
4層構造とし、結合用窓7の寸法および形状は1.2 mm
×1.2 mmの正方形とした。
The sub conductor layer 5 is formed from the main conductor layer 3 to 0.154.
mm, 0.308 mm, 0.462 mm are provided at three positions to form a four-layer structure, and the size and shape of the coupling window 7 are 1.2 mm.
It was a square of 1.2 mm.

【0080】なお、誘電体導波管線路6Aの端面用貫通
導体群8は、他方の誘電体導波管線路6Bの一方の側壁
要貫通導体群4を延長するようにして形成し、貫通導体
の直径および繰り返し間隔は側壁用貫通導体群4と同様
とした。また、端面用副導体層9の位置は副導体層5と
同様とした。
The end face through conductor group 8 of the dielectric waveguide line 6A is formed so as to extend one side wall through conductor group 4 of the other dielectric waveguide line 6B. The diameter and the repeating interval were the same as those of the sidewall through conductor group 4. The position of the end face sub-conductor layer 9 was the same as that of the sub-conductor layer 5.

【0081】これらの結果を図6(a)にSパラメータ
のレベルの周波数特性について、図6(b)にSパラメ
ータの位相の周波数特性についてそれぞれ線図で示す。
図6(a)において横軸は周波数(GHz)、縦軸はS
パラメータのうちS11・S21・S31のレベルの値(d
B)を表わし、図中の特性曲線は各Sパラメータの周波
数特性を示している。また、図6(b)において横軸は
周波数(GHz)、縦軸はSパラメータのうちS21・S
31の位相の値(度)を表わし、図中の特性曲線は各Sパ
ラメータの周波数特性を示している。
FIG. 6 (a) shows these results in the frequency characteristic of the S parameter level, and FIG. 6 (b) shows in diagram the frequency characteristic of the S parameter phase.
In FIG. 6A, the horizontal axis represents frequency (GHz) and the vertical axis represents S.
Of the parameters, the level value of S 11 , S 21, and S 31 (d
B), and the characteristic curve in the figure shows the frequency characteristic of each S parameter. Further, in FIG. 6B, the horizontal axis represents frequency (GHz) and the vertical axis represents S 21 · S among S parameters.
31 represents the phase value (degree), and the characteristic curve in the figure shows the frequency characteristic of each S parameter.

【0082】ここで、図2に示した構成の誘電体導波管
線路の接続構造に対して、S11はポート10から入力され
た電力に対し反射してポート10に戻ってくる電力の割合
を、S21はポート10から入力された電力に対しポート11
から出力される電力の割合を、S31はポート10から入力
された電力に対しポート12から出力される電力の割合を
それぞれ示すものである。
Here, in the connection structure of the dielectric waveguide line having the configuration shown in FIG. 2, S 11 is the ratio of the electric power reflected from the electric power input from the port 10 and returned to the port 10. S21 is for port 11 with respect to the power input from port 10.
S 31 indicates the ratio of the power output from the port 12, and S 31 indicates the ratio of the power output from the port 12 to the power input from the port 10.

【0083】図6(a)に示した結果より、S21とS31
はほぼ等しく、高周波信号が接続部を良好に透過するこ
とが分かる。S21とS31の比率は計算した周波数範囲内
でほぼ一定で1:1となっている。また、分岐後の位相
は同位相となっている。S11は設計中心周波数である77
GHz近傍でピークを持ち、−15dB程度であり、反射
が小さいことが分かる。
From the results shown in FIG. 6A, S 21 and S 31
Are almost equal, and it can be seen that high-frequency signals pass through the connection well. The ratio of S 21 and S 31 is almost constant within the calculated frequency range and is 1: 1. Also, the phases after branching are the same. S 11 is the design center frequency 77
It has a peak in the vicinity of GHz and is about -15 dB, indicating that the reflection is small.

【0084】一方、図6(b)に示した結果より、S21
とS31の位相を示す特性曲線はほとんど重なっており、
同位相であることが分かる。
On the other hand, from the results shown in FIG. 6B, S 21
And the characteristic curves showing the phase of S 31 almost overlap,
It can be seen that they are in phase.

【0085】〔例2〕次に、図5に示した構成の本発明
の誘電体導波管線路の接続構造について、T字状の分岐
を含む伝送線路の伝送特性としてSパラメータのレベル
および位相の周波数特性を有限要素法により計算して算
出した。計算のための条件としては、〔例1〕と同様の
材料を用い、誘電体基板1の厚みa=0.62mm、貫通導
体の直径を0.1 mm、側壁用貫通導体群4の繰り返し間
隔c=0.25mm、側壁用貫通導体群4の所定の幅b=1.
2 mm、接続部における誘電体導波管線路6Bの一対の
主導体層2・3の間隔(誘電体導波管線路6Bの厚み)
を0.15mmとし、階段状に形成した主導体層2間は側壁
用貫通導体群4と同様の直径および繰り返し間隔の貫通
導体により接続した。伝送線路の長さは2.25mmとし
た。
Example 2 Next, regarding the connection structure of the dielectric waveguide line of the present invention having the configuration shown in FIG. 5, as the transmission characteristics of the transmission line including the T-shaped branch, the S parameter level and phase The frequency characteristics of were calculated by the finite element method. As the conditions for calculation, the same material as in [Example 1] was used, the thickness a of the dielectric substrate 1 was 0.62 mm, the diameter of the through conductors was 0.1 mm, and the repetition interval c between the sidewall through conductor groups 4 was c = 0.25. mm, the predetermined width b of the through conductor group 4 for the side wall b = 1.
2 mm, distance between the pair of main conductor layers 2 and 3 of the dielectric waveguide line 6B at the connection portion (thickness of the dielectric waveguide line 6B)
Was 0.15 mm, and the main conductor layers 2 formed in a stepwise manner were connected by penetrating conductors having the same diameter and repeating spacing as the side wall penetrating conductor group 4. The length of the transmission line was 2.25 mm.

【0086】また、端面用貫通導体群8および端面用副
導体層9は〔例1〕と同様に形成し、結合用窓7の寸法
および形状は、1.5 mm×1.2 mmの四角形とした。
Further, the end face penetrating conductor group 8 and the end face sub-conductor layer 9 were formed in the same manner as in [Example 1], and the size and shape of the coupling window 7 were a rectangle of 1.5 mm × 1.2 mm.

【0087】これらの結果を図7(a)にSパラメータ
のレベルの周波数特性について、図6(b)にSパラメ
ータの位相の周波数特性についてそれぞれ図6(a)お
よび(b)と同様の線図で示す。
These results are shown in FIG. 7 (a) for the frequency characteristics of the S parameter level and in FIG. 6 (b) for the frequency characteristics of the S parameter phase, respectively, the same lines as in FIGS. 6 (a) and 6 (b). Shown in the figure.

【0088】図7(a)に示した結果より、S21とS31
はほぼ等しく、高周波信号が〔例1〕の場合よりさらに
広帯域で接続部を良好に透過することが分かる。S21
31の比率は計算した周波数範囲内でほぼ一定で1:1
となっている。また、分岐後の位相は同位相となってい
る。S11については、整合部を設けたことによりさらに
反射が小さくなり、77GHzで−19.5dBとなってい
る。このように、接続部における誘電体導波管線路の厚
みを薄くして高周波信号の伝送に対する整合部を設けた
ことから、〔例1〕の結果と比較してS11が小さくな
り、71〜79GHzの範囲でS21とS31とがほぼ一定の値
となっている。
From the results shown in FIG. 7A, S 21 and S 31
Are almost equal to each other, and it can be seen that the high-frequency signal satisfactorily transmits through the connection portion in a wider band than in the case of [Example 1]. The ratio of S 21 and S 31 is almost constant within the calculated frequency range and is 1: 1.
Has become. Also, the phases after branching are the same. Regarding S 11 , the reflection is further reduced by providing the matching portion, and it is −19.5 dB at 77 GHz. As described above, since the thickness of the dielectric waveguide line in the connecting portion is reduced and the matching portion for transmitting the high frequency signal is provided, S 11 becomes smaller than the result of [Example 1], In the range of 79 GHz, S 21 and S 31 have almost constant values.

【0089】一方、図7(b)に示した結果より、S21
とS31の位相が同位相となっていることが分かる。
On the other hand, from the results shown in FIG. 7B, S 21
It can be seen that and S 31 are in phase.

【0090】〔例3〕〔例1〕と同様にして、接続部に
おける下層側の誘電体導波管線路6Aの幅と結合用窓7
の幅とを広げた、図3に示した構成の本発明の誘電体導
波管線路の接続構造についてSパラメータのレベルおよ
び位相の周波数特性を求めたところ、〔例1〕の結果に
比べて高周波電力の反射、すなわちS11のピークが小さ
くなり、整合部を設けたことによりさらに反射が小さく
なることが確認できた。
[Example 3] Similar to [Example 1], the width of the lower dielectric waveguide 6A in the connection portion and the coupling window 7 are formed.
When the frequency characteristics of the S parameter level and the phase were obtained for the connection structure of the dielectric waveguide line of the present invention having the configuration shown in FIG. It was confirmed that the reflection of the high frequency power, that is, the peak of S 11 was reduced, and the reflection was further reduced by providing the matching portion.

【0091】また、〔例1〕と同様にして、接続部にお
ける下層側の誘電体導波管線路6Aの厚みを薄くした、
図4に示した本発明の誘電体導波管線路の接続構造につ
いてSパラメータのレベルおよび位相の周波数特性を求
めたところ、〔例1〕の結果に比べて高周波信号の通過
帯域が広くなり、優れた接続特性を有することが確認で
きた。
Further, in the same manner as in [Example 1], the thickness of the lower dielectric waveguide 6A in the connection portion is reduced.
When the frequency characteristics of the S parameter level and the phase were obtained for the connection structure of the dielectric waveguide line of the present invention shown in FIG. 4, the pass band of the high frequency signal became wider than that of the result of [Example 1]. It was confirmed to have excellent connection characteristics.

【0092】以上の結果より、本発明の誘電体導波管線
路の接続構造によれば、誘電体基板内に互いに直交する
ように上下に積層して形成された誘電体導波管線路同士
を、伝送損失が小さく良好な伝送特性で容易に接続する
ことができることが確認できた。また、2つの誘電体導
波管線路を交差させて1本の線路をT字状に良好な伝送
特性で接続して分岐できることも確認できた。
From the above results, according to the connection structure of the dielectric waveguide lines of the present invention, the dielectric waveguide lines which are vertically stacked in the dielectric substrate are formed so as to be orthogonal to each other. It was confirmed that the transmission loss was small and the connection was easy with good transmission characteristics. It was also confirmed that two dielectric waveguide lines were crossed and one line could be connected and branched in a T shape with good transmission characteristics.

【0093】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更・改良を施すことは何ら差し支えない。
The present invention is not limited to the above-mentioned embodiments, and various modifications and improvements can be made without departing from the gist of the present invention.

【0094】[0094]

【発明の効果】以上詳述した通り、本発明の誘電体導波
管線路の接続構造によれば、いずれの構成によっても接
続部の前後の誘電体導波管線路の特性インピーダンスの
不整合を小さくできるため接続部での高周波信号の反射
が小さくなり、しかも接続部における伝播モードに乱れ
が生じることがないため、伝送損失が小さく良好な伝送
特性を有する誘電体導波管線路の接続構造を得ることが
できた。
As described above in detail, according to the dielectric waveguide line connection structure of the present invention, the characteristic impedance mismatch between the dielectric waveguide lines before and after the connection portion can be prevented by any structure. Since it can be made small, the reflection of high-frequency signals at the connection part will be small, and since the propagation mode at the connection part will not be disturbed, a connection structure of a dielectric waveguide line with small transmission loss and good transmission characteristics I was able to get it.

【0095】すなわち、本発明の誘電体導波管線路の接
続構造によれば、誘電体基板内で伝送方向が直交するよ
うに上下に重ねて配置された下層側の誘電体導波管線路
と上層側の誘電体導波管線路の接続部において、主導体
層の一方、すなわち下層側の誘電体導波管線路の上側の
主導体層と上層側の誘電体導波管線路の下側の主導体層
とを重ねて配置するとともに、この重ねた部位の主導体
層に結合用窓を形成し、かつ高周波信号が入力される誘
電体導波管線路の結合用窓の中心から所定の位置に端面
用貫通導体群と端面用副導体層とを形成したことから、
2つの誘電体導波管線路は電磁界で結合され、一方の誘
電体導波管線路から入力された高周波信号は結合用窓を
介して他方の誘電体導波管線路にも伝播させることがで
き、他方の誘電体導波管線路において伝播できる方向が
2つあるので、高周波信号はその2つの方向に伝播して
T字状に高周波信号を分岐させることができる。また、
両方の誘電体導波管線路にそれらを形成した場合にはL
字状に高周波信号を伝播できる。
That is, according to the connection structure of the dielectric waveguide line of the present invention, the dielectric waveguide lines on the lower layer side are vertically stacked in the dielectric substrate so that the transmission directions are orthogonal to each other. At the connection part of the upper dielectric waveguide line, one of the main conductor layers, that is, the upper main conductor layer of the lower dielectric waveguide line and the lower dielectric waveguide line of the upper dielectric layer Place the main conductor layer on top of each other, form a coupling window on the main conductor layer at the overlapped portion, and at a predetermined position from the center of the coupling window of the dielectric waveguide line to which a high-frequency signal is input. Since the through conductor group for the end face and the sub conductor layer for the end face are formed in
The two dielectric waveguide lines are coupled by an electromagnetic field, and the high frequency signal input from one of the dielectric waveguide lines can be propagated to the other dielectric waveguide line through the coupling window. Since there are two directions that can be propagated in the other dielectric waveguide line, the high frequency signal can propagate in the two directions to branch the high frequency signal in a T shape. Also,
If they are formed on both dielectric waveguide lines, L
High frequency signals can be propagated in a letter shape.

【0096】[0096]

【0097】さらに、本発明の誘電体導波管線路の接続
構造によれば、上記構成において、誘電体導波管線路を
重ねた部位における少なくとも一方の誘電体導波管線路
についてその幅すなわち伝送方向と直交する方向の側壁
用貫通導体群の幅を広げるか、または、その厚みを薄く
すなわち一対の主導体層の間隔を狭くすることにより、
接続部における誘電体導波管線路のインピーダンスの不
連続を小さくして高周波信号の反射や伝送損失の小さい
接続を実現することができる。
Further, according to the connection structure of the dielectric waveguide lines of the present invention, in the above structure, at least one of the dielectric waveguide lines in the portion where the dielectric waveguide lines are overlapped has the width, that is, the transmission. By widening the width of the sidewall through conductor group in the direction orthogonal to the direction, or by making the thickness thin, that is, by narrowing the interval between the pair of main conductor layers,
It is possible to reduce the discontinuity of the impedance of the dielectric waveguide line at the connection portion and realize a connection with less high frequency signal reflection and transmission loss.

【0098】以上により、本発明によれば、従来の多層
化技術によって容易に作製することのできる誘電体導波
管線路において、誘電体基板内に互いに直交するように
上下に積層して形成された誘電体導波管線路同士を容易
に接続し、T字状に高周波信号を分岐させることができ
る誘電体導波管線路の接続構造を提供することができ
た。
As described above, according to the present invention, in the dielectric waveguide line which can be easily manufactured by the conventional multi-layering technique, the dielectric waveguide lines are formed by vertically stacking on the dielectric substrate so as to be orthogonal to each other. In addition, it is possible to provide a connection structure of dielectric waveguide lines which can easily connect the dielectric waveguide lines to each other and branch a high-frequency signal in a T-shape.

【0099】また、本発明によれば、誘電体基板内に形
成でき、高周波信号の電磁波の放射・漏洩が無く、2つ
の誘電体導波管線路を交差させて結合することにより1
本の線路をT字状あるいはL字状に伝送損失が小さく良
好な伝送特性で接続して分岐できる誘電体導波管線路の
接続構造を提供することができた。
Further, according to the present invention, it can be formed in a dielectric substrate, there is no radiation / leakage of electromagnetic waves of a high frequency signal, and two dielectric waveguide lines are crossed and coupled to each other.
It has been possible to provide a connection structure of a dielectric waveguide line which can connect and branch a line of T-shape or L-shape with small transmission loss and good transmission characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる誘電体導波管線路の例を説明す
るための概略斜視図である。
FIG. 1 is a schematic perspective view for explaining an example of a dielectric waveguide line used in the present invention.

【図2】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態の一例について誘電体導波管線路を接続す
る前の状態を示す分解斜視図、(b)は誘電体導波管線
路を接続した状態を示す斜視図、(c)は理解を容易に
するために誘電体導波管線路を輪郭で表示した状態の斜
視図である。
FIG. 2A is an exploded perspective view showing a state before connecting the dielectric waveguide lines in the example of the embodiment of the connection structure of the dielectric waveguide lines of the present invention, and FIG. FIG. 3C is a perspective view showing a state in which the body waveguide lines are connected, and FIG. 7C is a perspective view showing a state in which the dielectric waveguide lines are indicated by outlines for easy understanding.

【図3】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態の他の例について誘電体導波管線路を接続
する前の状態を示す分解斜視図、(b)は誘電体導波管
線路を接続した状態を示す斜視図、(c)は理解を容易
にするために誘電体導波管線路を輪郭で表示した状態の
斜視図である。
FIG. 3A is an exploded perspective view showing a state before the dielectric waveguide line is connected in another example of the embodiment of the connection structure of the dielectric waveguide line of the present invention, FIG. Is a perspective view showing a state in which the dielectric waveguide lines are connected, and FIG. 8C is a perspective view showing a state in which the dielectric waveguide lines are indicated by outlines for easy understanding.

【図4】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態のさらに他の例について誘電体導波管線路
を接続する前の状態を示す分解斜視図、(b)は誘電体
導波管線路を接続した状態を示す斜視図、(c)は理解
を容易にするために誘電体導波管線路を輪郭で表示した
状態の斜視図である。
FIG. 4A is an exploded perspective view showing a state before connecting the dielectric waveguide lines in still another example of the embodiment of the connection structure of the dielectric waveguide lines of the present invention, FIG. 8A is a perspective view showing a state in which the dielectric waveguide lines are connected, and FIG. 13C is a perspective view showing a state in which the dielectric waveguide lines are indicated by outlines for easy understanding.

【図5】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態のさらに他の例について誘電体導波管線路
を接続する前の状態を示す分解斜視図、(b)は誘電体
導波管線路を接続した状態を示す斜視図、(c)は理解
を容易にするために誘電体導波管線路を輪郭で表示した
状態の斜視図である。
FIG. 5A is an exploded perspective view showing a state before connecting the dielectric waveguide lines in still another example of the embodiment of the connection structure of the dielectric waveguide lines of the present invention, FIG. 8A is a perspective view showing a state in which the dielectric waveguide lines are connected, and FIG. 13C is a perspective view showing a state in which the dielectric waveguide lines are indicated by outlines for easy understanding.

【図6】(a)は本発明の誘電体導波管線路の接続構造
におけるSパラメータのレベルの周波数特性を示す線
図、(b)はSパラメータの位相の周波数特性を示す線
図である。
FIG. 6A is a diagram showing frequency characteristics of S parameter levels in a connection structure of dielectric waveguide lines of the present invention, and FIG. 6B is a diagram showing frequency characteristics of S parameter phases. .

【図7】(a)は本発明の誘電体導波管線路の接続構造
におけるSパラメータのレベルの周波数特性を示す線
図、(b)はSパラメータの位相の周波数特性を示す線
図である。
FIG. 7A is a diagram showing frequency characteristics of S parameter levels in a connection structure of dielectric waveguide lines of the present invention, and FIG. 7B is a diagram showing frequency characteristics of S parameter phases. .

【符号の説明】[Explanation of symbols]

1・・・・・誘電体基板 2、3・・・主導体層 4・・・・・側壁用貫通導体群 5・・・・・副導体層 6・・・・・誘電体導波管線路 6A・・・・第1(下層側)の誘電体導波管線路 6B・・・・第2(上層側)の誘電体導波管線路 7・・・・・結合用窓 8・・・・・端面用貫通導体群 9・・・・・端面用副導体層 1. Dielectric substrate 2, 3 ... Main conductor layer 4 ... Side wall through conductor group 5 ... Sub conductor layer 6 ... Dielectric waveguide line 6A ... 1st (lower layer side) dielectric waveguide line 6B ... Second (upper layer side) dielectric waveguide line 7 ... window for coupling 8: Through conductor group for end face 9 ... Sub-conductor layer for end face

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01P 5/02 601 H01P 3/12 H01P 5/08 H01P 5/12 H05K 9/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01P 5/02 601 H01P 3/12 H01P 5/08 H01P 5/12 H05K 9/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板を挟持する一対の主導体層
と、高周波信号の伝送方向に信号波長の2分の1未満の
繰り返し間隔で、かつ前記伝送方向と直交する方向に所
定の幅で前記主導体層間を電気的に接続して形成された
2列の側壁用貫通導体群と、前記主導体層間に主導体層
と平行に形成され、前記側壁用貫通導体群と電気的に接
続された副導体層とを具備して成り、前記主導体層、側
壁用貫通導体群および副導体層で囲まれた領域によって
高周波信号を伝送する誘電体導波管線路を2つ、前記高
周波信号の伝送方向が直交するように前記主導体層の一
方を重ねて配置するとともに、この重ねた部位の主導体
層に結合用窓を形成し、かつ前記高周波信号が入力され
る前記誘電体導波管線路の前記結合用窓の中心から前記
伝送方向に前記高周波信号の管内波長以下の位置に、伝
送方向の直交方向に前記信号波長の2分の1未満の間隔
で前記主導体層間を電気的に接続して形成された端面用
貫通導体群と、前記主導体層間に主導体層と平行に形成
され、前記副導体層および前記端面用貫通導体群と電気
的に接続された端面用副導体層とを形成したことを特徴
とする誘電体導波管線路の接続構造。
1. A pair of main conductor layers sandwiching a dielectric substrate, with a repeating interval of less than ½ of a signal wavelength in a transmission direction of a high frequency signal, and a predetermined width in a direction orthogonal to the transmission direction. Two rows of side wall through conductor groups formed by electrically connecting the main conductor layers, and between the main conductor layers in parallel with the main conductor layer, and electrically connected to the side wall through conductor groups. Two dielectric waveguide lines for transmitting a high frequency signal by the region surrounded by the main conductor layer, the side wall penetrating conductor group and the sub conductor layer. One of the main conductor layers is arranged so as to be orthogonal to each other in the transmission direction, a coupling window is formed in the main conductor layer at the overlapped portion , and the high frequency signal is input.
From the center of the coupling window of the dielectric waveguide line
In the transmission direction, the high frequency signal is transmitted to a position below the guide wavelength.
Interval less than half the signal wavelength in the direction orthogonal to the transmission direction
For end faces formed by electrically connecting the main conductor layers with each other
Formed in parallel with the main conductor layer between the through conductor group and the main conductor layer
Is electrically connected to the sub conductor layer and the end face through conductor group.
A dielectric waveguide line connection structure, characterized in that an end face sub-conductor layer that is electrically connected is formed .
【請求項2】 前記誘電体導波管線路を重ねた部位にお
ける誘電体導波管線路の前記2列の側壁用貫通導体群の
幅を前記所定の幅よりも広くしたことを特徴とする請求
1記載の誘電体導波管線路の接続構造。
2. The width of the through conductor group for side walls of the two rows of the dielectric waveguide lines in the portion where the dielectric waveguide lines are overlapped is made wider than the predetermined width. connecting structure to claim 1 Symbol placement of the dielectric waveguide line.
【請求項3】 前記誘電体導波管線路を重ねた部位にお
ける誘電体導波管線路の前記一対の主導体層の間隔を他
の部位における間隔よりも狭くしたことを特徴とする請
求項1記載の誘電体導波管線路の接続構造。
3. A process according to claim 1, characterized in that narrower than the interval in the interval other portion of the pair of main conductor layers of the dielectric waveguide line at the site of repeated the dielectric waveguide line connection structure of the serial mounting of the dielectric waveguide line.
JP24428898A 1998-04-23 1998-08-31 Connection structure of dielectric waveguide line Expired - Fee Related JP3522120B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24428898A JP3522120B2 (en) 1998-08-31 1998-08-31 Connection structure of dielectric waveguide line
US09/298,399 US6515562B1 (en) 1998-04-23 1999-04-23 Connection structure for overlapping dielectric waveguide lines
FR9905188A FR2778024B1 (en) 1998-04-23 1999-04-23 CONNECTION STRUCTURE FOR DIELECTRIC WAVEGUIDE LINES
DE19918567A DE19918567C2 (en) 1998-04-23 1999-04-23 Connection arrangement for dielectric waveguides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24428898A JP3522120B2 (en) 1998-08-31 1998-08-31 Connection structure of dielectric waveguide line

Publications (2)

Publication Number Publication Date
JP2000077912A JP2000077912A (en) 2000-03-14
JP3522120B2 true JP3522120B2 (en) 2004-04-26

Family

ID=17116521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24428898A Expired - Fee Related JP3522120B2 (en) 1998-04-23 1998-08-31 Connection structure of dielectric waveguide line

Country Status (1)

Country Link
JP (1) JP3522120B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803869B2 (en) * 2000-09-28 2011-10-26 京セラ株式会社 Connection structure of dielectric waveguide line
WO2010013721A1 (en) * 2008-07-31 2010-02-04 京セラ株式会社 High-frequency substrate and high-frequency module
JP2010103982A (en) * 2008-09-25 2010-05-06 Sony Corp Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
JP5343134B2 (en) * 2009-10-29 2013-11-13 京セラ株式会社 Mode polarization converter
JP6861588B2 (en) * 2017-07-07 2021-04-21 株式会社フジクラ Transmission line

Also Published As

Publication number Publication date
JP2000077912A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US6380825B1 (en) Branch tee dielectric waveguide line
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP4199395B2 (en) Multilayer Magic T
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3686736B2 (en) Dielectric waveguide line and wiring board
JPH10303611A (en) Coupling structure for high frequency transmission line and multi-layer wiring board having the same
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3522120B2 (en) Connection structure of dielectric waveguide line
JPH11308025A (en) Directional coupler
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3517097B2 (en) Branch structure of dielectric waveguide
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3383542B2 (en) Coupling structure of dielectric waveguide line
JPH07120888B2 (en) Multi-plane waveguide coupler
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate
JP3512626B2 (en) Branch structure of dielectric waveguide
JP2004104816A (en) Dielectric waveguide line and wiring board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees