JP3752540B2 - 光パルス分離方法及び光パルス分離装置 - Google Patents

光パルス分離方法及び光パルス分離装置 Download PDF

Info

Publication number
JP3752540B2
JP3752540B2 JP2002354776A JP2002354776A JP3752540B2 JP 3752540 B2 JP3752540 B2 JP 3752540B2 JP 2002354776 A JP2002354776 A JP 2002354776A JP 2002354776 A JP2002354776 A JP 2002354776A JP 3752540 B2 JP3752540 B2 JP 3752540B2
Authority
JP
Japan
Prior art keywords
signal
optical
electrical
electric
optical pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002354776A
Other languages
English (en)
Other versions
JP2004187205A (ja
Inventor
哲弥 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2002354776A priority Critical patent/JP3752540B2/ja
Priority to US10/420,811 priority patent/US20040109691A1/en
Priority to EP03252755A priority patent/EP1427125A3/en
Publication of JP2004187205A publication Critical patent/JP2004187205A/ja
Application granted granted Critical
Publication of JP3752540B2 publication Critical patent/JP3752540B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光時分割多重通信におけるクロック信号を抽出する方法に関する。また、このクロック信号抽出方法を用いた光時分割多重通信装置に関する。
【0002】
【従来の技術】
光時分割多重通信(OTDM: Optical time division multiplexing)とは、同一基本変調速度(「ベースレート」ともいう。)の異なる情報信号(以後「トリビュタリチャンネル」という。)で変調された複数の光パルス信号を時間軸上で時分割多重し時分割多重光信号として伝送して、受信側でトリビュタリチャンネル毎に受信復調する通信である。すなわち、変調速度の等しい複数のトリビュタリチャンネルを、トリビュタリチャンネルに対応して位相遅延を与えてから時間軸上で合成して時分割多重光信号を得て、この時分割多重光信号を伝送して、受信側において、送られてきた全てのトリビュタリチャンネルに対応する光パルス信号をこの時分割多重光信号から分離する方式をとる通信である。
【0003】
トリビュタリチャンネルのベースレートの時間基準となる信号をベースレートクロック(以後単に「クロック」という。)信号と呼ぶ。受信側でトリビュタリチャンネル毎に受信復調するために、光パルス分離するには、送信側で用いたクロック信号を時分割多重光信号から抽出し再生する必要がある。すなわち、時分割多重された光パルス信号からクロック信号を抽出し再生する技術(以後単に「クロック信号再生」ということもある。)が必要である。
【0004】
クロック信号再生法として、光スイッチを利用した超高速光位相比較器を具えた位相同期ループ回路を用いる方法が提案されている( 例えば、非特許文献1、非特許文献2、非特許文献3参照。)。
【0005】
また、全光注入同期クロック信号再生構成を採れば、直接光ベースレートクロックを得ることが出来る(例えば、非特許文献4、非特許文献5参照。)。
【0006】
【非特許文献1】
R.Ludwig et al. "Enabling transmission at 160 Gb/s," in Tech. Dig. of OFC'02, TuA1, 2002年
【非特許文献2】
T.Yamamoto et al. "Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometic optical switch based on semiconductor optical amplifier,"Electron. Lett., vol. 37 No.8, pp.509-510, 2001年
【非特許文献3】
D.T.K.Tong et al. "160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,"Electron. Lett., vol.36 No.23, pp.1951-1952, 2000年
【非特許文献4】
C.Bornhldt et al. “Application of a 80 GHz all-optical clock in a 169 km transmission experiment", in Tech, Dig. of OFC 02, TuN6, 2002年
【非特許文献5】
T. Miyazaki et al. “Optical sampling and demultiplexing of 80 Gb/s OTDM signals with optically recovered clock by injection mode-locked laser diode", in Tech. Dig. of ECOC 02 2.1.6 2002年
【0007】
【発明が解決しようとする課題】
しかしながら、上述した位相同期ループ回路を用いる方法は、光パルス分離のためのスイッチ以外に、超高速光ゲートスイッチを必要とし、構成が複雑になる。また、全光注入同期クロック再生構成をとる場合には、160 Gbit/s以上の高速動作において安定した動作を実現することが課題である。
【0008】
そこで、この発明の目的は、複雑な構成を必要とせず、160 Gbit/sを超える高速動作においても安定に作動する、光クロック信号抽出方法を用いた光パルス分離方法及びこの方法を用いることができる光パルス分離装置を提供することにある。
【0009】
【課題を解決するための手段】
上述の目的の達成を図るため、この発明の光パルス分離方法によれば、同一基本変調速度の異なる情報信号(以後「トリビュタリチャンネル」という。)で変調された複数の光パルス信号を時間軸上で時分割多重し時分割多重光信号として伝送し、受信側にて時分割多重光信号から抽出される再生クロック信号を用いて個別のトリビュタリチャンネル毎に受信復調するために、光パルス分離する方法を実施するに当り、以下のステップを具える点を特徴とする。すなわち、
(a)時分割多重光信号から、再生クロック信号を抽出するために、時分割多重光信号を光電変換して第1電気信号を得るステップと、
(b)時分割多重光信号のジッタを忠実に再現したクロック信号を再生した第2電気信号を得るステップと、
(c)第2電気信号として、トリビュタリチャンネルに位相の追随した電気的再生クロック信号を出力するステップ。
【0010】
ジッタとは、受信側に到着した時分割多重光信号の光パルスの到着時間の揺らぎを言う。ジッタを忠実に再現したクロック信号を再生することにより、ジッタが存在しても、再生されたクロック信号によって、光パルス分離が誤りなく行なうことができる。
【0011】
また上述の光パルス分離方法を実現するために以下の構成を具えることを特徴とする光パルス分離装置とする。すなわち、第1光電変換器、第1電気増幅器、位相同期ループ回路及び可変電気的位相遅延回路を具える。第1光電変換器は、同一基本変調速度の異なる情報信号で変調された複数の光パルス信号を時間軸上で時分割多重された時分割多重光信号から、再生クロック信号を抽出するために、時分割多重光信号を光電変換して第1電気信号として抽出する。第1電気増幅器は、第1電気信号の強度を安定化して、位相同期ループ回路に供給する。第1電気増幅器のこの機能を表すために以後第1電気増幅器を「出力安定化電気増幅器」ともいう。位相同期ループ回路は、時分割多重光信号のジッタを忠実に再現したクロック信号を再生できるように第2電気信号を生成する。
【0012】
可変電気的位相遅延回路は、第2電気信号として、トリビュタリチャンネルに位相の追随した電気的再生クロック信号を光パルス分離段に出力する。
【0013】
上述したこの発明の光パルス分離方法及び光パルス分離装置によれば、クロック信号の抽出において、超高速光ゲートを必要としない。また、意図的にクロック周波数成分を残すための光スペクトルの調整も必要としない。また、干渉計やその他の高速電気的構成要素を必要としないので、複雑な構成を必要とせず、160 Gbit/sを超える高速においても安定に作動させることが出来る。
【0014】
また、この発明の光パルス分離方法において、時分割多重光信号を、トリビュタリチャンネルの光パルス信号に光パルス分離する場合には、以下のステップを更に含むのが好適である。
【0015】
(d)電気的再生クロック信号を、第1モード同期半導体レーザに供給するステップと、
(e)この電気的再生クロック信号に応答して第1モード同期半導体レーザから光学的再生クロック信号を生成するステップと、
(f)この光学的再生クロック信号を制御光パルスとして光スイッチに供給して、時分割多重光信号をトリビュタリチャンネルの光パルス信号に光パルス分離するステップ。
【0016】
また、この発明の光パルス分離方法において、時分割多重光信号を、トリビュタリチャンネルの光パルス信号に光パルス分離する方法を実現するために、以下の構成を具えることを特徴とする光パルス分離装置とすることが出来る。すなわち、第1モード同期半導体レーザと光スイッチとを具える。第1モード同期半導体レーザは、電気的再生クロック信号を受けて光学的再生クロック信号すなわち光クロックパルスを生成する。光スイッチは、この光学的再生クロック信号を受けて時分割多重光信号からトリビュタリチャンネルの光パルス信号を光パルス分離する。
【0017】
上述した、この発明の光パルス分離方法において、時分割多重光信号を、トリビュタリチャンネルの光パルス信号に光パルス分離する方法及びこの方法を実現する上述の装置によれば、可変電気的位相遅延回路から出力された電気的再生クロック信号を第1モード同期半導体レーザによって光学的再生クロック信号が生成される。この光学的再生クロック信号を制御光パルスとして光スイッチに供給することで、光パルス分離が実現されることになる。
【0018】
また、時分割多重光信号を、この時分割多重光信号から抽出される再生クロック信号を用いて、トリビュタリチャンネルの光パルス信号に光パルス分離するための、電気的再生クロック信号を得る場合には、以下のステップを含むのが好適である。すなわち、
(a1)第1電気信号の抽出を、時分割多重光信号を第1光電変換器で受信して光電変換して行い、この光電変換によって得られる第1電気信号を出力安定化電気増幅器に供給して増幅し、
(b1)増幅された第1電気信号から時分割多重光信号のジッタを忠実に再現したクロック信号を再生できるように位相同期ループ回路から第2電気信号を出力させ、
(c1)前記第2電気信号を可変電気的位相遅延回路に供給して該第2電気信号としてトリビュタリチャンネルに位相の追随した電気的再生クロック信号として出力させ、
(c2)この電気的再生クロック信号を、第2電気増幅器に供給して増幅した後、通過中心周波数を半値全幅で除した値が500以上である帯域幅有する電気的バンドパスフィルタによってフィルタリングしてフィルタリング済み電気的再生クロック信号を得る。
【0019】
また、上述の光パルス分離する方法を実現する装置を構成する場合には以下の要素を具えることが好適である。すなわち、出力安定化電気増幅器と、第2電気増幅器と、通過中心周波数を半値全幅で除した値が500以上である帯域幅有する電気的バンドパスフィルタとを具える。時分割多重光信号の周波数はトリビュタリチャンネルのビットレートの多重チャンネル数倍のビットレート周波数である。出力安定化電気増幅器は、第1電気信号の強度を安定化して、位相同期ループ回路に供給する。第2電気増幅器は、電気的再生クロック信号を増幅する。電気的バンドパスフィルタは、増幅された再生クロック信号を受けてフィルタリングしてフィルタリング済み電気的再生クロック信号を生成する。
【0020】
上述したこの発明の光パルス分離方法及び光パルス分離装置における、電気的再生クロック信号得る方法及び装置によれば、時分割多重光信号から、光パルス分離及び光サンプリングとビットエラーレートの観測に必要とされる電気的再生クロック信号を得ることが出来る。
【0021】
【発明の実施の形態】
以下、図1から図9(c)を参照して、この発明の実施の形態につき説明する。なお、各図は、この発明に係る一構成例を図示するものであり、この発明が理解できる程度に各構成要素の配置関係等を概略的に示しているに過ぎず、この発明を図示例に限定するものではない。また、以下の説明において、特定の機器及び条件等を用いることがあるが、これら材料及び条件は好適例の一つに過ぎず、したがって、何らこれらに限定されない。また、各図において同様の構成要素については、同一の番号を付して示し、その重複する説明を省略することもある。
【0022】
以下に示す図において、光ファイバ等の光信号の経路を太線で示し、電気信号の経路を細線で示してある。またこれら太線及び細線に付された番号及び記号は、それぞれ光信号あるいは電気信号を意味する。
【0023】
<光パルス分離方法及びそれを用いた光時分割多重通信装置の構成>
図1を参照してこの発明に係る光時分割多重通信装置の全体の構成を説明する。光時分割多重通信装置は、送信部10、伝送部12および受信部13を具えている。送信部10は、光パルス信号を生成する部分64及び光パルス信号を合波する部分44を具えている。伝送部12は、光ファイバから成る伝送路90及び分散補償機能を有する部分98を具えている。受信部13は、光パルス分離装置14を具えている。
【0024】
<送信部>
図2を参照して送信部10の構成及び動作について説明する。10 GHz(正確には、9.95328 GHzであるが、簡便のために以後10 GHzと表記する。)の繰返しの光パルス信号を、モード同期半導体レーザ(MLLD:Mode locked Laser diode) 36 によって生成する。このMLLD 36の発振波長は波長1560 nmである。以後受信部13に設けられる同種のMLLDと区別するために、このMLLD 36を特に送信側MLLD 36と記述する。この出力光パルスがLiNbO3 光変調器40で10 Gbit/s(27-1ビットのPRBS(Pseudo Random Binary Sequence)信号)に変調される。10 Gbit/sの出力光パルスが平面光導波路型多重化回路44により時分割多重されて160 Gbit/s の時分割多重光信号が生成される。上述した10 GHzとの表記同様に厳密には160 Gbit/sではないが、簡便のために160 Gbit/sと表記する。
【0025】
なお、時分割多重光信号のビットレートはトリビュタリチャンネルのビットレートの多重チャンネル数倍に等しいという関係にある。この実施の形態においては時分割多重光信号のビットレートが160 Gbit/s、トリビュタリチャンネルのビットレートが10 Gbit/sである。また多重チャンネル数は、一般に2の整数乗、すなわち2、4、8、16、32等であり、この実施の形態では16チャンネルである。
【0026】
この160 Gbit/s の時分割多重光信号が生成される過程をもう少し詳しく説明する。クロック信号発生器(signal generator)34から10 GHzの電気クロック信号すなわちベースレートクロック信号48及び50が、それぞれ送信側MLLD 36と変調信号発生器(pulse pattern generator)38に供給される。以後、紛らわしい場合には、クロック信号が電気パルス信号の形で存在する場合を電気クロック信号とし、及びクロック信号が光パルス信号の形で存在する場合を光クロック信号として区別して表記する。送信側MLLD 36 は、電気クロック信号48によって駆動されて、10 GHzの光パルス列52を発生する。この光パルス列52は、LiNbO3 光変調器40に入射する。
【0027】
一方、クロック信号発生器34から電気クロック信号50が変調信号発生器38に供給される。変調信号発生器38は、供給される電気クロック信号50に同期した電気変調信号54を発生してこの電気変調信号54をLiNbO3 光変調器40に供給する。電気変調信号54が供給されたLiNbO3 光変調器40は、入力してきた10 GHzの光パルス列52を10 Gbit/s信号54により変調する。
【0028】
PRBS信号では、1符合と0符合の数がほぼ同数で、このPRBS信号の1周期は2N-1ビットとなる。周期内の各ビットにはN個の0の連続を除く全ての組み合わせがランダムに発生する。例えば、2N-1ビットのPRBS信号は、N個のシフトレジスタと排他的論理和(Exclusive OR Gate)回路から成る回路で生成される。
【0029】
10 Gbit/sの光パルス信号56は、光ファイバ増幅器42で増幅されて光パルス信号58となって、平面光導波路型多重化回路44に送られ、この多重化回路44で時分割多重光信号60となる。光ファイバ増幅器42は、Er等の希土類元素がドーピングされた光ファイバ(EDFA: Er-doped optical fiber amplifier)であって、伝播する光を増幅する機能を有する。以後単に「光増幅器」と表記することもある。また以後別の箇所において、光ファイバ増幅器42と同様の光ファイバ増幅器を用いるが、これらの箇所において用いる光ファイバ増幅器も同様に第1あるいは第2と識別しつつ「光増幅器」と表記することもある。
【0030】
時分割多重光信号60は、光増幅器46で増幅された時分割多重光信号22となり、この増幅された時分割多重光信号22が伝送部12(図1参照)に送られる。以後、光パルス信号58を「トリビュタリチャンネル」の光パルス信号ということもある。すなわち、トリビュタリチャンネルとは、個々の光パルス信号に対する「個々のチャンネル」でもあり、或いは、「多重前のチャンネル」でもある。また、受信側で、光パルス分離された結果、光パルス信号58と同一の光パルス信号が得られることから「分離後のチャンネル」という意味でもある。
【0031】
図1に示す送信部10は、この図2で説明したトリビュタリチャンネル(この実施の形態においては、ビットレートは10 Gbit/s である。)64を16チャンネル分具えている。これら16チャンネル分の光パルス信号58が平面光導波路型多重化回路44において多重化され、時分割多重光信号60となる。これによって時分割多重光信号60は、160 Gbit/sの光パルス信号となる。また時分割多重光信号60は、隣接するトリビュタリチャンネルの光パルス信号が確実に分離されて送られるために、平面光導波路型多重化装置44のそれぞれのアーム(トリビュタリチャンネルに対応して設けられる遅延を与えるための光導波路であり、図示されていない。)において、オフセット遅延時間(ほぼ200 ps)を付加して、時分割多重化される。これによって時分割多重化された160 Gbit/s の時分割多重光信号60が生成される。時分割多重光信号60を以後、「160 Gbit/s OTDM信号」ということもある。
【0032】
この発明の光時分割多重通信装置の動作を確認するための実験において、時分割多重光信号パルスとして、既に述べたように、PRBS信号を用いた。光時分割多重通信装置として実際に稼動されて利用される際には、利用者の送りたい具体的情報を反映した信号が、このPRBS信号に相当する。すなわち、PRBS信号を用いて、この発明に係る光時分割多重通信装置の動作確認が出来れば、この装置の実用的運用においても問題なく、動作することが確認されたことになる。PRBS信号を用いたこの発明に係る光時分割多重通信装置の動作が実験によって確認されたことは後述する。
【0033】
<伝送部>
次に図3を参照して伝送部12の構成及びその動作について説明する。実用上の利用形態を想定して、この実施の形態においては、伝送部12として、320kmの長距離伝送線を用いた。この伝送部12は、1区間80kmの4区間の伝送路からなり、各区間90は、シングルモードファイバ(2セット66、70:株式会社フルカワ製SMF-E、29 km 2本)、逆分散ファイバ(2セット68、72:株式会社フルカワ製RDF-45E、 11 km 2本)、光増幅器74及び伝送路中には光学的バンドパスフィルタ76を接続して構成した。すなわち伝送部12は、1区間80 km の4区間を直列に接続し、320 kmの長さにしたものである。
【0034】
区間90が4つ直列に接続された伝送路を通過した後において、信号光91(図1参照)に残っている、伝送路の波長分散(すなわち単位波長変化当りの群遅延時間差)及び分散スロープ(すなわち単位波長当りの波長分散変化量)に起因する残留積算分散および残留積算分散スロープは、可変分散イコライザと分散スロープ補償器を組み合わせたカスケード構成の分散補償器98によって更に分散補償した。これら可変分散イコライザと分散スロープ補償器は、屈折率の周期構造がチャーピングされた回折格子を有する光ファイバ(82及び84)と光サーキュレータ(78及び80)等を用いて構成した。この可変分散イコライザと分散スロープ補償器を組み合わせたカスケード構成の分散補償器98は160Gbit/sのRZ(Return to Zero)変調信号に対して好適となるように設計した。波長1546.6nmの光(パルス信号光の波長)に対する残留積算分散と残留積算分散スロープは、それぞれ0 ps/nmおよび0 ps/nm2である。
【0035】
<受信部>
図4を参照して、受信部13に設けられる光パルス分離装置14(図1参照)の構成及び動作を説明する。この発明の特徴は、この光パルス分離装置14特に、クロック信号再生段100にある。図4は光パルス分離装置14の構成を詳細に示したブロック図である。伝送部12(図1参照)を伝播して分波器20により分波された160 Gbit/s OTDM信号26は、光分波器21(図4参照)によって、クロック信号再生段100に導かれる信号102と光パルス分離段101に導かれる信号104とに分岐される。
【0036】
光パルス分離段101は、これに送られてくる時分割多重光信号を個々のチャンネルの光パルス信号に分岐する。すなわちこの光パルス分離段101では、光学的再生クロック信号で光パルス分離を行なう。この光学的再生クロック信号は、光クロックパルスとも称する。この光学的再生クロック信号を生成するための、クロック信号再生段100は、時分割多重光信号から抽出される再生クロック信号を電気的再生クロック信号に変換して、光パルス分離段101に送出する。以下、クロック信号再生段100及び光パルス分離段101について具体的に説明する。
【0037】
クロック信号再生段100は、10 Gbit/s レシーバモジュール112を具える。すなわち、レシーバモジュール112は、10 Gbit/sのRZ変調信号を受信するためには十分な受信帯域を有している。このレシーバモジュール112は、例えば光電変換器106、第1電気増幅器108及び位相同期ループ回路(Phase Lock Loop、以後「PLL」と略すこともある。)110で構成する。光電変換器106は、クロック周波数の信号を受信できる受信帯域幅を有するフォトダイオードを使用する。すなわち、10 Gbit/sのRZ変調信号を受信するには十分は帯域を有するフォトダイオードを使用する。第1電気増幅器108は、光電変換器106で光電変換して得られた第1電気信号の強度を安定化する機能を有しており、前段増幅器(preamplifier)とリミッタ増幅器(limiter amplifier)とから構成される。以後この第1電気増幅器108を「出力安定化電気増幅器108」ともいう。
【0038】
クロック信号再生段100は、このレシーバモジュール112の他に、好ましくは、可変電気的位相遅延回路120、電気増幅器122、通過中心周波数を半値全幅で除した値が500以上である帯域幅を有する高Q値バンドパスフィルタ124及び電気増幅器126を具えている。この実施の形態においては、この高Q値バンドパスフィルタは、10 GHz において20 MHz 3-dB 帯域幅を有している。
【0039】
すなわち、クロック信号再生段100は、光電変換器106、出力安定化電気増幅器108、位相同期ループ回路110、可変電気的位相遅延回路120及び電気的バンドパスフィルタ124を主構成要素として具えて構成される。
【0040】
時分割多重光信号102がクロック周波数の信号を受信できる受信帯域幅を有する光電変換器106で受信される。このような構成において、クロック信号再生段100は、入力された時分割多重光信号102から最終的に電気的再生クロック信号132を生成する。以下、電気的再生クロック信号132の生成につき説明する。
【0041】
光電変換器106は、時分割多重光信号102から、再生クロック信号を第1電気信号114として抽出する。
【0042】
第1電気信号114は、出力安定化電気増幅器108に入力される。出力安定化電気増幅器108で強度安定化された第1電気信号114は電気信号116となって位相同期ループ回路110に入力される。位相同期ループ回路110は、第1電気信号114の位相を時分割多重光信号のジッタを忠実に再現したクロック信号を再生できるように調整して第2電気信号118を生成する。よって第2電気信号118は、レシーバモジュール112から出力される。第2電気信号118は、可変電気的位相遅延回路120に入力される。可変電気的位相遅延回路120は、第2電気信号118から、トリビュタリチャンネルの位相に追随した電気的再生クロック信号128を出力する。
【0043】
可変電気的位相遅延回路120から出力された電気的再生クロック信号128は第2電気増幅器122で増幅された電気信号130となって、電気的バンドパスフィルタ124を通過して10 GHz において半値全幅20 MHzの電気的再生クロック信号132が生成される。
【0044】
このように、時分割多重光信号102は、クロック信号再生段100に入力されて、この時分割多重光信号102から、電気的再生クロック信号132が生成される。電気的再生クロック信号132は、光サンプリングシステム18(図1を参照)へ供給される電気的再生クロック信号136と、第1モード同期半導体レーザ 140に供給される信号134とに分岐される。信号134は電気増幅器126によって増幅された電気的再生クロック信号138となって、第1モード同期半導体レーザ140 に供給される。
【0045】
なお、第1モード同期半導体レーザ 140へ供給される電気信号138は、第1モード同期半導体レーザ 140の安定動作を確保するために、電気増幅器126で増幅されて得られた信号(電気的再生クロック信号)である。
【0046】
一方、クロック信号再生段100で抽出された電気的再生クロック信号136は、光サンプリングシステム18に供給される。そして、光サンプリングシステム18で監視しつつ、可変電気的位相遅延回路120で、第1モード同期半導体レーザ 140出力のジッタノイズレベルが最小になるように調整する。
【0047】
第1モード同期半導体レーザ140は、電気信号138を受けて、後段に設けられている対称型マッハ・ツェンダ(Symmetric Mach-Zehnder: SMZ)光スイッチ168をコントロールするために、光クロックパルス141を生成する。以後、対称型マッハ・ツェンダ光スイッチ168を「SMZ 168」と略記することもある。
【0048】
時分割多重光信号を元の並列光パルス信号に戻す光パルス分離を行なうための光パルス分離段101は、図4に示すように、主構成要素として、第1モード同期半導体レーザ140とSMZ 168とを具えて構成される。
【0049】
第1モード同期半導体レーザ 140は、波長1555 nm、1.5-psパルス幅の光パルスを生成するモード同期半導体レーザである。第1モード同期半導体レーザ 140からの光クロックパルス141は、光パルス分離のために、SMZ 168に供給される。
【0050】
電気的再生クロック信号138によって駆動される第1モード同期半導体レーザ 140から、再生クロック信号に同期したこの光クロックパルス141が可変光遅延線(φ1) 142に供給される。この光クロックパルス141は、必要量の位相遅延を受けて出力信号143として可変光遅延線(φ1) 142から出力される。この出力信号143は、一方の信号(一方の分岐信号)143a及び他方の信号(他方の分岐信号)143bに分割される(分割のための光分波器は図示を省略する。)。
【0051】
一方の信号143aは、可変光遅延線(φ2) 144に入力され必要な位相遅延を受けて出力信号145として減衰器(ATT:Attenuator)146を介してSMZ 168の第1入力ポートに入力される。一方、他方の信号143bは、ATT 152を介してSMZ 168の第3入力ポートに入力される。また、光分波器21によって、160 Gbit/s OTDM信号26は、分波されて160 Gbit/s OTDM信号104となり、光学的バンドパスフィルタ148及び位相調整回路150を介してSMZ 168の第2入力ポートに入力される。SMZ 168は二つの半導体光増幅器SOA(semiconductor optical amplifier)154及びSOA 156を具えて構成されており、上述した第1乃至第3の入力ポートに入力された信号によって、160 Gbit/s OTDM信号104を光パルス分離して、トリビュタリチャンネルの信号である光パルス信号157を分離する。
【0052】
上述したように、この発明の光パルス分離装置14は、クロック信号再生段100と、第1モード同期半導体レーザ140及び対称型マッハ・ツェンダ光スイッチ168を含む、光パルス分離段101とを具えて構成される。第1モード同期半導体レーザ140は、電気的再生クロック信号を受けて光学的再生クロック信号すなわち光クロックパルス141を生成し、光スイッチ168は、この光クロックパルス141を受けて時分割多重光信号をトリビュタリチャンネルの光パルス信号157に光パルス分離するように構成されている。
【0053】
光パルス分離された10 GBit/s 光パルス信号157は、5-nm バンドパスフィルタ(光学的バンドパスフィルタ)158でフィルタリングされる。フィルタリング済みの光パルス信号は、光増幅器160で増幅されて、増幅済みの光パルス信号182がトリビュタリチャンネル受信部16(図1参照)に導入される。トリビュタリチャンネル受信部16は、主要構成要素として、光プリアンプ、光バンドパスフィルタ、そして10 Gbit/s 受信モジュールを具えている。
【0054】
SMZ 168の第2入力ポート2における160 Gbit/s OTDM信号のSMZ 168スイッチに対する光入力パワーは2 dBmであり、また、SMZ 168の第1入力ポート1と第3入力ポート3に対する光コントロールパルスのパワーは、それぞれ、11 dBmと13 dBmとである。
【0055】
ATT 146及びATT 152は、これらSMZ 168の第1入力ポート1と第3入力ポート3とに入射する光パルスのパワーを揃えるために挿入される。可変光遅延線(φ1) 142及び可変光遅延線(φ2) 144は、それぞれトリビュタリチャンネルの選択のため、及びゲートスイッチのウインドウの幅の調整のために機能する。これら遅延線(φ1及びφ2)による能動的トラッキングコントロールのための調整は、一旦初期調整を行なった後は再度調整する必要はなく、光パルス分離装置を駆動している間中、第1モード同期半導体レーザ 140の注入同期状態が維持された。
【0056】
なお、この実施の形態においては、光パルス分離するための光スイッチとして対称型マッハ・ツェンダ光スイッチを用いたが、光パルスで制御する形態の光スイッチであれば、他の形態の光スイッチで代替することも可能である。すなわち、光パルスでスイッチ動作を制御することができる機能を有する光スイッチであれば、この実施の形態の説明から明らかなように、この発明の実施においては、対称型マッハ・ツェンダ光スイッチの代替光スイッチとして利用することができる。例えば、光ファイバあるいは半導体を用いた4光波混合素子、非線形サニャック干渉計スイッチ(NOLM:Nonlinear Optical Loop Mirror)、SLALOM(Semiconductor Laser Amplifier in a Loop mirror)は、光パルスでスイッチ動作を制御することができる機能を有するので、この発明の光パルス分離方法及び光パルス分離装置の実施において、対称型マッハ・ツェンダ光スイッチの代替光スイッチとして使えることは明らかである。
【0057】
<光サンプリング>
図5を参照して光サンプリングシステム18(図1参照)の構成及びその動作を説明する。この光サンプリングシステム18は、主要構成要素として、プリスケーラ付き位相同期回路162、第2モード同期半導体レーザ164、高非線形光ファイバ172及びRF(RF: Radio Frequency)スペクトラムアナライザ180(以後単に「スペクトラムアナライザ」と表記する。)を具えている。光サンプリングシステム18は、その他の構成要素として、好ましくは、第1光増幅器166と、第1光学的バンドパスフィルタ167と、偏波調整器170と、第2光学的バンドパスフィルた174と、第2光増幅器176と、第2光電変換器178とを含むのがよい。クロック信号再生段100から供給される、電気的再生クロック信号136がこのプリスケーラ付き位相同期回路162に供給される。
【0058】
プリスケーラ付き位相同期回路162は、この電気的再生クロック信号136に応答して、制御電気パルス163を第2モード同期半導体レーザ164に供給する。この制御電気パルス163は、第2モード同期半導体レーザ164に供給され、この第2モード同期半導体レーザ164は、この制御電気パルス163に基づいて第1光サンプリングパルス165を生成する。第1光サンプリングパルス165は第1光増幅器166で増幅され第1光学的バンドパスフィルタ167でフィルタリングされて、第2光サンプリングパルス169となる。
【0059】
一方、伝送部12を伝播してくる160 Gbit/s OTDM信号24は、分波器20で分波されて160 Gbit/s OTDM信号26及び32となって、一方の分波信号26が光パルス分離装置14に供給されるとともに、他方の分波信号32が光サンプリングシステム18に供給される(図1参照)。
【0060】
一方、プリスケーラ付き位相同期回路162は、供給された電気的再生クロック信号136に応答してトリガー信号161を、スペクトラムアナライザ180にも供給する。スペクトラムアナライザ180には、トリガー信号161を供給して光サンプリングを行なう。
【0061】
他方の分波信号である160 Gbit/s OTDM信号32は、偏波調整器170に供給されて、この信号32の位相が調整される。位相調整されて透過したOTDM信号32は、第2光サンプリングパルス169と合波され(合波器は図示を省略する。)た後、高非線形光ファイバ172に導入される。高非線形光ファイバ172で発生する4光波混合により得られた4光波混合信号173は、第2光学的バンドパスフィルタ174でフィルタリングされる。フィルタリング済み4光波混合信号は、第2光増幅器176で増幅され、160 Gbit/s OTDM信号32の光サンプリングに必要な光パルス信号177が生成される。光パルス信号177は、第2光電変換器178で光電変換され、電気信号179として、スペクトラムアナライザ180に供給される。一方、スペクトラムアナライザ180には、プリスケーラ付き位相同期回路162からトリガー信号161が供給される。スペクトラムアナライザ180は、トリガー信号161と、電気信号179とを受けてアイダイアグラムを表示する。
【0062】
すなわち、以上説明した内容をまとめると、光時分割多重通信装置構築のために必要な光サンプリングは、以下に示す方法で実施できる。
【0063】
上述したクロック信号再生段100の一つの特徴は、このクロック信号再生段100から光サンプリングに用いるための電気的再生クロック信号136を出力する点にある。電気的再生クロック信号136を光サンプリングに用いるためには、クロック信号再生段100から再生された電気的再生クロック信号136をプリスケーラ付き位相同期回路162に供給して、第2モード同期半導体レーザ164に供給する制御電気パルス163と、スペクトラムアナライザ180に供給するトリガー信号161とを生成する。第2モード同期半導体レーザ164は、この制御電気パルス163を基に第1光サンプリングパルス165を生成することによって、光サンプリングを行なう。
【0064】
<光パルス分離方法及びそれを用いた光時分割多重通信装置の動作検証>
図6に160 Gbit/s OTDM データ信号の光スペクトルを示す。横軸はデータ信号の光の波長を1544.1nmから1549.1nmの範囲に対して、一目盛り0.5nmに目盛ってある。縦軸は光強度の相対値を一目盛り5 dBに目盛ってある。また図6の挿入図に示すスペクトルは、30 GHz 帯域幅をもつフォトダイオードによって、時分割多重光信号に含まれる10 GHz 成分を検出したものである。図6の挿入図の横軸は周波数を表し、縦軸は任意スケールで強度を表している。図6から、主な160 GHz成分のピーク(図中に矢印P1で示す。)値に対するほかのスプリアス(所要波とは異なる周波数の成分で、図中N1、N2で示した。)との強度比は、15 dB 以上であることが分かる。
【0065】
図6の挿入図のスペクトルにおいて、10 GHz成分のピーク強度は、-65 dBm であり、このとき160 Gbit/s OTDM信号の光電変換器に対する入力光パワーは、-1.3 dBm であった。この10 GHz成分のピーク強度レベルは、10 Gbit/sに設定されたPRBSのパターン長(擬似ランダムパターンの繰返し周期のビット数)に依存しなかった。また、図4に示す構成のクロック信号再生段100において、位相同期ループ回路110は、図4の第1モード同期半導体レーザ140を十分な電気信号(RF: Radio Frequency)パワーレベル(電気信号116のパワーレベルでありほぼ24 dBmである。)で駆動することによって、光クロックパルス141を再生できた。
【0066】
図7に電気的再生クロック信号によって駆動される第1モード同期半導体レーザ140の出力信号に対するスペクトルを、クロック周波数に対して9.95328 GHzを中心にして1 MHzの範囲を示す。横軸は、クロック周波数、縦軸は信号強度をdBm単位で表す。図7から、ピーク値(図中P2で示すピーク位置の値)が-20 dBmノイズレベルの上限が-65 dBm程度と読めるから、ノイズレベルが、45 dB以上抑圧されていることが分かる。このシステムの動作中、MLLDにおいて、安定した位相同期が実現されていた。
【0067】
図8(a)及び図8(b)は、バック・トゥ・バック 配列(送信機と受信機を直結した評価系の構成)による、SMZ 168により分離された16全てのトリビュタリチャンネルのビットエラーレート特性を示す。図8(a)が 1〜8チャンネルを表し、図8(b)が 9〜16チャンネルを表す。横軸は受信信号光強度をdBm単位で目盛ってある。縦軸はビットエラーレート(BER)を対数目盛りで示してある。受信後のアイダイアグラムの例(Ea及びEbと表示した挿入図で示した。)及び、10 Gbit/s のベースラインのビットエラーレート特性(図中ベースラインと表示してある直線)を合わせて示した。受信される光強度は、10 Gbit/s 受信部16(図1参照)の入力部(光パルス信号182)において測定した。
【0068】
ベースラインとトリビュタリチャンネルのビットエラーレートを示す直線との横軸方向の平均間隔は5.5 dBと読み取れる。すなわちベースラインよりも平均5.5 dBのパワーペナルティ(同じビットエラーレートを得るために、ベースラインに対してどれだけ多くの受信光パワーを必要とするかを示す値)を要することを示している。この理由は、主にSMZ 内で生じる信号対雑音比の劣化及びパルス光源で発生しているパルス時間揺らぎに起因するものと考えられる。
【0069】
図9(a)、 図9(b)、 図9(c) は、320km伝送する前(図9(a))と後(図9(b)の160 Gbit/sの光サンプリングによって得られたアイダイアグラムである。比較するために、再生クロック信号のトリガーのない状態での伝送後のアイダイアグラムを図9(c)に示す。表示した範囲は1秒間についてである。図9(b)において320 km伝送後に観測されたアイダイアグラムは、再生クロック信号をトリガーに使用して得られたものである。図9(b)に示すアイダイアグラムは、図9(a)に示した送信前のアイダイアグラムの形を正しく反映しているのに対して、図9(c)に示すアイダイアグラムは不鮮明である。このことから、再生されたクロックが有効に働いていることが分かる。
【0070】
【発明の効果】
この発明の方法及び装置を用いれば、特別なパルス強度変調器を用いたり、あるいは意図的にクロック周波数成分を残すような光スペクトルの調整をすることなく、クロック信号を抽出することが出来る。抽出された再生クロック信号を用いて、SMZ光スイッチによる光パルス分離が実現できる。ビットエラーレートも実用上問題とならない程度に低く出来る上、時分割多重光信号について明瞭なアイダイアグラムが得られることから、この発明の方法及び装置は実用上十分な性能を発揮できる。
【0071】
【付記】
なお、上述した実施の形態の説明からも明らかなように、以下の光サンプリング方法及び光サンプリング装置も好ましい実施の形態である。
【0072】
光時分割多重通信において必須である光サンプリングを、以下に記述する光サンプリング方法及び光サンプリング装置によれば、複雑な構成を必要とせず、実現できる。
【0073】
すなわち、この光サンプリング方法は、高非線形光ファイバ内で発生する4光波混合を用いる光サンプリング方法において、クロック信号再生段から再生された電気的再生クロック信号をプリスケーラ付き位相同期回路に供給して、このプリスケーラ付き位相同期回路から第2モード同期半導体レーザに供給する制御電気パルスと、スペクトラムアナライザに供給するトリガー信号とをそれぞれ生成することを含むことを特徴とする。
【0074】
また、上述の光サンプリング方法を実現するためには以下の構成とすれば良い。すなわち、この光サンプリング装置は、プリスケーラ付き位相同期回路を具える。このプリスケーラ付き位相同期回路は、クロック信号再生段から再生された電気的再生クロック信号が供給されて、第2モード同期半導体レーザに供給する制御電気パルスと、スペクトラムアナライザに供給するトリガー信号とをそれぞれ生成する。
【0075】
この光サンプリング方法及び光サンプリング装置によれば、クロック信号再生段から再生された電気的再生クロック信号が使われるので、複雑な構成の装置が必要でない。
【0076】
この光サンプリング法及び光サンプリングシステムによれば、クロック信号再生段によって時分割多重光信号から抽出された再生クロック信号をプルスケーラ付き位相同期回路に供給し、光サンプリングに必要となる制御電気パルスとトリガー信号を生成し、スペクトラムアナライザに供給する構成となっているので、時分割多重光信号の波形観測が簡便に行なえる。
【0077】
また、この光サンプリング方法において、更に以下のステップを具えることが好適である。すなわち、
(a)制御電気パルスをこの第2モード同期半導体レーザに供給して第1光サンプリングパルスを出力し、
(b)この第1光サンプリングパルスを第1光増幅器で増幅し、
(c)この増幅された第1光サンプリングパルスを第1光学的バンドパスフィルタに供給してフィルタリングして第2光サンプリングパルスを出力し、
(d)時分割多重光信号の位相を位相調整回路で調整し、
(e)この位相調整された時分割多重光信号と第2光サンプリングパルスとの合波信号を高非線形光ファイバに入力して4光波混合信号を出力し、
(f)この4光波混合信号を第2光学的バンドパスフィルタでフィルタリングし、
(g)この第2光学的バンドパスフィルタからのフィルタリング済み光信号を第2光増幅器で増幅し、
(h)この増幅されたフィルタリング済み光信号を第2光電変換器で光電変換して電気信号を生成し、
(i)この電気信号とトリガー信号とをスペクトラムアナライザに供給して、光サンプリングを行なう。
【0078】
また、この光サンプリング方法を実現するために、光サンプリング装置を以下のように構成することが好適である。すなわち、第2モード同期半導体レーザと、光増幅器と、第2光学的バンドパスフィルタと、位相調整回路と、高非線形光ファイバと、第2光学的バンドパスフィルタと、第2光増幅器と、第2光電変換器と、スペクトラムアナライザとを具える。
【0079】
第2モード同期半導体レーザは、制御電気パルスを受けて第1光サンプリングパルスを出力する。光増幅器は、第1光サンプリングパルスを増幅する。第2光学的バンドパスフィルタは、増幅された第1光サンプリングパルスをフィルタリングして第2光サンプリングパルスを出力する。位相調整回路は、時分割多重光信号の位相を調整する。高非線形光ファイバとは、この位相調整された時分割多重光信号と第2光サンプリングパルスとの合波信号を入力して4光波混合されて得られた光信号を出力する。第2光学的バンドパスフィルタは、この光信号をフィルタリングする。第2光増幅器は、この光バンドパスフィルタからのフィルタリング済み光信号を増幅する。第2光電変換器は、この増幅されたフィルタリング済み光信号を光電変換して電気信号を発生させる。スペクトラムアナライザは、この電気信号とトリガー信号とが供給されて光サンプリングを行なう。
【0080】
上述したこの光サンプリング方法及び光サンプリングシステムによれば、第2モード同期半導体レーザと、光増幅器と、第2光学的バンドパスフィルタと、位相調整回路と、高非線形光ファイバと、第2光学的バンドパスフィルタと、第2光増幅器と、第2光電変換器とによって、光電変換された光サンプリング信号を生成でき、それをスペクトラムアナライザに供給することが出来る。
【図面の簡単な説明】
【図1】光時分割多重通信装置の動作の説明に供する図である。
【図2】送信部の動作の説明に供する図である。
【図3】分散補償回路を具える伝送部の動作の説明に供する図である。
【図4】光パルス分離装置の動作の説明に供する図である。
【図5】光サンプリングシステムの動作の説明に供する図である。
【図6】光時分割多重光信号の光スペクトルを表す図である。
【図7】第1モード同期半導体レーザの出力信号のスペクトルを表す図である。
【図8】トリビュタリチャンネルのビットエラーレートを表す図である。
【図9】光サンプリング測定によるアイダイアグラムを表す図である。
【符号の説明】
10:送信部
12:伝送部
13:受信部
14:光パルス分離装置
16:トリビュタリチャンネル受信部
18:光サンプリングシステム
20、21:分波器
34:クロック信号発生器
36:送信側モード同期半導体レーザ
38:変調信号発生器
40:LiNbO3光変調器
42、46、74、160:光増幅器
44:平面光導波路型多重化回路
64:トリビュタリチャンネル
66、70:シングルモードファイバ
68、72:逆分散ファイバ
76、148、158:光学的バンドパスフィルタ
78、80:光サーキュレータ
82、84:回折格子をもつ光ファイバ
90:伝送部12の1区間
98:分散補償器
100:クロック信号再生段
101:光パルス分離段
106:光電変換器
108:第1電気増幅器
122:第2電気増幅器
126:電気増幅器
110:位相同期ループ回路
112:レシーバモジュール
120:可変電気的位相遅延回路
124:高Q値バンドパスフィルタ
140:第1モード同期半導体レーザ
142:可変光遅延線(φ1)
144:可変光遅延線(φ2)
146、152:減衰器
150:位相調整回路
154、156:半導体光増幅器
162:プリスケーラ付き位相同期回路
164:第2モード同期半導体レーザ
166:第1光増幅器
167:第1光学的バンドパスフィルタ
168:対称型マッハ・ツェンダ光スイッチ
170:偏波調整器
172:高非線形光ファイバ
174:第2光学的バンドパスフィルタ
176:第2光増幅器
178:第2光電変換器
180:スペクトラムアナライザ

Claims (10)

  1. 同一基本変調速度の異なる情報信号(以後「トリビュタリチャンネル」という。)で変調された複数の光パルス信号を時間軸上で時分割多重し時分割多重光信号として伝送し、受信側にて該時分割多重光信号から抽出される再生クロック信号を用いて個別のトリビュタリチャンネル毎に受信復調するために、光パルス分離する方法において、
    (a)該時分割多重光信号から、該再生クロック信号を抽出するために、該時分割多重光信号を光電変換して第1電気信号を得るステップと、
    (b)該第 1 電気信号を出力安定化電気増幅器で強度安定化して位相同期ループ回路に入力して、前記時分割多重光信号のジッタを忠実に再現したクロック信号を再生した第2電気信号を得るステップと、
    (c)該第2電気信号を可変電気的位相遅延回路に入力し、該可変電気的位相遅延回路によって、前記第2電気信号から、トリビュタリチャンネル位相追随した電気的再生クロック信号を出力するステップと
    を具えることを特徴とする光パルス分離方法。
  2. 請求項1に記載の光パルス分離方法において、
    (d)前記電気的再生クロック信号を、第1モード同期半導体レーザに供給するステップと、
    (e)該電気的再生クロック信号に応答して該第1モード同期半導体レーザから光学的再生クロック信号を生成するステップと、
    (f)該光学的再生クロック信号を制御光パルスとして光スイッチに供給して、前記時分割多重光信号をトリビュタリチャンネルの光パルス信号に光パルス分離するステップとを具えることを特徴とする光パルス分離方法。
  3. 請求項1に記載の光パルス分離方法において、
    (a1)前記第1電気信号の抽出を、前記時分割多重光信号を第1光電変換器で受信して光電変換して行い、該光電変換によって得られる前記第1電気信号を第1電気増幅器に供給して第1電気信号の強度を安定化し、
    (b1)前記増幅された第1電気信号から前記時分割多重光信号のジッタを忠実に再現したクロック信号を再生できるように位相同期ループ回路から前記第2電気信号を出力させ、
    (c1)前記第2電気信号を可変電気的位相遅延回路に供給して該第2電気信号としてトリビュタリチャンネル位相追随した電気的再生クロック信号として出力させ、
    (c2)該電気的再生クロック信号を、第2電気増幅器に供給して増幅した後、通過中心周波数を半値全幅で除した値が500以上である帯域幅を有する電気的バンドパスフィルタによってフィルタリングしてから、出力することを特徴とする光パルス分離方法。
  4. 請求項2に記載の光パルス分離方法において、
    (a1)前記第1電気信号の抽出を、前記時分割多重光信号を第1光電変換器で受信して光電変換して行い、該光電変換によって得られる前記第1電気信号を第1電気増幅器に供給して第1電気信号の強度を安定化し、
    (b1)前記増幅された第1電気信号から前記時分割多重光信号のジッタを忠実に再現したクロック信号を再生できるように位相同期ループ回路から前記第2電気信号を出力させ、
    (c1)前記第2電気信号を可変電気的位相遅延回路に供給して該第2電気信号としてトリビュタリチャンネル位相追随した電気的再生クロック信号として出力させ、
    (c2)該電気的再生クロック信号を、第2電気増幅器に供給して増幅した後、通過中心周波数を半値全幅で除した値が500以上である帯域幅を有する電気的バンドパスフィルタによってフィルタリングしてから、出力することを特徴とする光パルス分離方法。
  5. 請求項2または請求項4に記載の光パルス分離方法において、前記光スイッチを光パルスで制御する光スイッチとすることを特徴とする光パルス分離方法。
  6. クロック信号再生段と該クロック信号再生段に接続された光パルス分離段とを具える光パルス分離装置において、
    該クロック信号再生段は、第1光電変換器、第1電気増幅器(「出力安定化電気増幅器」ともいう。)、位相同期ループ回路及び可変電気的位相遅延回路を具え、
    該第1光電変換器は、同一基本変調速度の異なる情報信号(以後「トリビュタリチャンネル」という。)で変調された複数の光パルス信号を時間軸上で時分割多重された時分割多重光信号から、再生クロック信号を抽出するために、該時分割多重光信号を光電変換して第1電気信号として抽出し、
    該出力安定化電気増幅器は、該第1電気信号の強度を安定化して該位相同期ループ回路に供給し、
    該位相同期ループ回路は、前記時分割多重光信号のジッタを忠実に再現したクロック信号を再生した第2電気信号を生成し、
    該可変電気的位相遅延回路は、該第2電気信号の位相に、トリビュタリチャンネル位相追随した電気的再生クロック信号を光パルス分離段に出力するように構成されていることを特徴とする光パルス分離装置。
  7. 請求項6に記載の光パルス分離装置において、
    前記光パルス分離段は、第1モード同期半導体レーザと光スイッチとを具え、
    該第1モード同期半導体レーザは、前記電気的再生クロック信号を受けて光学的再生クロック信号を生成し
    該光スイッチは、該光学的再生クロック信号を受けて前記時分割多重光信号からトリビュタリチャンネルの光パルス信号を光パルス分離するように構成されていることを特徴とする光パルス分離装置。
  8. 請求項6に記載の光パルス分離装置において、
    前記出力安定化電気増幅器と、第2電気増幅器と、通過中心周波数を半値全幅で除した値が500以上である帯域幅を有する電気的バンドパスフィルタとを具え、
    前記出力安定化電気増幅器は、前記第1電気信号の強度を安定化して、前記位相同期ループ回路に供給し、
    前記第2電気増幅器は、前記第2電気信号を増幅した後、前記電気的バンドパスフィルタに供給し、
    該電気的バンドパスフィルタは、該増幅された前記第2電気信号を受けてフィルタリングしてから出力するように構成されていることを特徴とする光パルス分離装置。
  9. 請求項7に記載の光パルス分離装置において、
    前記出力安定化電気増幅器と、第2電気増幅器と、通過中心周波数を半値全幅で除した値が500以上である帯域幅を有する電気的バンドパスフィルタとを具え、
    前記出力安定化電気増幅器は、前記第1電気信号の強度を安定化して、前記位相同期ループ回路に供給し、
    前記第2電気増幅器は、前記第2電気信号を増幅した後、前記電気的バンドパスフィルタに供給し、
    該電気的バンドパスフィルタは、該増幅された前記第2電気信号を受けてフィルタリングしてから出力するように構成されていることを特徴とする光パルス分離装置。
  10. 請求項7または請求項9に記載の光パルス分離装置において、前記光スイッチを光パルスで制御する光スイッチとすることを特徴とする光パルス分離装置。
JP2002354776A 2002-12-06 2002-12-06 光パルス分離方法及び光パルス分離装置 Expired - Lifetime JP3752540B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002354776A JP3752540B2 (ja) 2002-12-06 2002-12-06 光パルス分離方法及び光パルス分離装置
US10/420,811 US20040109691A1 (en) 2002-12-06 2003-04-23 Optical pulse separation method and optical pulse separation device
EP03252755A EP1427125A3 (en) 2002-12-06 2003-05-01 Optical pulse separation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354776A JP3752540B2 (ja) 2002-12-06 2002-12-06 光パルス分離方法及び光パルス分離装置

Publications (2)

Publication Number Publication Date
JP2004187205A JP2004187205A (ja) 2004-07-02
JP3752540B2 true JP3752540B2 (ja) 2006-03-08

Family

ID=32310758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354776A Expired - Lifetime JP3752540B2 (ja) 2002-12-06 2002-12-06 光パルス分離方法及び光パルス分離装置

Country Status (3)

Country Link
US (1) US20040109691A1 (ja)
EP (1) EP1427125A3 (ja)
JP (1) JP3752540B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360339A1 (en) * 2021-05-04 2022-11-10 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333732B2 (en) * 2004-12-30 2008-02-19 Tyco Telecommunications (Us) Inc. Optical receiver
JP4102375B2 (ja) * 2004-03-25 2008-06-18 松下電器産業株式会社 無線送信装置および無線受信装置
ITMI20042312A1 (it) * 2004-12-01 2005-03-01 Marconi Comm Spa Multiplexer con add-drop ottico
JP4826462B2 (ja) * 2006-12-20 2011-11-30 株式会社日立製作所 分散補償器、光伝送システム及び光伝送方法
JP7174271B2 (ja) * 2018-07-10 2022-11-17 株式会社ソシオネクスト 位相同期回路、送受信回路及び集積回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402671A2 (en) * 2001-02-16 2004-03-31 Axe, Inc. Receiver for high-speed optical signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360339A1 (en) * 2021-05-04 2022-11-10 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing
US11606149B2 (en) * 2021-05-04 2023-03-14 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing

Also Published As

Publication number Publication date
JP2004187205A (ja) 2004-07-02
US20040109691A1 (en) 2004-06-10
EP1427125A3 (en) 2007-08-08
EP1427125A2 (en) 2004-06-09

Similar Documents

Publication Publication Date Title
US5953138A (en) All-optical processing in communications systems
KR101052957B1 (ko) 광 스위치 및 광 스위치를 이용한 광 파형 모니터 장치
US6587242B1 (en) Optical transmission system
JPH08321805A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
KR100459571B1 (ko) 전광 신호 재생장치 및 방법
JP3000551B2 (ja) 光電式周波数分割器回路及びその操作方法
US7623792B2 (en) Clock extracting method and apparatus thereof
US5401957A (en) Optical waveform shaping device for peforming waveform equalization and timing synchronization
US20030020985A1 (en) Receiver for high-speed optical signals
US6396607B1 (en) Multi-wavelength all-optical regenerators (MARS)
Olsson et al. WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter
CA2222669C (en) Optical timing detection
US6448913B1 (en) TOAD- based optical data format converter
JP4495415B2 (ja) Otdm伝送方法及び装置
JP3752540B2 (ja) 光パルス分離方法及び光パルス分離装置
EP0555063B1 (en) Optical waveform shaping device
US7869713B2 (en) Multiplexer with aptical add/drop
EP0849622B1 (en) All-optical sampling by modulating a pulse train
JP4605269B2 (ja) 光パルス信号再生方法及び光パルス信号再生装置
JP2004343360A (ja) 光送信装置および光通信システム
JPH09102776A (ja) 光クロック信号抽出回路
Zarris et al. WDM-to-OTDM Traffic Grooming by means of Asynchronous Retiming
JPH10209960A (ja) 光ネットワークおよび光伝送方式
CA2295825A1 (en) Optical data processing using electroabsorbtion modulators
Schubert et al. 107 Gbit/s RZ-DPSK Transmission using an ETDM Integrated Receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Ref document number: 3752540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term