JP3759334B2 - DC-AC power conversion circuit - Google Patents

DC-AC power conversion circuit Download PDF

Info

Publication number
JP3759334B2
JP3759334B2 JP15480699A JP15480699A JP3759334B2 JP 3759334 B2 JP3759334 B2 JP 3759334B2 JP 15480699 A JP15480699 A JP 15480699A JP 15480699 A JP15480699 A JP 15480699A JP 3759334 B2 JP3759334 B2 JP 3759334B2
Authority
JP
Japan
Prior art keywords
phase
inverter
switch
turned
bidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15480699A
Other languages
Japanese (ja)
Other versions
JP2000350476A (en
Inventor
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP15480699A priority Critical patent/JP3759334B2/en
Publication of JP2000350476A publication Critical patent/JP2000350476A/en
Application granted granted Critical
Publication of JP3759334B2 publication Critical patent/JP3759334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、モータの可変速駆動などに用いて好適な直流―交流電力変換回路に関する。
【0002】
【従来の技術】
図7に第1の従来例を示す。同図は、直流中間コンデンサ15と、半導体スイッチ素子6組を3相ブリッジ結線したインバータ回路16とを設け、半導体スイッチ素子のスイッチングにより、負荷である3相モータ17の可変速運転を行なう例である。
図8に第2の従来例を示す。直列に接続した直流中間コンデンサ18,19と、半導体スイッチ素子4組を2相ブリッジ結線したインバータ回路20とを設け、18と19の中間点電位と2相ブリッジ結線したインバータ回路20の交流出力部を3相モータ17に結線し、半導体スイッチ素子のスイッチングにより可変速運転を行なう例である。
【0003】
【発明が解決しようとする課題】
図7の従来回路例では、モータを低速運転する際は、モータへの印加電圧は低くする必要があるため、電圧制御のためインバータの半導体スイッチ素子はパルス幅変調(PWM)する必要がある。その際、上アームと下アームのスイッチがオンすることでモータに電圧が印加されるため、モータには直流中間コンデンサ15の直流電圧分が入り切りされることになる。その結果、モータには高周波電流が流れて渦電流損が大きくなり、モータの効率が低下する。この渦電流損を低減するには、直流電源21を可変にしパルス振幅変調(PAM)運転を行なえば良いが、通常直流電源は商用の交流電源を整流して作るため、直流電源の下限値には限界があり、PAM運転を行なうのは或る程度の高い回転数からとなる。
【0004】
一方、図8の方式は、半導体スイッチ素子1つがオンすることでモータに電圧を印加することが可能で、その電圧値はコンデンサ18と19の直流電圧の和の1/2となるため、渦電流損は図7の方式に比べて小さくなり、またモータに印加する電圧が平均的に低いため、PAM運転は低い回転数から行なえる。また、図7の方式は図8の例に比べて半導体スイッチ素子数が多いため、半導体素子部での損失も大きくなる。
【0005】
図7の方式でPAM運転となる高速運転領域では、図8の方式では図7の方式に比べて、モータへの印加電圧が低い分コンデンサ18と19の直流電圧は、図7の方式に比べて高くする(概ね2倍)必要がある。よって、図8の方式は半導体スイッチ素子として高耐圧のものが必要となってコストアップとなり、また直流を昇圧する回路での損失が大きくなるという問題がある。このように、モータの低速運転には図8の2相方式が適しており、また高速運転には図7の3相方式が適していると言える。
【0006】
また、双方向性のスイッチとして、コンタクタのような機械的なスイッチと、トランジスタとダイオードを用いた半導体スイッチ素子があり、前者は完全にオン状態となればその導通損失は無視できるほど小さいというメリットはあるが、オンからオフ,またはオフからオンする際に数10ms程度の時間を要するのと、その期間中はチャタリング等の現象が発生するため、インバータ部に用いられている半導体スイッチ素子と同期させてスイッチングさせることができないというデメリットがある。また、後者は同じ半導体スイッチ素子なので、インバータ部に用いられている半導体スイッチ素子と同期させてスイッチングさせることはできるが、導通時に電圧ドロップが生じるため、その部分での発生損失が大きくなり、高効率化の弊害となる。
したがって、この発明の課題はモータの全回転数領域で高効率の運転を可能にする直流―交流電力変換回路を提供することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、直流電源に、複数のコンデンサの直列回路を並列に接続するとともに、半導体スイッチ素子とこれに逆並列接続されたダイオード6組をブリッジ結線し、直流から3相交流に変換するインバータの3相交流出力のうちの1つと、前記直列接続されたコンデンサの中間電位点との間に、コンタクタを含む機械的スイッチと、半導体スイッチ素子を含み双方向のスイッチングが可能な双方向スイッチとの並列回路を接続し、
前記機械的スイッチおよび双方向スイッチをオフにし3相式インバータとして使用し、前記機械的スイッチおよび双方向スイッチをオンにし、かつ、前記インバータの前記機械的スイッチおよび双方向スイッチが接続された相の半導体スイッチ素子を常にオフ状態にして2相ブリッジ結線式3相インバータとして使用することを特徴とする。
この請求項1の発明においては、前記インバータが駆動するモータの低速運転時は前記2相ブリッジ結線式3相インバータとして駆動し、高速運転時は前記3相式インバータとして駆動することができる(請求項2の発明)。
【0008】
上記請求項1または2の発明においては、前記2相ブリッジ結線式3相インバータ駆動と、前記3相式インバータ駆動との切り替えは、前記インバータが駆動するモータの速度指令に基づいて行なうことができる(請求項3の発明)。
請求項1〜3のいずれかの発明においては、前記機械的スイッチおよび双方向スイッチをオフするに当たっては、機械的スイッチをオフさせた後、それから所定時間後に双方向スイッチをオフすることができ(請求項4の発明)、この請求項4の発明においては、前記双方向スイッチをオフさせるタイミングと、前記インバータの各相アームの半導体スイッチ素子をスイッチングさせるタイミングとを同期させることができる(請求項5の発明)。
また、請求項1の発明においては、前記機械的スイッチおよび双方向スイッチのオンタイミングと、前記インバータの前記機械的スイッチおよび双方向スイッチが接続された相の上,下アームの半導体スイッチ素子のオフタイミングとを同期させることができる(請求項の発明)。
【0009】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
同図の直流中間回路としては、直列に接続したコンデンサ1,2と、3相インバータ3の3相交流出力のうちの1相と直流部のコンデンサの中間電位点とを、コンタクタのような機械的スイッチ4と、双方向にスイッチングが可能な半導体スイッチ素子5との並列回路で接続した構成となっている。なお、双方向にスイッチングが可能な半導体スイッチ素子としては、図2(a)または(b)のように、半導体スイッチ素子とダイオードとをブリッジ型または直列に組み合わせたものを用いることができる。直流中間コンデンサは、一般に複数個設けることができる。
【0010】
図3はこの発明の第2の実施の形態を示す構成図で、図1における第1の制御装置例を示す。同図において、制御ブロック6はモータの高速運転時に動作させるためのブロックで、主回路としては図1の回路を図7(3相方式:3相インバータ)と同様にして使用する。制御ブロック7はモータの低速運転時に動作させるためのブロックで、主回路としては図1の回路を図8(2相方式:2相ブリッジ結線式3相インバータ)と同様にして使用する。なお、10は比較器、11はタイマである。また、図1の回路で、機械的スイッチ4および双方向にスイッチングが可能な半導体スイッチ素子5をともにオンとし、図8の2相方式と等価的に等しくするには、半導体スイッチTaとTdを常にオフ状態とすることにより、達成される。
【0011】
まず、比較器10により、モータの回転数指令8を2相方式から3相方式に切替えるための切替え値9と比較する。その際、双方向にスイッチングが可能な半導体スイッチ素子5へのオフ指令は、比較器10が動作してからタイマ11によって予め設定された時間後に出力されるようにし、この信号に同期させて制御ブロック7から制御ブロック6に切替える。その際、半導体スイッチ素子5のオフと、インバータの半導体スイッチのスイッチングとを同期して行なうことで、切替えが円滑に行なわれる。
この時の様子を示すのが図4で、指令8が切替え値9と一致した時点でコンタクタのような機械的スイッチ4がオフとなり、それからタイマ時間経過後に半導体スイッチ素子5がオフとなることがわかる。
【0012】
図5はこの発明の第3の実施の形態を示す構成図で、図1における第2の制御装置例を示す。13は比較器である。
これは、モータが高速から低速に移行する場合の例で、モータの回転数指令8を比較器13において、3相方式から2相方式に切替えるための切替え値12と比較する。モータの回転数指令8が切替え値12以下になったことを示す出力信号14により、機械的スイッチ4および双方向にスイッチングが可能な半導体スイッチ素子5をオンにするとともに、制御ブロックを6から7に切替える。これにより、半導体スイッチTaとTdは常にオフ状態となるように運転される。
この時の様子を示すのが図6で、指令8が切替え値12と一致した時点でコンタクタのような機械的スイッチ4および半導体スイッチ素子5がともにオンとなり、直ちに3相方式から2相方式に切替わることがわかる。
【0013】
【発明の効果】
この発明によれば、モータの低速運転時には等価的に2相方式で、また高速運転時には等価的に3相方式で駆動されることになるため、全回転数領域で高効率な運転が可能となる。
また、例えば2相方式から3相方式に移行する際、機械的スイッチがオフしてから或る設定時間後(機械的スイッチにオフ信号が入力してから、機械的スイッチが実際にオフするまでの時間)に半導体スイッチ素子がオフし、その過渡的な期間中は半導体スイッチ素子はオンしているため、インバータの制御は2相方式のままでよく、機械的スイッチのスイッチング動作による影響を及ぼされない。加えて、半導体スイッチ素子のオフと、インバータの半導体スイッチのスイッチングとを同期して行なうことで、切替えが円滑に行なわれる。
一方、3相方式から2相方式に移行する際は、機械的スイッチおよび半導体スイッチ素子のオンと、インバータの所定1相の上,下アームの半導体スイッチ素子のオフとを同期させることで、切替えが円滑となる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す構成図である。
【図2】図1で用いられる双方向スイッチの例を示す構成図である。
【図3】図1における第1の制御装置を示すブロック図である。
【図4】図1を図3の制御装置で駆動した場合の動作説明図である。
【図5】図1における第2の制御装置を示すブロック図である。
【図6】図1を図5の制御装置で駆動した場合の動作説明図である。
【図7】第1の従来例を示す概要図である。
【図8】第2の従来例を示す概要図である。
【符号の説明】
1,2…コンデンサ、3…インバータ、4…機械的スイッチ、5…半導体スイッチ素子、6…3相方式制御ブロック、7…2相方式制御ブロック、10,13比較器、11…タイマ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC-AC power conversion circuit suitable for use in variable speed driving of a motor.
[0002]
[Prior art]
FIG. 7 shows a first conventional example. The figure shows an example in which a DC intermediate capacitor 15 and an inverter circuit 16 in which six sets of semiconductor switch elements are connected in a three-phase bridge are provided, and variable speed operation of a three-phase motor 17 as a load is performed by switching the semiconductor switch elements. is there.
FIG. 8 shows a second conventional example. DC intermediate capacitors 18 and 19 connected in series and an inverter circuit 20 in which four sets of semiconductor switch elements are connected in a two-phase bridge are provided, and an AC output unit of the inverter circuit 20 connected in a two-phase bridge with an intermediate point potential between 18 and 19 Is connected to a three-phase motor 17 and variable speed operation is performed by switching a semiconductor switch element.
[0003]
[Problems to be solved by the invention]
In the conventional circuit example of FIG. 7, when the motor is operated at a low speed, it is necessary to lower the voltage applied to the motor. Therefore, the semiconductor switch element of the inverter needs to be pulse width modulated (PWM) for voltage control. At this time, since the voltage is applied to the motor by turning on the switches of the upper arm and the lower arm, the DC voltage of the DC intermediate capacitor 15 is turned on and off in the motor. As a result, high-frequency current flows through the motor, eddy current loss increases, and motor efficiency decreases. In order to reduce this eddy current loss, the DC power supply 21 may be made variable and a pulse amplitude modulation (PAM) operation may be performed. However, since the DC power supply is usually made by rectifying commercial AC power, Is limited, and PAM operation is performed at a certain high rotational speed.
[0004]
On the other hand, in the method of FIG. 8, it is possible to apply a voltage to the motor by turning on one semiconductor switch element, and the voltage value is ½ of the sum of the DC voltages of the capacitors 18 and 19, so The current loss is smaller than that of the method shown in FIG. 7, and the voltage applied to the motor is low on average, so that the PAM operation can be performed at a low rotational speed. Further, since the method of FIG. 7 has a larger number of semiconductor switch elements than the example of FIG. 8, the loss in the semiconductor element portion also increases.
[0005]
In the high-speed operation region in which the PAM operation is performed in the method of FIG. 7, the DC voltage of the capacitors 18 and 19 is smaller in the method of FIG. 8 than in the method of FIG. Need to be high (approximately twice). Therefore, the system shown in FIG. 8 has a problem that a semiconductor switch element having a high breakdown voltage is required, resulting in an increase in cost and a loss in a circuit for boosting direct current. Thus, it can be said that the two-phase method of FIG. 8 is suitable for low-speed operation of the motor, and the three-phase method of FIG. 7 is suitable for high-speed operation.
[0006]
In addition, there are mechanical switches such as contactors and semiconductor switch elements using transistors and diodes as bidirectional switches, and the former has the merit that its conduction loss is negligibly small when it is completely turned on. However, since it takes several tens of ms to turn on from off or from on to off, a phenomenon such as chattering occurs during that period, so it synchronizes with the semiconductor switch element used in the inverter section. There is a demerit that it cannot be switched. In addition, since the latter is the same semiconductor switch element, it can be switched in synchronism with the semiconductor switch element used in the inverter section. However, since voltage drop occurs at the time of conduction, the generated loss in that part increases, This is a negative effect of efficiency.
Accordingly, an object of the present invention is to provide a DC-AC power conversion circuit that enables high-efficiency operation in the entire rotation speed range of a motor.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, according to the first aspect of the present invention, a series circuit of a plurality of capacitors is connected in parallel to a DC power supply, and a semiconductor switch element and six pairs of diodes connected in reverse parallel thereto are bridge-connected. A mechanical switch including a contactor and a semiconductor switch element between one of the three-phase AC outputs of the inverter that converts direct current to three-phase alternating current and an intermediate potential point of the series-connected capacitors. Connect a parallel circuit with a bidirectional switch capable of bidirectional switching,
The mechanical switch and the bidirectional switch are turned off and used as a three-phase inverter, the mechanical switch and the bidirectional switch are turned on, and the phase of the inverter to which the mechanical switch and the bidirectional switch are connected is connected. The semiconductor switch element is always turned off and used as a two-phase bridge-connected three-phase inverter.
In the first aspect of the invention, the motor driven by the inverter can be driven as the two-phase bridge connection type three-phase inverter during low-speed operation, and can be driven as the three-phase inverter during high-speed operation. Item 2).
[0008]
In the first or second aspect of the invention, switching between the two-phase bridge connection type three-phase inverter drive and the three-phase inverter drive can be performed based on a speed command of a motor driven by the inverter. (Invention of Claim 3).
In the invention according to any one of claims 1 to 3, in turning off the mechanical switch and the bidirectional switch, the bidirectional switch can be turned off after a predetermined time after the mechanical switch is turned off. (Invention of claim 4) In the invention of claim 4, the timing of turning off the bidirectional switch and the timing of switching the semiconductor switch element of each phase arm of the inverter can be synchronized (invention). 5 invention).
According to the first aspect of the present invention, the ON timing of the mechanical switch and the bidirectional switch and the OFF state of the upper and lower arm semiconductor switch elements of the phase of the inverter to which the mechanical switch and the bidirectional switch are connected. Timing can be synchronized (invention of claim 6 ).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention.
The direct current intermediate circuit shown in the figure includes capacitors 1 and 2 connected in series, one phase of the three-phase AC output of the three-phase inverter 3, and the intermediate potential point of the capacitor of the direct current section. In this configuration, the target switch 4 and the semiconductor switch element 5 capable of bidirectional switching are connected in a parallel circuit. As a semiconductor switching element capable of bidirectional switching, a semiconductor switching element and a diode combined in series as shown in FIG. 2A or 2B can be used. In general, a plurality of DC intermediate capacitors can be provided.
[0010]
FIG. 3 is a block diagram showing a second embodiment of the present invention, and shows a first control apparatus example in FIG. In the figure, a control block 6 is a block for operating at high speed operation of the motor, and the circuit of FIG. 1 is used as a main circuit in the same manner as FIG. 7 (three-phase method: three-phase inverter). The control block 7 is a block for operating the motor at a low speed, and the circuit of FIG. 1 is used as the main circuit in the same manner as FIG. 8 (two-phase system: two-phase bridge connection type three-phase inverter). In addition, 10 is a comparator and 11 is a timer. In the circuit of FIG. 1, in order to turn on both the mechanical switch 4 and the semiconductor switch element 5 capable of bidirectional switching, and to make it equivalent to the two-phase system of FIG. This is achieved by always turning it off.
[0011]
First, the comparator 10 compares the motor rotation speed command 8 with a switching value 9 for switching from the two-phase method to the three-phase method. At that time, the OFF command to the semiconductor switch element 5 capable of bidirectional switching is output after a preset time by the timer 11 after the comparator 10 operates, and is controlled in synchronization with this signal. Switch from block 7 to control block 6. At that time, the switching is smoothly performed by synchronously switching off the semiconductor switch element 5 and switching the semiconductor switch of the inverter.
FIG. 4 shows the state at this time. When the command 8 coincides with the switching value 9, the mechanical switch 4 such as a contactor is turned off, and then the semiconductor switch element 5 is turned off after a lapse of the timer time. Recognize.
[0012]
FIG. 5 is a block diagram showing a third embodiment of the present invention, and shows a second control apparatus example in FIG. Reference numeral 13 denotes a comparator.
This is an example when the motor shifts from high speed to low speed, and the motor rotation speed command 8 is compared with a switching value 12 for switching from the three-phase method to the two-phase method in the comparator 13. In response to the output signal 14 indicating that the motor rotational speed command 8 has become the switching value 12 or less, the mechanical switch 4 and the semiconductor switch element 5 capable of bidirectional switching are turned on, and the control blocks 6 to 7 are switched on. Switch to. Thereby, the semiconductor switches Ta and Td are operated so as to be always in the off state.
FIG. 6 shows the state at this time. When the command 8 coincides with the switching value 12, both the mechanical switch 4 such as the contactor and the semiconductor switch element 5 are turned on, and immediately from the three-phase method to the two-phase method. It turns out that it switches.
[0013]
【The invention's effect】
According to the present invention, since the motor is equivalently driven by the two-phase method at low speed operation and equivalently by the three-phase method at high speed operation, it is possible to perform highly efficient operation in the entire rotation speed range. Become.
Further, for example, when shifting from the two-phase method to the three-phase method, a certain set time after the mechanical switch is turned off (until the mechanical switch is actually turned off after an OFF signal is input to the mechanical switch). Since the semiconductor switch element is turned off during the transition period and the semiconductor switch element is turned on during the transitional period, the control of the inverter may be left in the two-phase system, which is affected by the switching operation of the mechanical switch. Not. In addition, the switching is smoothly performed by synchronously switching off the semiconductor switch element and switching the semiconductor switch of the inverter.
On the other hand, when shifting from the three-phase method to the two-phase method, the mechanical switch and the semiconductor switch element are switched on by synchronizing the turn-on of the upper and lower arm semiconductor switch elements with a predetermined one phase of the inverter. Will be smooth.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention;
FIG. 2 is a configuration diagram illustrating an example of a bidirectional switch used in FIG. 1;
FIG. 3 is a block diagram showing a first control device in FIG. 1;
4 is an operation explanatory diagram when FIG. 1 is driven by the control device of FIG. 3;
FIG. 5 is a block diagram showing a second control device in FIG. 1;
6 is an operation explanatory diagram when FIG. 1 is driven by the control device of FIG. 5;
FIG. 7 is a schematic diagram showing a first conventional example.
FIG. 8 is a schematic diagram showing a second conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 ... Capacitor, 3 ... Inverter, 4 ... Mechanical switch, 5 ... Semiconductor switch element, 6 ... 3 phase system control block, 7 ... 2 phase system control block, 10, 13 comparator, 11 ... Timer.

Claims (6)

直流電源に、複数のコンデンサの直列回路を並列に接続するとともに、半導体スイッチ素子とこれに逆並列接続されたダイオード6組をブリッジ結線し、直流から3相交流に変換するインバータの3相交流出力のうちの1つと、前記直列接続されたコンデンサの中間電位点との間に、コンタクタを含む機械的スイッチと、半導体スイッチ素子を含み双方向のスイッチングが可能な双方向スイッチとの並列回路を接続し、
前記機械的スイッチおよび双方向スイッチをオフにし3相式インバータとして使用し、前記機械的スイッチおよび双方向スイッチをオンにし、かつ、前記インバータの前記機械的スイッチおよび双方向スイッチが接続された相の半導体スイッチ素子を常にオフ状態にして2相ブリッジ結線式3相インバータとして使用することを特徴とする直流−交流電力変換回路。
A three-phase AC output of an inverter that connects a DC power supply to a series circuit of a plurality of capacitors in parallel, bridges a semiconductor switch element and six diodes connected in antiparallel thereto, and converts the direct current into a three-phase alternating current A parallel circuit of a mechanical switch including a contactor and a bidirectional switch including a semiconductor switch element capable of bidirectional switching is connected between one of the above and an intermediate potential point of the series-connected capacitors. And
The mechanical switch and the bidirectional switch are turned off and used as a three-phase inverter, the mechanical switch and the bidirectional switch are turned on, and the phase of the inverter to which the mechanical switch and the bidirectional switch are connected is connected. A DC-AC power conversion circuit characterized in that the semiconductor switch element is always turned off and used as a two-phase bridge connection type three-phase inverter.
前記インバータが駆動するモータの低速運転時は前記2相ブリッジ結線式3相インバータとして駆動し、高速運転時は前記3相式インバータとして駆動することを特徴とする請求項1に記載の直流−交流電力変換回路。2. The DC-AC of claim 1, wherein the motor driven by the inverter is driven as the two-phase bridge-connected three-phase inverter during low-speed operation, and is driven as the three-phase inverter during high-speed operation. Power conversion circuit. 前記2相ブリッジ結線式3相インバータ駆動と、前記3相式インバータ駆動との切り替えは、前記インバータが駆動するモータの速度指令に基づいて行なうことを特徴とする請求項1または2に記載の直流−交流電力変換回路。3. The direct current according to claim 1, wherein switching between the two-phase bridge connection type three-phase inverter drive and the three-phase inverter drive is performed based on a speed command of a motor driven by the inverter. AC power conversion circuit. 前記機械的スイッチおよび双方向スイッチをオフするに当たっては、機械的スイッチをオフさせた後、それから所定時間後に双方向スイッチをオフすることを特徴とする請求項1〜3のいずれかに記載の直流−交流電力変換回路。4. The direct current according to claim 1, wherein the mechanical switch and the bidirectional switch are turned off after the mechanical switch is turned off and then the bidirectional switch is turned off after a predetermined time. AC power conversion circuit. 前記双方向スイッチをオフさせるタイミングと、前記インバータの各相アームの半導体スイッチ素子をスイッチングさせるタイミングとを同期させることを特徴とする請求項4に記載の直流−交流電力変換回路。5. The DC-AC power conversion circuit according to claim 4, wherein a timing at which the bidirectional switch is turned off and a timing at which the semiconductor switch element of each phase arm of the inverter is switched are synchronized. 前記機械的スイッチおよび双方向スイッチのオンタイミングと、前記インバータの前記機械的スイッチおよび双方向スイッチが接続された相の上,下アームの半導体スイッチ素子のオフタイミングとを同期させることを特徴とする請求項1に記載の直流−交流電力変換回路。The on-timing of the mechanical switch and the bidirectional switch is synchronized with the off-timing of the upper and lower arm semiconductor switch elements of the phase of the inverter to which the mechanical switch and the bidirectional switch are connected. The DC-AC power converter circuit according to claim 1.
JP15480699A 1999-06-02 1999-06-02 DC-AC power conversion circuit Expired - Lifetime JP3759334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15480699A JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15480699A JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Publications (2)

Publication Number Publication Date
JP2000350476A JP2000350476A (en) 2000-12-15
JP3759334B2 true JP3759334B2 (en) 2006-03-22

Family

ID=15592304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15480699A Expired - Lifetime JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Country Status (1)

Country Link
JP (1) JP3759334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750004B2 (en) 2010-12-17 2014-06-10 Fuji Electric Co., Ltd. Three level inverter device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935251B2 (en) * 2006-08-31 2012-05-23 ダイキン工業株式会社 Power converter
JP4858067B2 (en) * 2006-10-11 2012-01-18 ダイキン工業株式会社 Inverter device, three-phase motor and air conditioner
JP5061578B2 (en) * 2006-11-02 2012-10-31 ダイキン工業株式会社 Inverter device, air conditioner, and control method for inverter device
JP4752772B2 (en) * 2007-01-23 2011-08-17 株式会社安川電機 AC motor winding switching device and winding switching system thereof
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power conversion device
JP5428480B2 (en) * 2009-04-13 2014-02-26 富士電機株式会社 Power converter
JP5359637B2 (en) * 2009-07-17 2013-12-04 富士電機株式会社 Power converter
JP2012065429A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power inverter circuit
JP5310882B2 (en) * 2012-01-12 2013-10-09 ダイキン工業株式会社 Inverter device, air conditioner, and control method for inverter device
CN106141763A (en) * 2016-08-30 2016-11-23 广东广都电扶梯部件有限公司 The cutter shaft driving means of band defencive function on a kind of gear-hobbing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750004B2 (en) 2010-12-17 2014-06-10 Fuji Electric Co., Ltd. Three level inverter device

Also Published As

Publication number Publication date
JP2000350476A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
US5483140A (en) Thyristor based DC link current source power conversion system for motor driven operation
JPH04197078A (en) Power converter, control method therefor and uninterruptible power supply
JP3759334B2 (en) DC-AC power conversion circuit
JPH09131075A (en) Inverter equipment
JP2004531196A (en) Multi-stage switch circuit
JPH0669312B2 (en) Inverter device
JP3865007B2 (en) PWM cycloconverter device
JP3775921B2 (en) DC motor operation control device
Jang The converter topology with half bridge inverter for switched reluctance motor drives
JPH0744834B2 (en) Pulse width control power converter
JPH08266059A (en) Power converter
JP3611075B2 (en) Single-phase input 3-phase output power conversion circuit
JP3296424B2 (en) Power converter
JPH1023754A (en) Dc power supply apparatus
JP2580108B2 (en) Power converter
JPS596583B2 (en) power converter
JP2000092857A (en) Power conversion device
KR0132390B1 (en) Choppingless converter for switched reluctance motor drive
JP2005278304A (en) Power supply apparatus
JP4375506B2 (en) Inverter device and current limiting method thereof
JPS586391B2 (en) Inverter touch
JP2654876B2 (en) Power supply for switching power converter
JP2000253686A (en) Power regenerating circuit
KR960032863A (en) Method and soft switching voltage inverter for controlling bidirectional electric current
JPH11164566A (en) Resonance type inverter device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term