JP3762261B2 - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP3762261B2
JP3762261B2 JP2001222970A JP2001222970A JP3762261B2 JP 3762261 B2 JP3762261 B2 JP 3762261B2 JP 2001222970 A JP2001222970 A JP 2001222970A JP 2001222970 A JP2001222970 A JP 2001222970A JP 3762261 B2 JP3762261 B2 JP 3762261B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
metal piece
hole
semiconductor element
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222970A
Other languages
Japanese (ja)
Other versions
JP2003037327A (en
Inventor
晃一 内本
絵美 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001222970A priority Critical patent/JP3762261B2/en
Publication of JP2003037327A publication Critical patent/JP2003037327A/en
Application granted granted Critical
Publication of JP3762261B2 publication Critical patent/JP3762261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光半導体素子を収納するための光半導体素子収納用パッケージに関し、特に光半導体素子収納用パッケージに設けられる入出力端子における熱電冷却素子のリード線の接続部を改善したものに関する。
【0002】
【従来の技術】
従来、マイクロ波帯やミリ波帯等の高周波信号を用いる半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子を収納するための光半導体素子収納用パッケージ(以下、光半導体パッケージという)を図4〜図6に示す。これらの図において、101は基体、102は枠体、103は蓋体、104は光半導体素子、107は入出力端子を示す。これら基体101、枠体102、蓋体103、入出力端子107とで、光半導体素子104を光半導体パッケージ内に収容する容器が基本的に構成される。
【0003】
基体101は、上側主面に光半導体素子104を載置する載置部101aを有し、載置部101aには光半導体素子104が熱電冷却素子105を間に介して金(Au)−シリコン(Si)ロウ材等の接着剤により接着固定されるものであり、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属材料から成る。
【0004】
枠体102は、基体101の上側主面に載置部101aを囲繞するように銀ロウ等のロウ材で接合され、側部に入出力端子107を嵌着する取付部102aが形成されたものであり、Fe−Ni−Co合金やFe−Ni合金等の金属材料から成る。
【0005】
入出力端子107は、アルミナ(Al23),窒化アルミニウム(AlN),ムライト(3Al23・2SiO2)等のセラミックスから成り、枠体102の内外に突出する平板部107aの突出部117a,117bと枠体102に嵌着される立壁部107bとを有している。また、光半導体パッケージの内外を導通するようにモリブデン(Mo)−マンガン(Mn),W等から成る金属ペーストを焼結したメタライズ配線層112が平板部107aの上面に被着されて光半導体素子104と外部電気回路基板とを電気的に接続する。また、入出力端子107は、枠体102を貫通してまたは切り欠いて形成された取付部102aに銀ロウ等のロウ材で嵌着される。
【0006】
その入出力端子107の熱電冷却素子105のリード線115の接続部は、図5のように、入出力端子107のメタライズ配線層112上の枠体102内側の部位に、Fe−Ni−Co合金やFe−Ni合金等の金属から成る金属端子106がその一端を入出力端子107から内側に突出するようにして銀ロウ等のロウ材を介して接合されて成る。これにより、金属端子106にリード線115を接続することにより隣接するメタライズ配線層112間に短絡を発生させることなく溶接または半田等により容易に接続することができ、その結果、内部に収容する熱電冷却素子105および光半導体素子104を常に正常かつ安定に作動させ得るものが提案されている(特開平11−214597号公報参照)。
【0007】
リード端子116は、入出力端子107のメタライズ配線層112に銀ロウ等のロウ材を介して接合され、外部電気回路と入出力端子107との高周波信号の入出力を行うものであり、Fe−Ni−Co合金等の金属材料から成る。また、シールリング108は、枠体102の上面に銀ロウ等のロウ材で接合され入出力端子107を上方より挟持するとともに、上面に蓋体103をシーム溶接等により接合するための接合媒体として機能する。
【0008】
光ファイバ固定部材109は、Fe−Ni−Co合金やFe−Ni合金等の金属から成り、例えばFe−Ni合金のインゴット(塊)をプレス加工により所定の筒状に製作される。この光ファイバ固定部材109は、光ファイバ110を挿通可能な貫通孔を有する筒体であり、枠体102内側の端部がサファイアやガラス等の透光性材料から成る窓部材111で塞がれており、外側端部から光ファイバ110の一端が挿通固定される。また、光ファイバ110は、その外側端部に金属製フランジ110aをYAGレーザ溶接法等で光ファイバ固定部材109に溶接することにより枠体102に固定される。これにより、光ファイバ110を介して内部に収容する光半導体素子104と外部との光信号の授受が可能となる。
【0009】
また、メタライズ配線層112の枠体102外側の部位には、外部電気回路との高周波信号の入出力を行うために、導電性を有するFe−Ni−Co合金等の金属材料から成るリード端子116が銀ロウ等のロウ材で接合されるとともに、枠体102内側の部位には、光半導体素子104と電気的に接続するためのボンディングワイヤ114が接合される。
【0010】
そして、基体101の載置部101aに光半導体素子104が熱電冷却素子105を間に介して接着固定され、光半導体素子104の電極をボンディングワイヤ114を介してメタライズ配線層112に接続させるとともに、熱電冷却素子105の電極に接続されたリード線115をメタライズ配線層112に半田を介して電気的に接続する。次に、枠体102の上面に蓋体103を接合させ、基体101と枠体102と入出力端子107とシールリング108と蓋体103とから成る容器内部に、光半導体素子104及び熱電冷却素子105を気密に収容する。最後に、枠体102の光ファイバ固定部材109に光ファイバ110の一端を挿通させるとともに、これを半田等の接着剤やレーザ溶接によって接合させ、光ファイバ110を枠体102に固定することによって、最終製品としての光半導体装置となる。そして、光ファイバ110を介して内部に収容する光半導体素子104と外部との光信号の授受が可能となる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記特開平11−214597号公報に記載された光半導体パッケージにおいては、熱電冷却素子105のリード線115を金属端子106の先端に押さえつけて、リード線115を半田付けまたは溶接する際に金属端子106の先端が上下に動いてしまい、リード線115を定位置で接合することが困難であった。その結果、リード線115と金属端子106との間での接続の信頼性が低下し、導通不良が発生して熱電冷却素子105の冷却機能が働かなくなり、光半導体素子104を正常に作動させることができなくなる場合があった。
【0012】
また、入出力端子107の平板部107aから枠体102の内側に突出している金属端子106自体が、熱電冷却素子105や光半導体素子104を実装する際に障害物となり作業性が低下する場合があった。さらに、金属端子106が障害物となるため、熱電冷却素子105自体を大きくすることができず冷却能力が低下し、光半導体素子104の長期信頼性の低下につながる場合があった。光半導体素子104、入出力端子107の平板部107aの幅を小さくしたりして熱電冷却素子105自体を大きくして冷却する構成を採り得るが、その場合、光半導体パッケージが大型化したり、リード線115と金属端子106間での接続強度が低下し導通不良等が発生する場合があった。
【0013】
さらに、板状の金属端子106の代わりに棒状の接続端子を立設し、その棒状部にリード線115を巻き付けてロウ付けする構成も採り得るが、その場合リード線115の巻き付け作業が煩雑なうえ、製品毎で一様な巻き付けが困難であり、巻き付けられたリード線115へのロウ材の濡れ具合や体積が不均一になり易い。そのため、製造の作業性が悪く歩留まりが低下するとともに、棒状の接続端子部で電気抵抗等の特性が製品によって変化し易くなるという問題点があった。
【0014】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、熱電冷却素子のリード線をメタライズ配線層にロウ付けされた金属片に確実に接続することができ、その結果、内部に収容する熱電冷却素子および光半導体素子を長期にわたり正常かつ安定に作動させることである。また、リード線のメタライズ配線層への接続作業が簡易化され、接続部での電気抵抗等の特性が製品によって一定したものとすることである。
【0015】
【課題を解決するための手段】
本発明の光半導体パッケージは、上側主面に光半導体素子が熱電冷却素子を介して載置される載置部を有する基体と、前記上側主面に前記載置部を囲繞するように取着された金属製の枠体と、該枠体を貫通してまたは切り欠いて形成された入出力端子の取付部と、上面の一辺側から対向する他辺側にかけて形成された複数のメタライズ配線層を有する誘電体から成る平板部および該平板部の上面に前記複数のメタライズ配線層を間に挟んで接合された誘電体から成る立壁部から構成され、前記取付部に嵌着された入出力端子とを具備した光半導体素子収納用パッケージにおいて、前記平板部の前記枠体内側の部位に上下面を貫通して形成されるとともに上面側開口から内側にかけて内寸法が小となる段差部が形成された貫通孔が設けられており、該貫通孔の前記段差部の底面に前記メタライズ配線層に接続されたメタライズ層が形成されているとともに金属片が前記貫通孔に嵌着されて前記メタライズ層にロウ付けされており、前記金属片にはその下方の前記貫通孔と略同位置に前記貫通孔よりも細い貫通穴が形成されていることを特徴とする。
【0016】
本発明は、上記の構成により、熱電冷却素子のリード線を金属片の貫通穴に通して金属片上に半田付けまたは溶接するときに、リード線を金属片に押さえつけた際に、金属片が上下動することがなくなり、リード線を容易に接続できる。そのため、熱電冷却素子のリード線と金属片との間での接続信頼性が向上し、熱電冷却素子の冷却機能が良好に働くことから、光半導体素子を正常に作動させることができる。また、平板部の貫通孔と、金属片に貫通孔に位置合わせした貫通穴があることで、熱電冷却素子のリード線を取りつける際の位置決めが容易にでき、確実にリード線と金属片を接続することができる。組み立て作業中やろう付け後の熱収縮により、リード線を下方に引っ張るような外力が加わることが多いが、この外力に対する強度がきわめて向上し、リード線の外れを解消することができる。
【0017】
さらに、入出力端子の平板部上にある金属片は、平板部から枠体内側に突出していないため、熱電冷却素子等を実装する際の障害物とはならず作業性が向上する。さらに、光半導体パッケージを大きくしたり、入出力端子の平板部の突出幅を小さくせずに熱電冷却素子自体を大きくすることができるので、冷却能力が向上し、光半導体素子の長期信頼性を向上させることができる。さらに、金属片の上面におけるリード線を接続するための半田等のロウ材の濡れ具合や体積は製品毎で均一化されるので、その接続部での電気抵抗等の特性が製品毎に一定化されるという作用効果も有する。
【0018】
本発明において、好ましくは、前記金属片は下側の横断面における外形形状が小さくなっていることを特徴とする。
【0019】
本発明は、上記の構成により、平板部と金属片を接続する際の位置決めおよび金属片の嵌合が容易になり、金属片の嵌め込みの作業性が向上する。また、金属片と熱電冷却素子のリード線を接続する際にも金属片の位置が製品毎に固定されているので、リード線の接続位置のばらつきも抑えることができる。さらに、金属片の下側と貫通孔の段差部との間に空隙が形成され、その空隙にロウ材のフィレットを形成することが可能となり、接続強度をさらに強化できる。
【0020】
本発明の光半導体装置は、上記本発明の光半導体パッケージと、前記載置部に載置された前記熱電冷却素子と、前記熱電冷却素子の上面に載置され前記入出力端子に電気的に接続された光半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする。
【0021】
本発明は、上記の構成により、上記の本発明特有の作用効果を有する光半導体パッケージを用いた信頼性の高い光半導体装置を提供できる。
【0022】
【発明の実施の形態】
本発明の光半導体パッケージについて以下に詳細に説明する。図1は本発明の光半導体パッケージについて実施の形態の例を示す断面図であり、図2は図1の斜視図を示し、図3は図2の入出力端子を示し、(a)は金属片周辺の部分拡大斜視図、(b)は金属片と金属片を載置する前の貫通孔周辺の部分拡大斜視図である。図1において、1は基体、2は枠体、3は蓋体、7は入出力端子、8はシールリングであり、これらで光半導体素子4を内部に収容するための容器が主に構成される。
【0023】
本発明の基体1は、その上側主面にIC,LSI,半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子4を熱電冷却素子5を間に介して載置するための載置部1aを有している。この基体1は、Fe−Ni−Co合金,Cu−W合金等の金属材料や、アルミナ(Al23),窒化アルミニウム(AlN),ムライト(3Al23・2SiO2)等のセラミックスから成る。金属材料から成る場合、例えば、Fe−Ni−Co合金のインゴット(塊)に圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって所定の形状に製作される。一方、セラミックスから成る場合、その原料粉末に適当な有機バインダや溶剤等を添加混合しペースト状と成し、このペーストをドクターブレード法やカレンダーロール法によってセラミックグリーンシートと成し、しかる後、セラミックグリーンシートに適当な打ち抜き加工を施し、これを複数枚積層し焼成することによって作製される。
【0024】
なお、基体1が金属材料から成る場合、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層を順次メッキ法により被着しておくのがよく、基体1が酸化腐蝕するのを有効に防止できるとともに、基体1の上側主面の載置部1aに光半導体素子4を熱電冷却素子5を間に介して強固に接着固定することができる。一方、基体1がセラミックスから成る場合、光半導体素子4を熱電冷却素子5を間に介して載置する載置部1aに耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層を順次メッキ法により被着しておくのがよく、載置部1aに光半導体素子4を熱電冷却素子5を間に介して強固に接着固定することができる。
【0025】
枠体2は、基体1の上側主面に載置部1aを囲繞するように取着され、Fe−Ni−Co合金やFe−Ni合金等の金属材料から成る。例えば、Fe−Ni−Co合金のインゴットをプレス加工により所定の枠状となすことによって製作される。また、枠体2には、内部に収容する光半導体素子4との間で光信号を授受するための光ファイバ10が挿通固定される筒状の光ファイバ固定部材9が、枠体2を貫通して銀ロウ等のロウ材を介して接合される。
【0026】
入出力端子7は、基体1,枠体2に熱膨張係数が近似するアルミナセラミックス等のセラミックスから成り、枠体2の内外に突出する平板部7aの突出部17a,17bと枠体2に嵌着される立壁部7bとを有している。また、光半導体パッケージの内外を導通するようにMo−Mn,W等から成る金属ペーストを焼結したメタライズ配線層12が平板部7a上面に被着されて、光半導体素子4と外部電気回路基板とを電気的に接続する。この入出力端子7は、枠体2を貫通してまたは切り欠いて形成された取付部2aに銀ロウ等のロウ材で嵌着される。
【0027】
本発明において、図3に示すように、入出力端子7の平板部7aの枠体2内側の部位に上下面を貫通して形成されるとともに上面側開口から内側にかけて内寸法が小となる段差部が形成された貫通孔18が設けられている。貫通孔18の段差部の底面にメタライズ配線層12に接続されたメタライズ層13が形成されているとともに金属片6が貫通孔18に嵌着されてメタライズ層13にロウ付けされている。さらに、金属片6にはその下方の貫通孔18と略同位置に貫通孔18よりも細い貫通穴19が形成されている。
【0028】
本発明の金属片6は、熱電冷却素子5のリード線15を電気的に接続するためのものである。図3においては、貫通孔18の開口形状と略同じ外形形状の金属片6を貫通孔18に嵌め込むようにしていることから、金属片6が容易に嵌着できるようになっているとともに、金属片6が貫通孔18の平板部7aの内部からに外に飛び出すのを防ぐことができる。
【0029】
上記の構成により、熱電冷却素子5のリード線15を金属片6の貫通穴19に通して金属片6上に半田付けや溶接で接合するとき、リード線15を金属片6に押さえつけた際に、金属片6が上下動することがなくなることから、リード線15を容易に接続できる。そのため、リード線15と金属片6の接続部の接続信頼性が向上し熱電冷却素子5の冷却機能が良好に働くことから、光半導体素子4を正常に作動させることができる。
【0030】
また、金属片6は入出力端子7の平板部7aの側面から枠体2内側に突出していないため、熱電冷却素子5および光半導体素子4を実装する際の障害物とはならず作業性が向上する。さらに、光半導体パッケージを大きくしたり、入出力端子7の平板部7aの突出幅を小さくせずに熱電冷却素子5自体を大きくすることができるので冷却能力が向上する。その結果、光半導体素子4を一定温度に冷却できる環境温度をより高く設定できるとともに、同一環境温度において、光半導体素子4をより低い温度設定で冷却可能となり、光半導体素子4の長期信頼性を向上させ得る。
【0031】
また、より好ましくは、図3のように貫通孔18の段差部から上側の外形形状および金属片6の平面視形状を略円形や略四角形とすることがよく、特に四角形の場合には角部を円弧状(Rをつけた形状)にすることがよい。この構成により、金属片6の側面と貫通孔18の内周面との接触面積が増大し、確実に金属片6が貫通孔18から枠体2内側に飛び出そうとするのを防ぐことができる。また、平板部7aの角部を円弧状にすることで、平板部7aへの応力を均一にするとともに緩和し角部からのクラック発生を防止できる。さらに、平板部7aの貫通孔18の縁も円弧状にすることで、金属片6を貫通孔18内に嵌合し易くなる。
【0032】
また、金属片6と、平板部7aの枠体2外側の突出部17bのメタライズ配線層12上に接続されたリード端子16とは、貫通孔18の段差部の底面にメタライズ配線層12に接続されたメタライズ層13を形成することにより、電気的に接続される。この構成により、平板部7aの枠体2内側の突出部17aにおいて貫通孔18の段差部から上側を大きく形成し貫通孔18と隣接するメタライズ配線層12との間隔が小さくなっても、この段差部によってメタライズ層13と隣接するメタライズ配線層12との間の短絡を防ぐことができる。また、金属片6を大きくできるためリード線15の実装面積を広くすることができる。
【0033】
この金属片6はFe−Ni−Co合金やFe−Ni合金等から成るのが良く、この場合リード線15を金属片6に容易に溶接することができる。従って、溶接に手間取って隣接するメタライズ配線層12間で短絡を発生させるようなことなく、リード線15を電気的に接続することができる。
【0034】
また、貫通孔18の段差部から上側の深さは0.2〜0.4mmがよい。0.2mm未満の場合、浅すぎて金属片6をしっかり嵌合し固定することができず、金属片6が外れる場合がある。また、0.4mmを超える場合、平板部7aを作製するためのセラミックグリーンシートを2層以上打ち抜いて段差部から上側を形成しなければならない場合があり、セラミックグリーンシートを積層した際の積層ずれにより、段差部から上側を所定の形状に形成できない場合がある。
【0035】
金属片6の厚さは0.25〜1mmとするのが好ましい。0.25mm未満だと、リード線15を金属片6に溶接する際に発生する熱が入出力端子7に早く伝わり吸収されるため、溶接作業が困難になる。また、金属片6が薄すぎるため、貫通孔18に金属片6を嵌着した際にロウ材が金属片6上面に這い上がってしまい、金属片6とリード線15を溶接する際にロウ材が支障となりリード線15が強固に接続できない場合がある。また、1mmを超えると、プレス加工による形成が困難となり、切削加工で加工せざるを得なくなる。すると、加工コストの上昇につながるという問題点がある。
【0036】
金属片6の外周面と貫通孔18の内周面との隙間は0.05mm以上であることが好ましい。0.05mm未満だと、隙間が狭くなり金属片6を貫通孔18の段差部の底面に接するように嵌着するのが困難になる。また、金属片6を貫通孔18に嵌着した際にロウ材が金属片6上面に這い上がってしまい、金属片6とリード線15を溶接する際にロウ材が支障となりリード線15が強固に接続できない場合がある。
【0037】
また、平板部7aの上下面を貫通した貫通孔18を設け、貫通孔18に位置を合わせて金属片6に貫通穴19を設けることで、貫通穴19がガイドの役割をはたすことができ、リード線15の挿入が容易になる。
【0038】
また本発明では、段差部より下方の貫通孔18の太さBに対する金属片6の貫通穴19の太さAの比がA/B=0.3〜0.8であることが好ましい。A/Bが0.3未満の場合、金属片6の貫通穴19の太さAが小さすぎてリード線15を挿入するのが困難になる。また、貫通孔18の太さBが大きくなりすぎると、平板部7aの上面に金属片6を嵌合するために十分な大きさの貫通孔18を確保するのが困難になり金属片6を安定に固定することができず、金属片6とリード線15の接続強度が低下し易くなる。さらに、A/Bが0.8を超えると、金属片6を貫通孔18の上側に嵌着したときに、ロウ材が金属片6の貫通穴19を通って金属片6上面に這い上がる可能性があるほか、貫通穴19がロウ材で埋まってしまい、リード線15を挿入できなくなる可能性がある。
【0039】
本発明は、平板部7aの枠体2内側の部位に上下面を貫通して形成されるとともに上面側開口から内側にかけて内寸法が小となる段差部が形成された貫通孔18が設けられており、貫通孔18の段差部の底面にメタライズ配線層12に接続されたメタライズ層13が形成されているとともに金属片6が貫通孔18に嵌着されてメタライズ層13にロウ付けされており、金属片6にはその下方の貫通孔18と略同位置に貫通孔18よりも細い貫通穴19が形成されていることにより、リード線15を金属片6上に溶接するためにリード線15を金属片6に押さえつけた際に、金属片6が上下動することがなくなり、リード線15を容易に接続できる。そのため、リード線15と金属片6との間での接続性が向上し熱電冷却素子5の冷却機能が良好に働くことから、光半導体素子4を正常に作動させることができる。また、金属片6に平板部7aの貫通孔18と位置を合わせて貫通穴19を設けたことで、リード線15を取付ける際の位置決めが容易にでき、確実にリード線15と金属片6を接続することができる。
【0040】
さらに、入出力端子7のメタライズ配線層12の端から金属片6が枠体2内側に確実に突出しないため、熱電冷却素子5等を実装する際の障害物とはならず作業性が向上する。また、光半導体パッケージを大きくしたり、入出力端子7の平板部7aの突出幅を小さくせずに、熱電冷却素子5自体を大きくすることができるので、冷却能力が向上し、光半導体素子4の長期信頼性が向上する。さらに、金属片6の上面におけるリード線15を接続するための半田等のロウ材の濡れ具合や体積は製品毎で均一化されるので、その接続部での電気抵抗等の特性が製品毎に一定化されるという作用効果も有する。
【0041】
また、好ましくは金属片6は下側の横断面における外形形状が小さくなっていることにより、平板部7aと金属片6を接続する際の位置決めおよび金属片6の嵌合が容易になり、金属片6の嵌め込みの作業性が向上する。また、金属片6とリード線15とを接続する際にも、金属片6の位置が製品毎に固定されているので、リード線15の接続位置のばらつきも抑えることができる。
【0042】
本発明の光半導体装置は、本発明の光半導体パッケージと、載置部1aに載置された熱電冷却素子5と、熱電冷却素子5の上面に載置され入出力端子7に電気的に接続された光半導体素子4と、枠体2の上面に接合された蓋体3とを具備したことにより、上記本発明の作用効果を有する光半導体パッケージを用いた信頼性の高いものとなる。この光半導体装置において、光ファイバは光半導体装置が外部電気回路基板等に搭載された後に設けることもでき、または製品としての光半導体装置自体に設けておくこともできる。
【0043】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0044】
【発明の効果】
本発明は、入出力端子の平板部の枠体内側の部位に上下面を貫通して形成されるとともに上面側開口から内側にかけて内寸法が小となる段差部が形成された貫通孔が設けられており、貫通孔の段差部の底面にメタライズ配線層に接続されたメタライズ層が形成されているとともに金属片が貫通孔に嵌着されてメタライズ層にロウ付けされており、金属片にはその下方の貫通孔と略同位置に貫通孔よりも細い貫通穴が形成されていることにより、リード線を金属片上に溶接するためにリード線を金属片に押さえつけた際に、金属片が上下動することがなくなり、リード線を容易に接続できる。そのため、リード線と金属片との間での接続性が向上し熱電冷却素子の冷却機能が良好に働くことから、光半導体素子を正常に作動させることができる。
【0045】
また、金属片にはその下方の貫通孔と略同位置に貫通孔よりも細い貫通穴が形成されていることにより、熱電冷却素子のリード線を取りつける際の位置決めが容易にでき確実にリード線と金属片を接続することができる。また、組み立て作業中やろう付け後の熱収縮により、リード線を下方に引っ張るような外力が加わることが多いが、この外力に対する強度がきわめて向上し、リード線の外れを解消することができる。
【0046】
さらに、入出力端子のメタライズ配線層の端から金属片が枠体内側に突出しないため、熱電冷却素子等を実装する際の障害物とならず作業性が向上する。さらに、光半導体パッケージを大きくしたり、入出力端子の平板部の幅を小さくせずに熱電冷却素子自体を大きくすることができるので、冷却能力が向上し光半導体素子の長期信頼性を向上させ得る。さらに、金属片の上面におけるリード線を接続するための半田等のロウ材の濡れ具合や体積は製品毎で均一化されるので、その接続部での電気抵抗等の特性が製品毎に一定化されるという作用効果も有する。
【0047】
本発明は、好ましくは金属片は下側の横断面における外形形状が小さくなっていることにより、平板部と金属片を接続する際の位置決めおよび金属片の嵌合が容易になり、組立の作業性が向上する。また、金属片と熱電冷却素子のリード線を接続する際にも、金属片の位置が製品毎に固定されているので、リード線の接続位置のばらつきも抑えられる。
【0048】
本発明の光半導体装置は、本発明の光半導体パッケージと、載置部に載置された熱電冷却素子と、熱電冷却素子の上面に載置され入出力端子に電気的に接続された光半導体素子と、枠体の上面に接合された蓋体とを具備したことにより、本発明の作用効果を有する光半導体パッケージを用いた信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体パッケージについて実施の形態の例を示す断面図である。
【図2】図1の光半導体パッケージの斜視図である。
【図3】図1の光半導体パッケージの入出力端子を示し、(a)は金属片周辺の部分拡大斜視図、(b)は金属片および金属片を載置する前の貫通孔周辺の部分拡大斜視図である。
【図4】従来の光半導体パッケージの断面図である。
【図5】図4の光半導体パッケージの斜視図である。
【図6】図4の光半導体パッケージの入出力端子における金属端子周辺の部分拡大斜視図である。
【符号の説明】
1:基体
1a:載置部
2:枠体
2a:取付部
3:蓋体
4:光半導体素子
5:熱電冷却素子
6:金属片
7:入出力端子
7a:平板部
7b:立壁部
12:メタライズ配線層
13:メタライズ層
18:貫通孔
19:貫通穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element, and more particularly to an improved lead wire connecting portion of a thermoelectric cooling element at an input / output terminal provided in the optical semiconductor element housing package.
[0002]
[Prior art]
Conventionally, an optical semiconductor element storage package (hereinafter referred to as an optical semiconductor package) for storing an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD) using a high frequency signal such as a microwave band or a millimeter wave band. Are shown in FIGS. In these figures, 101 is a base, 102 is a frame, 103 is a lid, 104 is an optical semiconductor element, and 107 is an input / output terminal. The base 101, the frame body 102, the lid body 103, and the input / output terminals 107 basically constitute a container for housing the optical semiconductor element 104 in the optical semiconductor package.
[0003]
The base 101 has a mounting portion 101a on which the optical semiconductor element 104 is mounted on the upper main surface, and the optical semiconductor element 104 is placed on the mounting portion 101a with gold (Au) -silicon interposed with the thermoelectric cooling element 105 interposed therebetween. It is bonded and fixed by an adhesive such as (Si) brazing material, and is made of a metal material such as iron (Fe) -nickel (Ni) -cobalt (Co) alloy or copper (Cu) -tungsten (W) alloy. .
[0004]
The frame body 102 is joined to the upper main surface of the base body 101 with a brazing material such as silver brazing so as to surround the mounting portion 101a, and a mounting portion 102a for fitting the input / output terminal 107 is formed on the side portion. And made of a metal material such as Fe-Ni-Co alloy or Fe-Ni alloy.
[0005]
The input / output terminal 107 is made of ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), mullite (3Al 2 O 3 .2SiO 2 ), and the protruding portion of the flat plate portion 107 a that protrudes into and out of the frame body 102. 117a, 117b and a standing wall portion 107b fitted to the frame body 102. Further, a metallized wiring layer 112 obtained by sintering a metal paste made of molybdenum (Mo) -manganese (Mn), W or the like so as to conduct between the inside and the outside of the optical semiconductor package is deposited on the upper surface of the flat plate portion 107a, and the optical semiconductor element. 104 and an external electric circuit board are electrically connected. The input / output terminal 107 is fitted with a brazing material such as silver brazing into an attachment portion 102a formed by penetrating or notching the frame body 102.
[0006]
As shown in FIG. 5, the connection portion of the lead wire 115 of the thermoelectric cooling element 105 of the input / output terminal 107 is formed in a region inside the frame body 102 on the metallized wiring layer 112 of the input / output terminal 107. And a metal terminal 106 made of a metal such as Fe—Ni alloy is joined via a brazing material such as silver solder so that one end of the metal terminal 106 protrudes inward from the input / output terminal 107. Accordingly, by connecting the lead wire 115 to the metal terminal 106, it is possible to easily connect by welding or soldering without causing a short circuit between the adjacent metallized wiring layers 112. A cooling element 105 and an optical semiconductor element 104 that can always operate normally and stably have been proposed (see Japanese Patent Application Laid-Open No. 11-214597).
[0007]
The lead terminal 116 is joined to the metallized wiring layer 112 of the input / output terminal 107 via a brazing material such as silver solder, and performs input / output of a high-frequency signal between the external electric circuit and the input / output terminal 107. It consists of metal materials, such as a Ni-Co alloy. The seal ring 108 is joined to the upper surface of the frame body 102 with a brazing material such as silver brazing, and the input / output terminal 107 is sandwiched from above, and as a joining medium for joining the lid body 103 to the upper surface by seam welding or the like. Function.
[0008]
The optical fiber fixing member 109 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, an ingot of the Fe—Ni alloy is formed into a predetermined cylindrical shape by pressing. This optical fiber fixing member 109 is a cylindrical body having a through-hole through which the optical fiber 110 can be inserted, and an end portion inside the frame body 102 is closed by a window member 111 made of a translucent material such as sapphire or glass. One end of the optical fiber 110 is inserted and fixed from the outer end. Further, the optical fiber 110 is fixed to the frame 102 by welding a metal flange 110a to the optical fiber fixing member 109 at the outer end thereof by the YAG laser welding method or the like. As a result, optical signals can be exchanged between the optical semiconductor element 104 housed inside and the outside via the optical fiber 110.
[0009]
In addition, a lead terminal 116 made of a metal material such as an Fe-Ni-Co alloy having conductivity is provided at a portion of the metallized wiring layer 112 outside the frame 102 in order to input and output a high-frequency signal with an external electric circuit. Are joined by a brazing material such as silver brazing, and a bonding wire 114 for electrical connection to the optical semiconductor element 104 is joined to a portion inside the frame 102.
[0010]
Then, the optical semiconductor element 104 is bonded and fixed to the mounting portion 101a of the base 101 via the thermoelectric cooling element 105, and the electrode of the optical semiconductor element 104 is connected to the metallized wiring layer 112 via the bonding wire 114, The lead wire 115 connected to the electrode of the thermoelectric cooling element 105 is electrically connected to the metallized wiring layer 112 via solder. Next, the lid 103 is joined to the upper surface of the frame 102, and the optical semiconductor element 104 and the thermoelectric cooling element are placed inside the container including the base 101, the frame 102, the input / output terminal 107, the seal ring 108, and the lid 103. 105 is stored in an airtight manner. Finally, one end of the optical fiber 110 is inserted into the optical fiber fixing member 109 of the frame 102, and this is joined by an adhesive such as solder or laser welding, and the optical fiber 110 is fixed to the frame 102, It becomes an optical semiconductor device as a final product. In addition, optical signals can be exchanged between the optical semiconductor element 104 housed inside and the outside via the optical fiber 110.
[0011]
[Problems to be solved by the invention]
However, in the optical semiconductor package described in Japanese Patent Application Laid-Open No. 11-214597, when the lead wire 115 of the thermoelectric cooling element 105 is pressed against the tip of the metal terminal 106 and the lead wire 115 is soldered or welded, the metal The tip of the terminal 106 moved up and down, and it was difficult to join the lead wire 115 at a fixed position. As a result, the reliability of the connection between the lead wire 115 and the metal terminal 106 is lowered, a conduction failure occurs, the cooling function of the thermoelectric cooling element 105 does not work, and the optical semiconductor element 104 operates normally. There was a case that could not be.
[0012]
Further, the metal terminal 106 itself protruding from the flat plate portion 107a of the input / output terminal 107 to the inside of the frame body 102 may become an obstacle when mounting the thermoelectric cooling element 105 or the optical semiconductor element 104, and the workability may be reduced. there were. Furthermore, since the metal terminal 106 becomes an obstacle, the thermoelectric cooling element 105 itself cannot be enlarged, and the cooling capacity is lowered, which may lead to a decrease in long-term reliability of the optical semiconductor element 104. It is possible to adopt a configuration in which the thermoelectric cooling element 105 itself is enlarged and cooled by reducing the widths of the optical semiconductor element 104 and the flat plate portion 107a of the input / output terminal 107. In some cases, the connection strength between the wire 115 and the metal terminal 106 is reduced, resulting in poor conduction.
[0013]
Furthermore, it is possible to adopt a configuration in which a rod-shaped connection terminal is erected in place of the plate-shaped metal terminal 106 and the lead wire 115 is wound around the rod-shaped portion and brazed, but in that case, the winding operation of the lead wire 115 is complicated. In addition, uniform winding is difficult for each product, and the degree of wetting and volume of the brazing material around the wound lead wire 115 tends to be uneven. For this reason, there are problems in that the workability of the manufacturing is poor and the yield is lowered, and the characteristics such as electric resistance are easily changed depending on the product in the rod-like connection terminal portion.
[0014]
Therefore, the present invention has been completed in view of the above problems, and its purpose is to reliably connect the lead wire of the thermoelectric cooling element to the metal piece brazed to the metallized wiring layer. It is to operate the thermoelectric cooling element and the optical semiconductor element accommodated therein normally and stably over a long period of time. Moreover, the connection work of the lead wire to the metallized wiring layer is simplified, and the characteristics such as the electrical resistance at the connection portion are made constant depending on the product.
[0015]
[Means for Solving the Problems]
An optical semiconductor package of the present invention is attached so that an optical semiconductor element is mounted on an upper main surface through a thermoelectric cooling element, and a base has a mounting portion surrounding the mounting portion on the upper main surface. Metal frame body, input / output terminal mounting portion formed through or cutting out the frame body, and a plurality of metallized wiring layers formed from one side of the upper surface to the opposite side An input / output terminal comprising a flat plate portion made of a dielectric material and a standing wall portion made of a dielectric material joined to the upper surface of the flat plate portion with the plurality of metallized wiring layers interposed therebetween, and fitted to the mounting portion In the package for housing an optical semiconductor element, a stepped portion is formed through the top and bottom surfaces of the flat plate portion on the inner side of the frame body, and a step portion having a smaller inner dimension from the upper surface side opening to the inside is formed. Through holes are provided. A metallized layer connected to the metallized wiring layer is formed on the bottom surface of the stepped portion of the through-hole, and a metal piece is fitted into the through-hole and brazed to the metallized layer. The piece is characterized in that a through hole narrower than the through hole is formed at substantially the same position as the through hole below.
[0016]
According to the present invention, when the lead wire of the thermoelectric cooling element is passed through the through hole of the metal piece and soldered or welded onto the metal piece, the metal piece is The lead wire can be easily connected. Therefore, the connection reliability between the lead wire of the thermoelectric cooling element and the metal piece is improved, and the cooling function of the thermoelectric cooling element works well, so that the optical semiconductor element can be operated normally. In addition, the through hole in the flat plate part and the through hole aligned with the through hole in the metal piece facilitate positioning when attaching the lead wire of the thermoelectric cooling element, and securely connect the lead wire and the metal piece. can do. An external force that pulls the lead wire downward is often applied due to heat shrinkage during assembly work or after brazing, but the strength against this external force is greatly improved, and the lead wire can be prevented from coming off.
[0017]
Furthermore, since the metal piece on the flat plate portion of the input / output terminal does not protrude from the flat plate portion to the inside of the frame body, the metal piece does not become an obstacle when mounting a thermoelectric cooling element or the like, and the workability is improved. Furthermore, since the thermoelectric cooling element itself can be enlarged without increasing the size of the optical semiconductor package or reducing the protruding width of the flat portion of the input / output terminal, the cooling capacity is improved and the long-term reliability of the optical semiconductor element is improved. Can be improved. In addition, the wetting condition and volume of soldering material such as solder for connecting the lead wires on the upper surface of the metal piece are made uniform for each product, so the characteristics such as electrical resistance at the connection are made constant for each product. It also has the effect of being.
[0018]
In the present invention, preferably, the metal piece has a small outer shape in a lower cross section.
[0019]
According to the present invention, the above configuration facilitates positioning and fitting of the metal piece when connecting the flat plate portion and the metal piece, and improves workability of fitting the metal piece. In addition, since the position of the metal piece is fixed for each product when the metal piece and the lead wire of the thermoelectric cooling element are connected, the variation in the connection position of the lead wire can also be suppressed. Furthermore, a gap is formed between the lower side of the metal piece and the step portion of the through hole, and it becomes possible to form a filler fillet in the gap, thereby further strengthening the connection strength.
[0020]
An optical semiconductor device according to the present invention includes the optical semiconductor package according to the present invention, the thermoelectric cooling element mounted on the mounting portion, and the upper surface of the thermoelectric cooling element and electrically connected to the input / output terminal. It is characterized by comprising a connected optical semiconductor element and a lid bonded to the upper surface of the frame.
[0021]
According to the above configuration, the present invention can provide a highly reliable optical semiconductor device using the optical semiconductor package having the above-described advantages of the present invention.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The optical semiconductor package of the present invention will be described in detail below. 1 is a cross-sectional view showing an example of an embodiment of the optical semiconductor package of the present invention, FIG. 2 is a perspective view of FIG. 1, FIG. 3 is an input / output terminal of FIG. 2, and FIG. The partial expansion perspective view of the periphery of a piece, (b) is the partial expansion perspective view of the periphery of a through-hole before mounting a metal piece and a metal piece. In FIG. 1, 1 is a base body, 2 is a frame body, 3 is a lid body, 7 is an input / output terminal, and 8 is a seal ring, which mainly constitute a container for housing the optical semiconductor element 4 therein. The
[0023]
The substrate 1 of the present invention is placed on the upper main surface for placing an optical semiconductor element 4 such as an IC, LSI, semiconductor laser (LD), photodiode (PD) or the like with a thermoelectric cooling element 5 interposed therebetween. It has a part 1a. The substrate 1 is made of a metal material such as Fe—Ni—Co alloy or Cu—W alloy, or ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), mullite (3Al 2 O 3 .2SiO 2 ). Become. When made of a metal material, for example, it is manufactured into a predetermined shape by applying a conventionally known metal processing method such as rolling or punching to an ingot (lumb) of an Fe—Ni—Co alloy. On the other hand, when it is made of ceramics, an appropriate organic binder or solvent is added to the raw material powder and mixed to form a paste, and this paste is formed into a ceramic green sheet by the doctor blade method or calendar roll method. The green sheet is produced by performing an appropriate punching process, laminating a plurality of the green sheets, and firing them.
[0024]
When the substrate 1 is made of a metal material, a metal having excellent corrosion resistance and wettability with a brazing material on its surface, specifically, a Ni layer having a thickness of 0.5 to 9 μm and a thickness of 0.5 to It is preferable to sequentially deposit 5 μm Au layers by plating, which can effectively prevent the base 1 from being oxidized and corroded, and the optical semiconductor element 4 is mounted on the mounting portion 1a on the upper main surface of the base 1 by thermoelectricity. It is possible to firmly bond and fix the cooling element 5 therebetween. On the other hand, when the substrate 1 is made of ceramic, a metal having excellent corrosion resistance and wettability with a brazing material on the mounting portion 1a for mounting the optical semiconductor element 4 with the thermoelectric cooling element 5 interposed therebetween, specifically, In this case, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm are preferably sequentially deposited by plating, and the optical semiconductor element 4 is placed on the mounting portion 1a. It can be firmly bonded and fixed with a gap therebetween.
[0025]
The frame body 2 is attached to the upper main surface of the base 1 so as to surround the mounting portion 1a, and is made of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, it is manufactured by forming an ingot of a Fe—Ni—Co alloy into a predetermined frame shape by pressing. In addition, a cylindrical optical fiber fixing member 9 into which an optical fiber 10 for transmitting and receiving an optical signal to and from the optical semiconductor element 4 accommodated therein is inserted and fixed to the frame 2 penetrates the frame 2. Then, they are joined via a brazing material such as silver brazing.
[0026]
The input / output terminal 7 is made of ceramics such as alumina ceramics whose thermal expansion coefficient approximates that of the base body 1 and the frame body 2, and is fitted to the projecting portions 17 a and 17 b of the flat plate portion 7 a projecting into and out of the frame body 2. And a standing wall portion 7b to be worn. Further, a metallized wiring layer 12 obtained by sintering a metal paste made of Mo-Mn, W or the like so as to conduct inside and outside of the optical semiconductor package is deposited on the upper surface of the flat plate portion 7a, so that the optical semiconductor element 4 and the external electric circuit board And electrically connect. The input / output terminal 7 is fitted with a brazing material such as silver brazing into a mounting portion 2a formed through the frame body 2 or by being cut out.
[0027]
In the present invention, as shown in FIG. 3, a step is formed through the upper and lower surfaces in a portion inside the frame 2 of the flat plate portion 7 a of the input / output terminal 7, and the inner dimension decreases from the upper surface side opening to the inside. A through hole 18 in which a portion is formed is provided. A metallized layer 13 connected to the metallized wiring layer 12 is formed on the bottom surface of the step portion of the through hole 18, and the metal piece 6 is fitted into the through hole 18 and brazed to the metallized layer 13. Further, a through hole 19 that is thinner than the through hole 18 is formed in the metal piece 6 at substantially the same position as the through hole 18 below the metal piece 6.
[0028]
The metal piece 6 of the present invention is for electrically connecting the lead wire 15 of the thermoelectric cooling element 5. In FIG. 3, since the metal piece 6 having substantially the same outer shape as the opening shape of the through hole 18 is fitted into the through hole 18, the metal piece 6 can be easily fitted, and the metal piece 6 can be prevented from jumping out from the inside of the flat plate portion 7 a of the through hole 18.
[0029]
With the above configuration, when the lead wire 15 of the thermoelectric cooling element 5 is passed through the through hole 19 of the metal piece 6 and joined to the metal piece 6 by soldering or welding, the lead wire 15 is pressed against the metal piece 6. Since the metal piece 6 does not move up and down, the lead wire 15 can be easily connected. Therefore, the connection reliability of the connection portion between the lead wire 15 and the metal piece 6 is improved, and the cooling function of the thermoelectric cooling element 5 works well, so that the optical semiconductor element 4 can be operated normally.
[0030]
Further, since the metal piece 6 does not protrude from the side surface of the flat plate portion 7a of the input / output terminal 7 to the inside of the frame body 2, it does not become an obstacle when the thermoelectric cooling element 5 and the optical semiconductor element 4 are mounted, and workability is improved. improves. Furthermore, since the thermoelectric cooling element 5 itself can be enlarged without increasing the size of the optical semiconductor package or reducing the protruding width of the flat plate portion 7a of the input / output terminal 7, the cooling capacity is improved. As a result, the environmental temperature at which the optical semiconductor element 4 can be cooled to a constant temperature can be set higher, and at the same environmental temperature, the optical semiconductor element 4 can be cooled at a lower temperature setting, thereby improving the long-term reliability of the optical semiconductor element 4. Can be improved.
[0031]
More preferably, as shown in FIG. 3, the outer shape above the step portion of the through-hole 18 and the shape of the metal piece 6 in plan view may be substantially circular or substantially rectangular. Is preferably arcuate (shape with R). With this configuration, the contact area between the side surface of the metal piece 6 and the inner peripheral surface of the through hole 18 increases, and the metal piece 6 can be prevented from reliably jumping out of the through hole 18 to the inside of the frame 2. . Further, by making the corner portion of the flat plate portion 7a into an arc shape, the stress to the flat plate portion 7a can be made uniform and relaxed, and the generation of cracks from the corner portion can be prevented. Further, the edge of the through hole 18 of the flat plate portion 7 a is also formed in an arc shape, so that the metal piece 6 can be easily fitted into the through hole 18.
[0032]
Further, the metal piece 6 and the lead terminal 16 connected to the metallized wiring layer 12 of the protruding portion 17b outside the frame 2 of the flat plate portion 7a are connected to the metallized wiring layer 12 on the bottom surface of the step portion of the through hole 18. By forming the metallized layer 13 formed, electrical connection is established. With this configuration, even if the gap between the through hole 18 and the adjacent metallized wiring layer 12 is reduced by forming the upper side from the step portion of the through hole 18 in the protruding portion 17a inside the frame 2 of the flat plate portion 7a, this step is reduced. The short circuit between the metallized layer 13 and the adjacent metallized wiring layer 12 can be prevented by the portion. Moreover, since the metal piece 6 can be enlarged, the mounting area of the lead wire 15 can be increased.
[0033]
The metal piece 6 is preferably made of an Fe—Ni—Co alloy, an Fe—Ni alloy, or the like. In this case, the lead wire 15 can be easily welded to the metal piece 6. Therefore, it is possible to electrically connect the lead wires 15 without taking time for welding and causing a short circuit between the adjacent metallized wiring layers 12.
[0034]
Further, the upper depth from the step portion of the through hole 18 is preferably 0.2 to 0.4 mm. In the case of less than 0.2 mm, the metal piece 6 cannot be firmly fitted and fixed because it is too shallow, and the metal piece 6 may come off. When the thickness exceeds 0.4 mm, two or more ceramic green sheets for producing the flat plate portion 7a may be punched to form the upper side from the stepped portion. Therefore, the upper side from the stepped portion may not be formed in a predetermined shape.
[0035]
The thickness of the metal piece 6 is preferably 0.25 to 1 mm. If it is less than 0.25 mm, the heat generated when the lead wire 15 is welded to the metal piece 6 is quickly transmitted to and absorbed by the input / output terminal 7, making the welding operation difficult. Further, since the metal piece 6 is too thin, the brazing material crawls up to the upper surface of the metal piece 6 when the metal piece 6 is fitted into the through hole 18, and the brazing material is welded when the metal piece 6 and the lead wire 15 are welded. May cause a problem that the lead wire 15 cannot be firmly connected. On the other hand, if it exceeds 1 mm, formation by press working becomes difficult, and it is inevitably processed by cutting. Then, there is a problem that it leads to an increase in processing cost.
[0036]
The gap between the outer peripheral surface of the metal piece 6 and the inner peripheral surface of the through hole 18 is preferably 0.05 mm or more. If it is less than 0.05 mm, the gap becomes narrow and it becomes difficult to fit the metal piece 6 so as to be in contact with the bottom surface of the step portion of the through hole 18. Further, when the metal piece 6 is fitted into the through-hole 18, the brazing material crawls up to the upper surface of the metal piece 6, and the brazing material becomes an obstacle when welding the metal piece 6 and the lead wire 15, so that the lead wire 15 is strong. You may not be able to connect to.
[0037]
Further, by providing a through hole 18 penetrating the upper and lower surfaces of the flat plate portion 7a, and aligning the through hole 18 with the through hole 19 in the metal piece 6, the through hole 19 can serve as a guide, The lead wire 15 can be easily inserted.
[0038]
Moreover, in this invention, it is preferable that ratio of the thickness A of the through-hole 19 of the metal piece 6 with respect to the thickness B of the through-hole 18 below a level | step-difference part is A / B = 0.3-0.8. When A / B is less than 0.3, the thickness A of the through hole 19 of the metal piece 6 is too small, and it becomes difficult to insert the lead wire 15. Further, if the thickness B of the through hole 18 becomes too large, it becomes difficult to secure the through hole 18 having a sufficient size for fitting the metal piece 6 on the upper surface of the flat plate portion 7a. It cannot be stably fixed, and the connection strength between the metal piece 6 and the lead wire 15 tends to decrease. Furthermore, when A / B exceeds 0.8, when the metal piece 6 is fitted to the upper side of the through hole 18, the brazing material can crawl up to the upper surface of the metal piece 6 through the through hole 19 of the metal piece 6. In addition, there is a possibility that the through hole 19 is filled with the brazing material and the lead wire 15 cannot be inserted.
[0039]
The present invention is provided with a through-hole 18 formed in a portion of the flat plate portion 7a on the inner side of the frame body 2 through the upper and lower surfaces and having a stepped portion having a smaller inner dimension from the upper surface side opening to the inner side. The metallized layer 13 connected to the metallized wiring layer 12 is formed on the bottom surface of the step portion of the through hole 18 and the metal piece 6 is fitted into the through hole 18 and brazed to the metallized layer 13. The metal piece 6 is formed with a through hole 19 narrower than the through hole 18 at substantially the same position as the through hole 18 below the metal piece 6, so that the lead wire 15 is welded onto the metal piece 6. When pressed against the metal piece 6, the metal piece 6 does not move up and down, and the lead wire 15 can be easily connected. Therefore, the connectivity between the lead wire 15 and the metal piece 6 is improved and the cooling function of the thermoelectric cooling element 5 works well, so that the optical semiconductor element 4 can be operated normally. Further, by providing a through hole 19 in the metal piece 6 so as to be aligned with the through hole 18 of the flat plate portion 7a, positioning when the lead wire 15 is attached can be facilitated, and the lead wire 15 and the metal piece 6 are securely attached. Can be connected.
[0040]
Further, since the metal piece 6 does not reliably protrude from the end of the metallized wiring layer 12 of the input / output terminal 7 to the inside of the frame 2, it does not become an obstacle when mounting the thermoelectric cooling element 5 and the like, and the workability is improved. . Further, since the thermoelectric cooling element 5 itself can be enlarged without increasing the size of the optical semiconductor package or reducing the protruding width of the flat plate portion 7a of the input / output terminal 7, the cooling capacity is improved and the optical semiconductor element 4 is improved. Improved long-term reliability. Furthermore, since the wetting condition and volume of the brazing material such as solder for connecting the lead wires 15 on the upper surface of the metal piece 6 are made uniform for each product, the characteristics such as the electrical resistance at the connecting portion are different for each product. It also has the effect of being constant.
[0041]
Preferably, the metal piece 6 has a small outer shape in the lower cross section, so that positioning when connecting the flat plate portion 7a and the metal piece 6 and fitting of the metal piece 6 are facilitated. The workability of fitting the pieces 6 is improved. Further, when the metal piece 6 and the lead wire 15 are connected, since the position of the metal piece 6 is fixed for each product, variation in the connection position of the lead wire 15 can also be suppressed.
[0042]
The optical semiconductor device of the present invention includes the optical semiconductor package of the present invention, the thermoelectric cooling element 5 mounted on the mounting portion 1 a, and is mounted on the upper surface of the thermoelectric cooling element 5 and electrically connected to the input / output terminal 7. Since the optical semiconductor element 4 and the lid 3 joined to the upper surface of the frame 2 are provided, the optical semiconductor package having the above-described effects of the present invention is highly reliable. In this optical semiconductor device, the optical fiber can be provided after the optical semiconductor device is mounted on an external electric circuit board or the like, or can be provided in the optical semiconductor device itself as a product.
[0043]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
[0044]
【The invention's effect】
The present invention is provided with a through-hole formed in a portion inside the frame of the flat plate portion of the input / output terminal through the upper and lower surfaces and having a stepped portion having a smaller inner dimension from the upper surface side opening to the inside. A metallized layer connected to the metallized wiring layer is formed on the bottom surface of the step portion of the through hole and a metal piece is fitted into the through hole and brazed to the metallized layer. A through hole that is narrower than the through hole is formed at the same position as the lower through hole, so that the metal piece moves up and down when the lead wire is pressed against the metal piece in order to weld the lead wire onto the metal piece. The lead wire can be easily connected. Therefore, the connectivity between the lead wire and the metal piece is improved and the cooling function of the thermoelectric cooling element works well, so that the optical semiconductor element can be operated normally.
[0045]
In addition, the metal piece has a through-hole that is thinner than the through-hole at the same position as the through-hole below the metal piece, which facilitates positioning when mounting the lead wire of the thermoelectric cooling element, and ensures that the lead wire And metal pieces can be connected. In addition, an external force that pulls the lead wire downward is often applied due to heat shrinkage during assembly work or after brazing, but the strength against this external force is greatly improved, and it is possible to eliminate the detachment of the lead wire.
[0046]
Furthermore, since the metal piece does not protrude from the end of the metallized wiring layer of the input / output terminal to the inside of the frame body, it is not an obstacle when mounting a thermoelectric cooling element or the like, and the workability is improved. Furthermore, since the thermoelectric cooling element itself can be enlarged without increasing the size of the optical semiconductor package or reducing the width of the flat portion of the input / output terminal, the cooling capacity is improved and the long-term reliability of the optical semiconductor element is improved. obtain. In addition, the wetting condition and volume of soldering material such as solder for connecting the lead wires on the upper surface of the metal piece are made uniform for each product, so the characteristics such as electrical resistance at the connection are made constant for each product. It also has the effect of being.
[0047]
In the present invention, preferably, the metal piece has a small outer shape in the lower cross section, so that positioning when connecting the flat plate portion and the metal piece and fitting of the metal piece are facilitated, and assembly work is performed. Improves. Also, when the metal piece and the lead wire of the thermoelectric cooling element are connected, since the position of the metal piece is fixed for each product, variation in the connection position of the lead wire can be suppressed.
[0048]
An optical semiconductor device of the present invention includes an optical semiconductor package of the present invention, a thermoelectric cooling element mounted on a mounting portion, and an optical semiconductor mounted on an upper surface of the thermoelectric cooling element and electrically connected to an input / output terminal By providing the element and the lid bonded to the upper surface of the frame, the reliability using the optical semiconductor package having the effects of the present invention is increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor package of the present invention.
2 is a perspective view of the optical semiconductor package of FIG. 1. FIG.
3 shows input / output terminals of the optical semiconductor package of FIG. 1, (a) is a partially enlarged perspective view around a metal piece, and (b) is a part around a through hole before placing the metal piece and the metal piece. It is an expansion perspective view.
FIG. 4 is a cross-sectional view of a conventional optical semiconductor package.
5 is a perspective view of the optical semiconductor package of FIG. 4. FIG.
6 is a partially enlarged perspective view around a metal terminal in an input / output terminal of the optical semiconductor package of FIG. 4;
[Explanation of symbols]
1: Base 1a: Placement part 2: Frame 2a: Mounting part 3: Cover body 4: Optical semiconductor element 5: Thermoelectric cooling element 6: Metal piece 7: Input / output terminal 7a: Flat plate part 7b: Standing wall part 12: Metallization Wiring layer 13: Metallized layer 18: Through hole 19: Through hole

Claims (3)

上側主面に光半導体素子が熱電冷却素子を介して載置される載置部を有する基体と、前記上側主面に前記載置部を囲繞するように取着された金属製の枠体と、該枠体を貫通してまたは切り欠いて形成された入出力端子の取付部と、上面の一辺側から対向する他辺側にかけて形成された複数のメタライズ配線層を有する誘電体から成る平板部および該平板部の上面に前記複数のメタライズ配線層を間に挟んで接合された誘電体から成る立壁部から構成され、前記取付部に嵌着された入出力端子とを具備した光半導体素子収納用パッケージにおいて、前記平板部の前記枠体内側の部位に上下面を貫通して形成されるとともに上面側開口から内側にかけて内寸法が小となる段差部が形成された貫通孔が設けられており、該貫通孔の前記段差部の底面に前記メタライズ配線層に接続されたメタライズ層が形成されているとともに金属片が前記貫通孔に嵌着されて前記メタライズ層にロウ付けされており、前記金属片にはその下方の前記貫通孔と略同位置に前記貫通孔よりも細い貫通穴が形成されていることを特徴とする光半導体素子収納用パッケージ。A base body having a mounting portion on which an optical semiconductor element is mounted via a thermoelectric cooling element on an upper main surface; and a metal frame attached to surround the mounting portion on the upper main surface; And a flat plate portion made of a dielectric having a plurality of metallized wiring layers formed from one side of the upper surface to the other side facing the mounting portion of the input / output terminal formed through or cut out from the frame. And an optical semiconductor device housing comprising an upright wall portion made of a dielectric material joined to the upper surface of the flat plate portion with the plurality of metallized wiring layers sandwiched therebetween, and an input / output terminal fitted to the mounting portion In the package, a through hole is formed in the portion of the flat plate portion that penetrates the upper and lower surfaces and has a stepped portion having a smaller inner dimension from the upper surface side opening to the inside. The bottom surface of the step portion of the through hole A metallized layer connected to the metallized wiring layer is formed, and a metal piece is fitted into the through hole and brazed to the metallized layer. The metal piece is substantially the same as the through hole below the metal piece. A package for housing an optical semiconductor element, wherein a through hole thinner than the through hole is formed at the same position. 前記金属片は下側の横断面における外形形状が小さくなっていることを特徴とする請求項1記載の光半導体素子収納用パッケージ。2. The package for housing an optical semiconductor element according to claim 1, wherein the metal piece has a small outer shape in a lower cross section. 請求項1または請求項2記載の光半導体素子収納用パッケージと、前記載置部に載置された前記熱電冷却素子と、前記熱電冷却素子の上面に載置され前記入出力端子に電気的に接続された光半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする光半導体装置。The optical semiconductor element housing package according to claim 1, the thermoelectric cooling element placed on the placement part, and placed on the upper surface of the thermoelectric cooling element and electrically connected to the input / output terminal An optical semiconductor device comprising: a connected optical semiconductor element; and a lid bonded to the upper surface of the frame.
JP2001222970A 2001-07-24 2001-07-24 Optical semiconductor element storage package and optical semiconductor device Expired - Fee Related JP3762261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222970A JP3762261B2 (en) 2001-07-24 2001-07-24 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222970A JP3762261B2 (en) 2001-07-24 2001-07-24 Optical semiconductor element storage package and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2003037327A JP2003037327A (en) 2003-02-07
JP3762261B2 true JP3762261B2 (en) 2006-04-05

Family

ID=19056375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222970A Expired - Fee Related JP3762261B2 (en) 2001-07-24 2001-07-24 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3762261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037247A (en) * 2001-07-25 2003-02-07 Kyocera Corp Package for housing optical semiconductor element, and optical semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086755B2 (en) * 2007-10-03 2012-11-28 アンリツ株式会社 Waveguide type optical device module and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037247A (en) * 2001-07-25 2003-02-07 Kyocera Corp Package for housing optical semiconductor element, and optical semiconductor device
JP4497762B2 (en) * 2001-07-25 2010-07-07 京セラ株式会社 Optical semiconductor element storage package and optical semiconductor device

Also Published As

Publication number Publication date
JP2003037327A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP3762261B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3754902B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP4497762B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3642739B2 (en) Package for storing semiconductor elements
JP4373831B2 (en) Electronic component storage package and electronic device
JP3716185B2 (en) Package for storing semiconductor elements
JP5523199B2 (en) Package for element storage and electronic device provided with the same
JP2003046180A (en) Input-output terminal, package for housing optical semiconductor element, and optical semiconductor device
JP3652241B2 (en) Package for storing semiconductor elements
JP3784346B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3810334B2 (en) Semiconductor element storage package and semiconductor device
JP3615697B2 (en) Package for storing semiconductor elements
JP4295641B2 (en) Manufacturing method of electronic component storage package
JP2002289960A (en) Package for housing semiconductor element and semiconductor device
JP2004228532A (en) Input/output terminal, semiconductor element housing package, and semiconductor device
JP2004259962A (en) Package for optical semiconductor element and optical semiconductor device
JP3696817B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004193428A (en) Package for housing semiconductor element and semiconductor device
JP2004296576A (en) Package for housing semiconductor element, and semiconductor device
JP3652257B2 (en) Package for storing semiconductor elements
JP5725900B2 (en) Semiconductor element storage package and semiconductor device including the same
JP5528484B2 (en) Input / output terminal and optical semiconductor element storage package, and optical semiconductor device
JP3652255B2 (en) Package for storing semiconductor elements
JP2006128267A (en) I/o terminal, package for storing electronic component using same, and electronic device
JP4041327B2 (en) Semiconductor element storage package and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100120

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120120

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees