JP3764980B2 - マイクロ光造形装置 - Google Patents

マイクロ光造形装置 Download PDF

Info

Publication number
JP3764980B2
JP3764980B2 JP14049497A JP14049497A JP3764980B2 JP 3764980 B2 JP3764980 B2 JP 3764980B2 JP 14049497 A JP14049497 A JP 14049497A JP 14049497 A JP14049497 A JP 14049497A JP 3764980 B2 JP3764980 B2 JP 3764980B2
Authority
JP
Japan
Prior art keywords
elevator
light beam
liquid resin
film thickness
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14049497A
Other languages
English (en)
Other versions
JPH10329219A (ja
Inventor
宏生 浮田
健治 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Denken Co Ltd
Original Assignee
Ritsumeikan Trust
Denken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Denken Co Ltd filed Critical Ritsumeikan Trust
Priority to JP14049497A priority Critical patent/JP3764980B2/ja
Publication of JPH10329219A publication Critical patent/JPH10329219A/ja
Application granted granted Critical
Publication of JP3764980B2 publication Critical patent/JP3764980B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、感光性の液状樹脂に、光ビーム(レーザー光)をコントローラ等で制御しながら照射して光硬化させ、あらかじめ設定したスライスデータに基づく薄板状の単位積層膜を積層することにより、3次元の立体モデルを形成する光造形(光立体成形)法に使用されるマイクロ光造形装置に関する。
【0002】
【従来の技術】
一般に、光造形法においては、NC機械切削や工具による手作り等によることなく、中空体を含む3次元の立体モデルを作製することができる。また、この立体モデルの作製には、3次元CADにより、この立体モデルを水平方向に複数個に輪切りした薄板状のスライスデータ(形状データ)が利用されている。
【0003】
図13に示すように、従来のこの種のマイクロ光造形装置としては、例えば、(a) ,(b) 上面照射の自由液面方式、(c) 下面照射の規制液面方式、(d) 上面照射の規制液面方式のもの等が知られている(生田幸士:“マイクロ光造形(IHプロセス)”, OPTRONICS, 4, pp.103-108, 1996)。
【0004】
(a) の上面照射の自由液面方式では、所定位置に配置された上方に開口部3cを有する樹脂用容器3と、所定位置に水平姿勢で昇降自在且つ単独で水平面内移動自在に支持されて前記樹脂用容器3に注入する液状樹脂4中に浸漬されるエレベータ5と、前記液状樹脂4の液面4bより上方の所定位置に、この液状樹脂4を光硬化させる硬化用光ビーム6Aを下方へ照射可能に配備された光源(図示せず)と、該光源より下方の所定位置に、前記硬化用光ビーム6Aを下方へ集光可能且つ焦点位置調整可能に配備された集光レンズ(図示せず)とを備え、前記エレベータ5の水平位置と高さ位置とをコントローラ(図示せず)で制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータ5より上方の未硬化の液状樹脂層4aをその液面4bに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記エレベータ5上に所定厚さ及び所定形状の単位積層膜9を順次に積層して所定形状の立体モデル10を作製できるように構成されている。
【0005】
(b) の上面照射の自由液面方式では、上記(a) において、前記エレベータ5を使用せず、所定位置に略水平に配置される底板3aと側壁板3bとからなる樹脂用容器3が水平面内移動自在であると共に、この樹脂用容器3に、前記液状樹脂層4aが所定厚さとなるように適宜の量の液状樹脂4をその都度注入することにより、前記樹脂用容器3の底板3a上に単位積層膜9を順次に積層できるように構成されている。
【0006】
(c) の下面照射の規制液面方式では、所定位置に略水平に支持される底板3aと側壁板3bとからなり且つ前記底板3aの所定範囲が透明部材66で構成された樹脂用容器3と、上記(a) と同様の昇降自在且つ水平面内移動自在なエレベータ5と、前記樹脂用容器3の底板3aより下方の所定位置に、前記透明部材66中を透過して前記液状樹脂4を光硬化させる硬化用光ビーム6Aを上方へ照射可能に配備された光源(図示せず)と、該光源より上方の所定位置に、前記硬化用光ビーム6Aを上方へ集光可能且つ焦点位置調整可能に配備された集光レンズ(図示せず)とを備え、前記エレベータ5の水平位置と高さ位置とをコントローラ(図示せず)で制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータ5と透明部材66との間の未硬化の液状樹脂層4aを前記透明部材66の上面66dに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記エレベータ5の下面5bに所定厚さ及び所定形状の単位積層膜9を順次に積層できるように構成されている。
【0007】
(d) の上面照射の規制液面方式では、上記(b) と同様の樹脂用容器3と、少なくとも底板55aと側壁板55bとから中空状に形成され且つ前記底板55aの所定範囲が透明部材56で構成されていると共に、所定位置に前記底板55aが水平姿勢で昇降自在となるように支持されて前記樹脂用容器3に注入する液状樹脂4中にその下端部が浸漬されるエレベータ55と、該エレベータ55の底板55aより上方の所定位置に、上記(c) と同様の光源(図示せず)と集光レンズ(図示せず)とを備え、前記樹脂用容器3の水平位置と、前記エレベータ55の高さ位置とをコントローラ(図示せず)で制御することにより、あらかじめ設定したスライスデータに基づいて、前記樹脂用容器3の底板3aと透明部材56との間の未硬化の液状樹脂層4aを前記透明部材56の下面56eに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記樹脂用容器3の底板3a上に所定厚さ及び所定形状の単位積層膜9を順次に積層できるように構成されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記(a) 〜(d) のような従来のマイクロ光造形装置においては、前記硬化用光ビーム6Aの光源として光強度が変化する紫外線レーザが使用されているので、(a) 及び(b) のものでは、その光源の光強度変化により前記単位積層膜9の厚さhが変動するという問題点がある。また、この厚さhは、外気流による前記液状樹脂層4aの液面4bの波打ちによっても変動するという問題点がある(山口勝美ら:“紫外線感光樹脂を使ったマイクロストラクチャーの製造”,日本機械学会論文集C編, 62, 574, pp.677-682, 1996 )。
【0009】
また、この単位積層膜9(液状樹脂層4a)の厚さhは、(a) 、(c) 、及び(d) のものでは前記エレベータ5,55の降下時又は上昇時における機械精度に依存し、(b) のものでは前記液状樹脂4の注入量に依存するので、作製される立体モデル10の形状精度が高くないという問題点がある。
【0010】
更に、(c) 及び(d) の規制液面方式のものでは、(a) 及び(b) の自由液面方式のものよりは前記厚さhを小さくできるが、前記樹脂用容器3の底板3aとエレベータ5,55等との間に液状樹脂4がその粘性により侵入しなかったり、あるいは侵入した場合でも前記底板3aとエレベータ5,55等とが接着するので、前記厚さhを非常に小さくしようとしてもできないという問題点がある。
【0011】
加えて、前記光源としての紫外線レーザは大型であるので、装置自体の小型化が難しいという問題点がある。
【0012】
この発明は、以上のような問題点に鑑みてなされたものであり、単位積層膜の厚さが変動しにくく、しかもこの厚さを非常に小さくできると共に、作製される立体モデルの形状精度が高く、加えて装置自体も小型化できるマイクロ光造形装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するための手段とするところは、第1に、所定位置に配置された上方に開口部を有する樹脂用容器と、所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、前記液状樹脂の液面より上方の所定位置に配置されて、この液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータからの反射光を検出する光検出器とを有する光ヘッドとを備え、前記エレベータが樹脂用容器と共に若しくは単独で水平面内移動自在であるか、又は、前記光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータより上方の未硬化の液状樹脂層をその液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータ上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、前記光検出器で膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、前記エレベータの上面又は単位積層膜の上面を前記液状樹脂の液面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの上面に合わせた時を基準高さとし、この基準高さからのエレベータの降下幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことにある。
【0014】
第2に、所定位置に配置された上方に開口部を有する樹脂用容器と、所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、前記液状樹脂の液面より上方の所定位置に配置されて、この液状樹脂を光硬化させる硬化用光ビームとこれと同一波長の膜厚計測用光ビームとを照射可能な半導体レーザからなる光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータからの反射光を検出する光検出器とを有する光ヘッドとを備え、前記エレベータが樹脂用容器と共に若しくは単独で水平面内移動自在であるか、又は、前記光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータより上方の未硬化の液状樹脂層をその液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータ上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、前記エレベータ上における前記硬化用光ビームによる光硬化時の位置から側方へ所定距離離れた位置に、このエレベータ上の所定範囲に前記液状樹脂が侵入しないように包囲壁を立設し、該包囲壁内で前記光検出器により膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、前記エレベータの上面又は単位積層膜の上面を前記液状樹脂の液面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの上面に合わせた時を基準高さとし、この基準高さからのエレベータの降下幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことにある。
【0015】
第3に、前記エレベータ上に所定厚さのスペーサを載置し、このスペーサ上に前記単位積層膜を順次に積層できるように構成したことにある。
【0016】
第4に、所定位置に略水平に配置される底板と側壁板とからなる樹脂用容器と、少なくとも底板と側壁板とから中空状に形成され且つ前記底板の所定範囲が透明部材で構成されていると共に、所定位置に前記底板が水平姿勢で昇降自在となるように支持されて前記樹脂用容器に注入する液状樹脂中にその下端部が浸漬されるエレベータと、該エレベータの底板より上方の所定位置に配置されて、前記透明部材中を透過して前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、前記透明部材と未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームの樹脂用容器の底板からの反射光を検出する光検出器とを有する光ヘッドとを備え、前記樹脂用容器又は光ヘッドが水平面内移動自在であると共に、この樹脂用容器又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、あらかじめ設定したスライスデータに基づいて、前記樹脂用容器の底板と透明部材との間の未硬化の液状樹脂層を前記透明部材の下面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記樹脂用容器の底板上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、前記光検出器で膜厚計測用光ビームの焦点と樹脂用容器の底板との間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、前記透明部材の下面を前記樹脂用容器の底板の上面又は単位積層膜の上面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点を樹脂用容器の底板の上面に合わせた時を基準高さとし、この基準高さからのエレベータの上昇幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことにある。
【0017】
第5に、所定位置に略水平に支持される底板と側壁板とからなり且つ前記底板の所定範囲が透明部材で構成された樹脂用容器と、所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、前記樹脂用容器の底板より下方の所定位置に、前記透明部材中を透過して前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、前記透明部材と未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを上方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータの下面からの反射光を検出する光検出器とを有する光ヘッドとを備え、前記エレベータ又は光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータと透明部材との間の未硬化の液状樹脂層を前記透明部材の上面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータの下面に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、前記光検出器で膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、前記エレベータの下面又は単位積層膜の下面を前記透明部材の上面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの下面に合わせた時を基準高さとし、この基準高さからのエレベータの上昇幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことにある。
