JP3752701B2 - Self-excited vibration type vibration control device - Google Patents

Self-excited vibration type vibration control device Download PDF

Info

Publication number
JP3752701B2
JP3752701B2 JP09774095A JP9774095A JP3752701B2 JP 3752701 B2 JP3752701 B2 JP 3752701B2 JP 09774095 A JP09774095 A JP 09774095A JP 9774095 A JP9774095 A JP 9774095A JP 3752701 B2 JP3752701 B2 JP 3752701B2
Authority
JP
Japan
Prior art keywords
vibration
amplitude
self
gain
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09774095A
Other languages
Japanese (ja)
Other versions
JPH08267008A (en
Inventor
裕 栗田
恭次 村岸
均 安田
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP09774095A priority Critical patent/JP3752701B2/en
Priority to KR1019960008130A priority patent/KR100351522B1/en
Priority to US08/620,674 priority patent/US5777232A/en
Priority to TW085103690A priority patent/TW300176B/zh
Priority to SG1996006619A priority patent/SG42361A1/en
Priority to EP96302168A priority patent/EP0735448B1/en
Priority to DE69613737T priority patent/DE69613737T2/en
Priority to CN96102971A priority patent/CN1137016A/en
Publication of JPH08267008A publication Critical patent/JPH08267008A/en
Application granted granted Critical
Publication of JP3752701B2 publication Critical patent/JP3752701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Jigging Conveyors (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は自励振動型振動制御装置に関する。
【0002】
【従来の技術及びその問題点】
一般に、自励共振型振動制御装置は、共振点を自動的に追尾する利点を持つが、振巾を有限に保つための何らかの制御を必要とする。コントローラや電力増巾器の飽和特性で振巾を一定にしようとすると電力増巾器の出力は矩形波となり、高調波成分を多く含む。
【0003】
これに鑑みて特願昭61−154599号では、図3に示すような自励振動型振動制御装置を開示している。又、図3の働きの一部を伝達関数で表したブロック線図を図4に示す。すなわち、図4において、振動機械は全体として1で示され、図示するような特性方程式を示す。これに振巾検出器2が近接して配設されており(例えば振動パーツフィーダにおいては、そのボウルとベースとを結合する板ばねに近接して配設された、うず型電流型のセンサ)その出力が振巾コントローラ3に供給され、この出力が電力増巾器4に供給されている。他方、振動機械の出力xは、自励発振コントローラ7に供給されているが、これが加算器6において、負帰還されており、今、自励振動であるので、一方の入力はゼロで、これは更に一次遅れ要素5に供給され、その出力が上述の電力増巾器4に供給されている。
【0004】
振動機械1は質量mが加速度 2 /dt2 で振動している時、1/s(sはラプラス変換子−以下同様)の遅れ要素を介すると、速度dx/dtとなり、これに粘性係数cをかけたものが振動減衰力として質量mに作用し、又、更にdx/dtが遅れ要素1/sを介すると、xとなり、これにばね定数kをかけたものが復元力として質量mに作用する。振動機械1は、このような閉ループで概念的に示されるが、共振周波数では90度位相が遅れる。自励発振コントローラ7における一次遅れ要素5において90度遅延させることにより、開ループにおいて180度の位相差が生じ、よって自励発振可能としている。電力増巾器4のゲインK0 が安定限界以上で、このシステムが発振するのであるが、振巾コントローラ3においては、その時の振巾と所定の振巾との差が検出され、これにより、電力増巾器4のゲインK0 を制御している。すなわち、目標振巾との偏差が大きい時には、このゲインK0 を大きくし、目標振巾に達した時に安定限界に戻すようにしている。然るに、図5に示すように、振巾偏差Δrと電力増巾器のゲインKとはリニアな関係にあり、今、自励振動の立ち上がり特性を良くしようとするためには、振巾偏差Δrが大きいので電力増巾器4のゲインKを充分に大きくする必要があるが、このようにすると振巾検出器2が高周波成分、すなわち、リップルをその波形に備えているが、これを大きく増巾してしまい、電力増巾器4の出力を変動させて、振動機械に安定な自励振動を起こさせなくする。
【0005】
【発明が解決しようとする問題点】
本発明は上述の問題に鑑みてなされ、自励振動の立ち上がり特性を良好にしながら、振巾検出手段のリップルによるゲインの変動を抑えることのできる自励振動型振動制御装置を提供することを目的とする。
【0006】
【問題点を解決するための手段】
以上の目的は、振動機器の振動速度を検出する振動速度検出手段、該振動速度検出手段の出力を正帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける振動駆動子とを有し、該振動駆動子により前記振動機器を加振するようにした自励振動型振動制御装置において、前記ゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置、によって達成される。
【0007】
又、以上の目的は、振動機器の振動変位を検出する振動変位検出器、該振動変位検出器の出力を負帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とし、かつ積分要素又は一次遅れ要素で位相遅れ制御をする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける振動駆動子とを有し、該振動駆動子により前記振動機器を加振するようにした自励振動型振動制御装置において、前記フィードバックゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置、によって達成される。
【0008】
又、以上の目的は、振動機器の振動変位を検出する振動変位検出器、該振動変位検出器の出力を負帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける電磁石と、該電磁石のコイルに流れる電流で発生する磁気吸引力により前記振動機器を加振するようにした自励振動型振動制御装置において、前記フィードバックゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置、によって達成される。
【0009】
【作用】
フィードバックゲインK= 1 Δr+ 3 Δr 3 +Kcr である。1 Δr+K3 Δr3 +Kcrは奇関数であり、Δrが大きい時には、3乗特性であるから、そのΔr3 が非常に大きくなり、これによりフィードバックゲインKを大きくして自励振動を起こしやすくすると共に、振巾偏差Δrが小さくなると、急激に小さくなり、偏差ΔrがゼロではKcr、すなわち、安定限界ゲインとなり、以後、振動機械は安定に自励振動し、一定振巾を持続する。なお、振動装置の振動速度を検出する場合にも、変位を検出する場合と同様であり、振動変位を検出する場合には、位相を90度ずらせることにより、自励発振を可能とし、又、振動駆動子が電磁石駆動部の場合には、この振動変位を検出する場合においては、電磁石自体に90度の位相遅れがあるので、位相遅れ手段を必要とせず、自励発振を迅速に、かつ安定に、この振動を続けさせる。
【0010】
【実施例】
以下、本発明の実施例につき、図面を参照して説明する。
【0011】
図1は本発明の実施例の自励振動型振動制御装置を示すものであるが、図において、振動機械11としては、本実施例では振動パーツフィーダに限らず、一般の振動機械とするが、これに加振力を与える振動駆動子17は電磁石方式加振機構ではなくて、圧電型、又は動電型であるとする。従って、これの入力端子に接続される電力増巾器16の出力と振動駆動子17の出力(加振力)との間には位相差はないものとする。なお、振動速度検出器12の検知部は振動機械11の可動部に取り付けられているか、近接して配設されているが、振動変位検出器と微分器からなるか、振動加速度検出器と積分器からなっている。振巾検出器13は振動速度検出器12の出力を積分することにより、振巾を検出し、該出力を振巾コントローラ14に供給する。振巾コントローラ14は比較器を含み、この一方の入力端子には目標とする振巾値が設定され、他入力端子には振巾検出器13の出力が供給されて、振巾偏差Δrを自励発振コントローラ15に供給する。自励発振コントローラ15は交流増巾器を含み、DC成分をカットして交流分を増巾するようにしているのであるが、このフィードバックゲインKの大きさは振巾コントローラ14の出力によって制御されるように構成されている。この振巾偏差Δrと、フィードバックゲインKとの関係は図2に示すように構成されている。すなわち、このゲイン曲線はフィードバックゲインK=K1 Δr+K3 Δr3 +Kcr(ここでK1 、K3 は定数、Kcrは安定限界ゲインである)に従って変化し、いわゆる3次曲線であるが、振巾偏差Δrが大きい時には、かなり大きな値をとることがわかる。
【0012】
本発明の実施例は以上のように構成されるが、次にこの作用について説明する。
【0013】
図示せずとも、電力増巾器16には直流電源がスイッチを介して接続されており、振動機械11の自励発振駆動にあたっては、このスイッチを閉じて電力増巾器16を作動状態におく。その他、自励発振コントローラ15、振巾コントローラ14なども同様に作動状態に置かれる。振巾コントローラ14においては最初振動機械11の可動部の振巾がゼロであることにより、振巾偏差Δrは最大である。すなわち、振巾偏差Δrの初期値は(目標振巾−ゼロ)であるが、従来は図5に示すようにリニアな関係にあるので、すなわち、振巾偏差Δrの直流増巾、或いはPID増巾により、K=KP Δrの関係でフィードバックゲインK0 をリニアに増大させていた。従って自励振動の立ち上がり特性をよくするために振巾偏差Δrの初期値においては、フィードバックゲインK0 は、この系においては最大の値となるが、更に立ち上がりを良くするためには大きくすると、この場合には上述したように振巾検出器13の出力に重畳されているリップルまで増巾されてしまい、フィードバックゲインK0 を安定限界に一定に保つことができず、大きく変動する。従って電力増巾器16の出力も変動する。
【0014】
然るに本発明はフィードバックゲインKが上式のような非線形演算出力で与えられるから振巾偏差Δrの初期値においてはフィードバックゲインKを決めるのは主に上記式における第2項K3 (Δr)3 であり、自励発振を迅速に行い、又、安定限界付近の挙動を定めるゲインKは図2に示すように小さくできるので、リップルの影響を小さくすることができる。
【0015】
図6は従来例のフィードバックゲインの時間的な変化を示すものであるが、スイッチオン後、900msec〜910msecにおける拡大図も示しているが、ゲインKは正弦的に大きく変化している。一方、図7は本発明によるゲインKの時間的変化を示すものであるが、同900msec〜910msecにおいて、安定限界ゲインは、ほとんど変化していない。これは振動検出器13のリップルの影響が小さいことを示している。
【0016】
以上、本発明の実施例について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基いて種々の変形が可能である。
【0017】
例えば以上の実施例では、振動機械11の振動速度を検出することにより、これを正帰還し、閉ループを形成し、自励振動を行わせるようにしたが、振動速度を検出する代わりに、振動変位を検出して、この検出信号を自励発振コントローラ15に負帰還すると共に、その位相を遅らせて上述のフィードバックゲインKを変更するようにしてもよい。自励振動の原理から明らかなように振動変位は共振点においては、力との位相差がπ/2であるので、更にπ/2の位相を遅らせるためにπ/2位相遅延要素を用いるようにしてもよい。
【0018】
又、振動変位検出手段を用いるが、振動駆動子が電磁石加振機構の場合には、この機構が90度位相を遅らせるので、何ら位相を遅らせる手段を用いることなく、本発明の効果を得ることができる。
【0019】
【発明の効果】
以上述べたように、本発明による自励振動型振動制御装置によれば、自励発振の立ち上がりを良くしながら安定に、この振動を持続させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例による自励振動型振動制御装置のブロック図である。
【図2】 同作用を説明するチャートである。
【図3】 従来例の自励振動型振動制御装置のブロック図である。
【図4】 同装置の働きの一部を伝達関数で表したブロック線図である。
【図5】 同作用を説明するチャートである。
【図6】 従来例のフィードバックゲインの時間的変化を示すタイムチャートである。
【図7】 本発明によるフィードバックゲインの時間的変化を示すチャートである。
【符号の説明】
11 振動機械
12 振動速度検出器
13 振巾検出器
14 振巾コントローラ
15 自励発振コントローラ
[0001]
[Industrial application fields]
The present invention relates to a self-excited vibration type vibration control apparatus.
[0002]
[Prior art and its problems]
In general, the self-excited resonance type vibration control apparatus has an advantage of automatically tracking a resonance point, but requires some control for keeping the amplitude limited. If the amplitude is made constant with the saturation characteristics of the controller and power amplifier, the output of the power amplifier becomes a rectangular wave and contains many harmonic components.
[0003]
In view of this, Japanese Patent Application No. 61-154599 discloses a self-excited vibration type vibration control apparatus as shown in FIG. FIG. 4 is a block diagram showing a part of the function of FIG. 3 as a transfer function. That is, in FIG. 4, the vibration machine is indicated by 1 as a whole, and shows a characteristic equation as shown. The amplitude detector 2 is disposed in close proximity to this (for example, in a vibration parts feeder, an eddy current type sensor disposed in proximity to a leaf spring that connects the bowl and the base). The output is supplied to the amplitude controller 3, and this output is supplied to the power amplifier 4. On the other hand, the output x of the vibration machine is supplied to the self-excited oscillation controller 7, which is negatively fed back in the adder 6 and is now self-excited vibration, so one input is zero. Is further supplied to the first-order lag element 5, and its output is supplied to the power amplifier 4 described above.
[0004]
When the mass m vibrates at an acceleration d 2 x / dt 2 , the vibration machine 1 has a velocity dx / dt through a delay element of 1 / s (s is a Laplace transducer—the same applies hereinafter), and is viscous to this. The product of the coefficient c acts on the mass m as vibration damping force, and when dx / dt further passes through the delay element 1 / s, x is obtained, and the product of this multiplied by the spring constant k is mass as the restoring force. acts on m. The vibration machine 1 is conceptually shown in such a closed loop, but the phase is delayed by 90 degrees at the resonance frequency. By delaying the primary delay element 5 in the self-oscillation controller 7 by 90 degrees, a phase difference of 180 degrees is generated in the open loop, so that self-excited oscillation is possible. The system oscillates when the gain K 0 of the power amplifier 4 is above the stability limit, but the amplitude controller 3 detects the difference between the current amplitude and the predetermined amplitude, The gain K 0 of the power amplifier 4 is controlled. That is, when the deviation between the target Fuhaba is large, the gain K 0 is increased, and returned to the stability limit when reaching the target Fuhaba. However, as shown in FIG. 5 , the amplitude deviation Δr and the gain K of the power amplifier have a linear relationship. Now, in order to improve the rising characteristics of the self-excited oscillation, the amplitude deviation Δr Therefore, it is necessary to increase the gain K of the power amplifier 4 sufficiently. In this case, the amplitude detector 2 has a high frequency component, that is, a ripple in its waveform. And the output of the power amplifier 4 is fluctuated to prevent the vibration machine from causing stable self-excited vibration.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a self-excited vibration type vibration control device capable of suppressing fluctuations in gain due to ripples of the amplitude detecting means while improving the rising characteristics of self-excited vibration. And
[0006]
[Means for solving problems]
The above object is to provide a vibration speed detecting means for detecting the vibration speed of the vibration equipment, receiving the output of the vibration speed detection means as a positive feedback signal, and obtaining the gain K of the AC amplifier for amplifying the signal of the vibration equipment. Regarding the amplitude deviation Δr which is the difference between the amplitude and the predetermined amplitude, a self-excited oscillation controller as a predetermined function, a power amplifier for amplifying the output of the controller, and the power amplifier A self-excited vibration type vibration control apparatus having a vibration driver for receiving an output, wherein the vibration device is vibrated by the vibration driver, and the value of the gain K is set to the amplitude of the vibration device With respect to the amplitude deviation Δr, which is a difference from a predetermined amplitude, K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 and K 3 are constants, K cr is a stability limit gain, and is a non-zero finite value) Value) to change the vibration device to the predetermined value. Self-oscillating vibration control apparatus being characterized in that so as to control so as to stably self-induced vibration at Fuhaba is achieved by.
[0007]
Another object of the present invention is to provide a vibration displacement detector for detecting the vibration displacement of the vibration device, receiving the output of the vibration displacement detector as a negative feedback signal, and obtaining the gain K of the AC amplifier for amplifying the signal as the vibration. A self-oscillation controller that performs a phase lag control with an integral element or a first-order lag element as a predetermined function with respect to the amplitude deviation Δr that is the difference between the amplitude of the device and the predetermined amplitude , and outputs the controller power In a self-excited vibration type vibration control apparatus having a power amplifier for amplifying, and a vibration driver for receiving the output of the power amplifier, wherein the vibration device is vibrated by the vibration driver, With respect to the amplitude deviation Δr, which is the difference between the amplitude of the vibration device at that time and a predetermined amplitude, the value of the feedback gain K is K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 , K 3 is a constant, it is K cr is at the stability limit gain 0 Achieved by a self-excited vibration type vibration control device, wherein the vibration device is controlled so as to be stably self-excited and vibrated at the predetermined amplitude. Is done.
[0008]
Another object of the present invention is to provide a vibration displacement detector for detecting the vibration displacement of the vibration device, receiving the output of the vibration displacement detector as a negative feedback signal, and obtaining the gain K of the AC amplifier for amplifying the signal as the vibration. A self-excited oscillation controller that is a predetermined function with respect to amplitude deviation Δr that is the difference between the amplitude of the device and a predetermined amplitude, a power amplifier that amplifies the output of the controller, and the power amplification In the self-excited vibration type vibration control apparatus in which the vibration device is vibrated by a magnet attracting force generated by a current flowing in a coil of the electromagnet that receives the output of the electromagnet, the value of the feedback gain K at that time Regarding the amplitude deviation Δr, which is the difference between the amplitude of the vibration device and a predetermined amplitude, K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 and K 3 are constants, and K cr is stable) It is a limit gain and changes in relation to a non-zero finite value) And as the cause, the vibration device is achieved by the self-excited oscillation type vibration control device, which is characterized in that so as to control so as to stably self-induced vibration at the predetermined Fuhaba.
[0009]
[Action]
Feedback gain K = K 1 Δr + K 3 Δr 3 + K cr . K 1 Δr + K 3 Δr 3 + K cr is the odd function, when a large [Delta] r, since a cubic characteristic, the [Delta] r 3 becomes very large, thereby likely to occur is increased to self-induced vibration feedback gain K At the same time, when the amplitude deviation Δr becomes smaller, the amplitude becomes abruptly smaller, and when the deviation Δr is zero, it becomes K cr , that is, a stability limit gain. Thereafter, the vibration machine stably vibrates and maintains a constant amplitude. Note that the detection of the vibration speed of the vibration device is the same as the case of detecting the displacement. When detecting the vibration displacement, self-excited oscillation is possible by shifting the phase by 90 degrees. In the case where the vibration driver is an electromagnet drive unit, when detecting this vibration displacement, the electromagnet itself has a phase delay of 90 degrees. And this vibration is continued stably.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
FIG. 1 shows a self-excited vibration type vibration control apparatus according to an embodiment of the present invention. In the figure, the vibration machine 11 is not limited to a vibration parts feeder in this embodiment, but is a general vibration machine. It is assumed that the vibration driver 17 for applying an excitation force to this is not an electromagnet type excitation mechanism but a piezoelectric type or an electrodynamic type. Therefore, it is assumed that there is no phase difference between the output of the power amplifier 16 connected to the input terminal and the output (excitation force) of the vibration driver 17. The detection unit of the vibration speed detector 12 is attached to or disposed close to the movable part of the vibration machine 11, but is composed of a vibration displacement detector and a differentiator, or integrated with the vibration acceleration detector. It consists of a vessel. The amplitude detector 13 detects the amplitude by integrating the output of the vibration velocity detector 12 and supplies the output to the amplitude controller 14. The amplitude controller 14 includes a comparator. A target amplitude value is set at one of the input terminals, and the output of the amplitude detector 13 is supplied to the other input terminal, so that the amplitude deviation Δr is automatically adjusted. The excitation oscillation controller 15 is supplied. The self-oscillation controller 15 includes an AC amplifier and cuts the DC component to increase the AC component. The magnitude of the feedback gain K is controlled by the output of the amplitude controller 14. It is comprised so that. The relationship between the amplitude deviation Δr and the feedback gain K is configured as shown in FIG. That is, this gain curve changes according to the feedback gain K = K 1 Δr + K 3 Δr 3 + K cr (where K 1 and K 3 are constants and K cr is a stability limit gain), and is a so-called cubic curve. When the amplitude deviation Δr is large, it can be seen that the value is considerably large.
[0012]
The embodiment of the present invention is configured as described above. Next, this operation will be described.
[0013]
Although not shown, a DC power source is connected to the power amplifier 16 via a switch. When the vibration machine 11 is driven by self-oscillation, the switch is closed and the power amplifier 16 is in an operating state. . In addition, the self-excited oscillation controller 15, the amplitude controller 14 and the like are similarly put in an operating state. In the amplitude controller 14, the amplitude deviation Δr is the maximum because the amplitude of the movable part of the vibration machine 11 is initially zero. In other words, the initial value of the amplitude deviation Δr is (target amplitude−zero), but since the conventional relationship is linear as shown in FIG. 5 , that is, the DC amplitude of the amplitude deviation Δr or the PID increase. Depending on the width, the feedback gain K 0 was increased linearly in the relationship of K = K P Δr. Therefore, in order to improve the rising characteristics of the self-excited vibration, the feedback gain K 0 is the maximum value in this system at the initial value of the amplitude deviation Δr. this if would be Zohaba to ripple superimposed on the output of Fuhaba detector 13 as described above, can not be kept feedback gain K 0 constant at the stability limit, it varies greatly. Accordingly, the output of the power amplifier 16 also varies.
[0014]
However, in the present invention, the feedback gain K is given by a non-linear calculation output as shown in the above equation. Therefore , the feedback gain K is mainly determined in the initial value of the amplitude deviation Δr by the second term K 3 (Δr) 3 in the above equation. Since the self-excited oscillation is performed quickly and the gain K that determines the behavior near the stability limit can be reduced as shown in FIG. 2, the influence of the ripple can be reduced.
[0015]
FIG. 6 shows a temporal change in the feedback gain of the conventional example, but also shows an enlarged view from 900 msec to 910 msec after the switch is turned on, but the gain K changes greatly sinusoidally. On the other hand, FIG. 7 shows a temporal change of the gain K according to the present invention, but the stability limit gain hardly changes in the same 900 msec to 910 msec. This indicates that the influence of the ripple of the vibration detector 13 is small.
[0016]
Having described embodiments of the present invention, of course, the present invention is not limited to these, and various modifications are possible based on the technical idea of the present invention.
[0017]
For example, in the above embodiment, the vibration speed of the vibration machine 11 is detected, and this is positively fed back to form a closed loop and self-excited vibration is performed. However, instead of detecting the vibration speed, vibration is detected. The displacement may be detected, and the detection signal may be negatively fed back to the self-excited oscillation controller 15, and the feedback gain K may be changed by delaying the phase. As is clear from the principle of self-excited vibration, the vibration displacement has a phase difference of π / 2 at the resonance point. Therefore, a delay element of π / 2 phase is used to further delay the phase of π / 2. You may do it.
[0018]
In addition, although the vibration displacement detection means is used, when the vibration driver is an electromagnet vibration mechanism, this mechanism delays the phase by 90 degrees, so that the effect of the present invention can be obtained without using any means for delaying the phase. Can do.
[0019]
【The invention's effect】
As described above, according to the self-excited vibration type vibration control device of the present invention, this vibration can be maintained stably while improving the rising of the self-excited oscillation.
[Brief description of the drawings]
FIG. 1 is a block diagram of a self-excited vibration type vibration control apparatus according to an embodiment of the present invention.
FIG. 2 is a chart explaining the same operation.
FIG. 3 is a block diagram of a conventional self-excited vibration type vibration control device.
FIG. 4 is a block diagram showing a part of the function of the apparatus as a transfer function.
FIG. 5 is a chart explaining the same operation.
FIG. 6 is a time chart showing temporal changes in feedback gain of a conventional example.
FIG. 7 is a chart showing temporal changes in feedback gain according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Vibration machine 12 Vibration speed detector 13 Amplitude detector 14 Amplitude controller 15 Self-excited oscillation controller

Claims (3)

振動機器の振動速度を検出する振動速度検出手段、該振動速度検出手段の出力を正帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける振動駆動子とを有し、該振動駆動子により前記振動機器を加振するようにした自励振動型振動制御装置において、前記ゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置。Vibration speed detection means for detecting the vibration speed of the vibration equipment, the output of the vibration speed detection means is received as a positive feedback signal, and the gain K of the AC amplifier for amplifying the signal is set to the amplitude of the vibration equipment and a predetermined value. A self-excited oscillation controller having a predetermined function with respect to the amplitude deviation Δr, which is a difference from the amplitude, a power amplifier that amplifies the output of the controller, and a vibration drive that receives the output of the power amplifier A self-excited vibration type vibration control apparatus that vibrates the vibration device by the vibration driver, and sets the value of the gain K to the amplitude of the vibration device at that time and a predetermined amplitude. The amplitude deviation Δr that is the difference between the two is K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 and K 3 are constants, and K cr is a stability limit gain and is a non-zero finite value). So that the vibrating device is stable with the predetermined amplitude. Self-oscillating vibration control apparatus being characterized in that so as to control so that excited vibration. 振動機器の振動変位を検出する振動変位検出器、該振動変位検出器の出力を負帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とし、かつ積分要素又は一次遅れ要素で位相遅れ制御をする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける振動駆動子とを有し、該振動駆動子により前記振動機器を加振するようにした自励振動型振動制御装置において、前記フィードバックゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置。A vibration displacement detector for detecting the vibration displacement of the vibration device, the output of the vibration displacement detector is received as a negative feedback signal, and the gain K of the AC amplifier for amplifying the signal is set to the amplitude of the vibration device and a predetermined value. A self-oscillation controller that controls a phase delay with an integral element or a first-order lag element with respect to the amplitude deviation Δr that is a difference from the amplitude , and a power amplifier that amplifies the output of the controller And a vibration driver that receives the output of the power amplifier, and in the self-excited vibration type vibration control device that vibrates the vibration device by the vibration driver, the value of the feedback gain K is With respect to the amplitude deviation Δr, which is the difference between the amplitude of the vibration device at that time and a predetermined amplitude, K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 and K 3 are constants and K cr Is a stability limit gain and a non-zero finite value) So as to reduction, the self-excited oscillation type oscillation device is characterized in that so as to control so as to stably self-induced vibration at the predetermined Fuhaba vibration control device. 振動機器の振動変位を検出する振動変位検出器、該振動変位検出器の出力を負帰還信号として受け、該信号を増巾する交流増巾器のゲインKを前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、所定の関数とする自励発振コントローラと、該コントローラの出力を電力増巾する電力増巾器と、該電力増巾器の出力を受ける電磁石と、該電磁石のコイルに流れる電流で発生する磁気吸引力により前記振動機器を加振するようにした自励振動型振動制御装置において、前記フィードバックゲインKの値をその時の前記振動機器の振巾と所定の振巾との差である振巾偏差Δrに関し、K=K1 Δr+K3 (Δr)3+Kcr(但し、K1 、K3 は定数で、Kcrは安定限界ゲインであり0でない有限値)の関係で変化させるようにして、前記振動機器が前記所定の振巾で安定に自励振動するように制御するようにしたことを特徴とする自励振動型振動制御装置。A vibration displacement detector for detecting the vibration displacement of the vibration device, the output of the vibration displacement detector is received as a negative feedback signal, and the gain K of the AC amplifier for amplifying the signal is set to the amplitude of the vibration device and a predetermined value. A self-excited oscillation controller as a predetermined function with respect to the amplitude deviation Δr, which is a difference from the amplitude, a power amplifier that amplifies the output of the controller, and an electromagnet that receives the output of the power amplifier In the self-excited vibration type vibration control apparatus in which the vibration device is vibrated by the magnetic attractive force generated by the current flowing through the coil of the electromagnet, the value of the feedback gain K is set to the amplitude of the vibration device at that time. With respect to the amplitude deviation Δr, which is a difference from a predetermined amplitude, K = K 1 Δr + K 3 (Δr) 3 + K cr (where K 1 and K 3 are constants, K cr is a stability limit gain, and is a non-zero finite value) Value) Serial oscillating device the predetermined self-oscillation type vibration control device which is characterized in that so as to control so as to stably self-excited vibration in Fuhaba.
JP09774095A 1995-03-29 1995-03-29 Self-excited vibration type vibration control device Expired - Fee Related JP3752701B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP09774095A JP3752701B2 (en) 1995-03-29 1995-03-29 Self-excited vibration type vibration control device
KR1019960008130A KR100351522B1 (en) 1995-03-29 1996-03-25 Self-contained vibration type vibration device
US08/620,674 US5777232A (en) 1995-03-29 1996-03-26 Control system for vibratory apparatus
TW085103690A TW300176B (en) 1995-03-29 1996-03-27
SG1996006619A SG42361A1 (en) 1995-03-29 1996-03-28 Vibratory apparatus
EP96302168A EP0735448B1 (en) 1995-03-29 1996-03-28 Vibratory apparatus
DE69613737T DE69613737T2 (en) 1995-03-29 1996-03-28 Vibrator
CN96102971A CN1137016A (en) 1995-03-29 1996-03-28 Self-excited oscillating type vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09774095A JP3752701B2 (en) 1995-03-29 1995-03-29 Self-excited vibration type vibration control device

Publications (2)

Publication Number Publication Date
JPH08267008A JPH08267008A (en) 1996-10-15
JP3752701B2 true JP3752701B2 (en) 2006-03-08

Family

ID=14200301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09774095A Expired - Fee Related JP3752701B2 (en) 1995-03-29 1995-03-29 Self-excited vibration type vibration control device

Country Status (4)

Country Link
JP (1) JP3752701B2 (en)
KR (1) KR100351522B1 (en)
CN (1) CN1137016A (en)
TW (1) TW300176B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054397A (en) * 2008-08-29 2010-03-11 Univ Of Shiga Prefecture Control actuator and vibration control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338538C (en) * 2004-08-20 2007-09-19 东南大学 Vibration material feeding controller with self-adapting frequency self maintaining amplitude and its control method
WO2011086879A1 (en) * 2010-01-18 2011-07-21 独立行政法人産業技術総合研究所 Method of measuring viscosity and viscosity measuring device
CN106959196B (en) * 2017-03-21 2023-05-26 中国地震局工程力学研究所 Servo vibrating table and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054397A (en) * 2008-08-29 2010-03-11 Univ Of Shiga Prefecture Control actuator and vibration control method

Also Published As

Publication number Publication date
KR960033566A (en) 1996-10-22
TW300176B (en) 1997-03-11
JPH08267008A (en) 1996-10-15
CN1137016A (en) 1996-12-04
KR100351522B1 (en) 2002-11-14

Similar Documents

Publication Publication Date Title
EP0735448B1 (en) Vibratory apparatus
KR100392261B1 (en) Elliptical vibration device
JP5127767B2 (en) Drive control device
JP3752701B2 (en) Self-excited vibration type vibration control device
JP3603376B2 (en) Self-excited vibration type vibration device with electromagnet excitation method
JP3531278B2 (en) Vibration device
JP3890672B2 (en) Self-excited vibration type vibration device
JP4066481B2 (en) Self-excited vibration type vibration device
JP3890673B2 (en) Self-excited vibration type vibration device
JP4082629B2 (en) Self-excited resonance type vibration device
JP3161277B2 (en) Elliptical vibration device
JP2001137778A (en) Sensor-less self-excited type electromagnetic vibration apparatus
JP3823401B2 (en) Self-excited vibration type vibration device
JP3531279B2 (en) Vibration device
JP4562960B2 (en) Optical scanner drive circuit
JP4078694B2 (en) Oval vibration parts feeder drive control method and elliptic vibration parts feeder
JP3885253B2 (en) Elliptical vibration device
JPH11327656A (en) Sensorless self-exciting resonance type electromagnetic vibration device
JPH1173229A (en) Elliptic vibrator
JPH10157827A (en) Elliptically vibrating device
JP2000288469A (en) Optimum mode selecting resonance type vibrating classifier
JPH1035850A (en) Oscillation device
JPH0553650A (en) Positioning controller
JPH03265474A (en) Drive circuit for standing oscillation wave motor
JPH11119840A (en) Elliptical vibration device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040107

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees