JP3765137B2 - 可変容量型圧縮機 - Google Patents

可変容量型圧縮機 Download PDF

Info

Publication number
JP3765137B2
JP3765137B2 JP31239296A JP31239296A JP3765137B2 JP 3765137 B2 JP3765137 B2 JP 3765137B2 JP 31239296 A JP31239296 A JP 31239296A JP 31239296 A JP31239296 A JP 31239296A JP 3765137 B2 JP3765137 B2 JP 3765137B2
Authority
JP
Japan
Prior art keywords
spool
chamber
pressure
discharge
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31239296A
Other languages
English (en)
Other versions
JPH10153175A (ja
Inventor
真広 川口
英二 徳永
卓也 奥野
昌彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP31239296A priority Critical patent/JP3765137B2/ja
Publication of JPH10153175A publication Critical patent/JPH10153175A/ja
Application granted granted Critical
Publication of JP3765137B2 publication Critical patent/JP3765137B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、車両空調システム等に適用される可変容量型圧縮機に関する。
【0002】
【従来の技術】
この種の圧縮機においては、例えば、特開平3−37378号公報に開示されたものが存在する。すなわち、ハウジングは複数のハウジング構成体が接合されてなり、駆動軸を回転可能に保持する。吸入室、吐出室及びクランク室はハウジング内に形成されている。カムプレートは同クランク室に収容され、駆動軸に一体回転可能でかつ傾動可能に支持されている。複数のシリンダボアは、ハウジング内に形成されている。片頭型のピストンは、同シリンダボアに収容されるとともに、前記カムプレートに連結されている。弁形成体は、吸入室及び吐出室が形成されたハウジング構成体と、シリンダボアが形成されたハウジング構成体との間に介在されている。吐出孔は、同弁形成体において各シリンダボアに対応して穿設され、同シリンダボアと吐出室とを連通する。固定型吐出弁は、弁形成体において吐出孔に対応して形成され、同吐出孔を開閉する。
【0003】
そして、駆動軸の回転運動が、カムプレートを介してピストンの往復直線運動に変換され、冷媒ガスを吸入室からシリンダボア内に吸入した後、固定型吐出弁の作用により圧縮し、吐出孔を介して吐出室へ吐出する。また、カムプレートの傾角を調節することでピストンのストロークが変更され、吐出容量が変更される。
【0004】
電磁弁は吸入室において冷媒ガスの入口に配設され、同吸入室と外部冷媒回路との連通を遮断可能である。そして、冷房不要時や外部冷媒回路上の蒸発器においてフロストが発生しそうな場合等には、同電磁弁により外部冷媒回路から吸入室への冷媒ガスの流入を止めることで、同外部冷媒回路上の冷媒循環阻止が達成される。従って、このような場合においても圧縮機の運転は継続されて良く、前記駆動軸と同駆動軸を駆動する車両エンジン等の外部駆動源との間には、高価かつ重量物である電磁クラッチ等のクラッチ機構は介在されていない。
【0005】
ところで、前記構成の圧縮機は、車両エンジンの動作時においては常に運転される。このため、前述した外部冷媒回路上の冷媒循環阻止状態において、動力損失や各摺動部分における潤滑が問題となる。従って、同圧縮機は、冷媒循環が阻止されるとカムプレートを最小傾角に変更して吐出容量を最小とし、動力損失を軽減するようにしている。また、同圧縮機は冷媒循環阻止状態において、吐出室、クランク室及び吸入室を経由する循環通路を形成し、同通路内を流動される潤滑油を含む冷媒ガスにより、各摺動部分を潤滑するようにしている。
【0006】
【発明が解決しようとする課題】
ところが、冷媒ガスが前記循環通路を循環するには、吐出室、クランク室及び吸入室の各室間に、同冷媒ガスの流動を生起する差圧を生じさせる必要がある。このため、前記圧縮機は、カムプレートの最小傾角が零とはならないように規定し、冷媒ガスの圧縮を冷媒循環阻止状態においても継続させることで、各室間に差圧を生じさせている。従って、前述した動力損失の問題が解消されたとは言い難いし、冷媒ガスを圧縮する際にピストンに対して作用する圧縮反力が、同ピストンをシリンダボアに対して押付けるため、両者間の摺動抵抗の増大による摩耗劣化が問題となる。
【0007】
本発明は、上記従来技術に存在する問題点に着目してなされたものであって、その目的は、外部冷媒回路上の冷媒循環阻止状態での動力損失を軽減可能な可変容量型圧縮機を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明では、外部冷媒回路上の冷媒循環を阻止するための冷媒循環阻止手段と、同冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、冷媒ガスを、吐出室、クランク室及び吸入室を経由して循環させる循環通路と、前記弁形成体に配設され、同弁形成体上の少なくとも一つで全部ではない吐出孔に対応する固定型吐出弁と、同固定型吐出弁が対応された吐出孔以外の吐出孔に対応し、吐出弁として作用される作用位置と、吐出弁として作用されない不作用位置との間を移動可能な可動型吐出弁と、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、可動型吐出弁を不作用位置に配置するアンロード手段とを備えた可変容量型圧縮機である。
【0009】
請求項2の発明では、前記可動型吐出弁は弁形成体に対して接離可能に構成され、前記アンロード手段は、ハウジング内部に配設されるとともに可動型吐出弁に連結され、弁形成体に対して近接・離間方向へ移動可能なスプールと、同スプールの背面側に区画形成されたスプール用制御圧室と、前記可動型吐出弁が弁形成体から離間するように、スプールを付勢する付勢手段と、前記スプール用制御圧室と吸入圧領域より高圧となる高圧領域とを接続するスプール用給気通路と、前記スプール用制御圧室と高圧領域より低圧な低圧領域とを接続するスプール用抽気通路と、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、高圧領域からスプール用給気通路を介して導入される冷媒ガスの量及び/又はスプール用抽気通路を介して導出される冷媒ガスの量を調節することで、前記スプール用制御圧室の圧力を低下させるスプール制御手段とを備えたものである。
【0010】
請求項3の発明では、前記カムプレートの傾角調節は、クランク室の圧力を調節することで、同クランク室の圧力とシリンダボア内の圧力とのピストンを介した差を変更して行われ、高圧領域である吐出圧領域と低圧領域である前記クランク室とを接続する容量変更用給気通路と、前記クランク室と吸入圧領域とを接続する容量変更用抽気通路と、前記容量変更用給気通路上に介在され、同通路の開度を調節することでクランク室の圧力を調節し、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時には、同通路の開度を大きくして吐出容量を最小とする容量制御弁とを備え、前記スプール用抽気通路は容量制御弁を経由され、同容量制御弁が前記スプール制御手段を構成する。
【0011】
請求項4の発明では、前記容量変更用給気通路は、容量制御弁より吐出圧領域側に位置する部分がスプール用制御圧室を経由され、同通路がスプール用給気通路及びスプール用抽気通路を兼ねている。
【0012】
請求項5の発明では、前記カムプレートの傾角調節は、クランク室の圧力を調節することで、同クランク室の圧力とシリンダボア内の圧力とのピストンを介した差を変更して行われ、吐出圧領域と高圧領域である前記クランク室とを接続する容量変更用給気通路と、前記クランク室と低圧領域である吸入圧領域とを接続する容量変更用抽気通路と、同容量変更用抽気通路上に介在され、同通路の開度を調節することでクランク室の圧力を変更し、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時には、同通路の開度を小さくして吐出容量を最小とする容量制御弁とを備え、前記スプール用給気通路は容量制御弁を経由され、同容量制御弁が前記スプール制御手段を構成する。
【0013】
請求項6の発明では、前記容量変更用抽気通路は、容量制御弁より吸入圧領域側に位置する部分がスプール用制御圧室を経由され、同通路がスプール用給気通路及びスプール用抽気通路を兼ねている。
【0014】
請求項7の発明では、前記駆動軸は、クラッチ機構を介することなく外部駆動源に作動連結されている。
(作用)
上記構成の請求項1の発明においては、外部冷媒回路上の冷媒循環が許容されると、例えば、アンロード手段により可動型吐出弁が作用位置に配置され、同可動型吐出弁及び固定型吐出弁の作用により、各シリンダボア内に吸入された冷媒ガスが圧縮されて、吐出室に吐出される。
【0015】
ここで、冷房不要時や外部冷媒回路上の蒸発器においてフロストが発生しそうな場合等には、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止される。そして、作用位置にある可動型吐出弁が、アンロード手段により不作用位置に移動され、同弁は吐出弁として作用されない。従って、同弁が対応するシリンダボア内においては、冷媒ガスの圧縮はなされない。つまり、一部のシリンダボアにおいて圧縮仕事が休止され、動力損失が軽減される。
【0016】
しかし、可動型吐出弁が不作用位置に移動され、吐出弁として作用しなくなった後も、固定型吐出弁の吐出弁としての作用は持続される。従って、同弁が対応するシリンダボア内の冷媒ガスは圧縮されて、吐出室に吐出される。その結果、吐出室、クランク室及び吸入室の各室間に差圧が生じ、同各室を経由する循環通路内を、潤滑油を含む冷媒ガスが循環されて各摺動部分が潤滑される。
【0017】
さて、前述したように、外部冷媒回路上の冷媒循環阻止が冷媒循環阻止手段により達成されるため、冷房不要時や、外部冷媒回路上の蒸発器においてフロストが発生しそうな場合等においても、圧縮機の運転は継続されて良い。従って、請求項7の発明においては、駆動軸を外部駆動源に対してクラッチ機構を介することなく連結しており、圧縮機は外部駆動源の動作時には常に運転される。
【0018】
請求項2の発明においては、外部冷媒回路上の冷媒循環が冷媒循環阻止手段により阻止されると、スプール制御手段は、高圧領域からスプール用給気通路を介して導入される冷媒ガスの量及び/又はスプール用抽気通路を介して低圧領域へ導出される冷媒ガスの量を調節して、スプール用制御圧室の圧力を所定値よりも低下させる。従って、スプールが、付勢手段の付勢力との釣り合いにより弁形成体から離間移動され、可動型吐出弁は作用位置から不作用位置に移動配置される。
【0019】
請求項3の発明においては、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止されると、容量制御弁は容量変更用給気通路の開度を大きくすることで、吐出圧領域からクランク室への高圧冷媒ガスの導入量を多くして、同クランク室の圧力を高める。従って、カムプレートが最小傾角に傾動されて、吐出容量が最小となる。
【0020】
ここで、スプール用制御圧室は、スプール用給気通路を介して吐出圧領域に接続されている。従って、吐出容量が最小となることで吐出圧領域の圧力が低下され、同吐出圧領域からスプール用制御圧室に導入される冷媒ガスの量は少なくなる。また、スプール用抽気通路が容量制御弁を経由されており、同容量制御弁が容量変更用給気通路の開度を大きくすると、スプール用抽気通路の開度も大きくなる。従って、スプール用制御圧室からクランク室へ導出される冷媒ガスの量が多くなり、同スプール用制御圧室の圧力は速やかに所定値よりも低くなる。その結果、可動型吐出弁は、作用位置から不作用位置へ迅速に移動配置される。
【0021】
つまり、容量制御弁はスプール制御手段を構成し、外部冷媒回路上の冷媒循環が阻止されると、高圧領域からスプール用給気通路を介して導入される冷媒ガスの量を少なくし、スプール用抽気通路を介して導出される冷媒ガスの量を多くして、スプール用制御圧室の圧力を所定値よりも低下させる。
【0022】
また、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が許容され、容量制御弁が容量変更用給気通路の開度を小さくして、吐出容量を最小容量から非最小容量とすると、スプール用抽気通路の開度も小さくなる。従って、スプール用制御圧室からクランク室へ導出される冷媒ガスの量が少なくなり、同スプール用制御圧室の圧力は、スプール用給気通路を介した高圧領域からの冷媒ガスの導入量の増大により、速やかに所定値よりも高くなる。その結果、不作用位置にある可動型吐出弁は、迅速に作用位置に移動される。
【0023】
請求項4の発明においては、容量変更用給気通路がスプール用給気通路及びスプール用抽気通路を兼ねる。従って、スプール用給気通路及びスプール用抽気通路を専用に設ける必要がない。
【0024】
請求項5の発明においては、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止されると、容量制御弁は容量変更用抽気通路の開度を小さくすることで、クランク室から吸入圧領域への冷媒ガスの導出量を少なくして、同クランク室の圧力を高める。従って、カムプレートが最小傾角に傾動されて、吐出容量が最小となる。
【0025】
ここで、前記スプール用給気通路は容量制御弁を経由されており、同容量制御弁が容量変更用抽気通路の開度を小さくすると、スプール用給気通路の開度も小さくなる。従って、クランク室からスプール用制御圧室へ導入される高圧冷媒ガスの量が少なくなり、スプール用抽気通路を介した吸入圧領域への冷媒ガスの導出により、同スプール用制御圧室の圧力は速やかに所定値よりも低くなる。その結果、可動型吐出弁が迅速に不作用位置に配置される。
【0026】
つまり、容量制御弁はスプール制御手段を構成し、外部冷媒回路上の冷媒循環が冷媒循環阻止手段により阻止されると、高圧領域からスプール用給気通路を介して導入される冷媒ガスの量を少なくして、スプール用制御圧室の圧力を所定値よりも低下させる。
【0027】
また、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が許容され、容量制御弁が容量変更用抽気通路の開度を大きくして、吐出容量を最小容量から非最小容量とすると、吐出圧領域の圧力が高くなるとともにスプール用給気通路の開度も大きくなる。従って、吐出圧領域からスプール用制御圧室へ導入される冷媒ガスの量が多くなり、同スプール用制御圧室の圧力は、速やかに所定値よりも高くなる。その結果、不作用位置にある可動型吐出弁は、迅速に作用位置に移動される。
【0028】
請求項6の発明においては、容量変更用抽気通路がスプール用給気通路及びスプール用抽気通路を兼ねる。従って、スプール用給気通路及びスプール用抽気通路を専用に設ける必要がない。
【0029】
【発明の実施の形態】
以下、本発明をクラッチレスタイプの可変容量型圧縮機において具体化した第1及び第2実施形態について説明する。なお、第2実施形態においては第1実施形態との相違点についてのみ説明し、同一又は相当部材には同じ番号を付して説明を省略する。
【0030】
(第1実施形態)
図1に示すように、フロントハウジング11はシリンダブロック12の前端に接合固定されている。リヤハウジング13は、シリンダブロック12の後端に弁形成体14を介して接合固定されている。フロントハウジング11、シリンダブロック12及びリヤハウジング13が、本実施形態のハウジング構成体である。クランク室15は、フロントハウジング11とシリンダブロック12とにより囲まれて区画形成されている。駆動軸16は、クランク室15内を通るように、フロントハウジング11とシリンダブロック12との間に回転可能に架設支持されている。プーリ17は、フロントハウジング11の前壁面に、アンギュラベアリング18を介して回転可能に支持されている。同プーリ17は、前記駆動軸16のフロントハウジング11からの突出端部に連結されており、その外周部に巻き掛けられたベルト19を介して外部駆動源としての車両エンジンEに、電磁クラッチ等のクラッチ機構を介することなく作動連結されている。
【0031】
リップシール21は、駆動軸16の前端側外周面とフロントハウジング11との間に介在され、同駆動軸16を封止している。
回転支持体22は、クランク室15内において前記駆動軸16に止着されている。スラストベアリング44は、回転支持体22とフロントハウジング11との間に介在されている。カムプレートとしての斜板23は、駆動軸16に対してその軸線L方向へスライド可能かつ傾動可能に支持されている。支持アーム24は回転支持体22に突設されており、そのガイド孔24aを以て前記斜板23に設けられたガイドピン25の球状部25aに係合されている。
【0032】
そして、前記斜板23は、支持アーム24とガイドピン25との連係により、駆動軸16の軸線L方向へ傾動可能かつ同駆動軸16と一体的に回転可能となっている。同斜板23の傾動は、ガイド孔24aと球状部25aとの間のスライドガイド関係、駆動軸16のスライド支持作用により案内される。斜板23の半径中心部がシリンダブロック12側に移動されると、同斜板23の傾角が減少される。サークリップ20は、斜板23とシリンダブロック12との間において駆動軸16に固定され、斜板23が傾動して当接されることで、同斜板23の零(0°)ではない最小傾角を規定する。傾角減少バネ26は、前記回転支持体22と斜板23との間に介在されている。同傾角減少バネ26は、斜板23を傾角の減少方向に付勢する。傾角規制突部23aは斜板23の前面に突設され、回転支持体22の後面に当接されることで、斜板23の最大傾角を規定する。
【0033】
図2に示すように、シリンダボア12aは、前記シリンダブロック12において同一円周上の複数個所(五個所)に所定間隔で貫設形成され、同数の片頭型のピストン36は、各シリンダボア12a内に収容されている。前記斜板23はシュー37を介してピストン36に連結されており、同斜板23の回転運動がピストン36の往復直線運動に変換される。
【0034】
吸入圧領域を構成する吸入室38は、リヤハウジング13内において外周部に区画形成されている。吐出圧領域を構成する吐出室39は、リヤハウジング13内において内周部に区画形成されている。吸入通路32はリヤハウジング13に設けられ、吸入室38に接続されている。
【0035】
吸入孔40は弁形成体14の外周部において、前記シリンダボア12aに対応して同数が貫設形成され、各シリンダボア12aと吸入室38とを接続する。吸入弁41は、弁形成体14において吸入孔40に対応して形成され、同吸入孔40を開閉する。そして、ピストン36の上死点位置から下死点位置への移動に伴って、同吸入弁41の作用により、吸入室38から吸入孔40を介して各シリンダボア12a内に冷媒ガスが吸入される。
【0036】
前記シリンダボア12aと同数の吐出孔42は、弁形成体14の内周部に貫設され、各シリンダボア12aと吐出室39とを接続する。少なくとも一つ(本実施形態においては一つ)の固定型吐出弁43は弁形成体14に設けられ、対応する吐出孔42を開閉する。そして、ピストン36の下死点位置から上死点位置への移動に伴って、同固定型吐出弁43の作用により、それが対応するシリンダボア12a内の冷媒ガスが所定の圧力にまで圧縮され、吐出孔42を介して吐出室39に吐出される。
【0037】
通路46は駆動軸16内に形成され、その入口46aは駆動軸16の前端側においてリップシール21付近で、出口46bは、駆動軸16の後端側をラジアルベアリング30を介して支持するシリンダブロック12の収容孔27内で、それぞれ開口されている。
【0038】
容量変更用抽気通路47は、シリンダブロック12及び弁形成体14に形成され、クランク室15の一部である収容孔27と吸入圧領域としての吸入室38とを接続する。容量変更用給気通路48は、吐出圧領域としての吐出室39とクランク室15とを接続し、同通路48上には感圧弁である容量制御弁49が介在されている。同容量制御弁49について説明すると、弁室50は容量変更用給気通路48の一部を構成し、同弁室50内にはポート50aが形成されている。弁体51は弁室50内に収容されており、バネ56によりポート50aに接触する方向へ付勢されている。収容室52は弁室50に対して区画されており、同収容室52を感圧部材であるダイヤフラム53により区画することで、感圧室52a及び大気に開放された大気室52bが形成されている。前記弁体51とダイヤフラム53とは、ロッド54を介して連結されている。検圧通路55は吸入室38と感圧室52aとを接続し、同感圧室52aに吸入室38内の冷媒ガスを導入する。
【0039】
従って、ダイヤフラム53が吸入室38内の圧力の高低により動作され、弁体51によりポート50aの開度、つまり、容量変更用給気通路48の開度が調節される。このため、クランク室15への高圧冷媒ガスの導入量が変更され、同クランク室15内の圧力が変更される。その結果、前記ピストン36の前後に作用する同クランク室15の圧力とシリンダボア12a内の圧力との差が調整される。従って、斜板23の傾斜角が変更されて、ピストン36のストロークが変更され、吐出容量が調整される。
【0040】
冷媒循環阻止手段としての電磁弁57は、リヤハウジング13において前記吸入通路32上に介在され、ソレノイド57aの消磁により弁体57bが同通路32を閉鎖し、ソレノイド57aの励磁により弁体57bが同通路32を開放する。
【0041】
前記構成の圧縮機は、吸入通路32と吐出室39とが外部冷媒回路71により接続されている。凝縮器72、膨張弁73及び蒸発器74は、同外部冷媒回路71上に介在されている。
【0042】
蒸発器温度センサ81、車室温度センサ82、エアコンスイッチ83、車室温度設定器84及び前記電磁弁57のソレノイド57aは、制御コンピュータ85に接続されている。同制御コンピュータ85は、各センサ81,82による検出値、エアコンスイッチ83のオン・オフ信号、車室温度設定器84による設定温度信号等の入力値に基づいて電磁弁57(ソレノイド57a)の励磁・消磁を行う。
【0043】
次に、本実施形態の特徴点について説明する。
バネ収容孔58は、シリンダブロック12から弁形成体14にかけてその中央部に穿設されており、吐出室39に開口されている。円筒状をなすスプール支持部59は、吐出室39内においてリヤハウジング13の内壁面中央部に突設されている。有底円筒状をなすスプール60は、スプール支持部59に嵌入支持されている。同スプール60は、スプール支持部59に案内されることで、弁形成体14に対して近接・離間方向へスライド移動可能である。
【0044】
可動型吐出弁61は、前記スプール60の前面側において、その開度を規定するためのリテーナ62とともに固定されている。同可動型吐出弁61は、スプール60のスライド移動に連動して、弁形成体14の裏面中央部に接触した作用位置と、同弁形成体14から離間した不作用位置との間を移動される。開閉部61aは、可動型吐出弁61の外周部に複数(四つ)が放射形成され、前記固定型吐出弁43が対応されない残りの吐出孔42に接離可能に対応する。同開閉部61aは、可動型吐出弁61が作用位置にある状態では固定型吐出弁43と同等の作用を奏し、シリンダボア12a内に吸入された冷媒ガスは圧縮されて吐出室39へ吐出される。同開閉部61aは、可動型吐出弁61が不作用位置にある状態では、吐出孔42を常時開放して吐出弁としての作用を奏しない。つまり、シリンダボア12a内に吸入された冷媒ガスは、圧縮されることなく吐出室39に排出される。
【0045】
ガイドピン63は、吐出室39内においてリヤハウジング13と弁形成体14との間で架設配置されるとともに、前記可動型吐出弁61及びリテーナ62の一部に若干の遊びを持って挿通されている。従って、同可動型吐出弁61及びリテーナ62は、ガイドピン63により自身の軸線を中心とした回動が規制され、軸線方向への移動のみが許容されている。
【0046】
バネ座64は前記バネ収容孔58内に固定されている。付勢手段としてのバネ65は、同バネ座64と可動型吐出弁61の前面との間に介装されている。同バネ65は、可動型吐出弁61が不作用位置に配置されるように、スプール60を後方側へ付勢する。
【0047】
スプール用制御圧室66は、前記スプール60の背面側においてスプール支持部59に囲まれることで区画形成されている。シールリング67はスプール60の外周面に嵌合固定され、スプール支持部59の内周面に対して環状領域で圧接されることで、スプール用制御圧室66を吐出室39からシールしている。
【0048】
ここで、前記容量変更用給気通路48は、容量制御弁49(ポート50a)より吐出室39側に位置する部分が、スプール用制御圧室66を経由している。つまり、同通路48において、高圧領域としての吐出室39とスプール用制御圧室66とを接続する第1通路48aが、本実施形態のスプール用給気通路をなし、同スプール用制御圧室66と低圧領域としてのクランク室15とを接続する第2通路48bが、スプール用抽気通路をなしている。
【0049】
次に、上記構成の圧縮機の作用について説明する。
制御コンピュータ85は、エアコンスイッチ83がオン状態の下で、車室温度センサ82の検出値が車室温度設定器84の設定温度以上である場合に、電磁弁57を励磁する。従って、吸入通路32が開放され、外部冷媒回路71から吸入室38への冷媒ガスの導入が許容される。その結果、前記容量制御弁49は、感圧室52aに導入される吸入室38内の冷媒ガスの圧力(吸入圧)に基づいて吐出容量制御を行う。
【0050】
例えば、冷房負荷が大きいと吸入圧が設定値よりも高くなり、容量制御弁49は容量変更用給気通路48の開度を小さくするように動作される。従って、クランク室15の圧力は、通路46及び容量変更用抽気通路47を介して吸入室38に放圧されて低下され、斜板23の傾角が最大傾角側に変更されてピストン36のストローク量が大きくなる。その結果、吐出容量が大きくなって、吸入圧が低下される。
【0051】
冷房負荷が小さいと吸入圧が設定値よりも低くなり、容量制御弁49は容量変更用給気通路48の開度を大きくするように動作される。従って、クランク室15の圧力は高圧冷媒ガスの導入により上昇され、斜板23の傾角が最小傾角側に変更されてピストン36のストローク量が小さくなる。その結果、吐出容量が小さくなって、吸入圧が上昇される。
【0052】
以上のように、前記容量制御弁49は、バネ56やダイヤフラム53等の諸元により設定された吸入圧を維持すべく、斜板23の傾角を変更して吐出容量を変更する。
【0053】
この時、容量制御弁49が吐出容量を最小に制御しなければ、第2通路48bの開度は最大とはならず、スプール用制御圧室66から同第2通路48bを介してクランク室15へ導出される冷媒ガスの量は少ない。また、吐出容量は最小ではないため吐出室39の圧力は高く、同吐出室39から第1通路48aを介してスプール用制御圧室66に導入される冷媒ガスの量は多い。従って、スプール制御圧室66の圧力は所定値よりも高く維持され、スプール60がバネ65の付勢力との釣り合いにより弁形成体14に近接されて、可動型吐出弁61が作用位置に配置される。従って、全てのシリンダボア12a内において冷媒ガスの圧縮が行われ、必要量の高圧冷媒ガスが外部冷媒回路71に対して確実に供給される。
【0054】
また、容量制御弁49が吐出容量を最小に制御すると、吐出室39の圧力は低くなり、同吐出室39から第1通路48aを介してスプール用制御圧室66に導入される冷媒ガスの量は少なくなる。また、第2通路48bの開度が最大となり、スプール用制御圧室66から同第2通路48bを介してクランク室15へ導出される冷媒ガスの量が多くなる。従って、スプール用制御圧室66の圧力が所定値よりも低くなり、スプール60がバネ65の付勢力との釣り合いにより弁形成体14から離間されて、可動型吐出弁61が不作用位置に配置される。従って、同可動型吐出弁61が対応されたシリンダボア12aにおいては、冷媒ガスの圧縮がなされない。しかし、固定型吐出弁43が対応されたシリンダボア12a内においては、冷媒ガスの圧縮が継続して行われ、圧縮済みの冷媒ガスが外部冷媒回路71に供給されなくなることはない。言い換えれば、可動型吐出弁61と固定型吐出弁43とが併用されているため、最小吐出容量時においても圧縮機としての基本機能が保持される。
【0055】
さて、図3に示すように、冷房負荷がない状態に近づいてゆくと、蒸発器74における温度がフロスト発生をもたらす温度に近づいてゆく。制御コンピュータ85は、蒸発器温度がフロスト判定温度以下になると電磁弁57を消磁する。同フロスト判定温度は、蒸発器74においてフロストが発生しそうな状況を反映する。また、制御コンピュータ85は、エアコンスイッチ83がオフ状態に切換操作されると電磁弁57を消磁する。
【0056】
このように、電磁弁57を消磁すると吸入通路32が閉鎖され、外部冷媒回路71から吸入室38への冷媒ガスの導入が停止されて、同外部冷媒回路71上の冷媒循環が阻止される。従って、容量制御弁49の感圧室52aに導入される吸入圧が設定値よりも大きく低下され、弁体51がポート50a、つまり、容量制御用給気通路48の第2通路48bを最大に開いた弁開度位置に移行する。このため、吐出室39の高圧冷媒ガスが、多量にクランク室15へ供給され、同クランク室15の圧力が高くなる。その結果、斜板23が最小傾角に傾動されて吐出容量が最小となり、前述したように可動型吐出弁61が作用位置から不作用位置に移動配置される。
【0057】
斜板23の最小傾角は零ではないため、ピストン36は微量ながら往復直線運動を継続している。固定型吐出弁43は、可動型吐出弁61が不作用位置に配置された後も吐出弁としての作用を継続し、同弁43が対応するシリンダボア12a内においては冷媒ガスの圧縮がなされる。従って、同シリンダボア12aから吐出室39へ吐出された冷媒ガスは、冷媒循環阻止状態にある外部冷媒回路71には排出されず、容量変更用給気通路48を介してクランク室15へ流入される。クランク室15内の冷媒ガスは、通路46及び抽気通路47を介して吸入室38へ流入される。吸入室38内の冷媒ガスは、シリンダボア12a内へ吸入されて、再度吐出室39へ吐出される。
【0058】
つまり、吸入通路32が電磁弁57により閉鎖された状態では、吐出室39→容量変更用給気通路48→クランク室15→通路46→収容孔27→容量変更用抽気通路47→吸入室38→シリンダボア12a→吐出室39を経由する循環通路が圧縮機内に形成される。そして、固定型吐出弁43が対応するシリンダボア12a内においては冷媒ガスの圧縮がなされるため、吐出室39、クランク室15及び吸入室38の各室間では圧力差が生じている。従って、冷媒ガスが前記循環通路を循環し、冷媒ガスとともに流動する潤滑油が圧縮機内の各摺動部を潤滑する。
【0059】
エアコンスイッチ83がオン状態にあって、斜板23が最小傾角位置にある状態において、例えば、車室温度が上昇して冷房負荷が増大すると、車室温度センサ82により検出された車室温度が車室温度設定器84の設定温度を越える。制御コンピュータ85は、この車室温度の変位に基づいて電磁弁57を励磁し、吸入通路32が開放される。この時、吸入圧は設定値よりも高く、容量制御弁49は容量変更用給気通路48の第2通路48bの開度を小さくして斜板23を最大傾角側に傾動させる。従って、前述したように、不作用位置にある可動型吐出弁61が作用位置に配置される。
【0060】
車両エンジンEが停止すれば、圧縮機の運転も停止、つまり斜板23の回転も停止し、電磁弁57への通電も停止される。このため、吸入通路32が閉鎖されて吸入室38の圧力が低下され、容量制御弁49により容量制御用給気通路48の第2通路48bが最大に開く。従って、斜板23の傾角は最小となり、可動型吐出弁61は作用位置から不作用位置に移動配置される。圧縮機の運転停止状態が続けば、圧縮機内の圧力が均一化するが、斜板23の傾角は傾角減少バネ26の付勢力によって小さい傾角に保持される。そして、車両エンジンEの起動によって圧縮機の運転が開始されると、斜板23は、負荷トルクの最も少ない最小傾角状態から回転を開始し、しかも、可動型吐出弁61が対応されたシリンダボア12a内においては圧縮仕事がなされていない。従って、圧縮機の起動時のショックが効果的に軽減される。
【0061】
上記構成の本実施形態においては、次のような効果を奏する。
(1)電磁弁57の消磁により外部冷媒回路71上の冷媒循環が阻止されると、可動型吐出弁61が不作用位置に配置される。従って、同可動型吐出弁61が対応するシリンダボア12aにおいては圧縮仕事がなされず、動力損失を効果的に軽減できる。また、同可動型吐出弁61が対応されたシリンダボア12a内のピストン36には、圧縮反力がほとんど作用せず、同ピストン36がシリンダボア12aに押付けられることがない。従って、最小吐出容量状態において、同ピストン36のシリンダボア12aとの間の摺動抵抗が小さくなり、その摩耗劣化を防止できる。
【0062】
(2)容量制御弁49は、電磁弁57の消磁により外部冷媒回路71上の冷媒循環が阻止されると吐出容量を最小とする。従って、前記(1)がさらに効果的に奏される。
【0063】
(3)容量制御弁49は、電磁弁57の消磁により外部冷媒回路71上の冷媒循環が阻止されると、吐出容量を最小とする。吐出容量が最小なると吐出室39の圧力が低下され、同吐出室39からスプール用給気通路(第1通路48a)を介してスプール用制御圧室66に導入される冷媒ガスの量が少なくなる。つまり、同容量制御弁49はスプール制御手段を構成し、外部冷媒回路71上の冷媒循環阻止に応じてスプール用制御圧室66の圧力を低下させる。このため、外部冷媒回路71上の冷媒循環阻止に応じてスプール用制御圧室66の圧力を低下させるために、専用のスプール制御手段を備える必要がなくなる。その結果、同可動型吐出弁61のアンロード機構を簡単かつ安価に構成できる。
【0064】
(4)スプール用抽気通路(第2通路48b)は、スプール用制御圧室66とクランク室15とを接続する。従って、電磁弁57の消磁により外部冷媒回路71上の冷媒循環が阻止されると、スプール用制御圧室66の冷媒ガスは第2通路48bを介してクランク室15に導出される。その結果、同スプール用制御圧室66の圧力は速やかに所定値よりも低下され、可動型吐出弁61の作用位置から不作用位置への移動が迅速になされる。
【0065】
(5)スプール用抽気通路(第2通路48b)は、容量制御弁49を経由されている。従って、同容量制御弁49はスプール制御手段として、スプール用制御圧室66から第2通路48bを介してクランク室15へ導出される冷媒ガスの量も調節する。つまり、外部冷媒回路71上の冷媒循環が阻止されると、スプール用制御圧室66から第2通路48bを介してクランク室15へ導出される冷媒ガスの量が多くなる。従って、スプール用制御圧室66の圧力がさらに速やかに低下され、可動型吐出弁61が作用位置から不作用位置へさらに迅速に移動される。また、外部冷媒回路71上の冷媒循環が許容されると、スプール用制御圧室66から第2通路48bを介してクランク室15へ導出される冷媒ガスの量が少なくなる。従って、スプール用制御圧室66の圧力が速やかに上昇され、可動型吐出弁61が不作用位置から作用位置へ迅速に移動されて、圧縮機本来の機能が速やかに発揮される。以上のように、外部冷媒回路71上の冷媒循環状態の変更に対する、可動型吐出弁61の応答性が向上される。
【0066】
(6)容量変更用給気通路48は、容量制御弁49より吐出室39側においてスプール用制御圧室66を経由し、同通路48の第1通路48aがスプール用給気通路を、第2通路48bがスプール用抽気通路をそれぞれ兼ねる。従って、可動型吐出弁61のアンロード機構のために専用の通路を形成する必要がなく、同機構を簡単かつ安価に構成できる。
【0067】
(7)駆動軸15は、車両エンジンEに対して、高価かつ重量物である電磁クラッチ等のクラッチ機構を介することなく作動連結されている。従って、圧縮機の低コスト化、軽量化を図り得る。また、電磁クラッチのオン・オフによる体感フィーリングの悪化も同時に解決できる。
【0068】
(第2実施形態)
図4は第2実施形態を示す。上記第1実施形態においては、クランク室15の調圧を、吐出室39からの高圧冷媒ガスの導入量を調節することで行っている。しかし、本実施形態においては、吸入室38への冷媒ガスの導出量を調節することで、同クランク室15の調圧を行う点が異なる。
【0069】
すなわち、容量変更用給気通路91は、吐出室39とクランク室15の一部である収容孔27とを接続する。容量変更用抽気通路92はクランク室15と吸入室38とを接続し、同通路92上には容量制御弁93が介在されている。同容量制御弁93は、上記第1実施形態の容量制御弁49とは、吸入圧の設定値に対する高低に応じた弁体51の動作が逆になる。
【0070】
つまり、吸入圧が設定値より高いと、弁体51はポート50aから離間され、容量変更用抽気通路92の開度を大きくする。従って、クランク室15の圧力は、同容量変更用抽気通路92を介して吸入室38に放圧されて低下され、斜板23は最大傾角側に傾動される。
【0071】
吸入圧が設定値より低いと、弁体51はポート50aに近接され、容量変更用抽気通路92の開度を小さくする。従って、クランク室15の圧力は、容量変更用給気通路91を介した高圧冷媒ガスの導入により上昇され、斜板23は最小傾角側に傾動される。
【0072】
本実施形態において前記容量制御用抽気通路92は、容量制御弁93(ポート50a)より吸入室38側に位置する部分が、スプール用制御圧室66を経由されている。従って、同通路92において、高圧領域としてのクランク室15とスプール用制御圧室66とを接続する第1通路92aが、本実施形態のスプール用給気通路をなし、同スプール用制御圧室66と低圧領域としての吸入室38とを接続する第2通路92bが、スプール用抽気通路をなしている。
【0073】
ここで、例えば、容量制御弁93が吐出容量を非最小とすると、第1通路92aが開放され、クランク室15から同第1通路92aを介した高圧冷媒ガスの導入により、スプール制御圧室66の圧力が所定値よりも高くなる。従って、スプール60が、バネ65の付勢力との釣り合いにより弁形成体14に近接され、可動型吐出弁61が作用位置に配置される。
【0074】
また、前記容量制御弁93が吐出容量を最小とすると、第1通路92aが閉鎖され、クランク室15から同第1通路92aを介した高圧冷媒ガスの導入が停止される。従って、スプール用制御圧室66の圧力は、第2通路92bを介した吸入室38への冷媒ガスの導出により、所定値よりも低くなる。従って、スプール60が、バネ65の付勢力との釣り合いにより弁形成体14から離間され、可動型吐出弁61が不作用位置に配置される。
【0075】
前述したように本実施形態においては、電磁弁57が消磁されると、吐出容量を最小とすべく容量変更用抽気通路92が閉じられ、同通路92が上述した冷媒ガスの循環通路を構成することは不可能となる。従って、絞り94aを有した抜き通路94が、クランク室15と吸入室38とを接続して循環通路を構成し、潤滑油を含む冷媒ガスの内部循環時においては、同通路94がクランク室15内の冷媒ガスを吸入室38に導く役目をなす。なお、容量変更用給気通路91は収容孔27に接続されるため、前記通路46の入口46aと出口46bとの位置関係は上記第1実施形態とは逆になる。
【0076】
上記構成の本実施形態においても、第1実施形態の効果(1),(2),(4)及び(7)と同様な効果を奏する他、次のような効果も奏する。
(1)スプール用給気通路(第1通路92a)は、容量制御弁93を経由している。従って、同容量制御弁93はスプール制御手段として、クランク室15から第1通路92aを介してスプール用制御圧室66へ導入される冷媒ガスの量を調節する。つまり、外部冷媒回路71上の冷媒循環が阻止されると、第1通路92aを閉鎖して、クランク室15からスプール用制御圧室66への冷媒ガスの導入を停止させる。従って、スプール用制御圧室66の圧力は、吐出室39の圧力低下を待つことなく速やかに所定値よりも低下され、可動型吐出弁61が作用位置から不作用位置へ迅速に移動される。また、外部冷媒回路71上の冷媒循環が許容されると、第1通路92aの開度が大きくなって、クランク室15から第1通路92aを介してスプール用制御圧室66へ導入される冷媒ガスの量が多くなる。従って、スプール用制御圧室66の圧力が速やかに上昇され、可動型吐出弁61が不作用位置から作用位置へ迅速に移動されて、圧縮機本来の機能が速やかに発揮される。以上のように、外部冷媒回路71上の冷媒循環状態の変更に対する、可動型吐出弁61の応答性が向上される。
【0077】
(2)容量変更用抽気通路92は、容量制御弁93より吸入室38側においてスプール用制御圧室66を経由し、同通路92の第1通路92aがスプール用給気通路を、第2通路92bがスプール用抽気通路をそれぞれ兼ねる。従って、可動型吐出弁61のアンロード機構のために専用の通路を形成する必要がなく、同機構を簡単かつ安価に構成できる。
【0078】
なお、本発明は上記実施形態に限定されるものではなく、例えば、次のような態様でも実施できる。
(1)上記第1実施形態において、スプール用給気通路及びスプール用抽気通路を、容量変更用給気通路48から完全に独立して設け、同スプール用抽気通路上に、その開度を調節する専用の外部制御弁を設けてスプール制御手段としても良い。また、上記第2実施形態において、スプール用給気通路及びスプール用抽気通路を、容量変更用抽気通路92から完全に独立して設け、同スプール用給気通路上に、その開度を調節する専用の外部制御弁を設けてスプール制御手段としても良い。このようにすれば、最小吐出容量時以外にも、任意に可動型吐出弁61を不作用位置に配置させることが可能となる。
【0079】
(2)上記実施形態においては、スプール用制御圧室66の圧力を変更することで可動型吐出弁61を動作させていた。しかし、これに限定されるものではなく、同可動型吐出弁61を、電磁機構等のアクチュエータにより動作させるように構成しても良い。このようにすれば、最小吐出容量時以外にも、任意に可動型吐出弁61を不作用位置に配置させることが可能となる。
【0080】
(3)上記実施形態において可動型吐出弁61は、弁形成体14に対して接離されることで、作用位置と不作用位置との間を移動されていた。これを変更し、同可動型吐出弁61が、自身の軸線を中心として回動することで、作用位置と不作用位置との間を移動されるように構成しても良い。
【0081】
(4)スプール用制御圧室66と高圧領域(例えば、吐出室39やクランク室15等)とを、スプール用給気通路により接続するのみの構成とすること。そして、スプール60を、吐出容量の変更による高圧領域の圧力変化のみにより動作させること。つまり、吐出容量が最小となれば、高圧領域の圧力が低下され、スプール用制御圧室66の圧力が所定値よりも低くなる。従って、スプール60がバネ65の付勢力との釣り合いにより弁形成体14から離間移動され、可動型吐出弁61が作用位置から不作用位置に配置される。この状態から吐出容量が増大されると高圧領域の圧力が上昇され、スプール用制御圧室66の圧力が所定値よりも高くなる。従って、スプール60がバネ65の付勢力との釣り合いにより弁形成体14に近接移動され、可動型吐出弁61が不作用位置から作用位置に配置される。このようにすれば、可動型吐出弁61のアンロード機構のために、スプール用給気通路以外の通路構成を必要とせず、同機構を簡単かつ安価に構成できる。また、同スプール用給気通路は、例えば、上記第1実施形態のように容量制御弁を経由されないため、ハウジング内におけるその取り廻しに自由度がある。
【0082】
(5)前記(4)において、スプール用制御圧室66と低圧領域(例えば、吐出室39に対してクランク室15や、クランク室15に対して吸入室38等)とを、スプール用抽気通路により接続すること。つまり、高圧領域の圧力変化にともなう、同高圧領域からの冷媒ガスの導入量の変化と、スプール用抽気通路を介した低圧領域への冷媒ガスの導出量との兼ね合いにより、スプール用制御圧室66内の圧力を調節すること。このようにすれば、吐出容量が最小となった場合、スプール用制御圧室66の圧力は、スプール用抽気通路を介して速やかに所定値よりも低下され、可動型吐出弁61の作用位置から不作用位置への移動が迅速になされる。
【0083】
(6)給気通路48及び抽気通路91の両方に容量制御弁49,92を設けた圧縮機において具体化すること。つまり、クランク室15の調圧を、吐出室39からの高圧冷媒ガスの導入量を調節するとともに、吸入室38への冷媒ガスの導出量を調節することで行うようにすること。この場合、スプール用制御圧室66内の調圧を、上記第1実施形態のように行っても良いし、第2実施形態のように行っても良い。さらには、第1及び第2実施形態を合わせた方法、つまり、スプール用制御圧室66の圧力の変更を、同室66への冷媒ガスの導入量及び導出量の両方を調節することで行うように構成しても良い。
【0084】
(7)上記実施形態においては、クランク室15内の圧力を調節することで容量制御を行う圧縮機において具体化されていた。しかし、これに限定されるものではなく、シリンダボア12a内の圧力を調節することで容量制御を行う圧縮機において具体化しても良い。この場合、容量変更用制御圧室をクランク室15と別個に設け、同制御圧室の調圧により、シリンダボア12a内に流入される冷媒ガスの圧力を調節する。
【0085】
(8)ワッブルタイプの可変容量型圧縮機において具体化すること。
(9)クラッチ付きの可変容量型圧縮機において具体化すること。
上記実施形態から把握できる請求項に記載以外の技術的思想について記載すると、前記冷媒循環阻止手段57により外部冷媒回路71上の冷媒循環が阻止された時、カムプレート23を最小傾角に傾動させて吐出容量を最小とする容量制御手段49を備え、同容量制御手段49が前記スプール制御手段を構成する請求項2に記載の可変容量型圧縮機。
【0086】
このようにすれば、可動型吐出弁61を、冷媒循環阻止に応じて不作用位置に配置させるための専用のスプール制御手段を必要としない。従って、可動型吐出弁61のアンロード機構を簡単かつ安価に構成できる。
【0087】
【発明の効果】
上記構成の請求項1及び2の発明によれば、例えば、冷房不要時や、外部冷媒回路の蒸発器においてフロストが発生しそうな場合には、冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止される。この際、アンロード手段により可動型吐出弁が不作用位置に配置され、同弁が対応されたシリンダボア内での冷媒ガスの圧縮はなされず、動力損失が軽減される。
【0088】
また、外部冷媒回路上の冷媒循環が阻止されるため、冷房不要時や、外部冷媒回路の蒸発器においてフロストが発生しそうな場合においても、圧縮機の運転は継続されて良い。従って、請求項7の発明においては、駆動軸が外部駆動源に対して、高価かつ重量物である電磁クラッチ等のクラッチ機構を介することなく作動連結されている。従って、圧縮機の低コスト化、軽量化を図り得る。また、電磁クラッチのオン・オフによる体感フィーリングの悪化も同時に解決できる。
【0089】
請求項3及び5の発明によれば、容量制御弁がスプール制御手段を構成する。このため、外部冷媒回路上の冷媒循環阻止に応じてスプール用制御圧室の圧力を低下させるために、専用のスプール制御手段を備える必要がない。従って、可動型吐出弁のアンロード機構を簡単かつ安価に構成できる。また、容量制御弁は、外部冷媒回路上の冷媒循環が阻止されると、吐出容量を最小とする。従って、前述した動力損失の軽減が、さらに効果的に奏される。
【0090】
請求項4の発明によれば、容量変更用給気通路がスプール用給気通路及びスプール用抽気通路を兼ねる。従って、スプール制御圧室の圧力を調節するために専用の通路を形成する必要がなく、アンロード機構を簡単かつ安価に構成できる。
【0091】
請求項6の発明によれば、容量変更用抽気通路がスプール用給気通路及びスプール用抽気通路を兼ねる。従って、スプール制御圧室の圧力を調節するために専用の通路を形成する必要がなく、アンロード機構を簡単かつ安価に構成できる。
【図面の簡単な説明】
【図1】 クラッチレスタイプの可変容量型圧縮機の縦断面図。
【図2】 図1のA−A線に対応する断面図。
【図3】 圧縮機の動作を説明する図。
【図4】 第2実施形態を示す圧縮機の縦断面図。
【符号の説明】
11…ハウジング構成体としてのフロントハウジング、12…同じくシリンダブロック、12a…シリンダボア、13…ハウジング構成体としてのリヤハウジング、14…弁形成体、15…低圧領域としてのクランク室、16…駆動軸、23…カムプレートとしての斜板、38…吸入圧領域としての吸入室、39…高圧領域としての吐出室、42…吐出孔、43…固定型吐出弁、47…アンロード手段及び循環通路を構成する容量変更用抽気通路、48…同じく容量変更用給気通路、48a…スプール用給気通路としての第1通路、48b…スプール用抽気通路としての第2通路、49…アンロード手段を構成する容量制御弁、57…冷媒循環阻止手段としての電磁弁、60…スプール、61…可動型吐出弁、65…付勢手段としてのバネ、66…スプール用制御圧室、71…外部冷媒回路。

Claims (7)

  1. 複数のハウジング構成体が接合されてなるハウジングには駆動軸が回転可能に保持され、同ハウジング内には、吸入室、吐出室及びカムプレートを収容するクランク室が区画形成されるとともに、ピストンを収容する複数のシリンダボアが形成され、同吸入室及び吐出室が形成されたハウジング構成体とシリンダボアが形成されたハウジング構成体との間には、各シリンダボアに対応した複数の吐出孔を有する弁形成体が介在されており、前記カムプレートにより駆動軸の回転運動をピストンの往復直線運動に変換することで、冷媒ガスを吸入室からシリンダボア内に吸入して圧縮した後、吐出孔を介して吐出室へ吐出し、さらには、カムプレートの傾角を調節することで吐出容量を変更可能な可変容量型圧縮機において、
    外部冷媒回路上の冷媒循環を阻止するための冷媒循環阻止手段と、
    同冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、冷媒ガスを、吐出室、クランク室及び吸入室を経由して循環させる循環通路と、
    前記弁形成体に配設され、同弁形成体上の少なくとも一つで全部ではない吐出孔に対応する固定型吐出弁と、
    同固定型吐出弁が対応された吐出孔以外の吐出孔に対応し、吐出弁として作用される作用位置と、吐出弁として作用されない不作用位置との間を移動可能な可動型吐出弁と、
    前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、可動型吐出弁を不作用位置に配置するアンロード手段とを備えた可変容量型圧縮機。
  2. 前記可動型吐出弁は弁形成体に対して接離可能に構成され、前記アンロード手段は、
    ハウジング内部に配設されるとともに可動型吐出弁に連結され、弁形成体に対して近接・離間方向へ移動可能なスプールと、
    同スプールの背面側に区画形成されたスプール用制御圧室と、
    前記可動型吐出弁が弁形成体から離間するように、スプールを付勢する付勢手段と、
    前記スプール用制御圧室と吸入圧領域より高圧となる高圧領域とを接続するスプール用給気通路と、
    前記スプール用制御圧室と高圧領域より低圧な低圧領域とを接続するスプール用抽気通路と、
    前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時、高圧領域からスプール用給気通路を介して導入される冷媒ガスの量及び/又はスプール用抽気通路を介して導出される冷媒ガスの量を調節することで、前記スプール用制御圧室の圧力を低下させるスプール制御手段とを備えた請求項1に記載の可変容量型圧縮機。
  3. 前記カムプレートの傾角調節は、クランク室の圧力を調節することで、同クランク室の圧力とシリンダボア内の圧力とのピストンを介した差を変更して行われ、
    高圧領域である吐出圧領域と低圧領域である前記クランク室とを接続する容量変更用給気通路と、
    前記クランク室と吸入圧領域とを接続する容量変更用抽気通路と、
    前記容量変更用給気通路上に介在され、同通路の開度を調節することでクランク室の圧力を調節し、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時には、同通路の開度を大きくして吐出容量を最小とする容量制御弁とを備え、
    前記スプール用抽気通路は容量制御弁を経由され、同容量制御弁が前記スプール制御手段を構成する請求項2に記載の可変容量型圧縮機。
  4. 前記容量変更用給気通路は、容量制御弁より吐出圧領域側に位置する部分がスプール用制御圧室を経由され、同通路がスプール用給気通路及びスプール用抽気通路を兼ねる請求項3に記載の可変容量型圧縮機。
  5. 前記カムプレートの傾角調節は、クランク室の圧力を調節することで、同クランク室の圧力とシリンダボア内の圧力とのピストンを介した差を変更して行われ、
    吐出圧領域と高圧領域である前記クランク室とを接続する容量変更用給気通路と、
    前記クランク室と低圧領域である吸入圧領域とを接続する容量変更用抽気通路と、
    同容量変更用抽気通路上に介在され、同通路の開度を調節することでクランク室の圧力を変更し、前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環が阻止された時には、同通路の開度を小さくして吐出容量を最小とする容量制御弁とを備え、
    前記スプール用給気通路は容量制御弁を経由され、同容量制御弁が前記スプール制御手段を構成する請求項2に記載の可変容量型圧縮機。
  6. 前記容量変更用抽気通路は、容量制御弁より吸入圧領域側に位置する部分がスプール用制御圧室を経由され、同通路がスプール用給気通路及びスプール用抽気通路を兼ねる請求項5に記載の可変容量型圧縮機。
  7. 前記駆動軸は、クラッチ機構を介することなく外部駆動源に作動連結されている請求項1〜6のいずれかに記載の可変容量型圧縮機。
JP31239296A 1996-11-22 1996-11-22 可変容量型圧縮機 Expired - Fee Related JP3765137B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31239296A JP3765137B2 (ja) 1996-11-22 1996-11-22 可変容量型圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31239296A JP3765137B2 (ja) 1996-11-22 1996-11-22 可変容量型圧縮機

Publications (2)

Publication Number Publication Date
JPH10153175A JPH10153175A (ja) 1998-06-09
JP3765137B2 true JP3765137B2 (ja) 2006-04-12

Family

ID=18028706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31239296A Expired - Fee Related JP3765137B2 (ja) 1996-11-22 1996-11-22 可変容量型圧縮機

Country Status (1)

Country Link
JP (1) JP3765137B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145653A (ja) 1998-11-12 2000-05-26 Toyota Autom Loom Works Ltd 可変容量型圧縮機
JP2000265949A (ja) 1999-03-18 2000-09-26 Toyota Autom Loom Works Ltd 可変容量型圧縮機

Also Published As

Publication number Publication date
JPH10153175A (ja) 1998-06-09

Similar Documents

Publication Publication Date Title
US5865604A (en) Displacement controlling structure for clutchless variable displacement compressor
US6227812B1 (en) Refrigerant circuit and compressor
US6358017B1 (en) Control valve for variable displacement compressor
US5871337A (en) Swash-plate compressor with leakage passages through the discharge valves of the cylinders
JP3432995B2 (ja) 可変容量型圧縮機用制御弁
US5823294A (en) Lubrication mechanism in compressor
KR0165715B1 (ko) 가변용량형 압축기
JP3282457B2 (ja) 片頭ピストン型圧縮機
JPH11257217A (ja) 片側可変容量型圧縮機
US5616008A (en) Variable displacement compressor
US20080199328A1 (en) Suction throttle valve for variable displacement type compressor
JP3726759B2 (ja) 容量可変型圧縮機の制御装置
JPH09228956A (ja) 可変容量型圧縮機
US6203284B1 (en) Valve arrangement at the discharge chamber of a variable displacement compressor
JP3832012B2 (ja) 可変容量型圧縮機
JP3765137B2 (ja) 可変容量型圧縮機
EP1291523A2 (en) Displacement control device for variable displacement compressor
JPH09242667A (ja) 往復動型圧縮機
JPH10141221A (ja) 可変容量圧縮機
JPH09228957A (ja) クラッチレス可変容量圧縮機
EP1070845A1 (en) Crank pressure control mechanism of variable displacement compressor
JPH1037863A (ja) 可変容量型圧縮機
US5890878A (en) Valve structure in compressor
JP2003042065A (ja) ピストン式容量可変型流体機械
JPH10153171A (ja) 両頭ピストン式可変容量型圧縮機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

LAPS Cancellation because of no payment of annual fees