JP3745229B2 - スキューが補正された低レート並列電子回路を含む通信システムおよび関連方法 - Google Patents

スキューが補正された低レート並列電子回路を含む通信システムおよび関連方法 Download PDF

Info

Publication number
JP3745229B2
JP3745229B2 JP2000588934A JP2000588934A JP3745229B2 JP 3745229 B2 JP3745229 B2 JP 3745229B2 JP 2000588934 A JP2000588934 A JP 2000588934A JP 2000588934 A JP2000588934 A JP 2000588934A JP 3745229 B2 JP3745229 B2 JP 3745229B2
Authority
JP
Japan
Prior art keywords
string
transmission medium
information symbol
information
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000588934A
Other languages
English (en)
Other versions
JP2002533019A (ja
Inventor
モビン,モハメド,エス.
シャファー,マイケル,エス.
ザカー,ヒマンシュ,マヘンドラ
ウエブ,チャールズ,アルバート,サード
ウー,レスリー,ジェン−ユアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agere Systems LLC
Original Assignee
Agere Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agere Systems LLC filed Critical Agere Systems LLC
Publication of JP2002533019A publication Critical patent/JP2002533019A/ja
Application granted granted Critical
Publication of JP3745229B2 publication Critical patent/JP3745229B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0626Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers plesiochronous multiplexing systems, e.g. plesiochronous digital hierarchy [PDH], jitter attenuators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

【0001】
(技術分野)
本発明は、通信システムおよび方法に関し、特に、並列通信チャネル上でのディジタル通信システムおよび関連方法に関する。
【0002】
(発明の背景)
ディジタル通信は、音声、データおよびビデオ情報の伝送のために広く使用されている。そのような伝送を長い地理的距離にわたって、パーソナル・コンピュータ内の構成部品間で、あるいは集積回路上の隣接している回路部分間だけに拡張することができる。そのような通信用途の或るものは並列通信チャネル上での同時伝送のためにシリアル・データをパラレル・データへ変換すること、あるいはより一般的には、M要素の記号からN要素の記号への変換から恩恵を受けるか、あるいはそれを必要とする。受信端において、そのパラレル・データがシリアル・データに逆に変換されること、およびデータ誤差を回避するためにそのビットまたは記号が正しい順序にあるように変換されることが望ましい。
【0003】
都合の悪いことに、より大きいデータ伝送ボリュームおよびさらに高速伝送に対する要求によって、受信側においてスキューが発生する可能性がある。言い換えれば、並列通信チャネルはそれが搬送する並列記号ストリングに対して異なる遅延を導入する可能性がある。スキューのために、受信機における並列記号ストリングは元のデータに単純には再アセンブルすることはできなくなっている。
【0004】
並列通信チャネルについてのスキューの問題は、多くの方法で対処されてきた。例えば、ハース他に対する米国特許第4,677,618号は、光ファイバ上での波長分割多重通信チャネルによって導入されるばらつきを認識している。この特許はデータの所与のバイトの2つのビットの検出に基づいたチャネル間の相対遅延の決定を開示している。1つのバイトの中の残りのビットの到着の相対時刻は、その2つの検出されたビット間の相対遅延およびその伝送媒体の既知の周波数関連の分散特性を使用してあらかじめ決定されている。受信された各バイトの中の或る種のビットを、クロックの遅延線またはレジスタを使用して遅延させることができ、それによってスキューを考慮することができる。
【0005】
同様に、ローブ他に対する米国特許第5,157,530号は、光ファイバの波長分割多重化における分散によって付与されるスキューを決定し、考慮に入れる。各チャネルにおいて調整可能な遅延デバイスを制御するために相対遅延が使用される。
【0006】
ハッチンソン他に対する米国特許第5,408,473号は、並列通信チャネル上で伝送されるランレングス制限型のデータを同期化するための技法に関する。各チャネルにおいて受信されたブロック境界を検出するために必要なHALTコードの性質を使用することによって、接続の初期化時にブロック境界の同期化が確立される。スキューの補正は2つのチャネルにおけるブロック境界の検出の時間を比較し、そして少なくとも1つのチャネルの中の可変遅延を適切に制御することによって行われる。それ以降での同期の消失があった場合、検出された伝送エラーの結果、接続の再初期化および同期の再確立が行われる。都合の悪いことに、境界を検出するための固定されたHALTコードの伝送は間違った境界検出となる可能性がある。さらに、同期化は絶えず維持されているわけではないので、その技法はデータ・レートが高い場合には非実用的となる可能性がある。
【0007】
St.ジョン他に対する米国特許第5,793,770号は、同期光ネットワーク(SONET)のゲートウェイに対する高性能並列インターフェース(HIPPI)に関し、電子論理回路がデータおよびオーバヘッド信号を光ファイバ・チャネル上での伝送のためにフォーマット化する。ストライプのスキュー調整はSONETのフレーミングに基づいており、したがって、その回路は比較的複雑であり、例えば、20,000個もの論理ゲートを含んでいる。
【0008】
並列通信チャネルによって生じるスキューによる障害は、集積回路デバイス間での通信チャネルにおける対処される1つの重要な問題でもある。例えば、伝送速度が高いほど、スキューに対する敏感度が増加する。というのは、1つの受信ビットを正しく識別するため、そしてそれを他の並列通信チャネル上で受信されたビットと正しく整列させるための時間ウィンドウがより短くなるからである。総合伝送レートをより高くするために、任意の所与の通信チャネルの速度を増加させずに、並列通信チャネルの数を増加させることができる。しかし、これは結果として追加の通信チャネルに対する大幅なコストの増加を生じる可能性がある。さらに、集積回路間での通信の場合、通信チャネルの数を増やすことによって、そのICを接続するために必要なピンの数が増加する。ピン数および追加のパッケージングの複雑性によって、そのような方法のコストが大幅に増加する可能性がある。
【0009】
物理層のデバイス(PLD)またはPHYデバイスと論理リンク・デバイス(LLD)の間の通信チャネルの場合、代表的なインターフェースは非対称であり、そのデバイスはプッシュプル構成で動作する。その非対称性のために、比較的高価なメモリがPLD上で必要である。というのは、それは非同期転送モード(ATM)デバイスなどのLLDによってポールされるからである。また、制限された並列通信チャネル上での高ビット・レートの結果としての上記スキュー障害によって、PLDとLLDとの間の通信インターフェースにおける更なる開発および改善が妨げられる。
【0010】
従来の通信システムに付随したもう1つの障害は、伝送レートが増加するにつれて、伝送媒体−電気信号変換器およびその逆の変換器のコストが極端に高くなる可能性があることである。これは特に、光ファイバ・ベースの通信システムの場合にその可能性がある。さらに、過去においては、複数の並列通信チャネル上で比較的大きい総合伝送レートを定義するために低速電子回路を使用することによりスキューが制限されていた。
【0011】
(発明の概要)
したがって、上記背景を考慮して、本発明の1つの目的は、低コストの電気信号−伝送媒体変換器および伝送媒体−電気信号変換器が使用できるようにし、一方、依然として所望の比較的高い総合情報スループット・レートを提供する通信システムおよび関連方法を提供することである。
【0012】
本発明によるこれら、および他の目的、特徴および利点は、デスキューの機能を組み込んでいて、複数の電気信号−伝送媒体変換器を含む第1のデバイスと、複数の伝送媒体−電気信号変換器を含む第2のデバイスとを含む通信システムによって提供される。伝送媒体−電気信号変換器は、少なくとも1つの伝送媒体を経由して、第1のデバイスと第2のデバイスとの間の並列通信チャネルを定義している電気信号−伝送媒体変換器のそれぞれ1つに接続される必要がある。
【0013】
さらに詳しく言えば、第1のデバイスはそれぞれの並列通信チャネル上で並列に伝送される情報記号ストリングの各情報記号ストリングに対して、それぞれの情報記号ストリングの中の少なくともいくつかの情報記号に基づいている文字列ベースのフレーミング・コードを決定して付加するための文字列ベースのフレーミング・コーダをさらに含むことが好ましい。第2のデバイスは、受信された情報記号ストリングを文字列ベースのフレーミング・コードに基づいて整列させるためのデスキューワ(deskewer)を含むことが好ましい。したがって、低レート・コンバータを使用して大幅なコスト削減ができ、そして一方、所望の比較的高い総合情報スループット・レートを提供することができる。
【0014】
電気信号−伝送媒体変換器および伝送媒体−電気信号変換器は、少なくとも1つの配線の伝送媒体、少なくとも1つの無線伝送媒体、または少なくとも1つの光学伝送媒体に対するものであってよい。もちろん、第1のデバイスは共通の伝送媒体に沿って複数の電気信号−伝送媒体変換器からの信号を多重化するためのマルチプレクサをさらに含むことができる。これらの実施形態においては、第2のデバイスはその伝送媒体−電気信号変換器に接続されているデマルチプレクサをさらに含むことが好ましい。
【0015】
情報記号は、例えば、バイナリ・ビットであってよい。したがって、1つの特定の有利な実施形態においては、文字列ベースのコーダはそれぞれの情報ビット列に対してCRCコードを決定して付加するための巡回冗長検査(CRC)コーダを含む。したがって、デスキューワはそのCRCコードに基づいて情報ビット列をフレーム化するためのCRCフレーマを含むことが好ましい。デスキューワはそれぞれの文字列ベースのフレーミング・コードに基づいて情報ビット列をフレーム化するためのフレーマと、フレーム化された情報ビット列を互いに相対的に、そして文字列ベースのフレーミング・コードに基づいて整列させるためのアライナーとを含むことができる。さらに、そのアライナーはフレーム化された情報ビット列をバッファするための、フレーマに接続されている少なくとも1つの先入れ先出し(FIFO)デバイスを含むことができる。また、そのアライナーはフレーム化された情報ビット列を、少なくとも1つのFIFOの書込および読取フェーズのうちの少なくとも1つの間に、そして文字列ベースのフレーミング・コードに基づいて整列させるためのFIFOコントローラも含むことができる。情報記号ストリングのすべてが同じ個数の記号を有することができる。
【0016】
第1のデバイスは情報記号ストリングをスクランブルするためのスクランブラを含むことができ、そのデスキューワは受信された情報記号ストリングをデスクランブルするためのデスクランブラを同様に含むことができる。スクランブリングによって、受信された記号ストリングからクロックを容易に復元することができる。
【0017】
本発明の1つの態様は、第1のデバイスから第2のデバイスに対して通信し、上記システムおよび技法を使用して効率的なデスキューを組み込むための態様である。
【0018】
(好適な実施形態の詳細な説明)
本発明は、本発明の好適な実施形態が示されている添付図面を参照して以下により完全に説明される。しかし、本発明は多くの異なる形式で実施することができ、したがって、ここで説明される実施形態に制限されるものではないことを理解されたい。むしろ、これらの実施形態はこの開示が完全でまとまっているように、そして当業者には本発明の範囲を完全に伝えるようにするために提供されている。同様な番号は全体を通じて同様な要素を指し、ダッシュおよび複数のダッシュの付いた表記は同様な要素を参照するために、代わりの実施形態において使用される。
【0019】
最初に図1〜図5を参照して、通信システムの一実施形態20が先ず最初に説明される。通信システム20は、図に示すように、並列通信チャネルによって接続されている第1のデバイス22と、第2のデバイス24とを含む。示されている実施形態においては、通信チャネルは電気導体または配線25〜29によって提供されるが、当業者なら容易に理解されるように、他の伝送媒体を使用して並列通信チャネルを確立すること、あるいは定義することができる。また、示されている実施形態においては、4本の配線25〜28が情報ビットを搬送するために接続され、一方、第5の配線29がクロック42からのクロック信号を搬送する。クロック信号のための通信チャネルは、必ずしもすべての実施形態において必要であるわけではない。というのは、クロック信号は、通常、受信された情報ビットが十分な数の遷移を有している場合に復元することができるからである。このことも当業者なら理解することができるだろう。
【0020】
本発明の背景の部分で説明されたように、並列通信チャネルはビット・レートが比較的高いか、あるいは距離が比較的長い場合に特にスキューの問題を示す可能性がある。例えば、電気並列導体上での800Mbsのレートの場合、スキューによって分離距離が2インチ以下に制限される可能性がある。
【0021】
説明の明確化のために、以下の説明はバイナリ情報要素または情報ビット列の伝送に関して行われる。言い換えれば、「情報ビット列」という用語が使用される。ただし、当業者ならバイナリの1および0以外の記号も本発明に従って使用することができることを理解することができるだろう。例えば、3レベルの情報記号を使用することもでき、ここで説明されているデスキューの概念からの恩恵を受けることができる。
【0022】
第1のデバイス22は、図に示すように、それぞれの並列通信チャネル上で並列に伝送される情報ビット列の各情報ビット列に対して文字列ベースのフレーミング・コードを決定して付加するための文字列ベースのフレーミング・コーダ32を含んでいる。「付加」は前付加および後付加の両方をカバーすることを意味する。ただし、当業者なら後付加の方が好ましい可能性があることを理解することができるだろう。というのは、前付加はバッファ・メモリをより多く必要とする可能性があるからである。
【0023】
スクランブラ34は文字列ベースのフレーミング・コーダ32より上流に接続されている。スクランブラ34は、当業者なら理解されるように、クロックの復元を妨げる可能性のあるヌル値の長い文字列を避けるために望ましい可能性がある。他の実施形態においては、スクランブラ34を文字列ベースのフレーミング・コーダ32より下流に接続することができる。そのようなオプションのスクランブラは、当業者なら理解されるように、X^43スクランブラなどの自己同期化スクランブラであってよい。
【0024】
M要素−N要素マッパまたは変換器36がスクランブラ34の上流に接続されているように示されている。M要素−N要素変換器36は入って来るM個のビットを並列通信チャネル上のそれ以降での伝送のために、N個の並列情報ビット列に変換する。M要素−N要素変換器36は、従来の方式の変換器であり、ここではこれ以上の説明を必要としない。
【0025】
ふたたび文字列ベースのフレーミング・コーダ32に戻って説明すると、これはそれぞれの情報ビット列の中の少なくともいくつかの情報ビットに基づいて各文字列ベースのフレーミング・コードを発生するための文字列ベースのコード発生器37を含むように示されている。マルチプレクサ38は、当業者なら理解されるように、それぞれの情報ビット列に対して文字列ベースのコードを付加する。電気信号−媒体変換器41がマルチプレクサ38の出力と通信チャネルとの間に配線25〜29によって接続されている。この示されている実施形態においては、電気信号−媒体変換器41は、当業者なら理解されるように、適切な電気ドライバ回路によって提供することができる。他の実施形態においては、電気信号−媒体変換器41を他の伝送媒体に対して接続することができる。
【0026】
第2のデバイス24は受信された並列情報ビット列を文字列ベースのフレーミング・コードに基づいて整列させるためのデスキューワ45を含むことが好ましい。その文字列ベースのフレーミング・コードおよび、それらを受信された情報ビット列のデスキューに使用することによって、情報ビットを高レートで、および/または比較的長い距離にわたって伝送することができる。
【0027】
1つの好適な実施形態においては、文字列ベースのコーダ32はそれぞれの情報ビット列に対してCRCコードを決定して付加するための巡回冗長検査(CRC)コーダを含む。したがって、デスキューワは、そのCRCコードに基づいて情報ビット列をフレーム化するためのCRCフレーマを含むことができる。もちろん、第2のデバイス24は、そのCRCコードを使用した誤り検出および訂正の回路47も含むことができる。各CRCコードは、例えば、CRC‐4からCRC‐32までのコードのうちの1つであってよい。例えば、1024ビットの情報ビット列の場合、CRC‐8のコードが迅速で正確なフレーミングを確保するために十分である可能性がある。
【0028】
文字列ベースのコードは、例えば、CRCコード・ビットなどの情報ビット列に特に基づいているビットの他に、他のビットも含むことができる。当業者なら理解されるように、期待される遅延またはスキューが単独のフレームより大きかった時に使用されるカウンティングまたは識別のビットとしていくつかのビットを割り当てることができる。もちろん、他の目的に対して他のビットを割り当てることもできる。
【0029】
特に、CRCコードの利点は、当業者なら理解されるように、比較的少数の論理ゲートによって直接的なハードウェア実装が実現できることである。CRCコードは比較的小さいオーバヘッドを情報ビット列に対して追加しながら、間違ったフレーミングに対する抵抗性も強い。対照的に固定のフレーミングは同様な数のコード・ビットに対して間違ったフレーミングがかなり生じる可能性がある。間違ったフレーミングを減らすために、固定のフレーミング・ビットの数が増やされた場合、そのオーバヘッドはかなり大きくなる可能性がある。CRCコードのさらにもう1つの利点は、それらが従来から使用されているように誤り検出および訂正のためにも使用することができることである。したがって、第2のデバイス24はオプションとして示されている誤り検出および訂正回路47を含むことができる。これについてのそれ以上の説明はここでは不要である。
【0030】
デスキューワ45はそれぞれの文字列ベースのフレーミング・コードに基づいて情報ビット列をフレーム化するためのフレーマ50を含むことができる。第2のデバイス24の示されているデスキューワ45は、フレーム化された情報ビット列を互いに相対的に整列させるための、そして文字列ベースのフレーミング・コードに基づいているアライナー52も含む。さらに、アライナー52は図示されている実施形態の中に示されているようなフレーム化された情報ビット列をバッファするためのフレーマ50に対して接続されている少なくとも1つの先入れ先出し(FIFO)デバイス53を含むことが有利である。また、アライナー52はフレーム化された情報ビット列を、少なくとも1つのFIFOデバイスの書込および読取フェーズのうちの少なくとも1つの間に、そして文字列ベースのフレーミング・コードに基づいて整列させるためのFIFOコントローラ55も含むように示されている。「FIFOデバイス」という用語は、ここでは、当業者なら理解されるように、FIFO、シフト・レジスタ、および任意の他のタイプの順序付けられた記憶要素を含むように使用されている。
【0031】
システムの実装を単純化するために、いくつかの実施形態においてはすべての情報ビット列のビット数を同じにすることができる。他の実施形態においては、ビット列は、当業者なら理解されるように長さが異なっていてもよい。
【0032】
ここで第2のデバイス24のフロント・エンドを参照すると、サンプラー56がデスキューワ45より上流に接続されている。サンプラー56は、当業者なら理解されるように、クロック・パルスに基づいて受信されたビット列をサンプルする。理想的には、サンプラー56はビットの中央の点によって、ビット列をサンプルする。サンプラー56に対するクロック信号は、クロック受信機57から、あるいは復元されたクロック58から得ることができ、その両方の動作は、当業者なら理解することができるだろう。
【0033】
媒体−電気信号変換器61が配線25〜29によって提供されているようにサンプラー56と通信チャネルとの間に接続されている。もちろん、他のタイプの変換器を異なる伝送媒体に対して使用することができる。
【0034】
また、デスキューワ45は、例えば、第2デバイス24においてクロックの復元を容易化するために情報ビット列をデスクランブルするためのデスクランブラ46も含むように示されている。デスクランブラ46はフレーマ50とFIFOデバイス53との間に接続されるように示されている。他の実施形態においては、デスクランブラ46は、当業者なら理解されるように、FIFOデバイス53より下流に接続することができる。もちろん他の実施形態においては、デスクランブラ46およびスクランブラ34がまったく不要の場合もある。
【0035】
ここで特に図2〜図4を参照すると、本発明によるデスキュー方法が単純化された例を参照して説明される。図2の中のテーブル62はいくつかの情報ビットA‐PといくつかのCRCビットC11‐C42とのアラインメントを示している。これは、当業者なら理解されるように、第1のデバイス22の出力において、あるいはそこから比較的短い距離において、通常、発生される適切なアラインメントである。
【0036】
図3の表63に示されているように、トップから2番目の情報ビット列が他の情報ビット列とアラインメントが外れている。したがって、デスキューを行わずに復元されると、情報ビット列はA,Z,C,...Pとなる。言い換えれば、その情報ビット列は正しくないことになる。
【0037】
ここで、図4の表64に示されているように、本発明のデスキューはスキューのために整列されていない可能性があるフレームを整列し直す。したがって、正しい情報ビット列、A,B,...Pが出力において発生される。文字列ベースのフレーミング・コードを使用した通信システム20および関連デスキュー方法は、スキューを有利に、そして効率的に取り除くか、あるいは考慮することによって、高ビット・レートおよび/またはより長い伝送距離が可能である。高ビット・レートによって集積回路チップ間の通信のためのピン数を削減することができる。追加のピンおよびパッケージングの複雑性のためのコストが比較的大きくなる可能性があるので、本発明は、当業者なら理解されるように、依然として比較的高い総合通信レートを有する低コスト通信用ICも可能にする。また、一方向の通信だけが示されているが、当業者なら理解されるように、逆方向の通信を実装するための回路を通信システムの他の実施形態10が含むことができる。言い換えれば、本発明は全二重式通信システムに対しても容易に適用可能である。さらに、当業者なら理解されるように、1つまたはそれ以上の送信デバイスに対して複数の受信デバイスを接続することができる。
【0038】
図5をさらに詳しく参照して、いくつかの追加のフレーミングまたは同期化の概念がここで説明される。特に、示されているフレーミングのステート・マシン70は3つの状態、すなわち、同期前の状態71と、ハント状態73と同期状態72とを有する。ハント状態と同期前の状態との間の遷移は文字列ベースのフレーミング・コードが正しいか、あるいは正しくないかに基づいて決定される。マシン70はX個の連続した正しいコードが判定された場合に同期前の状態71から同期状態72へ変化する。マシン70はY個の連続した正しくないコードが判定された場合に同期状態72からハント状態73へ遷移する。フレーミングのステート・マシン70は、当業者なら理解されるように、他の既知のデータ同期化の用途において使用されているフレーミングのステート・マシンと非常によく似ている。
【0039】
本発明の基本の文字列ベースのフレーミング・コーディングおよび関連のデスキュー方法の概念が、最初に25〜59の配線上で提供される並列通信チャネルを参照して説明された。言い換えれば、通信システム20は配線の伝送媒体上で動作する。別の配線の用途は、例えば、PCIバスなどのデータバス上での動作を含む。代表的なPCIバスは約60〜70MHzの比較的低い周波数に限定されている。したがって、情報のスループットを大きくするには広いバスが必要である。本通信システムはこの障害を克服し、追加のバス幅なしでより速いクロック・スピードでPCIバスを動作させることができる。他の配線伝送媒体としては、当業者なら理解されるように、例えば、銅のツイスト・ペア、および同軸ケーブルなどがある。
【0040】
ここで図6〜図8をさらに参照して、伝送媒体に関していくつかの代わりの実施形態がここで説明される。図6に示されている通信システム20′の場合、その通信媒体は2つの光ファイバ75によって提供されるように示されている。第1のデバイス22′は文字列ベースのフレーミング・コーダ32′を含み、第2のデバイス24′はデスキューワ45′を含む。また、通信システム20′は図1に示されているような、そして上記のような他の構成部品も含むことができる。
【0041】
第1の無線通信システムの実施形態20″が図7を特に参照して説明される。この実施形態においては、無線の送信機および受信機76、77がそれぞれ、そして自由空間が無線媒体上での通信チャネルを提供する。他の構成部品は二重のダッシュの表記で示されており、上記のものと類似している。
【0042】
図8は第2の無線通信システムの20″′を示しており、赤外線送信機および赤外線検出器81、82がそれぞれ、当業者なら理解されるように、自由空間上で並列通信チャネルを提供する。また、当業者ならここで説明されている一般的な通信システム20、20′、20″および20″′の他のより特定の実装および用途を理解することができるだろう。
【0043】
ここで、本発明の有利な特徴および実装が図9および図10をさらに参照して説明される。特に、図9に示されているように、本発明は、複数の電気信号−伝送媒体変換器141を含む第1のデバイス122と、複数の伝送媒体−電気信号変換器161を含む第2のデバイス124とを含む通信システム120に関する。電気信号−伝送媒体変換器141は少なくとも1つの伝送媒体を経由して伝送媒体−電気信号変換器161のそれぞれに対して接続され、第1のデバイスと第2のデバイスとの間の並列通信チャネルを定義している。示されている実施形態においては、その伝送媒体は配線125によって提供されている。
【0044】
他の実施形態においては、無線および光学伝送媒体を使用することができる。無線媒体はアンテナ113、114によって概略的に示され、赤外線または自由空間の光学媒体はソース115および検出器116によって示されている。
【0045】
第1のデバイス122はそれぞれの並列通信チャネル上で並列に送信される情報ビット列の各情報ビット列に対して文字列ベースのフレーミング・コードを決定して付加するための文字列ベースのフレーミング・コーダ132を含み、各文字列ベースのフレーミング・コードは、図1を参照して上で説明されたように、文字列ベースのフレーミング・コーダ32に関して上記のようにそれぞれの情報ビット列の中の少なくともいくつかの情報ビットに基づいている。文字列ベースのコーダ132は図1に関して上で説明されたように、文字列ベースのコード発生器およびマルチプレクサを含むことができる。
【0046】
第2のデバイス124は受信された情報ビット列を文字列ベースのフレーミング・コードに基づいて整列させるためのデスキューワ145を含む。デスキューワ145は図1の通信システム20の中に示されているデスキューワ45について上で説明されたような構成部品および/またはそれと等価なものを含むことができる。したがって、低レート・コンバータ141、161を通信システム120の中で使用することができ、コストが大幅に削減され、しかも所望の比較的高い総合情報スループット・レートを提供する。そのデスキューの機能は並列通信チャネルを通じて発生する可能性のあるスキューを考慮する。
【0047】
比較的長い距離に対しては、第1のデバイス122は配線媒体125などの普通の伝送媒体に沿って、複数の電気信号−伝送媒体変換器141からの信号をマルチプレックスするためのマルチプレクサ110をさらに含むことができる。これらの実施形態においては、第2のデバイス124は、当業者なら理解されるように、伝送媒体−電気信号変換器161に対して接続されているデマルチプレクサ112も含む。媒体のマルチプレックスおよびデマルチプレックスによって、当業者なら理解されるように、第1のデバイス122と第2のデバイス124との間の比較的長い距離に対して総合の通信システム120に対するコストを削減することができる。
【0048】
他の実施形態の場合、マルチプレクサ110およびデマルチプレクサ112は不要の場合もある。当業者なら通信システム120をマルチプレクサ/デマルチプレクサ付きの、あるいはそれらが付かない形のいずれかで実装するためのコストのトレードオフを容易に決定することができるだろう。
【0049】
並列通信チャネルの数に対するコンバータの速度におけるトレードオフの1つの特定の有利な使用は、同期光ネットワーク(SONET)および/または同期式ディジタル階層(SDH)標準によるものなどに対する光学実装に対する使用である。特に、波長分割多重(WDM)および高密度波長分割多重(DWDM)は高度に開発されており、当業者なら理解されるように、異なる光学波長において比較的多数の通信チャネルを確立することができるだろう。示されている通信システム120′においては、より少ない数の高レート・コンバータの代わりに、低レートOC‐Xコンバータ141′、161′を多数使用することができる。ファイバ175上での総合レートは比較的高いレート、すなわち、OC‐XのレートのN倍にすることができる。例えば、OC‐192コンバータのコストはOC‐48コンバータのコストの100倍の可能性がある。したがって、通信システム120′は、高速光学コンバータを使用した同等程度の総合伝送レートのシステムより安価になる可能性がある。
【0050】
ファイバ175上にマルチプレックスされた異なる波長は、そのファイバを通して異なる速度で進行する。過去においては、これらの異なる速度が測定され、そしてスキューを考慮するために固定のオフセットが追加された。都合の悪いことに、そのような方法は、例えば、ファイバのエージングおよび/または温度サイクルによって生じる可能性があるスキューにおける変動を考慮に入れることができない。当業者なら、光通信システム120′に対する本発明による文字列ベースのフレーミング・コーダ132′およびデスキューワ145′によって提供される効率および単純性に関しての利点を理解することができるだろう。
【0051】
もう1つの通信システム200が、特に図11および図12を参照して以下に説明される。示されている通信システム200は、物理層デバイス(PLD)201と、それに接続されている論理リンク・デバイス(LLD)202とを含む。PLD 201はPLD送信インターフェース203を含み、それはさらに、PLDの並列情報出力205〜208と、少なくとも1つのPLD制御出力211とを含む。
【0052】
LLD 202はLLD受信インターフェース204を含み、それはさらに、LLD並列情報入力215〜218と、少なくとも1つのLLD制御入力221とを含む。また、通信システム200は、PLD情報の出力205〜208をそれぞれのLLD情報入力215〜218に対して接続する第1の並列通信チャネル225も含む。第2の通信チャネル226は、示されている単独のPLD制御出力211をLLD制御入力221に対して接続し、情報信号から帯域が外れているLLDに対してPLDから制御信号が送信されるようにする。したがって、制御速度が向上し、情報のスループットの効率が犠牲にされることはない。当業者なら理解されるように、第1および第2の通信チャネル225および226の個数は、実施形態によって異なる可能性がある。
【0053】
LLD受信インターフェース204は、LLD状態出力222をさらに含むように示されており、PLD送信インターフェース203はPLD状態入力212を含む。したがって、第3の通信チャネル227がLLD状態出力222をPLD状態入力212に対して接続する。
【0054】
また、PLD 201は、PLDの並列情報入力231〜234と、PLD制御入力235とを含むPLD受信インターフェース230も含む。LLD 202は、LLD並列情報出力241〜244と、LLD制御出力245とを含むLLD送信インターフェース240をさらに含む。示されている実施形態においては、第4の並列通信チャネル250がLLD情報出力241〜244をそれぞれのPLD情報入力231〜234に対して接続する。さらに、第5の通信チャネル251がLLD制御出力245をPLD制御入力235と接続する。
【0055】
PLD受信インターフェース230は、PLD状態出力236をさらに含むことができ、LLD送信インターフェース240はLLD状態入力246をさらに含むことができ、そして通信システム200は、PLD状態出力236をLLD状態入力246に対して接続する第6の通信チャネル252も含むことができる。本通信システムによれば、PLD 201とLLD 202はプッシュ‐プッシュ構成で動作することができる。
【0056】
プッシュ‐プッシュ構成は、従来のプッシュプル構成のいくつかの障害を克服する。PLD 201は、通常、比較的高価であるオンチップ・メモリ260を含む。LLD 202は、通常、より多くのメモリを必要とするが、メモリ261は、当業者なら理解されるように、通常、オフチップで提供されるので比較的安価である。プッシュ‐プッシュ構成は、LLD 202がPLD 201を減速しないので、PLD 201に対する比較的高価なオンチップ・メモリ260に対する必要性を緩和する。
【0057】
もう1つの有利な特徴は、インターフェース203、204、230および240を対称的にすることができることである。言い換えれば、PLD送信インターフェース203とLLD送信インターフェース240とを実質的に同じものにすることができ、また、PLD受信インターフェース230とLLD受信インターフェース204とを実質的に同じものとすることができ、それによって対称的なインターフェースを定義することができる。対称的なインターフェースは設計および製造を単純化し、当業者なら理解されるように、PLD送信インターフェース203とPLD受信インターフェース230との間に示されている点線のループバック径路263によって示されているようなループバック機能などの他の利点を提供することができる。
【0058】
また、その対称性によって、LLD 202が点線の水平線264によって示されているように、2つの別々の集積回路パッケージに機能的に分けることができる。ピン数が比較的多くなる可能性があり、コストの大きな部分となり得るので、対称性および2つの別々のICを提供するための機能は本発明の大きな利点である。
【0059】
LLD 202は、当業者なら理解されるように、例えば、非同期転送モード(ATM)デバイスを含むことができる。さらに、PLDは、当業者ならやはり理解されるように、同期光ネットワーク(SONET)デバイスまたは同期式ディジタル階層(SDH)デバイスとすることができる。また、LLD 202は、当業者なら理解されるようにSDLまたはHDLCのデバイスとすることができる。
【0060】
通信システム200のさらにもう1つの態様は、スキューを考慮しながら、高速並列通信チャネルを使用することによって、PLD 201およびLLD 202のピン数を管理可能なように維持できることである。特に、図11を特に参照して示されているように、PLD送信インターフェース203は、それぞれの第1の並列通信チャネル上で並列に送信される情報ビット列の各情報ビット列に対して文字列ベースのフレーミング・コードを決定して付加するための文字列ベースのフレーミング・コーダ32″″を含むことができ、各文字列ベースのフレーミング・コードはそれぞれの情報ビット列の中の少なくともいくつかの情報ビットに基づいている。また、LLD受信インターフェース204は、受信された並列情報ビット列を文字列ベースのフレーミング・コードに基づいて整列させるためのデスキューワ45″″も含むことができる。
【0061】
その文字列ベースのフレーミング・コードは、例えば、CRCコードであってよい。示されている文字列ベースのコーダ32″″は上記のように文字列ベースのコード発生器37″″と、マルチプレクサ38″″とを含む。スクランブラを追加することができるが、それは示されている実施形態の中には示されていない。M要素−N要素変換器36″″は文字列ベースのフレーミング・コーダ32″″より上流にある。
【0062】
デスキューワ45″″は、情報ビット列をそれぞれの文字列ベースのフレーミング・コードに基づいてフレーム化するためのフレーマ50″″と、フレーム化された情報ビット列を互いに相対的に、そしてその文字列ベースのフレーミング・コードに基づいて整列させるアライナー52″″とを含むように示されている。アライナー52″″は、フレーム化された情報ビット列をバッファするためにフレーマに接続されている少なくとも1つの先入れ先出し(FIFO)デバイス53″″と;フレーム化された情報ビット列を少なくとも1つのFIFOデバイスの書込および読取フェーズのうちの少なくとも1つの間に、そして文字列ベースのフレーミング・コードに基づいて整列させるためのFIFOコントローラ55″″とを含む。効率的なフレーミング・アルゴリズムの特定の事例が、この説明の残りの部分において与えられる。
【0063】
PLDからLLDへの逆方向の情報および制御信号についてのコーディングおよびデスキューを提供することができる。いくつかの実施形態においては、並列通信チャネルを図示されている実施形態の中で示されているように、電気導体上で提供することができる。もちろん、他の伝送媒体も使用することができる。
<I.インターフェースの例>
本発明の一般的な構成部品、概念、特徴および利点を既に説明してきたが、ここでこの説明はPNGインターフェースと称するインターフェースの特定の例を含む。もちろん、この例は、例示としてのものであり、本発明をさらに記述することを意味しており、本発明を制限するものではないことを理解されたい。
【0064】
PNGは最小のピン数で、非常に高いデータ・レートで1つのデバイスから別のデバイスへデータを転送することができるインターフェースである。PNGは対称的で、プッシュ/プッシュであり、OC‐192以上にまで拡張可能なOC‐48のレートにおいて使用することができる。さらに、PNGはATMセルおよびパケットの両方を同時並行的に転送するように設計されている。
【0065】
図11に示されているように、PNGは3種類の信号、すなわち、データ、制御、および状態を含むことが分かる。制御信号はデータと同じ方向に送信され、そして状態は反対の方向に送信される。したがって、一方向当たりのインターフェースを構成するd+c+s個のビットがある。(UtopiaまたはUtopiaに似たインターフェースとは違って、PNGは対称的であり、プッシュ/プルでなく、プッシュ/プッシュである。)表1は各種のビット・レートに対する代表的な、あるいは推奨されるd、cおよびsに対する値を示す。
【0066】
【表1】
Figure 0003745229
【0067】
622MB/s以上で、スキューを制御することは困難である可能性がある。ビット間のアラインメントを確実に行い、およびフレーミングを達成するために、各ビットはそれ自身のフレーミング構造を備えている。送信されるn個の情報ビットのすべてに対して、1つのCRCが付加される。N個の情報ビットとCRCとを情報フレームと呼ぶことができる。nの推奨されるサイズは1024ビットであり、推奨されるCRCは多項式x^8+x^2+x+1のCRC‐8である。しかし、このサイズおよびCRCは最も確率の高い取得時間を求めるために解析によって変えることができる。他の推奨されるサイズはCRC‐4付きの512ビット、あるいはCRC‐32付きの2048ビットである。CRC‐4は必要なハードウェアが最小であるが、間違ったフレーミングの確率が高いので、かなりの取得時間を必要とする可能性がある。CRC‐32はより多くのフレーミング回路を必要とする。
【0068】
付加されるCRCの他に、データも多項式x^7+x^6+1のシーケンス長127のフレーム同期スクランブラを使用してスクランブルすることができる。そのスクランブラはCRCの挿入の後、最上位ビットにおいて7′b111_1111にリセットされなければならない。情報のスクランブリングはCDRを可能にするために、0と1との一様な分布を確実に行うために実行されることに留意されたい。
【0069】
当業者なら理解されるように、HECの詳細描写に似たフレーミングのステート・マシンを採用することが提案される。フレーミングのステート・マシン70は図5に示されており、既に説明されている。
【0070】
フレームが見つかった後、複数のビットにわたって情報を整列させることは受信機の責任である。OC‐48の場合、受信機は4個のdビットおよび1個のcビットについてフレーム化し、5個のすべてのビットによりフレームが獲得された後、データおよび制御を正しく抽出することができる。取得時間を加速するために、限られた時間(ビット間の許されているスキューによって変わるが、それに数個のビットをプラスまたはマイナスした時間)において5個のすべてのビットについてフレームが見つからなかった場合、CRCについての間違った肯定マッチを無視することができる。
【0071】
622MB/sにおける4個のデータ・ビットと1個の制御ビット演算でのOC‐48の場合、データおよび制御は図13に示されているように分けられ、8個のすべての制御ビットに対して32ビットの関係を形成する。この分類はもちろん情報のフレーミングが発生した後に実行されることになる。
【0072】
制御とデータの区分けが行われた後、その制御情報が関連データの状態を決定するために使用される。この情報はポートID(PID)、グループID(GID)、パケット(またはセル)の開始、およびパケット(またはセル)の終了(そのバイトはそのパケットの終りである)を含む。その情報が以下の表2に示されている。
【0073】
【表2】
Figure 0003745229
【0074】
制御フィールドの第1ビットは、その制御オクテット(およびその関連データ・フィールド)が前の制御オクテットの続き(すなわち、一部分)であるかどうかを示す。CONTが0であった場合、これは新しい送信の第1オクテットである。ポートID(PID)は7ビット幅であり、そのデータが関連付けられているポートを識別するために使用される。この結果、ポートは128個までとなる。それより多い数のポートが必要な場合、3ビットであるグループID(GID)フィールドがポートの範囲を1024(2^10)まで拡張するために使用される。STATUSフィールドは残りの制御情報を伝えるために使用される。STATUSフィールドのコード化が表3に示されている。
【0075】
【表3】
Figure 0003745229
【0076】
各チャネルに対して送信されなければならない制御情報の量を、1個の8ビット・オクテットの中に含めることはできないので、ポートのコンテキスト・スイッチが実行できる前に、少なくとも2個の8ビット・オクテットが送られなければならない。しかし、この後、次の4バイト境界においてコンテキスト・スイッチを実行することができる(パケットが8バイト以上である限り、そのインターフェースは複数の4バイト・パケットに対して100%有効であることを意味している)。1バイト以上の任意のサイズのパケットを送信することができることに留意されたい(8バイトより少ない場合、そのリンクの効率が落ちる)。
【0077】
以下の表4にはヌルのデータが送信された後、32バイトのパケットが続く場合の例が示されている。
【0078】
【表4】
Figure 0003745229
【0079】
PIDおよびGIDによって、PNGにおいてサポートすることができるチャネルの数は1024であることに留意されたい。これは必要な場合、状態のサイズを3ビットに減らし、GIDを4ビットに拡大することによって2048に拡張することができる。しかし、その時、データのフィールドは1〜4バイトのサイズのパケットについての情報を伝えるために利用されなければならないことになる。
【0080】
STATUSフィールドは、データおよび制御とは反対の方向に送信され、そしてチャネルごとのベースでフロー制御を提供するために使用される。この状態フィールドはスクランブルされ、制御およびデータの場合と同じ方法でCRCが後に付けられる。状態情報が抽出されると、それは以下の表5に示されているフォーマットに従って解釈される。
【0081】
【表5】
Figure 0003745229
【0082】
制御フィールドの場合と同様に、PIDはポートIDを表し、GIDはグループIDを表し、そしてこれらのビットの組合せを使用して1024個までのポートについての状態を提供することができる。Rは予約済みであり、FSTATUSはそのポートに関連付けられているFIFOの状態を伝えるために使用される。Rフィールドは必要に応じてGIDまたはFSTATUSのいずれかを大きくするために使用することができる。
【0083】
FSTATUSのコード化が以下の表6に示されている。
【0084】
【表6】
Figure 0003745229
【0085】
1ビットの状態だけが必要な場合、FSTATUSのMSBビットを採用することができる。受信側(データおよび制御ビットを受信するが、状態を送信する側として定義される)が、そのFIFOの状態を決定し、そしてその情報を送信側(データおよび制御ビットを送信するが、状態を受信する側として定義される)に対して伝える。1ビットのfifo状態は、UtopiaインターフェースにおけるTxClavと同様なものと考えることができる。
【0086】
送信側は受信側にあるすべてのFIFOの状態を維持することが要求される。この状態は受信機においてFIFOの状態が変化する時は常に絶えず更新され、そしてそのような伝える情報がない場合、受信機はアクティブなすべてのFIFOをすべてラウンド・ロビンし、送信側が確実に絶えず同期されるようにする。送信者として従来のPHYデバイスの場合、それは状態を必要としない。したがって、状態情報は送信者としてPHYによって無視することができる。
【0087】
PNGインターフェースの論理ブロック図が図1に示されており、これ以上の説明は不要である。
<II.デスキューのアルゴリズムの例>
本発明の一般的な構成部品、概念、特徴および利点、およびインターフェースの例を説明してきたところで、この説明は次にデスキューのアルゴリズムの特定の例を含む。このデスキューのアルゴリズムは例示としてのものであり、本発明をさらに説明することを意味し、本発明を制限するものではないことを理解されたい。
【0088】
ネットワークにおいてより大きいバンド幅が必要になる際、顧客はオン・デマンドのベースで2点間にバンド幅を追加するための機能を要求する。SONET/SDHネットワークにおいては、このバンド幅は普通はそのバンド幅を必要としている点に対して次のより大きい連結レベルを送信することによって提供される。これらのネットワークには、その新しい連結信号が占める可能性のあるタイムスロットに大きな制限がある。本発明によると、使用されているSTS‐1/VC‐4信号における制限なしに、それぞれSONET/SDH信号に対してSTS‐1/VC‐4レベルにおいてバンド幅を割当て/割当て解除することができる。受信端においては、外部の介在(ソフトウェア)および最小限のハードウェア(ゲート数)なしでこれらのばらばらのストリームを1つのストリームに整列させるためのメカニズムが存在しなければならない。この例は完全にハードウェア・ベースのデスキュー・アルゴリズムを実装することによってソフトウェアの介在およびゲート数の問題に対処する。
【0089】
SONET/SDHのSPEデスキュー・アルゴリズムによって、ユーザが定義したグループ内で複数のSTS‐1/VC‐4信号の動的なアラインメントが可能である。したがって、出力信号に誤りを導入することなしに、ユーザが定義したグループに対して信号を動的に追加するか、あるいはドロップすることができる。
【0090】
図14を参照して理解されるように、デスキューのアルゴリズム279は異なるSTS‐1/VC‐4の信号のSPEを整列させるための単純なアルゴリズムを可能にするSONET/SDHフレームの特徴を考慮に入れる。アルゴリズム279は4つの基本構成部品、すなわち、入力制御論理ブロック280、書込制御論理ブロック281、データ記憶要素ブロック285、および読取制御論理ブロック286を含む。
【0091】
入力制御論理ブロック280は、1つの仮想グループを形成するためにどのSTS‐1/VC‐4信号が一緒にまとめられているかを知るために必要な準備された情報を含む。また、この情報がデスキューの目的のために他の制御ブロックによっても使用される。
【0092】
書込制御論理ブロック282は、各仮想グループに対して書込アドレス生成論理回路および最小書込アドレスおよび最大書込アドレス計算論理回路を含んでいる。仮想グループは2から48までのSTS‐1信号または、2から16までのVC‐4信号を含む。書込アドレスはJ1Iマーカに対して同期化されている。これにおいてJ1のPOHバイトが常にデータ記憶メモリの中の同じ場所に書き込まれる。その書込アドレスは常にJ1マーカ間で783(STS‐1)または783*3(VC‐4)個のバイトを書き込む。これはその信号がネットワーク内のポインタ・プロセッサ要素を通過する際に入って来るポインタの値に対して発生した増加または減少動作とは無関係である。同時に、各ロウの間に、最大および最小の書込アドレスがすべての仮想グループに対して計算される。この情報が、増加または減少動作が必要であるかどうかを知ることにおいて読取制御論理回路286によって使用される。これはそのVCグループ内のすべての信号がFIFOの深さの境界内で確実に整列されるようにする。
【0093】
データ記憶要素ブロック285は、入って来る各STS‐1またはVC‐4信号に対してデータの1つのロウをバッファするために十分なRAMを含む。
【0094】
読取制御論理ブロック286は、入って来る信号間の位相関係がポインタの増加および減少のために変化する際に読取ポインタが確実に移動/保持するようにする。増加動作(SPEタイムにおいて読取アドレスが保持されている)または減少動作(TOH時刻の間に進んだ読取アドレス)が必要であるかどうかを決定するためにロウごとに一度評価が行われる。読取ポインタは、減少動作が実行されていることを除いて、SPEタイムの間でのみカウントする。仮想グループの入力信号のすべてが同じJ1バイトのロケーションを有している場合、その読取および書込ポインタは、その記憶の深さの半分だけオフセットされ、最小値および最大値は、そのデスキュー・プロセスの後、等しくなる。
【0095】
要約すると、そのデスキューのアルゴリズムによって任意の数の信号が1つの仮想グループを作り上げること、そしてその入って来る信号がマーカ間で首尾一貫した数のバイトを有していて、そのマーカ間の相対オフセットがFIFOの深さより大きくない限り、これらの信号を整列したままに保つことができる。上記説明はSONET/SDHの信号に対して固有であるが、本発明は整列されなければならない任意のタイプの信号に対して使用することができる。
【0096】
この方法の主な利点はSONET/SDHのフレーム構造およびポインタ移動の挙動の標準の特性を考慮に入れるデスキューのアルゴリズムの単純性である。1つの仮想グループを作っている入力信号はその書込アルゴリズムを通じて自動的に整列され、その入力信号が互いに関して位相を変える際に、その出力が誤りのないことを読取アルゴリズムが確実にする。本発明はSONET/SDHネットワークの中で仮想連結信号を整列させるため、あるいはパケット・ネットワークにおいて高速デスキューを実行するためのアラインメント用FIFO回路において使用することができる。
【図面の簡単な説明】
【図1】 通信システムの第1の実施形態の略ブロック図である。
【図2】 図1に示されているような第1のデバイスの出力からの概略的なビット位置図である。
【図3】 図1に示されていて、スキューを示す第2のデバイスの入力からの概略的なビット位置図である。
【図4】 図1に示されていて、デスキューを示す第2のデバイスのFIFOデバイスからの概略的なビット位置図である。
【図5】 図1に示されているような第2のデバイスにおいて使用することができるフレーミングのステート・マシンの概略図である。
【図6】 通信システムの光ファイバによる実施形態の略ブロック図である。
【図7】 本発明による通信システムの無線による実施形態の略ブロック図である。
【図8】 本発明による通信システムの赤外線自由空間による実施形態の略ブロック図である。
【図9】 本発明による通信システムのもう1つの実施形態の略ブロック図であり、低レート・コンバータの電子回路のバンクを示していて、本発明によるデスキュー機能を組み込んでいる。
【図10】 図9に示されているような通信システムの光ファイバによる実施形態の略ブロック図である。
【図11】 並列通信チャネルによって接続されているPLDおよびLLDを含む、本発明による通信システムの略ブロック図である。
【図12】 図11に示されているようなPLDの送信インターフェースおよびLLDの受信インターフェースのより詳細な略ブロック図である。
【図13】 PNGインターフェースの例に対するデータおよび制御ビットのビン化(binning)の略図である。
【図14】 デスキューのアルゴリズムの一例の略ブロック図である。

Claims (30)

  1. 通信システム(120)であって、
    複数の電気信号−伝送媒体変換器を含む第1のデバイス(122)と、
    少なくとも1つの伝送媒体を経由して前記電気信号−伝送媒体変換器のそれぞれ1つに接続され、前記第1のデバイスと第2のデバイスとの間の並列通信チャネルを定義している複数の伝送媒体−電気信号変換器を含む第2のデバイス(124)とを含み、
    前記第1のデバイスはそれぞれの並列通信チャネル上で並列に伝送される情報記号ストリングの各情報記号ストリングに対して文字列ベースのフレーミング・コードを決定して付加するための文字列ベースのフレーミング・コーダ(132)をさらに含み、各文字列ベースのフレーミング・コードは、それぞれの情報記号ストリングの中の少なくともいくつかの情報記号に基づいていて、
    前記第2のデバイスは、受信された情報記号ストリングを前記文字列ベースのフレーミング・コードに基づいて整列させるためのデスキューワを含む通信システム。
  2. 請求項1に記載の通信システムにおいて、前記電気信号−伝送媒体変換器および前記伝送媒体−電気信号変換器が少なくとも1つの配線伝送媒体に対するものである通信システム。
  3. 請求項1に記載の通信システムにおいて、前記電気信号−伝送媒体変換器および前記伝送媒体−電気信号変換器が少なくとも1つの無線伝送媒体に対するものである通信システム。
  4. 請求項1に記載の通信システムにおいて、前記電気信号−伝送媒体変換器、および前記伝送媒体−電気信号変換器が少なくとも1つの光学伝送媒体に対するものである通信システム。
  5. 請求項1に記載の通信システムにおいて、前記第1のデバイスが共通の伝送媒体に沿って前記複数の電気信号−伝送媒体変換器からの信号を多重化するためのマルチプレクサ(110)をさらに含み、前記第2のデバイスが前記伝送媒体−電気信号変換器に接続されているデマルチプレクサ(112)をさらに含む通信システム。
  6. 請求項1に記載の通信システムにおいて、各情報記号がバイナリ・ビットを含み、前記文字列ベースのコーダがそれぞれの情報ビット列に対してCRCコードを決定して付加するための巡回冗長検査(CRC)コーダを含む通信システム。
  7. 請求項6に記載の通信システムにおいて、前記デスキューワが、前記情報ビット列を前記CRCコードに基づいてフレーム化するためのCRCフレーマ(50)を含む通信システム。
  8. 請求項1に記載の通信システムにおいて、前記デスキューワが、
    情報記号ストリングをそれぞれの文字列ベースのフレーミング・コードに基づいてフレーム化するためのフレーマ(50)と、
    フレーム化された情報記号ストリングを互いに相対的に、そして前記文字列ベースのフレーミング・コードに基づいて整列させるためのアライナー(52)とを含む通信システム。
  9. 請求項8に記載の通信システムにおいて、各情報記号がバイナリ・ビットを含み、前記アライナーが、
    フレーム化された情報ビット列をバッファするために前記フレーマに接続されている少なくとも1つの先入れ先出し(FIFO)デバイス(53)と、
    フレーム化された情報ビット列を、前記少なくとも1つのFIFOデバイスの書込および読取フェーズのうちの少なくとも1つの間に、そして前記文字列ベースのフレーミング・コードに基づいて整列させるためのFIFOコントローラ(55)とを含む通信システム。
  10. 請求項1に記載の通信システムにおいて、前記の各情報記号ストリングが同じ個数の記号を有している通信システム。
  11. 請求項1に記載の通信システムにおいて、前記第1のデバイスが前記情報ビット列をスクランブルするためのスクランブラ(34)を含み、前記デスキューワが受信された情報記号ストリングをデスクランブルするためのデスクランブラ(46)を含む通信システム。
  12. 並列通信チャネルにおいて少なくとも1つの伝送媒体(125)上で送信される情報ビット列に対する受信デバイス(124)であって、前記情報記号ストリングは前記並列通信チャネル上での伝送に先立って、巡回冗長検査(CRC)コードからなる文字列ベースのフレーミング・コードが付加されており、各文字列ベースのフレーミング・コードは、それぞれの情報記号ストリングの中の少なくともいくつかの情報記号に基づいており、各情報記号はバイナリビットを含み、前記受信デバイスは、
    前記少なくとも1つの伝送媒体に接続される複数の伝送媒体−電気信号変換器(161)と、
    前記CRCコードに基づいて情報記号ストリングをフレーム化するための前記媒体−電気信号変換器に接続されているCRCフレーマ(50)と、
    フレーム化された情報記号ストリングを互いに相対的に、そして前記文字列ベースのフレーミング・コードに基づいて整列させるためのアライナー(52)とを含む受信デバイス。
  13. 請求項12に記載の受信デバイスにおいて、前記伝送媒体−電気信号変換器が少なくとも1つの配線の伝送媒体に対するものである受信デバイス。
  14. 請求項12に記載の受信デバイスにおいて、前記伝送媒体−電気信号変換器が少なくとも1つの無線伝送媒体に対するものである受信デバイス。
  15. 請求項12に記載の受信デバイスにおいて、前記伝送媒体−電気信号変換器が少なくとも1つの光学伝送媒体に対するものである受信デバイス。
  16. 請求項12に記載の受信デバイスにおいて、前記伝送媒体−電気信号変換器に接続されているデマルチプレクサをさらに含む受信デバイス。
  17. 請求項12に記載の受信デバイスにおいて、各情報記号がバイナリ・ビットを含み、前記アライナーが、
    フレーム化された情報ビット列をバッファするための前記フレーマに接続されている少なくとも1つの先入れ先出し(FIFO)デバイス(53)と、
    前記少なくとも1つのFIFOデバイスの書込および読取フェーズのうちの少なくとも1つの間に、そして前記文字列ベースのフレーミング・コードに基づいてフレーム化された情報ビット列を整列させるためのFIFOコントローラ(55)とを含む受信デバイス。
  18. 請求項12に記載の受信デバイスにおいて、前記の各情報記号ストリングが同じ個数の記号を有している受信デバイス。
  19. 請求項12に記載の受信デバイスにおいて、受信された情報記号ストリングをデスクランブルするためのデスクランブラ(46)をさらに含む受信デバイス。
  20. 第1のデバイス(122)から第2のデバイス(124)へ通信するための方法であって、
    少なくとも1つの伝送媒体(125)に接続されている前記第1のデバイスの複数の電気信号−伝送媒体変換器(141)を動作させると共に、前記少なくとも1つの伝送媒体に接続されている前記第2のデバイスにおいて複数の伝送媒体−電気信号変換器(161)を動作させることによって、前記第1のデバイスと第2のデバイスとの間の並列通信チャネルを定義するステップと、
    それぞれの並列通信チャネル上での並列伝送のために前記第1のデバイスにおいて情報記号ストリングのうちの各情報記号ストリングに対して、前記それぞれの情報記号ストリングの中の少なくともいくつかの情報記号に基づいて文字列ベースのフレーミング・コードを決定して付加するステップと、
    受信された情報記号ストリングを前記文字列ベースのフレーミング・コードに基づいて整列させることによって、前記第2のデバイスにおいて受信された情報記号ストリングをデスキューするステップとを含む方法。
  21. 請求項20に記載の方法において、前記電気信号−伝送媒体変換器および前記伝送媒体−電気信号変換器が、少なくとも1つの配線の伝送媒体に対するものである方法。
  22. 請求項20に記載の方法において、前記電気信号−伝送媒体変換器および前記伝送媒体−電気信号変換器が、少なくとも1つの無線の伝送媒体に対するものである方法。
  23. 請求項20に記載の方法において、前記電気信号−伝送媒体変換器および前記伝送媒体−電気信号変換器が、少なくとも1つの光学伝送媒体に対するものである方法。
  24. 請求項20に記載の方法において、共通の伝送媒体に沿って前記複数の電気信号−伝送媒体変換器からの信号を多重化するステップと、前記第2のデバイスにおいてデマルチプレックスするステップとをさらに含む方法。
  25. 請求項20に記載の方法において、各記号がバイナリ・ビットを含み、前記決定して付加するステップが、それぞれの情報ビット列に対して巡回冗長検査(CRC)コードを決定して付加するステップを含む方法。
  26. 請求項25に記載の方法において、前記デスキューのステップが、前記CRCコードに基づいて前記情報ビット列をフレーム化するステップを含む方法。
  27. 請求項20に記載の方法において、前記デスキューのステップが、
    前記それぞれの文字列ベースのフレーミング・コードに基づいて情報記号ストリングをフレーム化するステップと、
    フレーム化された情報記号ストリングを互いに相対的に、そして前記文字列ベースのフレーミング・コードに基づいて整列させるステップとを含む方法。
  28. 請求項27に記載の方法において、各情報記号がバイナリ・ビットを含み、前記整列させるステップが、
    少なくとも1つの先入れ先出し(FIFO)デバイス(53)の中にフレーム化された情報ビットをバッファするステップと、
    フレーム化された情報ビット列を、前記少なくとも1つのFIFOデバイスの書込フェーズおよび読取フェーズのうちの少なくとも1つの間において、そして前記文字列ベースのフレーミング・コードに基づいて整列させるステップとを含む方法。
  29. 請求項20に記載の方法において、前記情報記号ストリングのすべてが同じ個数の記号を有している方法。
  30. 請求項20に記載の方法において、前記第1のデバイスにおいて前記情報記号ストリングをスクランブルするステップをさらに含み、前記デスキューのステップが、受信された情報記号ストリングをデスクランブルするステップをさらに含む方法。
JP2000588934A 1998-12-14 1999-12-14 スキューが補正された低レート並列電子回路を含む通信システムおよび関連方法 Expired - Fee Related JP3745229B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11237998P 1998-12-14 1998-12-14
US60/112,379 1998-12-14
US09/460,165 US6675327B1 (en) 1998-12-14 1999-12-13 Communications system including lower rate parallel electronics with skew compensation and associated methods
US09/460,165 1999-12-13
PCT/US1999/029746 WO2000036796A1 (en) 1998-12-14 1999-12-14 Communications system and associated deskewing methods

Publications (2)

Publication Number Publication Date
JP2002533019A JP2002533019A (ja) 2002-10-02
JP3745229B2 true JP3745229B2 (ja) 2006-02-15

Family

ID=26809877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000588934A Expired - Fee Related JP3745229B2 (ja) 1998-12-14 1999-12-14 スキューが補正された低レート並列電子回路を含む通信システムおよび関連方法

Country Status (6)

Country Link
US (1) US6675327B1 (ja)
EP (1) EP1142242B1 (ja)
JP (1) JP3745229B2 (ja)
AU (1) AU2184400A (ja)
DE (1) DE69936734T2 (ja)
WO (1) WO2000036796A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819683B2 (en) * 2001-01-19 2004-11-16 Lucent Technologies Inc. Communications system and associated deskewing and word framing methods
US6766464B2 (en) * 2001-02-13 2004-07-20 Sun Microsystems, Inc. Method and apparatus for deskewing multiple incoming signals
US6965651B1 (en) * 2001-05-11 2005-11-15 Micrel, Inc. Method and apparatus for delay adjustment and channel reordering in baseband communication receiving system
US7170907B1 (en) 2002-02-15 2007-01-30 Marvell Semiconductor Israel Ltd. Dynamic alignment for data on a parallel bus
JP2005536100A (ja) * 2002-08-10 2005-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 移動無線システムのデータ転送速度を高める方法
KR100594021B1 (ko) 2003-11-13 2006-06-30 삼성전자주식회사 무선통신 시스템에서 패킷 송수신을 위한 비트 스크램블링방법 및 장치
US7031256B2 (en) * 2004-01-20 2006-04-18 Transwitch Corporation Methods and apparatus for implementing LCAS ( link capacity adjustment scheme) sinking with rate based flow control
US8018926B2 (en) * 2005-03-30 2011-09-13 Jing Ling Differential delay compensation
US8081706B2 (en) * 2005-08-24 2011-12-20 Altera Corporation Lane-to-lane skew reduction in multi-channel, high-speed, transceiver circuitry
JP4917901B2 (ja) * 2007-01-15 2012-04-18 川崎マイクロエレクトロニクス株式会社 受信装置
JP5125550B2 (ja) * 2008-01-30 2013-01-23 富士通株式会社 通信システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115759A (en) 1977-08-08 1978-09-19 Honeywell Information Systems Inc. Multiple bit deskew buffer
US4286256A (en) * 1979-11-28 1981-08-25 International Business Machines Corporation Method and means for arithmetic coding utilizing a reduced number of operations
GB2098834B (en) * 1981-05-14 1985-02-13 Standard Telephones Cables Ltd Subscribers loop synchronisation
US4477845A (en) * 1982-02-22 1984-10-16 The United States Of America As Represented By The Secretary Of The Navy Dynamic skew correction for multichannel analog recording
GB8407223D0 (en) 1984-03-20 1984-04-26 British Telecomm Broadband digital transmission systems
US4677618A (en) 1985-04-04 1987-06-30 International Business Machines Corporation Method and apparatus for deskewing WDM data transmitted through a dispersive medium
US4731676A (en) * 1985-12-13 1988-03-15 Cyclotomics, Inc. Transparent synchronization of multiple channel data
US4652856A (en) * 1986-02-04 1987-03-24 International Business Machines Corporation Multiplication-free multi-alphabet arithmetic code
US5157530A (en) 1990-01-18 1992-10-20 International Business Machines Corporation Optical fiber system
JP2816223B2 (ja) 1990-03-02 1998-10-27 株式会社日立製作所 セル同期回路
JP2655547B2 (ja) 1991-03-13 1997-09-24 富士通株式会社 Crc演算方法及びatm交換方式におけるhec同期装置
DE69230768T2 (de) * 1991-08-23 2000-09-28 Kabushiki Kaisha Toshiba, Kawasaki Funkinformations- und kommunikationssystem mit einem mehrträger-spreizspektrum-übertragungssystem
US5408473A (en) 1992-03-03 1995-04-18 Digital Equipment Corporation Method and apparatus for transmission of communication signals over two parallel channels
US5610945A (en) 1993-11-04 1997-03-11 International Business Machines Corporation System for identifying communication sequences transmitted across multiple carriers by examining bit streams for sequences of valid words
US5511067A (en) * 1994-06-17 1996-04-23 Qualcomm Incorporated Layered channel element in a base station modem for a CDMA cellular communication system
KR970009756B1 (ko) 1994-12-23 1997-06-18 한국전자통신연구원 에러 정정 및 프레임 복구용 순환 선로 부호화 장치
KR100295729B1 (ko) 1995-04-15 2001-08-07 포만 제프리 엘 동기형디지털계층/동기형광통신망인터페이스
US5563885A (en) 1995-05-24 1996-10-08 Loral Fairchild Corporation Method and system for processing multiple channel data
US5815737A (en) 1995-06-05 1998-09-29 Pmc-Sierra, Inc. Approach for identifying a subset of asynchronous transfer mode (ATM) VPI/VCI values in the complete VPI/VCI range
US5764687A (en) * 1995-06-20 1998-06-09 Qualcomm Incorporated Mobile demodulator architecture for a spread spectrum multiple access communication system
US5905769A (en) 1996-05-07 1999-05-18 Silicon Image, Inc. System and method for high-speed skew-insensitive multi-channel data transmission
KR0169247B1 (ko) 1996-08-09 1999-02-01 양승택 에스티엠 기반 에이티엠 셀 물리계층 처리회로
US5844923A (en) 1996-10-24 1998-12-01 At&T Corp Fast framing of nude ATM by header error check
US5793770A (en) 1996-11-18 1998-08-11 The Regents Of The University Of California High-performance parallel interface to synchronous optical network gateway
US6128761A (en) * 1996-12-13 2000-10-03 Cisco Technology, Inc. Method and apparatus for G.706 frame alignment and CRC procedure test tool
US6105155A (en) * 1998-01-21 2000-08-15 International Business Machines Corporation Method and apparatus for performing on-chip function checks and locating detected anomalies within a nested time interval using CRCs or the like
US6204948B1 (en) * 1998-07-02 2001-03-20 Ortronics, Inc. Media converter

Also Published As

Publication number Publication date
DE69936734D1 (de) 2007-09-13
US6675327B1 (en) 2004-01-06
EP1142242B1 (en) 2007-08-01
AU2184400A (en) 2000-07-03
WO2000036796A1 (en) 2000-06-22
JP2002533019A (ja) 2002-10-02
DE69936734T2 (de) 2008-04-30
EP1142242A1 (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US7940808B2 (en) Communications system with symmetrical interfaces and associated methods
JP3707537B2 (ja) 通信システムおよび関連デスキュー方法
JP3819012B2 (ja) 等時性リンクプロトコル
US7386008B2 (en) Method and apparatus for converting data packets between a higher bandwidth network and a lower bandwidth network having multiple channels
US6775300B2 (en) Clock distribution in a communications network
US20020126704A1 (en) System interface for cell and/or packet transfer at aggregate data rates of up to 10 Gb/s
GB2290438A (en) Intergrated user network interface device
US6934301B2 (en) Method and apparatus for converting data packets between a higher bandwidth network and a lower bandwidth network
JP3745229B2 (ja) スキューが補正された低レート並列電子回路を含む通信システムおよび関連方法
US6826719B2 (en) Cellular CDMA transmission system
JP3707536B2 (ja) 帯域外れの制御付き通信システムおよび関連方法
US6819683B2 (en) Communications system and associated deskewing and word framing methods
US6721336B1 (en) STS-n with enhanced granularity
US6954891B1 (en) Technique for payload-independent frame delineation engine for optical data transport
US7295554B1 (en) Word Multiplexing of encoded signals into a higher bit rate serial data stream
US7139288B2 (en) Protocol-independent packet delineation for backplane architecture
EP1407565B1 (en) Method and apparatus for converting data packets between a higher bandwidth network and lower bandwidth network
Gi Lee et al. Applications to Cell-Based ATM and High-Speed Data Networks
KR20000018948A (ko) 프레이머와 알에스 인코더 간의 인터페이스로 인한 데이터손실보상장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350