JP2000350476A - Dc-ac power conversion circuit - Google Patents

Dc-ac power conversion circuit

Info

Publication number
JP2000350476A
JP2000350476A JP11154806A JP15480699A JP2000350476A JP 2000350476 A JP2000350476 A JP 2000350476A JP 11154806 A JP11154806 A JP 11154806A JP 15480699 A JP15480699 A JP 15480699A JP 2000350476 A JP2000350476 A JP 2000350476A
Authority
JP
Japan
Prior art keywords
phase
inverter
switch
semiconductor switch
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11154806A
Other languages
Japanese (ja)
Other versions
JP3759334B2 (en
Inventor
Akitake Takizawa
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15480699A priority Critical patent/JP3759334B2/en
Publication of JP2000350476A publication Critical patent/JP2000350476A/en
Application granted granted Critical
Publication of JP3759334B2 publication Critical patent/JP3759334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC-AC power conversion circuit which is capable of highly efficient operation over its entire revolution range, when it is used for motor drive. SOLUTION: For example, the series circuit of for example two capacitors 1 and 2 is connected in parallel to a DC power source, and the parallel circuit of a mechanical switch 4 and a semiconductor switch element 5, capable of bidirectional switching, is connected between one of the three-phase AC outputs of an inverter, where the semiconductor switch elements and six pairs of diodes connected in back-to-back with them are wired in bridge, and the intermediate potential point between the capacitors 1 and 2, and both switches 4 and 5 of this parallel circuit are turned off, so that the three-phase system (for high speed) of an inverter and both switches 4 and 5 of the parallel circuit are both turned off, and besides the semiconductor switch elements Ta and Tb are turned off at all times, thus this circuit is operated as a two-phase system (for low speed) of inverter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、モータの可変速
駆動などに用いて好適な直流―交流電力変換回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC-AC power conversion circuit suitable for variable-speed driving of a motor and the like.

【0002】[0002]

【従来の技術】図7に第1の従来例を示す。同図は、直
流中間コンデンサ15と、半導体スイッチ素子6組を3
相ブリッジ結線したインバータ回路16とを設け、半導
体スイッチ素子のスイッチングにより、負荷である3相
モータ17の可変速運転を行なう例である。図8に第2
の従来例を示す。直列に接続した直流中間コンデンサ1
8,19と、半導体スイッチ素子4組を2相ブリッジ結
線したインバータ回路20とを設け、18と19の中間
点電位と2相ブリッジ結線したインバータ回路20の交
流出力部を3相モータ17に結線し、半導体スイッチ素
子のスイッチングにより可変速運転を行なう例である。
2. Description of the Related Art FIG. 7 shows a first conventional example. The figure shows that a DC intermediate capacitor 15 and six sets of semiconductor switch elements are connected to three.
In this example, a three-phase motor 17 serving as a load is operated at a variable speed by switching a semiconductor switch element with an inverter circuit 16 connected in a phase bridge. FIG. 8 shows the second
The following shows a conventional example. DC intermediate capacitor 1 connected in series
8 and 19, and an inverter circuit 20 in which four sets of semiconductor switch elements are connected in a two-phase bridge, and an intermediate point potential between 18 and 19 and an AC output part of the inverter circuit 20 in a two-phase bridge connection are connected to a three-phase motor 17. This is an example in which the variable speed operation is performed by switching of the semiconductor switch element.

【0003】[0003]

【発明が解決しようとする課題】図7の従来回路例で
は、モータを低速運転する際は、モータへの印加電圧は
低くする必要があるため、電圧制御のためインバータの
半導体スイッチ素子はパルス幅変調(PWM)する必要
がある。その際、上アームと下アームのスイッチがオン
することでモータに電圧が印加されるため、モータには
直流中間コンデンサ15の直流電圧分が入り切りされる
ことになる。その結果、モータには高周波電流が流れて
渦電流損が大きくなり、モータの効率が低下する。この
渦電流損を低減するには、直流電源21を可変にしパル
ス振幅変調(PAM)運転を行なえば良いが、通常直流
電源は商用の交流電源を整流して作るため、直流電源の
下限値には限界があり、PAM運転を行なうのは或る程
度の高い回転数からとなる。
In the conventional circuit example shown in FIG. 7, when the motor is operated at a low speed, the voltage applied to the motor must be reduced. It needs to be modulated (PWM). At this time, the voltage is applied to the motor by turning on the switches of the upper arm and the lower arm, so that the DC voltage of the DC intermediate capacitor 15 is turned on and off to the motor. As a result, a high-frequency current flows through the motor, so that the eddy current loss increases and the motor efficiency decreases. In order to reduce the eddy current loss, the DC power supply 21 may be changed to perform pulse amplitude modulation (PAM) operation. However, since the DC power supply is usually made by rectifying a commercial AC power supply, the DC power supply has a lower limit. Is limited, and the PAM operation is performed from a certain high rotational speed.

【0004】一方、図8の方式は、半導体スイッチ素子
1つがオンすることでモータに電圧を印加することが可
能で、その電圧値はコンデンサ18と19の直流電圧の
和の1/2となるため、渦電流損は図7の方式に比べて
小さくなり、またモータに印加する電圧が平均的に低い
ため、PAM運転は低い回転数から行なえる。また、図
7の方式は図8の例に比べて半導体スイッチ素子数が多
いため、半導体素子部での損失も大きくなる。
On the other hand, in the method shown in FIG. 8, a voltage can be applied to the motor by turning on one semiconductor switch element, and the voltage value is の of the sum of the DC voltages of the capacitors 18 and 19. Therefore, the eddy current loss is smaller than that in the system of FIG. 7, and the voltage applied to the motor is low on average, so that the PAM operation can be performed from a low rotation speed. Further, in the method of FIG. 7, the number of semiconductor switch elements is larger than that of the example of FIG.

【0005】図7の方式でPAM運転となる高速運転領
域では、図8の方式では図7の方式に比べて、モータへ
の印加電圧が低い分コンデンサ18と19の直流電圧
は、図7の方式に比べて高くする(概ね2倍)必要があ
る。よって、図8の方式は半導体スイッチ素子として高
耐圧のものが必要となってコストアップとなり、また直
流を昇圧する回路での損失が大きくなるという問題があ
る。このように、モータの低速運転には図8の2相方式
が適しており、また高速運転には図7の3相方式が適し
ていると言える。
In the high-speed operation region in which the PAM operation is performed in the system of FIG. 7, the DC voltage of the capacitors 18 and 19 in the system of FIG. 8 is lower than that of the system of FIG. It needs to be higher (approximately twice) than the method. Therefore, the method shown in FIG. 8 requires a semiconductor switch element having a high withstand voltage, resulting in an increase in cost and an increase in loss in a DC boosting circuit. Thus, it can be said that the two-phase system of FIG. 8 is suitable for the low-speed operation of the motor, and the three-phase system of FIG. 7 is suitable for the high-speed operation.

【0006】また、双方向性のスイッチとして、コンタ
クタのような機械的なスイッチと、トランジスタとダイ
オードを用いた半導体スイッチ素子があり、前者は完全
にオン状態となればその導通損失は無視できるほど小さ
いというメリットはあるが、オンからオフ,またはオフ
からオンする際に数10ms程度の時間を要するのと、
その期間中はチャタリング等の現象が発生するため、イ
ンバータ部に用いられている半導体スイッチ素子と同期
させてスイッチングさせることができないというデメリ
ットがある。また、後者は同じ半導体スイッチ素子なの
で、インバータ部に用いられている半導体スイッチ素子
と同期させてスイッチングさせることはできるが、導通
時に電圧ドロップが生じるため、その部分での発生損失
が大きくなり、高効率化の弊害となる。したがって、こ
の発明の課題はモータの全回転数領域で高効率の運転を
可能にする直流―交流電力変換回路を提供することにあ
る。
As a bidirectional switch, there are a mechanical switch such as a contactor and a semiconductor switch element using a transistor and a diode. The former is such that when it is completely turned on, its conduction loss is negligible. Although it has the advantage of being small, it takes several tens of milliseconds to turn from on to off or from off to on.
During that period, since a phenomenon such as chattering occurs, there is a disadvantage that switching cannot be performed in synchronization with a semiconductor switching element used in the inverter unit. In addition, since the latter is the same semiconductor switch element, it can be switched in synchronization with the semiconductor switch element used in the inverter section. Efficiency is adversely affected. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a DC-AC power conversion circuit that enables high-efficiency operation in the entire rotational speed range of a motor.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、直流電源に、複数のコン
デンサの直列回路を並列に接続するとともに、半導体ス
イッチ素子とこれに逆並列接続されたダイオード6組を
ブリッジ結線し、直流から3相交流に変換するインバー
タの3相交流出力のうちの1つと、前記直列接続された
コンデンサの中間電位点との間に、コンタクタを含む機
械的スイッチと、半導体スイッチ素子を含み双方向のス
イッチングが可能な双方向スイッチとの並列回路を接続
し、前記機械的スイッチおよび双方向スイッチをオフに
し3相式インバータとして使用し、前記機械的スイッチ
および双方向スイッチをオンにし、かつ、前記インバー
タの所定1相分の半導体スイッチ素子を常にオフ状態に
して2相ブリッジ結線式3相インバータとして使用する
ことを特徴とする。
In order to solve such a problem, according to the present invention, a series circuit of a plurality of capacitors is connected to a DC power supply in parallel, and a semiconductor switch element and an anti-parallel circuit are connected to the semiconductor switch element. A machine including a contactor between one of three-phase AC outputs of an inverter for bridging six sets of connected diodes and converting DC to three-phase AC, and an intermediate potential point of the series-connected capacitor. A parallel circuit of a dynamic switch and a bidirectional switch including a semiconductor switch element and capable of bidirectional switching is connected, the mechanical switch and the bidirectional switch are turned off, and the mechanical switch is used as a three-phase inverter. A two-phase bridge by turning on a bidirectional switch and constantly turning off a semiconductor switch element for a predetermined phase of the inverter. It characterized by using as a line type 3-phase inverter.

【0008】上記請求項1の発明においては、前記機械
的スイッチおよび双方向スイッチをオフするに当たって
は、機械的スイッチをオフさせた後、それから所定時間
後に双方向スイッチをオフすることができる(請求項2
の発明)。この請求項2の発明においては、前記双方向
スイッチをオフさせるタイミングと、前記インバータの
各相アームの半導体スイッチ素子をスイッチングさせる
タイミングとを同期させることができる(請求項3の発
明)。さらに、上記請求項1の発明においては、前記機
械的スイッチおよび双方向スイッチのオンタイミングと
前記インバータの所定1相の上,下アームの半導体スイ
ッチ素子のオフタイミングとを同期させることができる
(請求項4の発明)。
In the first aspect of the present invention, when turning off the mechanical switch and the bidirectional switch, the bidirectional switch can be turned off a predetermined time after the mechanical switch is turned off (claim). Item 2
Invention). According to the second aspect of the invention, it is possible to synchronize the timing of turning off the bidirectional switch with the timing of switching the semiconductor switch element of each phase arm of the inverter (the third aspect of the invention). Further, according to the first aspect of the present invention, the on-timing of the mechanical switch and the bidirectional switch can be synchronized with the off-timing of the upper and lower arm semiconductor switch elements of a predetermined phase of the inverter. Item 4)).

【0009】[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。同図の直流中間回路としては、
直列に接続したコンデンサ1,2と、3相インバータ3
の3相交流出力のうちの1相と直流部のコンデンサの中
間電位点とを、コンタクタのような機械的スイッチ4
と、双方向にスイッチングが可能な半導体スイッチ素子
5との並列回路で接続した構成となっている。なお、双
方向にスイッチングが可能な半導体スイッチ素子として
は、図2(a)または(b)のように、半導体スイッチ
素子とダイオードとをブリッジ型または直列に組み合わ
せたものを用いることができる。直流中間コンデンサ
は、一般に複数個設けることができる。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. As the DC intermediate circuit in the figure,
Capacitors 1 and 2 connected in series and three-phase inverter 3
Of one of the three-phase AC outputs and the intermediate potential point of the capacitor in the DC part is connected to a mechanical switch 4 such as a contactor.
And a semiconductor switch element 5 capable of bidirectional switching. As the semiconductor switch element capable of bidirectional switching, a bridge type or a series combination of a semiconductor switch element and a diode as shown in FIG. 2A or 2B can be used. Generally, a plurality of DC intermediate capacitors can be provided.

【0010】図3はこの発明の第2の実施の形態を示す
構成図で、図1における第1の制御装置例を示す。同図
において、制御ブロック6はモータの高速運転時に動作
させるためのブロックで、主回路としては図1の回路を
図7(3相方式:3相インバータ)と同様にして使用す
る。制御ブロック7はモータの低速運転時に動作させる
ためのブロックで、主回路としては図1の回路を図8
(2相方式:2相ブリッジ結線式3相インバータ)と同
様にして使用する。なお、10は比較器、11はタイマ
である。また、図1の回路で、機械的スイッチ4および
双方向にスイッチングが可能な半導体スイッチ素子5を
ともにオンとし、図8の2相方式と等価的に等しくする
には、半導体スイッチTaとTdを常にオフ状態とする
ことにより、達成される。
FIG. 3 is a block diagram showing a second embodiment of the present invention, and shows a first control device example in FIG. In the figure, a control block 6 is a block for operating the motor at a high speed operation, and uses the circuit of FIG. 1 as a main circuit in the same manner as in FIG. 7 (three-phase system: three-phase inverter). The control block 7 is a block for operating the motor at low speed operation.
(Two-phase system: two-phase bridge connection type three-phase inverter). In addition, 10 is a comparator, and 11 is a timer. In the circuit of FIG. 1, the mechanical switch 4 and the semiconductor switch element 5 capable of bidirectional switching are both turned on, so that the semiconductor switches Ta and Td are equivalently equivalent to the two-phase system of FIG. This is achieved by always turning off.

【0011】まず、比較器10により、モータの回転数
指令8を2相方式から3相方式に切替えるための切替え
値9と比較する。その際、双方向にスイッチングが可能
な半導体スイッチ素子5へのオフ指令は、比較器10が
動作してからタイマ11によって予め設定された時間後
に出力されるようにし、この信号に同期させて制御ブロ
ック7から制御ブロック6に切替える。その際、半導体
スイッチ素子5のオフと、インバータの半導体スイッチ
のスイッチングとを同期して行なうことで、切替えが円
滑に行なわれる。この時の様子を示すのが図4で、指令
8が切替え値9と一致した時点でコンタクタのような機
械的スイッチ4がオフとなり、それからタイマ時間経過
後に半導体スイッチ素子5がオフとなることがわかる。
First, the comparator 10 compares the motor speed command 8 with a switching value 9 for switching from the two-phase system to the three-phase system. At this time, an off command to the semiconductor switch element 5 capable of bidirectional switching is output after a time set in advance by the timer 11 after the operation of the comparator 10, and control is performed in synchronization with this signal. Switch from block 7 to control block 6. At this time, the switching is smoothly performed by synchronizing the turning off of the semiconductor switch element 5 and the switching of the semiconductor switch of the inverter. FIG. 4 shows the state at this time. When the command 8 matches the switching value 9, the mechanical switch 4 such as a contactor is turned off, and the semiconductor switch element 5 is turned off after a lapse of a timer time. Understand.

【0012】図5はこの発明の第3の実施の形態を示す
構成図で、図1における第2の制御装置例を示す。13
は比較器である。これは、モータが高速から低速に移行
する場合の例で、モータの回転数指令8を比較器13に
おいて、3相方式から2相方式に切替えるための切替え
値12と比較する。モータの回転数指令8が切替え値1
2以下になったことを示す出力信号14により、機械的
スイッチ4および双方向にスイッチングが可能な半導体
スイッチ素子5をオンにするとともに、制御ブロックを
6から7に切替える。これにより、半導体スイッチTa
とTdは常にオフ状態となるように運転される。この時
の様子を示すのが図6で、指令8が切替え値12と一致
した時点でコンタクタのような機械的スイッチ4および
半導体スイッチ素子5がともにオンとなり、直ちに3相
方式から2相方式に切替わることがわかる。
FIG. 5 is a block diagram showing a third embodiment of the present invention, and shows a second control device example in FIG. 13
Is a comparator. This is an example in which the motor shifts from high speed to low speed, and the motor rotation speed command 8 is compared in the comparator 13 with the switching value 12 for switching from the three-phase system to the two-phase system. Motor speed command 8 is the switching value 1
The mechanical switch 4 and the semiconductor switch element 5 capable of bidirectional switching are turned on by an output signal 14 indicating that the number has become 2 or less, and the control block is switched from 6 to 7. Thereby, the semiconductor switch Ta
And Td are always operated to be in the off state. FIG. 6 shows the state at this time. When the command 8 coincides with the switching value 12, both the mechanical switch 4 such as a contactor and the semiconductor switch element 5 are turned on, and immediately from the three-phase system to the two-phase system. It turns out that it changes.

【0013】[0013]

【発明の効果】この発明によれば、モータの低速運転時
には等価的に2相方式で、また高速運転時には等価的に
3相方式で駆動されることになるため、全回転数領域で
高効率な運転が可能となる。また、例えば2相方式から
3相方式に移行する際、機械的スイッチがオフしてから
或る設定時間後(機械的スイッチにオフ信号が入力して
から、機械的スイッチが実際にオフするまでの時間)に
半導体スイッチ素子がオフし、その過渡的な期間中は半
導体スイッチ素子はオンしているため、インバータの制
御は2相方式のままでよく、機械的スイッチのスイッチ
ング動作による影響を及ぼされない。加えて、半導体ス
イッチ素子のオフと、インバータの半導体スイッチのス
イッチングとを同期して行なうことで、切替えが円滑に
行なわれる。一方、3相方式から2相方式に移行する際
は、機械的スイッチおよび半導体スイッチ素子のオン
と、インバータの所定1相の上,下アームの半導体スイ
ッチ素子のオフとを同期させることで、切替えが円滑と
なる。
According to the present invention, the motor is driven equivalently by the two-phase method at the time of low-speed operation and equivalently by the three-phase method at the time of high-speed operation. Operation becomes possible. Further, for example, when shifting from the two-phase system to the three-phase system, after a certain set time from when the mechanical switch is turned off (from the time the OFF signal is input to the mechanical switch until the mechanical switch is actually turned off) Since the semiconductor switching element is turned off at the time of) and the semiconductor switching element is turned on during the transitional period, the control of the inverter may be kept in the two-phase mode, and the switching operation of the mechanical switch may have an effect. Not done. In addition, the switching is smoothly performed by synchronizing the turning off of the semiconductor switch element and the switching of the semiconductor switch of the inverter. On the other hand, when shifting from the three-phase system to the two-phase system, the switching is performed by synchronizing the ON state of the mechanical switch and the semiconductor switch element with the OFF state of the semiconductor switch elements of the upper and lower arms of a predetermined phase of the inverter. Becomes smoother.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1で用いられる双方向スイッチの例を示す構
成図である。
FIG. 2 is a configuration diagram showing an example of a bidirectional switch used in FIG.

【図3】図1における第1の制御装置を示すブロック図
である。
FIG. 3 is a block diagram showing a first control device in FIG. 1;

【図4】図1を図3の制御装置で駆動した場合の動作説
明図である。
4 is an operation explanatory diagram when FIG. 1 is driven by the control device of FIG. 3;

【図5】図1における第2の制御装置を示すブロック図
である。
FIG. 5 is a block diagram showing a second control device in FIG. 1;

【図6】図1を図5の制御装置で駆動した場合の動作説
明図である。
6 is an operation explanatory diagram when FIG. 1 is driven by the control device of FIG. 5;

【図7】第1の従来例を示す概要図である。FIG. 7 is a schematic diagram showing a first conventional example.

【図8】第2の従来例を示す概要図である。FIG. 8 is a schematic diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1,2…コンデンサ、3…インバータ、4…機械的スイ
ッチ、5…半導体スイッチ素子、6…3相方式制御ブロ
ック、7…2相方式制御ブロック、10,13比較器、
11…タイマ。
1, 2, capacitor, 3 inverter, 4 mechanical switch, 5 semiconductor switch element, 6 three-phase control block, 7 two-phase control block, 10, 13 comparator,
11 ... Timer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直流電源に、複数のコンデンサの直列回
路を並列に接続するとともに、半導体スイッチ素子とこ
れに逆並列接続されたダイオード6組をブリッジ結線
し、直流から3相交流に変換するインバータの3相交流
出力のうちの1つと、前記直列接続されたコンデンサの
中間電位点との間に、コンタクタを含む機械的スイッチ
と、半導体スイッチ素子を含み双方向のスイッチングが
可能な双方向スイッチとの並列回路を接続し、 前記機械的スイッチおよび双方向スイッチをオフにし3
相式インバータとして使用し、前記機械的スイッチおよ
び双方向スイッチをオンにし、かつ、前記インバータの
所定1相分の半導体スイッチ素子を常にオフ状態にして
2相ブリッジ結線式3相インバータとして使用すること
を特徴とする直流―交流電力変換回路。
1. An inverter for converting a direct current to a three-phase alternating current by connecting a series circuit of a plurality of capacitors in parallel to a direct current power source and bridging a semiconductor switch element and six sets of diodes connected in anti-parallel to the semiconductor switch element. A mechanical switch including a contactor, a bidirectional switch including a semiconductor switch element and capable of bidirectional switching, between one of the three-phase AC outputs and an intermediate potential point of the series-connected capacitor. And turning off the mechanical switch and the bidirectional switch.
Use as a two-phase bridge-connected three-phase inverter by turning on the mechanical switch and the bidirectional switch, and by always turning off the semiconductor switch element for one predetermined phase of the inverter. DC-AC power conversion circuit.
【請求項2】前記機械的スイッチおよび双方向スイッチ
をオフするに当たっては、機械的スイッチをオフさせた
後、それから所定時間後に双方向スイッチをオフするこ
とを特徴とする請求項1に記載の直流―交流電力変換回
路。
2. The direct current switch according to claim 1, wherein the mechanical switch and the bidirectional switch are turned off, and then the mechanical switch is turned off, and then the bidirectional switch is turned off a predetermined time after the mechanical switch is turned off. -AC power conversion circuit.
【請求項3】前記双方向スイッチをオフさせるタイミン
グと、前記インバータの各相アームの半導体スイッチ素
子をスイッチングさせるタイミングとを同期させること
を特徴とする請求項2に記載の直流―交流電力変換回
路。
3. The DC-AC power conversion circuit according to claim 2, wherein the timing for turning off the bidirectional switch and the timing for switching the semiconductor switch element of each phase arm of the inverter are synchronized. .
【請求項4】前記機械的スイッチおよび双方向スイッチ
のオンタイミングと前記インバータの所定1相の上,下
アームの半導体スイッチ素子のオフタイミングとを同期
させることを特徴とする請求項1に記載の直流―交流電
力変換回路。
4. The semiconductor device according to claim 1, wherein the on timing of the mechanical switch and the bidirectional switch is synchronized with the off timing of a semiconductor switch element of an upper and lower arm of a predetermined phase of the inverter. DC-AC power conversion circuit.
JP15480699A 1999-06-02 1999-06-02 DC-AC power conversion circuit Expired - Lifetime JP3759334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15480699A JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15480699A JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Publications (2)

Publication Number Publication Date
JP2000350476A true JP2000350476A (en) 2000-12-15
JP3759334B2 JP3759334B2 (en) 2006-03-22

Family

ID=15592304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15480699A Expired - Lifetime JP3759334B2 (en) 1999-06-02 1999-06-02 DC-AC power conversion circuit

Country Status (1)

Country Link
JP (1) JP3759334B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061414A (en) * 2006-08-31 2008-03-13 Daikin Ind Ltd Power conversion device
JP2008099415A (en) * 2006-10-11 2008-04-24 Daikin Ind Ltd Inverter device, three-phase motor, and air-conditioning machine
JP2008118765A (en) * 2006-11-02 2008-05-22 Daikin Ind Ltd Inverter, air conditioner and control method of inverter
JP2008182783A (en) * 2007-01-23 2008-08-07 Yaskawa Electric Corp Coil switching device and switching method of three-phase ac motor
WO2008146446A1 (en) * 2007-05-23 2008-12-04 Daikin Industries, Ltd. Power conversion device
JP2010252450A (en) * 2009-04-13 2010-11-04 Fuji Electric Systems Co Ltd Power conversion apparatus
JP2011024369A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Power converter
JP2012065429A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power inverter circuit
JP2012075323A (en) * 2012-01-12 2012-04-12 Daikin Ind Ltd Inverter device, air conditioner and control method of inverter device
JP2012130224A (en) * 2010-12-17 2012-07-05 Fuji Electric Co Ltd Three-level inverter device
CN106141763A (en) * 2016-08-30 2016-11-23 广东广都电扶梯部件有限公司 The cutter shaft driving means of band defencive function on a kind of gear-hobbing machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061414A (en) * 2006-08-31 2008-03-13 Daikin Ind Ltd Power conversion device
JP2008099415A (en) * 2006-10-11 2008-04-24 Daikin Ind Ltd Inverter device, three-phase motor, and air-conditioning machine
JP2008118765A (en) * 2006-11-02 2008-05-22 Daikin Ind Ltd Inverter, air conditioner and control method of inverter
JP2008182783A (en) * 2007-01-23 2008-08-07 Yaskawa Electric Corp Coil switching device and switching method of three-phase ac motor
WO2008146446A1 (en) * 2007-05-23 2008-12-04 Daikin Industries, Ltd. Power conversion device
AU2008256174B2 (en) * 2007-05-23 2011-03-03 Daikin Industries, Ltd. Power converter
JP2010252450A (en) * 2009-04-13 2010-11-04 Fuji Electric Systems Co Ltd Power conversion apparatus
JP2011024369A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Power converter
JP2012065429A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power inverter circuit
JP2012130224A (en) * 2010-12-17 2012-07-05 Fuji Electric Co Ltd Three-level inverter device
JP2012075323A (en) * 2012-01-12 2012-04-12 Daikin Ind Ltd Inverter device, air conditioner and control method of inverter device
CN106141763A (en) * 2016-08-30 2016-11-23 广东广都电扶梯部件有限公司 The cutter shaft driving means of band defencive function on a kind of gear-hobbing machine

Also Published As

Publication number Publication date
JP3759334B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US5483140A (en) Thyristor based DC link current source power conversion system for motor driven operation
US5005115A (en) Forced-commutated current-source converter and AC motor drive using the same
KR920017340A (en) AC motor drive system
JPH04197078A (en) Power converter, control method therefor and uninterruptible power supply
JP2000350476A (en) Dc-ac power conversion circuit
JP2004531196A (en) Multi-stage switch circuit
JP3865007B2 (en) PWM cycloconverter device
JPH11313496A (en) Operation controller for dc motor
JP2672919B2 (en) Power converter
JPH07163189A (en) Pwm controller for motor
JP2001258258A (en) Pwm cycloconverter
Jang The converter topology with half bridge inverter for switched reluctance motor drives
JP2004343884A (en) Circuit and method for driving three-phase motor
JPH10225144A (en) Method of controlling gate of three-arm ups
JPH08317678A (en) Dynamic brake for polyphase synchronous electric motor using inverter
JP2004312822A (en) Two-phase modulation controlling inverter
JPH10285983A (en) Operation controller for brushless motor
JP2580108B2 (en) Power converter
JP3775553B2 (en) Control method of brushless DC motor
JPH0284038A (en) Engine generator
JPH10257775A (en) Inverter device
KR0132390B1 (en) Choppingless converter for switched reluctance motor drive
JPS596583B2 (en) power converter
JPS586391B2 (en) Inverter touch
JP2003235277A (en) Motor drive system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term