【0018】
第6に、所定位置に液状樹脂を滴下可能に支持された樹脂滴下手段と、該樹脂滴下手段からその上面に滴下される液状樹脂を回転の遠心力により所定厚さの液状樹脂層に形成可能なように、所定位置に水平姿勢で回転自在且つ昇降自在に配置されたスピナーと、該スピナーより上方の所定位置に、前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのスピナーからの反射光を検出する光検出器とを有する光ヘッドとを備え、前記スピナー又は光ヘッドが水平面内移動自在であると共に、前記樹脂滴下手段における液状樹脂の滴下量と、前記スピナーの回転速度と、前記スピナー又は光ヘッドの水平位置と、前記スピナーの高さ位置とをコントローラで制御することにより、あらかじめ設定したスライスデータに基づいて、前記スピナー上に形成される未硬化の液状樹脂層の所定範囲を、前記スピナーを静止させ且つ前記液状樹脂層の液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記スピナー上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、前記光検出器で膜厚計測用光ビームの焦点とスピナーとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、前記膜厚計測用光ビームの焦点をスピナーの上面に合わせた時を基準高さとし、この状態で前記液状樹脂層の厚さを前記スライスデータの設定厚さに形成して、前記基準高さからのスピナーの降下幅を、前記焦点誤差信号に基づいて前記設定厚さとすることにより、前記光硬化時における硬化用光ビームの焦点位置を略一定の高さに保持できるように構成したことにある。
【0019】
第7に、前記液状樹脂層の中心部分を光硬化させると共に、この中心部分から外方へ所定間隔離れた外周部分を光硬化させて、前記スピナー上に所定厚さ及び所定形状の単位積層膜と、この単位積層膜から外方へ所定間隔離れた単位積層包囲膜とをそれぞれ順次に積層できるように構成したことにある。
【0020】
第8に、前記スピナーを包囲するように所定位置に側面カバーを設けたことにある。
【0021】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて説明する。なお、既述の従来技術と同じ構成については、同一符号を付してその説明を省略する。ここで、下記第1乃至第3実施形態では上面照射の自由液面方式、第4実施形態では上面照射の規制液面方式、第5実施形態では下面照射の規制液面方式、第6実施形態ではスピナー方式のものについてそれぞれ説明する。
【0022】
図1及び図2に示すように、第1実施形態に係るマイクロ光造形装置1は、必要に応じて配備されるステージ2と、樹脂用容器3と、この樹脂用容器3に注入する液状樹脂4中に浸漬されるエレベータ5と、前記液状樹脂4を光硬化させる硬化用光ビーム6Aと未硬化及び硬化後の液状樹脂4中を透過する膜厚計測用光ビーム6Bを下方へ集光照射可能且つ焦点位置調整に配備された光ヘッド7とを備え、例えば前記ステージ2の水平位置とエレベータ5の高さ位置とをコントローラ8で制御することにより、あらかじめ設定したスライスデータに基づいて、前記エレベータ5より上方の未硬化の液状樹脂層4aをその液面4bに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記エレベータ5上に所定厚さ及び所定形状の単位積層膜9を順次に積層して所定形状の立体モデル10を作製できるように構成した、上面照射の自由液面方式のものである。
【0023】
そして、このマイクロ光造形装置1においては、前記膜厚計測用光ビーム6Bのエレベータ5からの反射光6Cを検出可能に前記光ヘッド7に内蔵された光検出器11で、膜厚計測用光ビーム6Bの焦点FBとエレベータ5との間隔を計測して焦点誤差信号fを前記コントローラ8へ送出させると共に、前記エレベータ5の上面5a又は単位積層膜9の上面9aを前記液状樹脂4の液面4bと同じ高さにし、且つ、前記膜厚計測用光ビーム6Bの焦点FBをエレベータ5の上面5aに合わせた時を基準高さとし、この基準高さからのエレベータ5の降下幅を、前記焦点誤差信号fに基づいて前記スライスデータの設定厚さΔhとすることにより、前記液状樹脂層4aの光硬化により形成される単位積層膜9の厚さが前記設定厚さΔhと略同一となるように構成されている。
【0024】
前記ステージ2は、必要に応じて所定位置に略水平に配備されている。そして、前記エレベータ5が例えば樹脂用容器3と共に水平面内移動自在となるようにするために、前記樹脂用容器3を配置したこのステージ2が水平面内移動自在とされている。この場合のその水平位置は、前記コントローラ8により制御されるが、このステージ2の代わりに、前記光ヘッド7を水平面内移動自在とした場合には、図1中に二点鎖線で示すように、この光ヘッド7の水平位置が前記コントローラ8により制御される。
【0025】
前記樹脂用容器3は、例えば、前記ステージ2上に配置され、底板3aと側壁板3bとから構成されて上方に開口部3cを有している。
【0026】
前記エレベータ5は、例えば、前記樹脂用容器3の底板3a上に載置した適宜の昇降装置12等に水平姿勢で昇降自在に固定され、この樹脂用容器3に注入する液状樹脂4中に浸漬される。また、このエレベータ5は、前記水平面内移動自在なステージ2上に配置した樹脂用容器3に固定されることにより、上記のように、この樹脂用容器3と共に水平面内移動自在となっている。なお、このエレベータ5の上面5aは、前記膜厚計測用光ビーム6Bを効率良く反射させるために鏡面研摩しておいてもよい。
【0027】
前記液状樹脂4としては、例えば、可視光線や紫外線の照射によって重合反応が開始されて光硬化されるラジカル重合性のモノマーやプレポリマー等が挙げられ、必要に応じて、例えばカンファーキノンと還元剤と色素等を混合したもの又はベンゾインメチルエーテル等の適宜の光増感剤を配合して使用される。このような液状樹脂4としては、低粘度で、安定性に優れると共に、感光性の高いものが望ましく、例えば、多官能メタクリレート等を好適に使用できる。
【0028】
前記光ヘッド7は、前記液状樹脂4を光硬化させる硬化用光ビーム6Aと、前記未硬化の液状樹脂4及び硬化後の単位積層膜9中を透過する膜厚計測用光ビーム6Bとを、その下端部に昇降自在に配備した集光レンズ13により下方へ集光照射可能且つ焦点位置調整可能に、例えば所定形状のアーム14等で前記液状樹脂4の液面4bより上方の所定位置に固定されている。
【0029】
この光ヘッド7としては、例えば図3及び図4に示すように、DVD(デジタル・ビデオ・ディスク)用の光ヘッド7(R.Katayama et al:“Dual wavelength Optical Head for 0.6 mm and 1.2 mm Substrate Thickness", Jpn.J.Appl.Phys., Vol.36 (1997), pp.460-466)等を使用できる。なお、図3及び図4中、13は集光レンズ、15はHOE(ホログラフィックオプティカルエレメント)、16はλ/4板、17は干渉フィルタ、18はPBS(プリズムビームスプリッタ)である。また、19Aは例えば波長635nmの硬化用光ビーム6Aを照射可能な半導体レーザからなる光源、19Bは例えば波長785nmの膜厚計測用光ビーム6Bを照射可能な半導体レーザからなる膜厚計測用光源、11は前記反射光6Cを検出し、前記膜厚計測用光ビーム6Bの焦点FBとエレベータ5との間隔を計測して焦点誤差信号fを前記コントローラ8へ送出可能な光検出器である。更に、20は前記硬化用光ビーム6Aの焦点位置調整用の光検出器、21は、波長635nmに対してはNA=0.6,波長785nmに対してはNA=0.45とするための干渉フィルタからなる可変開口である。
【0030】
前記コントローラ8は、所定位置に配備され、前記水平面内移動自在なエレベータ5、即ちステージ2又は光ヘッド7の水平位置と、前記昇降自在なエレベータ5の高さ位置とを制御する。そして、あらかじめ設定したスライスデータに基づいて、前記エレベータ5より上方の未硬化の液状樹脂層4aをその液面4bに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記エレベータ5上に所定厚さ及び所定形状の単位積層膜9を順次に積層することにより、所定形状の3次元の立体モデル10が作製される。
【0031】
なお、前記スライスデータは、前記立体モデル10を水平方向に複数個に輪切りにして得られる3次元CADによる薄板状の前記単位積層膜9の形状データであり、あらかじめ前記コントローラ8に記憶させておいてもよいし、あるいはこのコントローラ8を接続したコンピュータ等の記憶装置等にあらかじめ記憶させておき、必要に応じて読み出し可能としておいてもよい。
【0032】
次に、上記のように構成されたマイクロ光造形装置1の動作について説明する。
まず、前記樹脂用容器3に所定量の液状樹脂4を注入しておく。次いで、前記コントローラ8により、前記エレベータ5が昇降して、このエレベータ5の上面5aが前記液状樹脂4の液面4bと同じ高さになるように調整される。この状態で前記膜厚計測用光ビーム6Bの焦点FBが前記エレベータ5の上面5aに合わせられて基準高さとされた後、エレベータ5が降下する。このエレベータ5の降下は、前記焦点誤差信号fにより、エレベータ5の降下幅が前記スライスデータの設定厚さΔhと同じになった時点で止まる。この際、エレベータ5と前記液状樹脂4の液面4bとの間には、前記設定厚さΔhと略同じ厚さの液状樹脂層4aが形成されているので、その液面4bに前記硬化用光ビーム6Aの焦点FAが合わせられ、前記スライスデータに基づいて前記ステージ2又は光ヘッド7が水平面内移動すれば、前記設定厚さΔhと略同じ厚さで且つ所定形状の最下層の単位積層膜9がエレベータ5上に形成される。
【0033】
2層目より上層の単位積層膜9が形成される場合においては、その単位積層膜9の上面9aが前記液状樹脂4の液面4bと同じ高さにされた時点が基準高さとなる。その後は、上記と同様の動作が繰り返され、複数の単位積層膜9が積層されて立体モデル10が作製される。
【0034】
即ち、前記コントローラ8により、前記基準高さからのエレベータ5の降下幅を、前記焦点誤差信号fに基づいて前記スライスデータの設定厚さΔhとすることにより、前記液状樹脂層4aの光硬化により形成される単位積層膜9の厚さが前記設定厚さΔhと略同一となるように構成されているので、前記単位積層膜9をスライスデータに基づいてより精密に形成でき、そのため立体モデル10の形状精度が高いという利点がある。
【0035】
また、前記硬化用光ビーム6Aの光源19Aや膜厚計測用光ビーム6Bの膜厚計測用光源19Bは、いずれもそれ自体が小さい半導体レーザからなるので、これら光源19Aと膜厚計測用光源19Bの他、前記光検出器11や集光レンズ13等をも全て光ヘッド7にコンパクトに配備することができ、そのため、当該マイクロ光造形装置1自体を小型化できるという利点がある。また、半導体レーザからなる光源19Aから照射される硬化用光ビーム6Aは、1μm以下まで集光可能であるので立体モデル10をより精密に作製できると共に、光強度変化が少ないので前記単位積層膜9の厚さΔhが変動しにくいという利点もある。
【0036】
なお、この第1実施形態においては、前記ステージ2を水平面内移動自在とすることにより前記エレベータ5を水平面内移動自在としているが、これに限定されるものではなく、前記樹脂用容器3内に固定したこのエレベータ5自体を、公知の従来技術を利用して水平面内移動自在としておいてもよい。
【0037】
図5に示すように、第2実施形態に係るマイクロ光造形装置31は、上記第1実施形態において、前記エレベータ5を樹脂用容器3内に固定する代わりに、例えば所定位置に配備された図示しない昇降装置等に接続したアーム32等で略水平に支持することにより、水平姿勢で昇降自在且つ単独で水平面内移動自在となるようにしたものである。
【0038】
この場合、エレベータ5の水平位置が前記コントローラ8により制御されるが、上記と同様、このエレベータ5の代わりに前記光ヘッド7を水平面内移動自在とした場合には、図5中に二点鎖線で示すように、この光ヘッド7の水平位置が前記コントローラ8により制御される。その他の動作は、第1実施形態と同様である。
【0039】
従って、上記と同様、前記膜厚計測用光ビーム6Bによる計測を行うので、立体モデル10の形状精度が高いという利点がある。
【0040】
図6に示すように、第3実施形態に係るマイクロ光造形装置41は、上記第1又は第2実施形態において、前記光源19Aが硬化用光ビーム6Aとこれと同一波長の膜厚計測用光源6Bとを照射可能であり、前記エレベータ5上における前記硬化用光ビーム6Aによる光硬化時の位置から側方へ所定距離離れた位置に、このエレベータ5上の所定範囲Lに前記液状樹脂4が侵入しないように包囲壁42を立設し、該包囲壁42内で前記反射光6Cを検出すると共に、必要に応じて前記エレベータ5上に所定厚さのスペーサ43を載置し、このスペーサ43上に前記単位積層膜9を順次に積層できるように構成したものである。
【0041】
前記光ヘッドとしては、例えば図7に示すように、DVD(デジタル・ビデオ・ディスク)用の光ヘッド47(Y.Komma et al:“Dual Focus Optical Head with a Hologram-Integrated Lens", Jpn.J.Appl.Phys., Vol.36 (1997), pp.474-480)等を使用できる。なお、図7中、13,44は集光レンズ、45はビームスプリッター、49は例えば波長650nmの硬化用光ビーム6Aと膜厚計測用光源6Bを照射可能な半導体レーザからなる光源、50は検出レンズである。また、11は、前記膜厚計測用光ビーム6Bの前記エレベータ5からの反射光6Cを検出し、前記膜厚計測用光ビーム6Bの焦点FBとエレベータ5との間隔を計測して焦点誤差信号fを前記コントローラ8へ送出可能であると共に、前記硬化用光ビーム6Aの焦点位置調整が可能である光検出器である。
【0042】
次に、当該マイクロ光造形装置41の動作について説明する。
即ち、前記基準高さにおける膜厚計測用光ビーム6Bの焦点FBは、前記液状樹脂4が侵入していない前記包囲壁42内のエレベータ5の上面5aに合わせられる。次いで、前記ステージ2、エレベータ5、又は光ヘッド47が水平面内移動して、側方へ所定距離離れた位置にある前記スペーサ43の上方の液面4bに前記硬化用光ビーム6Aの焦点FAが合わせられ、上記と同様にしてスペーサ43上に単位積層膜9が積層される。
【0043】
なお、前記スペーサ43を使用する場合においてこのスペーサ43上に最下層の単位積層膜9を形成する際には、前記液状樹脂4の液面4bにエレベータ5の上面5aを合わせて基準高さとし、この基準高さからのエレベータ5の降下幅を前記単位積層膜5の厚さとスペーサ43の厚さの和としてもよいし、あるいは、前記液状樹脂4の液面4bにスペーサ43の上面43aを合わせて基準高さとし、この基準高さからのエレベータ5の降下幅を前記単位積層膜9の厚さとしてもよい。
【0044】
このように、前記硬化用光ビーム6Aと膜厚計測用光ビーム6Bが同一波長である光ヘッド47を使用する場合でも、膜厚計測用光ビーム6Bによる計測と硬化用光ビーム6Aによる光硬化とを所定距離離れた異なる位置で行うように構成しておけば、上記と同様、前記単位積層膜9をスライスデータに基づいてより精密に形成でき、そのため立体モデル10の形状精度が高いという利点等がある。
【0045】
また、この実施形態のように、前記スペーサ43を使用してこのスペーサ43上に単位積層膜9を積層できるようにした場合には、前記硬化用光ビーム6Aの焦点位置(光スポット)と膜厚計測用光ビーム6Bの焦点位置(光スポット)との間隔が大きい場合でも、上記の計測を行ってからの光硬化時における硬化用光ビーム6Aの焦点FA合わせをより小さい範囲で効率良くできるという利点がある。
【0046】
図8及び図9に示すように、第4実施形態に係るマイクロ光造形装置51は、上記第1実施形態において、エレベータ55が、少なくとも底板55aと側壁板55bとから中空状に形成され且つ前記底板55aの所定範囲が透明部材56で構成されていると共に、所定位置に前記底板55aが水平姿勢で昇降自在となるように支持されて前記樹脂用容器3に注入する液状樹脂4中にその下端部が浸漬されるようにした、上面照射の規制液面方式のものである。
【0047】
そして、このマイクロ光造形装置51は、前記膜厚計測用光ビーム6Bの前記樹脂用容器3の底板3aからの反射光6Cを前記光検出器11で検出し、前記膜厚計測用光ビーム6Bの焦点FBと樹脂用容器3の底板3aとの間隔を計測して焦点誤差信号fを前記コントローラ8へ送出させると共に、前記透明部材56の下面56eを前記樹脂用容器3の底板3aの上面3d又は単位積層膜9の上面9aと同じ高さにし、且つ、前記膜厚計測用光ビーム6Bの焦点FBを樹脂用容器3の底板3aの上面3dに合わせた時を基準高さとし、この基準高さからのエレベータ55の上昇幅を、前記焦点誤差信号fに基づいて前記スライスデータの設定厚さΔhとすることにより、前記液状樹脂層4aの光硬化により形成される単位積層膜9の厚さが前記設定厚さΔhと略同一となるように構成されている。
【0048】
次に、当該マイクロ光造形装置51の動作について説明する。
このマイクロ光造形装置51においては、前記単位積層膜9は、前記樹脂用容器3の底板3a上に積層される。即ち、まず、前記コントローラ8により、前記エレベータ55が昇降して、前記樹脂用容器3の底板3a上に前記エレベータ55の底板55aが当接するように載置される。この状態で前記透明部材56を透過した膜厚計測用光ビーム6Bの焦点FBが前記樹脂用容器3の底板3aの上面3dに合わせられて基準高さとされた後、エレベータ55が上昇する。このエレベータ55の上昇は、前記焦点誤差信号fにより、エレベータ55の上昇幅が前記スライスデータの設定厚さΔhと同じになった時点で止まる。この際、樹脂用容器3の底板3aと前記エレベータ55の底板55aとの間には、前記設定厚さΔhと略同じ厚さの液状樹脂層4aが形成されているので、その液面4b、即ち前記透明部材56の下面56eに前記硬化用光ビーム6Aの焦点FAが合わせられ、前記スライスデータに基づいて前記樹脂用容器3、即ちステージ2又は光ヘッド7が水平面内移動すれば、前記設定厚さΔhと略同じ厚さで且つ所定形状の最下層の単位積層膜9が前記樹脂用容器3の底板3a上に形成される。
【0049】
2層目より上層の単位積層膜9が形成される場合においては、その単位積層膜9の上面9aが前記透明部材56の下面56eに当接されている状態が基準高さとなる。その後は、上記と同様の動作が繰り返され、複数の単位積層膜9が前記樹脂用容器3の底板3a上に積層されて立体モデル10が作製される。
【0050】
このように、前記膜厚計測用光ビーム6Bによる計測を行うので立体モデル10の形状精度が高いのに加え、前記液状樹脂層4aの液面4bが前記エレベータ55の底板55aにより規制されるので、前記単位積層膜9の厚さが変動しないと共に、上記の自由液面方式に比べて単位積層膜9の厚さをより小さく形成できるという利点もある。
【0051】
図10及び図11に示すように、第5実施形態に係るマイクロ光造形装置61は、上記第4実施形態において、前記樹脂用容器3が、所定範囲を透明部材66で構成した底板3aと側壁板3bとからなり、例えば前記ステージ2上に、前記透明部材66がこのステージ2に形成した下面照射用開口部62の上方に位置するように載置されると共に、前記光ヘッド7が樹脂用容器3の底板3aより下方の所定位置に、前記硬化用光ビーム6Aと膜厚計測用光ビーム6Bとを上方へ集光照射可能且つ焦点位置調整可能に配備された、下面照射の規制液面方式のものである。
【0052】
即ち、このマイクロ光造形装置61においては、前記硬化用光ビーム6Aの焦点FAを前記樹脂用容器3の底板3aの透明部材66の上面66dに合わせることにより、前記エレベータ5の下面5bに単位積層膜9が下方へ積層される。この場合、前記膜厚計測用光ビーム6Bによる計測は、前記エレベータ5の下面5bからの反射光6Cを検出することにより行われる。また、前記コントローラ8により、水平面内移動自在なエレベータ5又は光ヘッド7の水平位置と、昇降自在なエレベータ5の高さ位置とが制御される。その他の動作については、第4実施形態とは上下が逆に、即ち、前記単位積層膜9が下方へ順次に積層されること以外は第4実施形態とほぼ同様である。
【0053】
このように、上記と同様、前記膜厚計測用光ビーム6Bによる計測を行うので立体モデル10の形状精度が高いのに加え、前記液状樹脂層4aの液面4b(下面)が前記樹脂用容器3の底板3aの透明部材66の上面66dにより規制されるので、前記単位積層膜9の厚さが変動しないと共に、上記の自由液面方式に比べて単位積層膜9の厚さをより小さく形成できるという利点もある。
【0054】
図12に示すように、第6実施形態に係るマイクロ光造形装置71は、必要に応じて水平姿勢で水平面内移動自在に配備されるステージ2と、樹脂滴下装置(樹脂滴下手段)72と、水平姿勢で回転自在且つ昇降自在であって前記ステージ2と共に水平面内移動自在であるスピナー73と、上記と同様の光ヘッド7と、前記樹脂滴下装置72における液状樹脂4の滴下量、前記スピナー73の回転速度、前記スピナー73、即ちステージ2又は光ヘッド7の水平位置及び前記スピナー73の高さ位置を制御するコントローラ8とを備え、あらかじめ設定したスライスデータに基づいて、前記スピナー73上に形成される未硬化の液状樹脂層4aの中心部分と、必要に応じてこの中心部分から外方へ所定間隔離れた外周部分とを、前記スピナー73を静止させ且つ前記液状樹脂層4aの液面4bに前記硬化用光ビーム6Aの焦点FAを合わせた状態で光硬化させて、前記スピナー73上に所定厚さ及び所定形状の単位積層膜9と、この単位積層膜9から外方へ所定間隔離れた単位積層包囲膜74とを順次に積層できるように構成したものである。
【0055】
そして、このマイクロ光造形装置71は、前記膜厚計測用光ビーム6Bのスピナー73からの反射光6Cを前記光検出器11で検出し、前記膜厚計測用光ビーム6Bの焦点FBとスピナー73との間隔を計測して焦点誤差信号fを前記コントローラ8へ送出させると共に、前記膜厚計測用光ビーム6Bの焦点FBをスピナー73の上面73aに合わせた時を基準高さとし、この状態で前記液状樹脂層4aの厚さを前記スライスデータの設定厚さΔhに形成して、前記基準高さからのスピナー73の降下幅を、前記焦点誤差信号fに基づいて前記設定厚さΔhとすることにより、前記光硬化時における硬化用光ビーム6Aの焦点位置を略一定の高さに保持できるように構成されている。
【0056】
前記ステージ2は、必要に応じて所定位置に水平姿勢で水平面内移動自在に配備され、このステージ2より上方の所定位置に、液状樹脂4を滴下可能に前記樹脂滴下装置72が支持されている。
【0057】
前記ステージ2は、前記スピナー73を水平面内移動自在とするために必要に応じて水平面内移動自在とされるが、このステージ2の代わりに、前記光ヘッド7を水平面内移動自在としてもよい。なお、この実施形態のように、必要に応じて例えばこのステージ2上等の所定位置に、前記スピナー73を包囲するように側面カバー75を設けておけば、前記スピナー73の回転による外方への液状樹脂4の飛散を防止できるという利点がある。
【0058】
また、前記樹脂滴下装置72における液状樹脂4の滴下量は、前記コントローラ8により制御されるが、樹脂滴下手段としては、この実施形態のような樹脂滴下装置72に限定されるものではなく、適宜のものを使用できる。
【0059】
前記スピナー73は、前記液状樹脂4がその上面73aに滴下され且つこの液状樹脂4を回転の遠心力により所定厚さの液状樹脂層4aに形成可能なように、例えば前記ステージ2上に水平姿勢で回転自在且つ昇降自在に固定されている。そして、このスピナー73の回転速度は、前記コントローラ8により制御され、その上面73aに形成される液状樹脂層4aが適宜の厚さとされる。
【0060】
前記コントローラ8は、所定位置に配備され、上記のように、前記樹脂滴下装置72における液状樹脂4の滴下量と、前記スピナー73の回転速度と、前記スピナー73、即ちステージ2又は光ヘッド7の水平位置と、前記スピナー73の高さ位置とを制御する。そして、あらかじめ設定したスライスデータに基づいて、前記スピナー73上に単位積層膜9と、必要に応じて単位積層包囲膜74とを順次に積層することにより、所定形状の3次元の立体モデル10が作製される。
【0061】
次に、上記のように構成されたマイクロ光造形装置71の動作について説明する。
まず、前記膜厚計測用光ビーム6Bの焦点FBをスピナー73の上面73aに合わせて基準高さとし、この状態で前記樹脂滴下装置72からスピナー73上へ所定量の液状樹脂4を滴下した後、前記コントローラ8によりスピナー73を適宜の速度で高速回転させ、その回転の遠心力により形成される液状樹脂層4aの厚さを前記スライスデータの設定厚さΔhに形成する。次いで、前記スピナー73が降下するが、その降下は、前記焦点誤差信号fにより、このスピナー73の降下幅が前記スライスデータの設定厚さΔhと同じになった時点で止まる。そして、前記液状樹脂層4aの液面4bに前記硬化用光ビーム6Aの焦点FAが合わせられ、前記スライスデータに基づいて前記スピナー73、即ちステージ2又は光ヘッド7が水平面内移動すれば、前記液状樹脂層4aの中心部分に前記設定厚さΔhと略同じ厚さで且つ所定形状の最下層の単位積層膜9が形成される。また、前記液状樹脂層4aの外周部分には、この単位積層膜9から外方へ所定間隔を開けて単位積層包囲膜74が形成される。
【0062】
2層目より上層の単位積層膜9と飛散防止用単位積層包囲膜74は、上記の動作を繰り返して形成される。なお、この実施形態のように、前記単位積層包囲膜74を形成した場合には、これら単位積層膜9と単位積層包囲膜74との間に液状樹脂4が溜まるので、この液状樹脂4により単位積層膜9を所定数積層した立体モデル10の前記スピナー73の回転時における変形や破損等が防止されると共に、液状樹脂4の飛散も防止されるという利点がある。
【0063】
当該マイクロ光造形装置71は、上記のように構成されているので、硬化用光ビーム6Aの焦点FA合わせが不要であるか又は必要な場合でも非常に短時間で済むという利点がある。また、このようなスピナー方式のものによれば、前記液状樹脂層4aの厚さを非常に小さくできるので、前記スライスデータの設定厚さΔhが非常に小さい場合でも十分に対応でき、そのため立体モデル10の形状精度をより高くできるという利点がある。
【0064】
以上、第2(第3)、第4乃至第6実施形態においては、エレベータ5,55やスピナー73を昇降自在としているが、これに限定されるものではなく、前記樹脂用容器3やスピナー73を配置する例えば前記ステージ2等を昇降自在とすることもできる。
【0065】
【発明の効果】
以上のように、請求項1の発明によれば、上面照射の自由液面方式において、前記コントローラにより、前記基準高さからのエレベータの降下幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成されているので、前記単位積層膜をスライスデータに基づいてより精密に形成でき、そのため立体モデルの形状精度が高いという利点がある。また、前記硬化用光ビームの光源や膜厚計測用光ビームの膜厚計測用光源は、いずれもそれ自体が小さい半導体レーザからなるので、これら光源と膜厚計測用光源の他、前記光検出器や集光レンズ等も全て光ヘッドにコンパクトに配備することができ、そのため、当該マイクロ光造形装置自体を小型化できるという利点がある。また、半導体レーザからなる光源から照射される硬化用光ビームは、1μm以下まで集光可能であるので立体モデルをより精密に作製できると共に、光強度変化が少ないので前記単位積層膜の厚さが変動しにくいという利点もある。
【0066】
請求項2の発明によれば、上面照射の自由液面方式において、前記硬化用光ビームと膜厚計測用光ビームが同一波長である光ヘッドを使用する場合でも、膜厚計測用光ビームによる計測と硬化用光ビームによる光硬化とを所定距離離れた異なる位置で行うように構成されているので、上記請求項1と同様の効果がある。
【0067】
請求項3の発明によれば、前記エレベータ上に所定厚さのスペーサを載置し、このスペーサ上に前記単位積層膜を順次に積層できるように構成しているので、上記請求項1及び請求項2の効果に加え、前記硬化用光ビームの焦点位置(光スポット)と膜厚計測用光ビームの焦点位置(光スポット)との間隔が大きい場合でも、上記の計測を行ってからの光硬化時における硬化用光ビームの焦点合わせをより小さい範囲で効率良くできるという利点がある。
【0068】
請求項4及び請求項5の発明によれば、上面照射又は下面照射の規制液面方式において、前記膜厚計測用光ビームによる計測を行うので立体モデルの形状精度が高いのに加え、前記液状樹脂層の液面が前記エレベータの底板により規制されるので、前記単位積層膜の厚さが変動しないと共に、上記の自由液面方式に比べて単位積層膜の厚さをより小さく形成できるという利点もある。
【0069】
請求項6の発明によれば、スピナー方式において、前記膜厚計測用光ビームの焦点をスピナーの上面に合わせた時を基準高さとし、この状態で前記液状樹脂層の厚さを前記スライスデータの設定厚さに形成して、前記基準高さからのステージの降下幅を、前記焦点誤差信号に基づいて前記設定厚さとすることにより、前記光硬化時における硬化用光ビームの焦点位置を略一定の高さに保持できるように構成されているので、硬化用光ビームの焦点合わせが不要であるか又は必要な場合でも非常に短時間で済むという利点がある。また、このようなスピナー方式のものによれば、前記液状樹脂層の厚さを非常に小さくできるので、前記スライスデータの設定厚さが非常に小さい場合でも十分に対応でき、そのため立体モデルの形状精度をより高くできるという利点がある。
【0070】
請求項7の発明によれば、前記液状樹脂層の中心部分を光硬化させると共に、この中心部分から外方へ所定間隔離れた外周部分を光硬化させて、前記スピナー上に所定厚さ及び所定形状の単位積層膜と、この単位積層膜から外方へ所定間隔離れた単位積層包囲膜とをそれぞれ順次に積層できるように構成されているので、前記単位積層膜と単位積層包囲膜との間に液状樹脂が溜まり、そのため、この液状樹脂により単位積層膜を所定数積層した立体モデルの前記スピナーの回転時における変形や破損等が防止されると共に、液状樹脂の飛散も防止されるという利点がある。
【0071】
請求項8の発明によれば、前記スピナーを包囲するように所定位置に側面カバーを設けているので、前記スピナーの回転による外方への液状樹脂の飛散を防止でき、そのためスピナーの回転速度を上げた場合でもこの側面カバーより外方が液状樹脂で汚れるおそれがないという利点がある。
【図面の簡単な説明】
【図1】第1実施形態に係るマイクロ光造形装置の概略断面説明図。
【図2】単位積層膜を光硬化させた状態を示す拡大断面説明図。
【図3】図1の光ヘッドの一例を示す構成説明図。
【図4】図1の光ヘッドの他例を示す構成説明図。
【図5】第2実施形態に係るマイクロ光造形装置の概略断面説明図。
【図6】第3実施形態に係るマイクロ光造形装置で単位積層膜を光硬化させた状態を示す拡大断面説明図。
【図7】図6の光ヘッドの一例を示す構成説明図。
【図8】第4実施形態に係るマイクロ光造形装置の概略断面説明図。
【図9】単位積層膜を光硬化させた状態を示す拡大断面説明図。
【図10】第5実施形態に係るマイクロ光造形装置の概略断面説明図。
【図11】単位積層膜を光硬化させた状態を示す拡大断面説明図。
【図12】第6実施形態に係るマイクロ光造形装置の概略断面説明図。
【図13】 (a) 及び(b) は上面照射の自由液面方式の従来例、(c) は下面照射の規制液面方式の従来例、(d) は上面照射の規制液面方式の従来例をそれぞれ示す概略断面説明図。
【符号の説明】
1,31,41,51,61,71 マイクロ光造形装置
3 樹脂用容器
3a 底板
3b 側壁板
3c 開口部
3d 底板の上面
4 液状樹脂
4a 液状樹脂層
4b 液面
5,55 エレベータ
5a 上面
5b 下面
55a 底板
55b 側壁板
6A 硬化用光ビーム
6B 膜厚計測用光ビーム
6C 反射光
FA,FB 焦点
7,47 光ヘッド
8 コントローラ
9 単位積層膜
9a 上面
11 光検出器
f 焦点誤差信号
Δh 設定厚さ
13 集光レンズ
19A,49 光源
19B 膜厚計測用光源
42 包囲壁
43 スペーサ
56,66 透明部材
56e 下面
66d 上面
72 樹脂滴下装置(樹脂滴下手段)
73 スピナー
73a 上面
74 単位積層包囲膜
75 側面カバー

Claims (8)

  1. 所定位置に配置された上方に開口部を有する樹脂用容器と、
    所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、
    前記液状樹脂の液面より上方の所定位置に配置されて、この液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータからの反射光を検出する光検出器とを有する光ヘッドとを備え、
    前記エレベータが樹脂用容器と共に若しくは単独で水平面内移動自在であるか、又は、前記光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、
    あらかじめ設定したスライスデータに基づいて、前記エレベータより上方の未硬化の液状樹脂層をその液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータ上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、
    前記光検出器で膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、
    前記エレベータの上面又は単位積層膜の上面を前記液状樹脂の液面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの上面に合わせた時を基準高さとし、この基準高さからのエレベータの降下幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、
    前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことを特徴とするマイクロ光造形装置。
  2. 所定位置に配置された上方に開口部を有する樹脂用容器と、
    所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、
    前記液状樹脂の液面より上方の所定位置に配置されて、この液状樹脂を光硬化させる硬化用光ビームとこれと同一波長の膜厚計測用光ビームとを照射可能な半導体レーザからなる光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータからの反射光を検出する光検出器とを有する光ヘッドとを備え、
    前記エレベータが樹脂用容器と共に若しくは単独で水平面内移動自在であるか、又は、前記光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、
    あらかじめ設定したスライスデータに基づいて、前記エレベータより上方の未硬化の液状樹脂層をその液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータ上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、
    前記エレベータ上における前記硬化用光ビームによる光硬化時の位置から側方へ所定距離離れた位置に、このエレベータ上の所定範囲に前記液状樹脂が侵入しないように包囲壁を立設し、該包囲壁内で前記光検出器により膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、
    前記エレベータの上面又は単位積層膜の上面を前記液状樹脂の液面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの上面に合わせた時を基準高さとし、この基準高さからのエレベータの降下幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、
    前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことを特徴とするマイクロ光造形装置。
  3. 前記エレベータ上に所定厚さのスペーサを載置し、このスペーサ上に前記単位積層膜を順次に積層できるように構成したことを特徴とする請求項2記載のマイクロ光造形装置。
  4. 所定位置に略水平に配置される底板と側壁板とからなる樹脂用容器と、
    少なくとも底板と側壁板とから中空状に形成され且つ前記底板の所定範囲が透明部材で構成されていると共に、所定位置に前記底板が水平姿勢で昇降自在となるように支持されて前記樹脂用容器に注入する液状樹脂中にその下端部が浸漬されるエレベータと、
    該エレベータの底板より上方の所定位置に配置されて、前記透明部材中を透過して前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、前記透明部材と未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームの樹脂用容器の底板からの反射光を検出する光検出器とを有する光ヘッドとを備え、
    前記樹脂用容器又は光ヘッドが水平面内移動自在であると共に、この樹脂用容器又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、
    あらかじめ設定したスライスデータに基づいて、前記樹脂用容器の底板と透明部材との間の未硬化の液状樹脂層を前記透明部材の下面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記樹脂用容器の底板上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、
    前記光検出器で膜厚計測用光ビームの焦点と樹脂用容器の底板との間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、
    前記透明部材の下面を前記樹脂用容器の底板の上面又は単位積層膜の上面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点を樹脂用容器の底板の上面に合わせた時を基準高さとし、この基準高さからのエレベータの上昇幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、
    前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことを特徴とするマイクロ光造形装置。
  5. 所定位置に略水平に支持される底板と側壁板とからなり且つ前記底板の所定範囲が透明部材で構成された樹脂用容器と、
    所定位置に水平姿勢で昇降自在に支持されて前記樹脂用容器に注入する液状樹脂中に浸漬されるエレベータと、
    前記樹脂用容器の底板より下方の所定位置に、前記透明部材中を透過して前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、前記透明部材と未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを上方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのエレベータの下面からの反射光を検出する光検出器とを有する光ヘッドとを備え、
    前記エレベータ又は光ヘッドが水平面内移動自在であると共に、このエレベータ又は光ヘッドの水平位置と、前記エレベータの高さ位置とをコントローラで制御することにより、
    あらかじめ設定したスライスデータに基づいて、前記エレベータと透明部材との間の未硬化の液状樹脂層を前記透明部材の上面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記エレベータの下面に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、
    前記光検出器で膜厚計測用光ビームの焦点とエレベータとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、
    前記エレベータの下面又は単位積層膜の下面を前記透明部材の上面と同じ高さにし、且つ、前記膜厚計測用光ビームの焦点をエレベータの下面に合わせた時を基準高さとし、この基準高さからのエレベータの上昇幅を、前記焦点誤差信号に基づいて前記スライスデータの設定厚さとすることにより、
    前記液状樹脂層の光硬化により形成される単位積層膜の厚さが前記設定厚さと略同一となるように構成したことを特徴とするマイクロ光造形装置。
  6. 所定位置に液状樹脂を滴下可能に支持された樹脂滴下手段と、
    該樹脂滴下手段からその上面に滴下される液状樹脂を回転の遠心力により所定厚さの液状樹脂層に形成可能なように、所定位置に水平姿勢で回転自在且つ昇降自在に配置されたスピナーと、
    該スピナーより上方の所定位置に、前記液状樹脂を光硬化させる硬化用光ビームを照射可能な半導体レーザからなる光源と、未硬化及び硬化後の液状樹脂中を透過する膜厚計測用光ビームを照射可能な半導体レーザからなる膜厚計測用光源と、前記硬化用光ビーム及び膜厚計測用光ビームを下方へ集光可能で且つそれらの焦点位置調整可能な集光レンズと、前記膜厚計測用光ビームのスピナーからの反射光を検出する光検出器とを有する光ヘッドとを備え、
    前記スピナー又は光ヘッドが水平面内移動自在であると共に、前記樹脂滴下手段における液状樹脂の滴下量と、前記スピナーの回転速度と、前記スピナー又は光ヘッドの水平位置と、前記スピナーの高さ位置とをコントローラで制御することにより、
    あらかじめ設定したスライスデータに基づいて、前記スピナー上に形成される未硬化の液状樹脂層の所定範囲を、前記スピナーを静止させ且つ前記液状樹脂層の液面に前記硬化用光ビームの焦点を合わせた状態で光硬化させて、前記スピナー上に所定厚さ及び所定形状の単位積層膜を順次に積層できるマイクロ光造形装置であって、
    前記光検出器で膜厚計測用光ビームの焦点とスピナーとの間隔を計測して焦点誤差信号を前記コントローラへ送出させると共に、
    前記膜厚計測用光ビームの焦点をスピナーの上面に合わせた時を基準高さとし、この状態で前記液状樹脂層の厚さを前記スライスデータの設定厚さに形成して、前記基準高さからのスピナーの降下幅を、前記焦点誤差信号に基づいて前記設定厚さとすることにより、
    前記光硬化時における硬化用光ビームの焦点位置を略一定の高さに保持できるように構成したことを特徴とするマイクロ光造形装置。
  7. 前記液状樹脂層の中心部分を光硬化させると共に、この中心部分から外方へ所定間隔離れた外周部分を光硬化させて、前記スピナー上に所定厚さ及び所定形状の単位積層膜と、この単位積層膜から外方へ所定間隔離れた単位積層包囲膜とをそれぞれ順次に積層できるように構成したことを特徴とする請求項6記載のマイクロ光造形装置。
  8. 前記スピナーを包囲するように所定位置に側面カバーを設けたことを特徴とする請求項6又は7記載のマイクロ光造形装置。
JP14049497A 1997-05-29 1997-05-29 マイクロ光造形装置 Expired - Fee Related JP3764980B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14049497A JP3764980B2 (ja) 1997-05-29 1997-05-29 マイクロ光造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14049497A JP3764980B2 (ja) 1997-05-29 1997-05-29 マイクロ光造形装置

Publications (2)

Publication Number Publication Date
JPH10329219A JPH10329219A (ja) 1998-12-15
JP3764980B2 true JP3764980B2 (ja) 2006-04-12

Family

ID=15269938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14049497A Expired - Fee Related JP3764980B2 (ja) 1997-05-29 1997-05-29 マイクロ光造形装置

Country Status (1)

Country Link
JP (1) JP3764980B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014140A (ja) * 2005-06-30 2007-01-18 Mitsubishi Electric Corp スロットレスモータのコイル保持枠、ステータ、スロットレスモータ、コイル保持枠の製造方法及びステータの製造方法
AT517956B1 (de) * 2015-12-22 2017-06-15 Klaus Stadlmann Dr Verfahren zur Erzeugung eines dreidimensionalen Körpers
TW201804269A (zh) * 2016-07-28 2018-02-01 禾鈶股份有限公司 利用全像投影之積層列印系統及其方法
KR102233625B1 (ko) * 2016-08-23 2021-03-31 캐논 가부시끼가이샤 3차원 조형 장치 및 3차원 조형물의 제조 방법
JP6844217B2 (ja) 2016-11-24 2021-03-17 ソニー株式会社 情報処理装置、造形装置、情報処理方法、およびプログラム
CN108454100B (zh) * 2018-04-09 2024-04-02 常州工业职业技术学院 基于全反射原理提高成型效果的光固化成型设备
WO2024024529A1 (ja) * 2022-07-25 2024-02-01 国立大学法人横浜国立大学 造形装置、造形物生産方法およびプログラム

Also Published As

Publication number Publication date
JPH10329219A (ja) 1998-12-15

Similar Documents

Publication Publication Date Title
TW591653B (en) Method of manufacturing an optically scannable information carrier
EP2067609B1 (en) Sterolithography apparatus
US20110272840A1 (en) Light Transmissive Mold and Apparatus For Imprinting a Pattern Onto a Material Applied on a Semiconductor Workpiece and Related Methods
EP2073059A1 (en) Imprint method, imprint apparatus, and process for producing chip
WO2010143466A1 (ja) ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法
CN109689342B (zh) 固化可光聚合的扩散反射性材料的方法
TW201020697A (en) Lithographic apparatus and device manufacturing method
JP2010179496A (ja) 光造形装置及び造形ベース
JP2007190734A (ja) パターン形成方法およびモールド
CN105856573A (zh) 一种高精度高速度连续3d打印机及其打印方法
JP3764980B2 (ja) マイクロ光造形装置
JP5759003B2 (ja) レンズウェハを製造するためのスタンピング工具、デバイスおよび方法
JP2000200434A (ja) 距離変化検知方法及び装置、フォ―カス制御方法及び装置、並びに全反射光検出方法
KR101025132B1 (ko) 블루레이 픽업 유니트를 이용한 광조형 장치
CN102007433A (zh) 薄膜悬浮光学元件及相关方法
JPH02178022A (ja) 立体形状形成装置
Wei Laser Heat-Mode Lithography
US20070024938A1 (en) Method and apparatus using hologram masks for printing composite patterns onto large substrates
TWI719261B (zh) 利用光學讀寫頭之積層製造裝置
US6596104B1 (en) Bonding apparatus and bonding method of optical disks
KR100682868B1 (ko) 마이크로 미러 및 그 제조방법
JP2617532B2 (ja) 三次元形状の形成方法および装置
JPS59121932A (ja) 自動焦点制御装置
CN109203468A (zh) 一种快速光固化3d打印装置
JPH0936033A (ja) 半導体露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees