JP3742490B2 - 光波形計測装置 - Google Patents

光波形計測装置 Download PDF

Info

Publication number
JP3742490B2
JP3742490B2 JP19589897A JP19589897A JP3742490B2 JP 3742490 B2 JP3742490 B2 JP 3742490B2 JP 19589897 A JP19589897 A JP 19589897A JP 19589897 A JP19589897 A JP 19589897A JP 3742490 B2 JP3742490 B2 JP 3742490B2
Authority
JP
Japan
Prior art keywords
photon
photodetector
output
photons
optical waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19589897A
Other languages
English (en)
Other versions
JPH1137850A (ja
Inventor
恒幸 浦上
太郎 安藤
豊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP19589897A priority Critical patent/JP3742490B2/ja
Publication of JPH1137850A publication Critical patent/JPH1137850A/ja
Application granted granted Critical
Publication of JP3742490B2 publication Critical patent/JP3742490B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微弱な繰り返し光の光強度の時間変化を表す光波形を計測する装置に関する。
【0002】
【従来の技術】
微弱な繰り返し光の光波形を計測する装置として、時間相関光子計数装置が知られている。この装置のブロック図を図11に示す。被測定光源1から出射された被測定光の一部が、光電子増倍管などからなる光検出器2に入射される。光検出器2は、光子1つの検出に対して十分な振幅を有した電気信号を出力するので、入射光を構成する光子1個1個の検出に対応する電気信号パルスが出力される。この出力信号パルスは、プリアンプ3で増幅された後に、ディスクリミネータ17で、ノイズと分離されて、信号として時間−電圧変換器(TAC:Time to Amplitude Converter)18に送られる。TAC18は、被測定光源1と同期回路13により同期させられており、その周期の開始時刻から起算した入力信号パルスの到達時刻を表す電気信号を出力する。この出力結果をマルチチャンネルアナライザー19で集積することにより、被測定光の光波形を再現する。
【0003】
具体的にいうと、被測定光の繰り返し周期Tを例えば、n個のチャンネルに分割して、それぞれのチャンネルで検出した光子数、すなわち光子の発生頻度情報を集積する。チャンネルiの平均検出光子数をμi、1周期の平均検出光子数をμとすると、サンプル数が充分に多ければ、各チャンネルのμiは、そのチャンネルでの被測定光の光強度に対応し、μiの分布波形が被測定光の光波形に対応するので、被測定光の光波形を再現することができる。
【0004】
【発明が解決しようとする課題】
しかし、この装置では、1周期に複数の光子が入射した場合にそれぞれの光子をどのチャンネルで検出したかを弁別することができないという欠点がある。これは、通常の光電子増倍管では、光子が到達しているか否かは判断できるが、到達した光子の個数を厳密に判定できないことによる。到達した光子の個数を正確に判定できる光電子増倍管としては、特開平8−148113号公報に記載されているいわゆるハイブリッド光検出器(HPD)がある。しかし、このHPDを用いた場合でも、TACが周期内の複数の光子の到達時刻を別々に検出処理することができないため、この欠点を解消することはできなかった。
【0005】
従来のTACを用いた時間相関光子計数装置では、1周期に複数の光子が入射した場合についても、周期中の最初に検出した光子が検出された時に1個の光子を検出した場合と同様に取り扱われていた。すなわち、複数の光子が入射した場合には、後に入射した光子は発生頻度のデータから数え落とされてしまっていた。
【0006】
ここで、チャンネルiでk個の光子が検出される確率p(i,k)は、ポアソン分布に従うと考えられるので、この確率p(i,k)は、
【0007】
【数1】
Figure 0003742490
で示される。したがって、1個以上の光子が検出され、そのうちの最初の光子がチャンネルiで検出される確率q(i)は、
【0008】
【数2】
Figure 0003742490
となり、本来の平均検出光子数に比例せず、iが大きいほど本来のμiより小さな値を示すことになる。つまり、光波形の後ろ側ほど光強度を低く見積もることになる。
【0009】
この結果、図12に示されるように、複数の光子が入射してこうした数え落としが多くなる場合には、本来なら同図中実線Aで示されるべき測定波形は、破線Bで示される波形として測定され、光強度の時間的な減衰が大きくなり、波形が歪むことになる。
【0010】
これを防ぐためには、1周期中の平均検出光子数を少なくして、1周期中に複数の光子が光検出器に入射する確率を減らし、数え落としが起こらないようにする必要がある。この数え落としを実際に検出した光子のうちの1%以内にするためには、1回の周期中で検出される平均光子数を約0.02程度とすることが必要だった。このため、一般には、光検出器に到達する光量を減らして、この平均光子数を0.01程度とする測定が行われていた。一方、計測した光波形のμiの精度を上げるには検出光子の総数、すなわちサンプル数を増加させる必要がある。このためには、従来、計測の時間を長くして周期数を増やすことで対応していた。この結果、光波形の測定に時間がかかり、それでも波形後部の減衰部分を正確に測定することは困難だった。
【0011】
これらの問題点を解消する技術として、特開平1−227948号公報に開示されたマルチチャンネル蛍光減衰波形測定装置や特開平8−38480号公報に開示された生体測定装置が知られている。前者は、2値化した光検出器出力の時間波形を時間分割した1次元のシフトレジスタに蓄積することにより、後者は、1周期をさらに細かい時間領域に分けることにより、いずれも1周期で複数の光子の発生頻度情報を測定することを可能にして、前述の数え落としを低減し、波形歪みを少なくしている。しかし、これらはいずれも回路構成が複雑で、波形測定の時間分解能を上げることが困難であり、さらに細分化された時間領域の同一の時間領域に複数の光子が入射した場合の数え落としは依然として残る等の問題点があった。
【0012】
本発明は、これらの問題点を解決して、構成が簡単で計数率が高く高精度の測定が可能な時間相関光子計数型の光波形計測装置を提供することを課題としている。
【0013】
【課題を解決するための手段】
本発明は、所定の繰り返し周期を有する被測定光の光強度の時間変化を表す光波形を計測する光波形計測装置において、(1)被測定光の一部が入射され、光子の到達に対応してパルス幅あるいはパルスの立ち上がり時間が繰り返し周期より十分に短く、1個以上の略同時に到達した光子数に対応する電荷量のパルス信号を出力する光検出器と、(2)光検出器の出力パルス信号を基にして、繰り返し周期の1周期中に検出した光子数を算出して出力する光子数解析装置と、(3)光検出器の出力パルス信号を基にして、1周期の間に最初に検出した光子に対応する出力パルス信号のみを抽出して出力するタイミングピックアップ回路と、(4)光子数解析装置で算出した光子数が1個のみの周期に対応するタイミングピックアップ回路の出力を基にして、該1周期中に該光子を検出した時刻を求め、その検出時刻の範囲に応じて検出回数を積算して光子の検出頻度情報を求める光子検出頻度解析部と、(5)光子頻度解析部の出力を基に被測定光の波形を再現して出力する波形出力装置と、を備えることを特徴としている。
【0014】
これによれば、所定の繰り返し周期を有する被測定光は、その一部が光検出器に入射される。光検出器からは、検出器に到達した光子の数に対応するパルス信号が出力される。そして、このパルス信号を解析することで、周期T中に1個の光子が検出された時のみにその光子が周期T中のどの時点で光検出器に到達したかを求める。こうして求めた光子の検出時刻情報により、周期Tを細分化した範囲に応じて対応する光子の検出回数を積算すれば、光子の検出頻度情報が求められる。こうして光子検出頻度解析部で求められたこの光子数の頻度情報は、被測定光の強度の時間変化に対応するので、被測定光の波形が再現される。
【0015】
または、本発明の光波形計測装置は、(1)被測定光の一部が入射され、光子の到達に対応してパルス幅あるいはパルスの立ち上がり時間が繰り返し周期より十分に短く、1個以上の略同時に到達した光子数に対応する電荷量のパルス信号を出力する光検出器と、(2)光検出器の出力パルス信号を基にして、繰り返し周期の1周期中に検出した光子数を算出して出力する光子数解析装置と、(3)光検出器の出力パルス信号を基にして、1周期の間に最初に検出した光子に対応する出力パルス信号のみを抽出して出力するタイミングピックアップ回路と、(4)タイミングピックアップ回路の出力を基にして、1周期の間に最初に検出した光子の検出時刻を求め、この検出時刻情報を光子数解析装置で解析された1周期中に検出された光子数ごとに区分して出力する光子検出頻度解析部と、(5)光子検出頻度解析部の出力側に設けられて、その区分された出力ごとに検出時刻の範囲に応じて光子の検出回数をそれぞれ蓄積して記録することにより、光子の検出頻度情報として記録する複数個のメモリと、(6)光子検出頻度情報を前記メモリごとに読み出して、読み出した多数の光子検出頻度情報を統計的に処理することにより、被測定光の波形を再現して出力する波形出力装置と、を備えることを特徴とするものでもよい。
【0016】
これによれば、所定の繰り返し周期を有する被測定光は、その一部が光検出器に入射される。光検出器からは、検出器に到達した光子の数に対応するパルス信号が出力される。そして、光子数解析装置では、このパルス信号を解析して、1周期に含まれる光子数が出力される。一方、タイミングピックアップ回路は、このパルス信号のうち1周期中の最初に検出された光子に対応するパルス信号のみを抽出して出力する。光子検出頻度解析部は、これらの情報をもとにして、1周期中に最初に検出された光子の周期中の検出時刻を求めたうえで、周期中に検出した光子数ごとに、この最初に検出された光子の検出時刻を細分化した時間範囲に応じてその検出回数を積算していく。この積算は、検出した光子数ごとに設けられたメモリが用いられる。この周期中に検出された光子の個数とそのうち最初に検出された光子の検出時刻の発生確率は、被測定光の光波形により一義的に定まる。しかだって、サンプル数が十分多ければ、これらから統計的処理によって光波形を求めることができる。光子の検出頻度情報は、1周期中に検出した光子数ごとに別々のメモリに蓄積記録されているので、メモリごとにこれを読み出せば、光子数ごとの検出頻度情報を読み出すことができる。これを統計処理することにより、被測定光の光波形が再現される。
【0017】
さらに、光検出器は、半導体ターゲットを増倍部に備える光電子増倍管であってもよいし、ホトダイオードやアバランシェホトダイオード、あるいはマイクロチャネルプレートを増倍部に備える光電子増倍管であってもよい。
【0018】
これらによれば、光検出器は、微弱光を増幅して検出でき、増倍率を大きくとることができる。つまり、1個の入射光子に対して多数の光電子が発生し、出力電圧も大きくなる。したがって、光検出器に入射した光子数の弁別が容易である。
【0019】
また、光子数解析装置は、光検出器の出力信号の総電荷量を1周期内で積分して、積分した総電荷量の範囲に応じた値を光子数として出力するものでもよい。本発明の光検出器は、光子の数に対応する強度すなわち電荷量の信号を出力する。したがって、繰り返し周期の1周期内でこの電荷量を積分した値は、その1周期内に光検出器に入射した光子数にほぼ対応する。つまり、電荷量を積分することにより光子数が弁別される。
【0020】
光子検出頻度解析部は、TACを更に備えていてもよい。TACは、2つのパルス信号の入力時間差に比例した電圧信号を出力するものである。このTACの一方のパルス信号として、被測定光の繰り返し周期の1周期のそれぞれの開始時点に同調したパルス信号を与え、他方のパルス信号として、光検出器からの出力信号を与えれば、最初に検出された光子に対応する光検出器からの出力パルス信号がTACに送られてきた時刻と、その周期の開始時刻の時間差に比例した電圧信号がTACから出力される。つまり、最初に検出された光子が周期中のどの時点で発生したかを表す電圧信号が出力される。これを利用することにより、周期中最初に検出した光子の検出時刻が正確に求められる。
【0021】
タイミングピックアップ回路は、光検出器から送られてきたパルス信号のうち、1周期内の最初のパルス信号のみを、その立ち上がり時刻に対して、0以上の所定の遅延時間を有する立ち上がりが急峻なパルス信号に変換して出力する光波形整形回路であってもよい。
【0022】
これには、コンスタントフラクションディスクリミネータ(CFD)と呼ばれる回路を用いることができる。これにより、光検出器からの出力信号は、立ち上がり部がより急峻な信号に変換されて、光子検出頻度解析部へ送られる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0024】
図1は、本発明の第1の実施形態のブロック図である。被測定光源1は、所定の繰り返し周期Tで同一の光波形の光を射出する光源であり、パルスレーザやパルスレーザを照射されて光励起で蛍光を発する被測定サンプルなどがある。被測定光源1からの被測定光の光路上には、光検出器2が配置されている。光検出器2は、所定時間内に入射した光子数に対応した電気信号を出力するものであり、出力信号は一般にパルス波形を有する。この光検出器2は、増倍部にアバランシェホトダイオードを内蔵した光電子増倍管であるいわゆるHPDである。
【0025】
ここで、図2〜図5を参照して、この光検出器2について、詳しく説明する。
【0026】
図2は、この光検出器2の断面構成図である。図2に示されるように、光検出器2は、中空円筒状の外囲器20の両端にそれぞれ入射窓30とステム50とにより気密に封止させ、圧力10-8Torr程度の高真空に内部を保持している。そして、この光検出器2の内部には、電子レンズ80として2個のフォーカス電極81,82がそれぞれ光電陰極0及びステム50に近接して設置され、半導体素子60がステム50上に設置されている。
【0027】
ここで、外囲器20は、中空円筒状のガラス製側管である。この外囲器20の両端には、2段に折り曲げられた中空円筒状のコバール金属製の取付材21,22がそれぞれ設置されている。
【0028】
また、入射窓30は、測定対象の光波長を透過しうる円板状のガラス製面板であり、大気側及び真空側の各表面はそれぞれ平面及び凹面を有している。この入射窓30の真空側周縁部には、2段に折り曲げられた中空円筒状の取付材23が設置されている。2個の取付材21,23の各端部を部分的に溶接することにより、外囲器20と入射窓30とは一体に構成されている。
【0029】
一方、ステム50は、円板状のコバール金属製面板であり、真空側に設けられた凹部に半導体素子60が設置されている。このステム50の真空側周縁部と取付材22の端部とを部分的に溶接することにより、外囲器20とステム50とは一体に構成されている。また、ステム50の中央部付近には、半導体素子60の後述する端子棒72を挿通する貫通穴58が形成されている。そして、貫通穴58と端子棒72との間には、円筒状の絶縁材59が気密に封止して設置されている。
【0030】
また、入射窓30の真空側表面には、薄膜状の光電陰極40が蒸着して形成されている。この光電陰極40は、外部電圧源(図示しない)から取付材23を介して所定の電圧、例えば電位約−15kVを印加されている。なお、光電陰極40は、アルカリ金属、例えばK,Na,Cs,Sb等で形成されている。また、光電陰極40において、入射光hνを受容して所定の量子効率で光電変換して光電子e- を生成する口径φ1 は、約16mmである。
【0031】
取付材21の端部には、中心に開口を有する椀状のステンレス製フォーカス電極81が、一方、取付材22の端部には、同様に中心に開口を有する中空円錐台状のステンレス製フォーカス電極82がそれぞれ部分的に溶接によって接合されている。このフォーカス電極81、82は、それぞれ開口部を近接させた形で設置されている。これらのフォーカス電極81、82は、外部電圧源(図示しない)からそれぞれ取付材21、22を介して所定の電圧を印加され、例えばフォーカス電極81が電位約−15kVに、フォーカス電極82が電位約0Vに保持されている。
【0032】
ステム50の真空側の中央に設けられた凸部上には、半導体素子60が後述する受容部65を光電陰極50に対向させて設置されている。この半導体素子60の後述する電極層66と、ステム50の貫通穴58を気密に挿通した金属製の端子棒72とは、金属製のワイヤー71の端部をそれぞれボンディングすることにより、電気的に接続されている。半導体素子60の表面側は、外部電圧源(図示しない)から端子棒72及びワイヤー71を介して所定の電圧を印加され、例えば電位約−145Vに保持されている。また、半導体素子60の裏面側は、外部電圧源(図示しない)からステム50を介してフォーカス電極81の印加電圧と同一の電圧を印加され、例えば電位約0Vに保持されている。これにより、半導体素子60は全体として逆バイアス電圧を印加されている。端子棒72は、半導体素子60から出力した検出信号を出力する。半導体素子60の光電子e- を受容して所定の増倍率で有効に増幅する部分の口径φ2 は、約3mmである。
【0033】
図3は、この半導体素子60の断面構造を示した図である。この半導体素子60は、光電陰極0から放出されて電子レンズ80によって収束された光電子e- を後述する受容部65に照射され、後述するアバランシェ増倍領域で増幅して検出するいわゆるアバランシェホトダイオードである。
【0034】
平板状の半導体基板61の中央部上には、円板状のキャリア増倍層62が形成されている。この半導体基板61の周辺部上には、円環状のガードリング層63がキャリア増倍層62と同一の層厚を有して形成されている。キャリア増倍層62の表面中央領域には、円板状の降伏電圧制御層64が形成されている。
【0035】
半導体基板61は、n+ 型のSiで形成された高濃度単結晶ウエハである。この半導体基板61は、層厚約500μmを有し、n型ドーパントとしてPを濃度約1019cm-3でドープされ、比抵抗約0.01Ω・cmを有している。キャリア増倍層62は、p型のSiを半導体基板61上にエピタキシャル成長して形成された低濃度半導体層である。このキャリア増倍層62は、層厚約10μmを有し、p型ドーパントとしてBを濃度約1014〜1016cm-3でドープされ、比抵抗約1〜100Ω・cmを有している。キャリア増倍層62のドーパント濃度は、降伏電圧に接近した電圧を印加したときに半導体基板61との接合面から拡がる空乏層が降伏電圧制御層64に到達する値である。
【0036】
なお、このキャリア増倍層62において良好な結晶性を保持してエピタキシャル成長させる層厚dは、約5μm〜約50μmの範囲に含まれるように設定することが好適である。もし、層厚dが約50μmよりも大きい場合、層厚方向のドーパント濃度の不均一性が顕著になるので、光電子e- に対するアバランシェ増倍ゲインのユニフォミティをキャリアの発生位置に依存して劣化させてしまう。一方、層厚dが約5μmよりも小さい場合、半導体基板61から伸びて拡がる空乏層が薄くなるので、光電子e- に対する電子照射ゲインを低減させてしまう。
【0037】
ここで、層厚dを約10μmに設定した理由は、加速エネルギー約15keVで照射された光電子e- の最大飛程約3μmと、後述するアバランシェ増倍領域の層厚約3μmとに対して、光電子e- に対する電子照射ゲインの揺らぎを最低限に押さえるためにそれぞれ若干の余裕を考慮したからである。
【0038】
ガードリング層63は、第1導電型のドーパントとしてn型ドーパントをキャリア増倍層62の周辺部に熱拡散して形成された高濃度半導体層である。このガードリング層63は、キャリア増倍層62の層厚と同一の層厚約10μmを有し、n型ドーパントとしてPを半導体基板61の濃度と同一の濃度約1019cm-3でドープされている。
【0039】
降伏電圧制御層64は、p型ドーパントをキャリア増倍層62の表面中央領域に熱拡散して形成された高濃度半導体層である。この降伏電圧制御層64は、層厚約1μmを有し、p型ドーパントとしてBを半導体基板61の濃度と同一の濃度約1019cm-3でドープされている。この降伏電圧制御層64の表面中央部には、円形状の受容部65が光電陰極40に対向して露出されている。
【0040】
なお、この受容部65において、光電子e- を受容して所定の増倍率で増幅する口径φ2 は、約10mm以下の範囲に含まれるように設定することが好適である。もし、口径φ2 が約10mmよりも大きい場合、表面方向のドーパント濃度の不均一性が顕著になるので、光電子e- に対するアバランシェ増倍ゲインのユニフォミティをキャリアの発生位置に依存して劣化させてしまう。また、アバランシェ増倍領域の容量が大きくなるので、動作速度が低減してしまう。
【0041】
受容部65の周辺部に位置する降伏電圧制御層64の表面周縁部上の大部分と、ガードリング層63の表面全体上とには、2種類の絶縁層66,67が順次積層して形成されている。絶縁層66は、Siの酸化物で形成された絶縁性薄膜である。この絶縁層66の層厚は約200nmである。絶縁層67は、Siの窒化物で形成された絶縁性薄膜である。この絶縁層67の層厚は約50nmである。なお、絶縁層66は、ガードリング層63及び降伏電圧制御層64を形成する際にキャリア増倍層62の結晶性を良好に保持するために、あらかじめキャリア増倍層62の表面領域を酸化させて形成するものである。また、絶縁層67は、光電陰極40を形成する際にキャリア増倍層62、ガードリング層63及び降伏電圧制御層64の半導体特性を劣化させないために、絶縁層66上に堆積させて形成するものである。
【0042】
絶縁層67上には、円環状のオーミック電極層68が形成されており、絶縁層66,67の側壁に沿って降伏電圧制御層64の表面周縁部に接触している。このオーミック電極層68は、Alで形成された金属薄膜であり、降伏電圧制御層64に対して良好なオーミック接触性を有している。
【0043】
なお、オーミック電極層68は、ワイヤー71のボンディングによって外部電圧源(図示しない)から端子棒72を介して所定の電圧を印加され、例えば−145Vの負電位に保持されている。また、半導体基板61は、ステム50上の設置によって外部電圧源(図示しない)から所定の電圧を印加され、例えば0Vのグランド(GND)電位に保持されている。これにより、n+ 型の半導体基板61とp+ 型の降伏電圧制御層64との間に、すなわちキャリア増倍層62に空乏層がアバランシェ増倍領域として生成される。
【0044】
ここで、受容部65に入射した光電子e- がアバランシェ増倍領域に到達するまでの電子照射ゲインは、約4×103 である。これらのキャリアがアバランシェ増倍領域を通過して半導体基板61に到達するまでのアバランシェ増倍ゲインは、約30である。これにより、半導体素子60の全体として光電子e- に対する二次電子のゲインは、105 程度に達する。
【0045】
この光検出器2の出力端は、図1に示されるように電流信号を電圧信号に変換するプリアンプ3に接続されている。プリアンプ3の出力側は、以下に構成を詳述する光子数解析装置4とタイミングピックアップ回路5にそれぞれ接続されている。これらの出力は、いずれも後に構成を詳述する光子検出頻度解析部6に接続されている。
【0046】
このうち、光子数解析装置4は、被測定光の繰り返し周期の1周期T中に光検出器2で検出された光子の数を判定する装置であり、入力信号を1周期Tの間積分して出力する積分回路8と、この積分信号を所定の時定数でサンプルホールドしたうえで出力する波形整形回路9と、この出力信号の電圧値が所定の範囲内にあるか否かを判定する波高解析装置10が直列に接続されて構成されている。
【0047】
一方、タイミングピックアップ回路5は、1周期Tの間に最初に検出された光子に対応する入力信号を抽出して出力する回路であり、周期T内における最初の入力パルスと立ち上がりの時刻が同じかこれを所定時間遅延させた所定波形のパルス信号を出力する波形整形回路を含んでいる。その出力波形は方形波が好ましい。光検出器2の出力パルスのパルス幅に比べて光波形を測定する際に求められる時間分解能があまり大きくない場合には、この波形整形回路を省略して、入力信号のうち1周期中に最初に検出された光子に対応する入力信号のみを抽出してそのまま出力してもよい。
【0048】
また、光子検出頻度解析部6は、1周期中に検出された光子数が1個のときのみのその光子の検出時刻を出力する装置であって、直列接続された遅延回路11、ゲート回路12、光子検出頻度解析回路14と被測定光源1と光子検出頻度解析回路14のそれぞれに接続された同期回路13から構成されている。そして、ゲート回路12は、光子数解析装置4の波高解析装置10に接続されている。遅延回路11は、タイミングピックアップ5の出力を1周期Tだけ遅延させる回路である。ゲート回路12は、光子数解析装置4からの出力に応じて遅延回路11からの出力の通過、遮断を切り替える回路である。また、同期回路13は、被測定光の繰り返し周期に同期して光子検出頻度解析回路14を作動させるトリガー信号を発する。光子検出頻度解析回路14には、前述したTACが用いられており、トリガー信号の入力タイミングとゲート回路12からの信号の入力タイミングの時間差に相当する電圧信号を出力する。
【0049】
光子検出頻度解析部6は、さらに、この出力を基にして被測定光の波形を再現する波形出力装置7に接続されている。波形出力装置7には、マルチチャンネルアナライザーやパソコン、CPUとメモリの組み合わせなどを用いることができる。
【0050】
本実施形態の動作説明に先立ち、図2、図3により、光子が入射した際の光検出器2の動作について詳しく説明する。
【0051】
外部電圧源から所定の電圧が印加されると、光電陰極40及び電子レンズ81に所定電位が生成されるとともに、電子レンズ82及びステム50により高い電位が生成される。これにより、真空容器20の内部には、半導体素子60から電子レンズ81,82の各開口を通過して光電陰極40に向かう電界が発生する。
【0052】
また、オーミック電極層68には所定電位が生成されるとともに、半導体基板61により高い電位が生成される。これにより、半導体素子60の内部には、逆バイアス電圧が印加されているので、半導体基板61とキャリア増倍層62との接合面から降伏電圧制御層64に向かって延びた空乏層がアバランシェ増倍領域を生成する。
【0053】
ここで、外部から微弱光の光子hνが入射窓30の受光部に入射すると、この光子hνは入射窓30の内部を透過して光電陰極40に吸収される。そのため、光電陰極40の価電子帯に位置した電子が伝導帯に励起され、負の電子親和力作用によって光電子e- として真空中に放出される。このようにして光電陰極40から放出された光電子e- は、図2の斜線で示す範囲に形成されたステム50から電子レンズ80を介して光電陰極40に向かって開放された電界に対向して移動し、半導体素子60の受容部65に入射する。
【0054】
なお、電子レンズ80によって光電陰極40から放出された光電子e- を受容部65上の一点に収束させることは原理的に不可能であるが、受容部65の口径φ2 程度に収束させることは可能である。そのため、個々の光電子e- は受容部65の異なる位置に入射することになる。
【0055】
半導体素子60の受容部65に入射した光電子e- は、キャリア増倍層62の内部でエネルギー約3.6eVを失う毎に一対の電子−正孔対を生成する。そのため、単一の光電子e- の入射によって、数千組の電子−正孔対が二次キャリアとして発生する。このように増倍した二次キャリアは、半導体基板61から降伏電圧制御層64に向かう電界に対向してドリフトする。この中で電子は、キャリア増倍層62の内部に生成したアバランシェ増倍領域に到達する。このとき、光電子e- に対する電子照射ゲインは約4×103 に達する。
【0056】
アバランシェ増倍領域にドリフトした電子は、キャリア増倍層62を構成する分子に衝突してイオン化を起こすアバランシェ増倍過程を繰り返す。このように増倍した電子は、半導体基板61からキャリア増倍層62に向かう電界に対向してドリフトして半導体基板61に到達する。このとき、アバランシェ増倍ゲインは約30であり、光電子e- に対する電子のトータルゲインは105 程度に達する。
【0057】
ここで、p型のキャリア増倍層62のドーパント分布は非常に均一に制御されている。そのため、アバランシェ増倍ゲインは、アバランシェ増倍領域中における二次電子の発生位置に対する依存を低減しており、良好なユニフォミティを得ている。
【0058】
このような二次電子の増倍量に対応した逆方向電流が、オーミック電極層68からワイヤー71及び端子棒72を介して外部に出力される。そのため、光検出器2に入射した光子の個数を順次個別に検出することができる。
【0059】
ここで、図4、5を参照して、本実施形態の光検出器2と、従来型の光電子増倍管とでパルス波高分解能を比較した結果について説明する。図4は、本実施形態の光検出器2の出力パルス波高分布図であり、図5は、従来型の光電子増倍管の出力パルス波高分布である。これらのグラフにおいては、横軸は、出力電子数、縦軸は、各出力電子数の検出回数であり、グラフ内の数値は光電変換された光電子数である。
【0060】
図4、5より本実施形態の光検出器2は、従来型の光電子増倍管に比較して、それぞれの光電子数に対する検出回数のピークがはっきりしており、光電子パルスのパルス波高分解能が高く、光子数を弁別することが容易である。単一光子入射に伴う光電子パルスのパルス波高分解能は、従来型では30〜100%であるのに対し、本実施形態の光検出器2では、通常のアンプノイズを加味しても7.6%と大幅に改善されている。これは、従来型の光電子増倍管では、増幅部の1段あたりの増幅率が10程度と低いため、増幅部を多段化することにより高い増幅率を得ているが、各段の増幅率が一定していないために、増幅の結果、入射光子1個あたりに得られる電子の数が変動するためである。一方、本実施形態の光検出器2は、初段の増幅率が1000程度と高く、安定しているため、入射光子1個あたりに得られる最終的な電子の数が一定に近いので、高いパルス波高分解能が得られる。
【0061】
続いて、本実施形態全体の動作を図1、6を用いて説明する。図6は、本実施形態の動作のタイミングチャートである。
【0062】
被測定光源1から出射された光の一部は、光検出器2に入射される。光検出器2に図6(a)に示されるタイミングで光子が入射すると、光検出器2内では、前述したように光電変換が行われ、同図(b)に示されるタイミングで光電子を発する。この結果、光検出器2は、この光電子を増倍して同図(c)に示されるようなパルス電流を出力する。このパルスのパルス幅は、周期Tに比べて充分に短く、パルスの立ち上がり時刻は、光子の到達時刻に相当する。また、パルス幅より短い時間内に複数の光子が光電変換されたときは、光子数に応じた所定の強度のパルス電流が出力される。この信号はプリアンプ3で電流電圧変換されて、光子数解析装置4とタイミングピックアップ回路5にそれぞれ送られる。
【0063】
このうち、光子数解析装置4では、まず、電圧信号に変換された入力パルスが積分回路8で1周期Tごとに積分されて、波形整形回路9で所定の時定数でサンプルホールドされ、同図(d)に示される波形に成形されたうえで出力される。したがって、1周期が終了するそれぞれの時点での電圧値は、その周期に検出された光子数に比例するものとなる。波高解析装置10では、この1周期が終了する時点の電圧値を調べて、同図(d)中のVの範囲(電圧値が所定の定数α以上でα+V以下の範囲)に入っている場合、すなわち、1周期中に検出された光子が1個のみの場合のみに信号を出力し、それ以外の光子が検出されなかったか2個以上の光子が検出された場合には信号を出力しない。この出力は、同図(e)に示されるように次の1周期にわたって出力される。いいかえれば、波高が解析された周期より1周期遅れて出力される。この出力信号は、光子検出頻度解析部6のゲート回路12に送られる。
【0064】
一方、タイミングピックアップ回路5には、同図(c)と相似波形の同図(f)に示される波形のパルス信号が入力される。そして、タイミングピックアップ回路5では、1周期T中の最初のパルス信号の立ち上がり時刻、すなわち、光子の到達時刻と立ち上がり時刻が同じまたは所定の遅延時間を有する方形波でパルス幅が均一な同図(g)に示されるようなパルス信号を出力する。このパルス信号は、光子検出頻度解析部6に送られる。
【0065】
そして、光子検出頻度解析部6では、遅延回路11が、このパルス信号を1周期遅延させる(同図(h)参照)。ゲート回路12は、この遅延されたパルス信号と同図(e)に示される光子数解析装置4から送られてきた電圧値を乗算して、同図(i)に示されるパルスを出力する。これは、周期中に光子が1個のみ検出されたときのその光子の到達時刻と立ち上がり時刻が同じあるいは所定の遅延時間を有する方形波のパルス信号を1周期遅延させた信号である。この信号は光子検出頻度解析回路14に送られる。光子検出頻度解析回路14には、同期回路13から各周期の開始時刻に同調するトリガー信号が入力されている。同図(i)に示された信号が入力されると、光子検出頻度解析回路14は、この信号の入力タイミングとトリガー信号の入力タイミング、言い換えれば、それぞれの周期の開始時刻との時間差に比例した電圧信号を出力する。したがって、光子の到達時刻とその周期の開始時刻との時間差に相当する電圧信号が得られる。
【0066】
この測定を何度も繰り返しながら、波形出力装置6で、この電圧信号を電圧の範囲に応じて積算していく。この電圧は検出した光子の周期内における到達時刻、言い換えれば検出時刻に対応しているので、この操作は、光子の検出頻度情報をサンプリングしていることになる。前述したようにサンプリングの数が十分多ければ、1周期Tをnチャンネルに分割した時間間隔iの間に観測された光子の数μiは、そのi時点での被測定光の光強度に対応する。本実施形態では、1周期T中に光子が1個のみ検出された場合の検出頻度情報のみを抽出して使用しているが、この1周期T中に光子が1個のみ検出され、それがチャンネルiで検出される場合の確率q1(i)は、式(1)より、
【0067】
【数3】
Figure 0003742490
で表される。これは、μiに比例しているため、q1(i)を基にして被測定光の波形を再構成することができる。波形出力装置6におけるこの被測定光の波形の再構成は、サンプリングされた検出頻度を単純に画面あるいは用紙等にヒストグラム表示あるいは印刷することにより光波形を再構成するものでもよいし、サンプリングされた検出頻度情報を統計的に処理して補正したうえで光の時間波形を表示あるいは印刷するものでもよい。
【0068】
本実施形態では、1周期中に光子が2個以上検出された場合は、その情報は、光子の検出頻度のサンプリングに使用せず、1周期中に光子が1個のみ検出された場合に限り、その情報を使用しているので、従来の装置で、1周期中に光子が複数検出された場合の後から検出された光子の数え落としに伴い発生していた波形の歪みが起こることがなく、正確な波形の検出が可能になる。また、サンプリングの際の光子到達時刻を測定するのに、TACを使用することにより、簡単な構成で10ps程度と時間分解能の極めて高い測定が可能である。
【0069】
また、従来の装置では、平均検出光子数μを増やすと、周期T中に複数個の光子を検出して、波形の歪みをもたらす光子の数え落としが発生する確率が高くなるため、平均検出光子数μを低く抑える必要があった。本実施形態の場合は、光子が1個のみの場合だけに限り、サンプリングに用いるので、光子が2個以上検出される場合を考慮する必要がなく、平均検出光子数を増やすことができる。図7は、平均検出光子数μに対して、光子が1個のみ検出される場合の1周期あたりの解析光子数μaをプロットしたものである。図7より、この解析光子数μaが最も多くなるのは、μ=1.0の時である。この時、本実施形態での解析光子数μaは0.368となる。これは、従来の装置で標準的であった平均検出光子数μ=0.01の時の解析光子数μa=0.0099と比較して約37倍にあたり、本実施形態では、短時間で精度の良い測定が可能であることがわかる。
【0070】
次に、図8を参照して本発明の第2の実施形態について説明する。図8は、この第2の実施形態のブロック図である。
【0071】
まず、装置の構成を説明する。基本的な構成は、図1に示される第1の実施形態と同一であり、共通する部分の構成についての説明は省略する。本実施形態ではまず、光子検出頻度解析部6の構成が、第1の実施形態と異なる。本実施形態では、TACを用いた光子検出頻度解析回路14が遅延回路11の直後に接続されており、この光子検出頻度解析回路14の出力側に、光子数解析装置4にも接続されており、光子数に応じて光子検出頻度解析回路14の出力信号の出力先を切り替えるゲート切替器15が接続されている。ゲート切替器15のそれぞれの出力先には、さらに、1周期T中の検出光子数に対応して設けられ、それぞれの光子数のときの光子検出頻度解析回路14の出力信号を蓄積して記憶する複数(n個)のメモリ161〜16nが接続されている。そして、それぞれのメモリは、波形出力装置7に接続されている。
【0072】
次に、図8〜図10を参照して、本実施形態の動作を説明する。図9は、本実施形態のタイミングチャート、図10は、本実施形態の波形出力装置のフローチャートである。ここでも、第1の実施形態と共通する部分については、説明を省略する。
【0073】
被測定光源1から出射した光の一部の光子(図9(a)参照)は、光検出器2により、光電変換されたうえで(同図(b)参照)増倍されて出力される(同図(c)参照)。この信号は、プリアンプ3で電圧信号に変換されて、第1の実施形態の場合と同様に光子数解析装置4と、タイミングピックアップ回路5のそれぞれに送られる。
【0074】
光子数解析装置4では、積分回路8によりこの信号を1周期Tごとに積分して、波形整形回路9により所定の時定数でサンプルホールドして同図(d)に示される波形に成形して出力する。第1の実施形態の説明で述べたように、周期Tが終了するそれぞれの時点での電圧値は、その周期T中に検出された光子数に比例している。そこで、波高解析装置10で、この1周期が終了する時点の電圧値を調べて、対応する光子数に対応する電圧値を出力する(同図(e)参照)。
【0075】
一方、タイミングピックアップ回路5には、同図(c)と相似波形の同図(f)に示される波形のパルス信号が入力される。このタイミングピックアップ回路5では、1周期T中の最初のパルス信号の立ち上がり時刻、すなわち、光子の到達時刻と立ち上がり時刻が同じかあるいは所定の遅延時間を有する方形波でパルス幅が均一な同図(g)に示されるようなパルス信号を出力する。遅延回路11は、このパルス信号を1周期遅延させる(同図(h)参照)。光子検出頻度解析回路14には、同期回路13からそれぞれの周期の開始時刻に同調したトリガー信号が入力されている。そして、他方の入力信号として同図(h)に示されるパルス信号が入力されると、トリガー信号とこのパルス信号の入力タイミングの時間差に比例する電圧信号を出力する(同図(i)参照)。この信号は、つまり周期中の最初の光子の到達時刻を表す信号である。ゲート切替器15は、光子数解析装置4から送られてきた光子数情報(同図(e)参照)を参照して、この光子数に対応するメモリ16に最初の光子の到達時刻情報を区分して出力する。例えば、メモリ161には、同図(j)に示される1周期中の検出光子数1個の時の光子の到達時刻の情報が、メモリ162には、同図(k)に示される1周期中の検出光子数2個の時の最初の光子の到達時刻の情報が、メモリ16nには、1周期中の検出光子数がn個の時の最初の光子の到達時刻の情報がそれぞれ送られ、蓄積されていく。
【0076】
これを繰り返して多数のサンプルの情報をメモリに蓄積した後で、波形出力装置7は、メモリ16に蓄積された光子発生頻度の情報を読み出して、後述する統計的処理を行い、被測定光の光波形を再現して出力する。
【0077】
ここで、周期中に2個の光子が検出され、そのうち最初の光子がチャンネルiで検出される確率q2(i)は、式(1)より、
【0078】
【数4】
Figure 0003742490
で表される。同様に、周期T中にk個の光子が検出され、そのうち最初の光子がチャンネルiで検出される確率qk(i)は、一般的に
【0079】
【数5】
Figure 0003742490
の形式で表せる。ただし、fk(μ,μi,…,μn)は、μ,μi,…,μnの関数である。つまり、qk(i)は、μiに比例する項と、fkに比例する項からなる。
【0080】
以下に、図10を参照して、この統計処理の一例を示す。ここでは、1周期中に1個〜m個の光子を検出したときの頻度情報を基に光波形を求める処理について説明する。
【0081】
まず、メモリ161から周期T中に1個の光子のみを検出したときの光子の検出頻度情報を読み出して(S1)、この頻度情報を基にして式(3)に基づいて、それぞれのチャンネルiのμiを算出して、光波形Lを求める(S2)。この光波形Lを以下の補正のもととなる光波形L0に設定する(S3)。続いて補正のループ計算に入る。まず補正に用いる頻度情報の光子数kを2に設定する(S4)。そして、メモリ7k(ここでは72)から周期T中にk個(ここでは2個)の光子が検出されたときの光子検出頻度情報を読み出して(S5)、この頻度情報を基にして、式(5)(この場合は具体的には、式(4)に相当)に基づいて補正後のμiを求める(S6)。具体的には、得られた頻度情報をq2(i)とし、L0のμj(i≦j≦n)を基にf2を算出したうえでこれらを基にして新たなμiを算出する。こうして得られた新たな波形LをL0と比較する(S7)。LとL0の差、例えば、それぞれのμiの差の2乗を積算した数値、が大きければ、得られた光波形Lを新たなL0として(S8)、再度S6に戻って補正計算を繰り返す。LとL0の差が予め設定した誤差の範囲内であれば、得られた光波形Lを新たなL0とし(S9)、kがmより大きいかどうか、つまり光子数m個までの補正を終了しているかどうかを判定する(S10)。kがmより小さいときは、k+1を新たなkに設定して(S11)、S5に戻り、周期T中にk個の光子を検出したときの頻度情報による光波形の補正を繰り返す。kがm以上であれば、光子数m個までの補正は終了したとして、得られた光波形Lを最終的な光波形として出力する(S12)。
【0082】
このアルゴリズムは補正処理の一例であり、補正処理はこれに限定されるものではない。例えば、2個以上の光子を検出したときの頻度情報に基づく補正値を同時に算出してそれぞれを重み付けして積算してもよいし、μiを求める際に、最後のnチャンネルから求めていき、求めた最新のμi〜μnを用いて時刻が先のチャンネルのμi-1を求めていってもよい。また、繰り返し計算の際にμiを置き換えるのではなく、元のμiと新たに求めたμiとの差に重みをかけて元のμiに加えた値を次回の補正の際に用いるμiとしてもよい。
【0083】
この実施形態では、従来数え落とされていた周期T中に複数の光子が検出されたときの頻度情報が有効に用いられるので、短時間で多くの頻度情報を獲得することができ、短い時間で波形の計測が可能となる。例えば、平均検出光子数μが1.0の場合、周期中に1個の光子を検出したときの情報のみを使用する場合、測定した周期のうち有効なデータを獲得できる周期の割合は、36.8%であるが、本実施形態を用いて2個の光子を検出したときの情報を使用すれば、この割合は55.2%、3個の光子を検出したときの情報まで使用すれば、61.3%に向上させることができる。また、数え落としに伴う波形の歪みが生じないので、精度の高い測定が可能となる。
【0084】
以上の説明では、光検出器として増倍部にアバランシェホトダイオードを用いた光電子増倍管を例として説明したが、光電子増倍管の増倍部はホトダイオード等の半導体ターゲットであっても、同様に安定した高い増倍率を備えるので、光子数の弁別が可能であり、本発明の光波形計測装置に利用できる。また、同様に安定した高い増倍率を備えていれば、マイクロチャネルプレートを増倍部として用いた光電子増倍管でもよい。さらに、光検出器は光電子増倍管に限られるものではなく、光子の到達時間と到達した個数を弁別可能な出力信号を発するものであれば、様々な形式の光検出器を使用することができる。
【0085】
【発明の効果】
本発明の光波形計測装置によれば、被測定光の繰り返し周期の1周期中に1個の光子が検出されたときにのみその光子の発生頻度情報を積算して光波形を求めるので、従来問題とされていた1周期中に複数個の光子を検出したときの数え落としがなくなり、波形の歪みの少ない高精度の測定が可能になる。また、平均検出光子数を増やして測定できるので、従来より短時間で多数の光子の発生頻度情報を積算することができ、測定時間を短縮することもできる。
【0086】
また、本発明の他の形態によれば、被測定光の繰り返し周期の1周期中に検出された光子数に応じて別々のメモリに1周期の最初に検出された光子の発生頻度情報を蓄積したうえで、統計処理により被測定光の波形を求めている。このため、複数個の光子を検出したときでも従来のような数え落としの要因とはならず、光波形を補正する有効な情報として用いることができる。このため、平均検出光子数を増やすことができ、有効な発生頻度情報を短時間でより多く集積することができるので、短時間での高精度の測定が可能となる。
【0087】
さらに、光検出器に半導体ターゲット等を増倍部に用いた光電子増倍管を使用すれば、検出器に到達した光子数の弁別が容易になるので、光子の数え落としや光子数の数え間違いによる光波形の歪みがなくなる。
【0088】
また、光検出器の出力を積分して光子数を検出すれば、光子数の弁別を行う回路の構成が簡単ですむ。
【0089】
光子検出頻度解析装置にTACを用いれば、簡単で安価な構成により、時間分解能の高い測定ができる。
【0090】
また、タイミングピックアップ回路に波形整形回路を用いて、出力を方形波等の立ち上がりが急峻なパルスに整形すれば、光検出器に光子が到達した時刻をより高精度に特定できるので、時間分解能の高い測定ができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態のブロック図である。
【図2】図1の実施形態で使用する光検出器の断面構成図である。
【図3】図2の光検出器の半導体素子の断面構成図である。
【図4】図2の光検出器の出力パルス波高分布図である。
【図5】従来型の光電子増倍管の出力パルス波高分布図である。
【図6】本発明の第1の実施形態の動作のタイミングチャートである。
【図7】本発明の第1の実施形態の平均検出光子数に対する解析光子数のプロット図である。
【図8】本発明の第2の実施形態のブロック図である。
【図9】本発明の第2の実施形態の動作のタイミングチャートである。
【図10】本発明の第2の実施形態の統計処理のフローチャートである。
【図11】従来の時間相関光子計数装置のブロック図である。
【図12】従来の時間相関光子計数装置における波形歪みの一例を示す図である。
【符号の説明】
1…被測定光源、2…光検出器、3…プリアンプ、4…光子数解析装置、5…タイミングピックアップ回路、6…光子検出頻度解析部、7…波形出力装置、8…積分回路、9…波形整形回路、10…波高解析装置、11…遅延回路、12…ゲート回路、13…同期回路、14…光子検出頻度解析回路、15…ゲート切替器、16…メモリ、17…ディスクリミネータ、18…TAC、19…マルチチャンネルアナライザー、60…半導体素子。

Claims (9)

  1. 所定の繰り返し周期を有する被測定光の光強度の時間変化を表す光波形を計測する光波形計測装置において、
    前記被測定光の一部が入射され、光子の到達に対応してパルス幅あるいはパルスの立ち上がり時間が前記繰り返し周期より十分に短く、1個以上の略同時に到達した光子数に対応する電荷量のパルス信号を出力する光検出器と、
    前記光検出器の出力パルス信号を基にして、前記繰り返し周期の1周期中に検出した光子数を算出して出力する光子数解析装置と、
    前記光検出器の出力パルス信号を基にして、前記1周期の間に最初に検出した光子に対応する出力パルス信号のみを抽出して出力するタイミングピックアップ回路と、
    前記光子数解析装置で算出した光子数が1のみの周期に対応する前記タイミングピックアップ回路の出力を基にして、該1周期中に該光子を検出した時刻を求め、その検出時刻の範囲に応じて検出回数を積算して光子の検出頻度情報を求める光子検出頻度解析部と、
    前記光子頻度解析部の出力を基に前記被測定光の波形を再現して出力する波形出力装置と、
    を備えることを特徴とする光波形計測装置。
  2. 所定の繰り返し周期を有する被測定光の光強度の時間変化を表す光波形を計測する光波形計測装置において、
    前記被測定光の一部が入射され、光子の到達に対応してパルス幅あるいはパルスの立ち上がり時間が前記繰り返し周期より十分に短く、1個以上の略同時に到達した光子数に対応する電荷量のパルス信号を出力する光検出器と、
    前記光検出器の出力パルス信号を基にして、前記繰り返し周期の1周期中に検出した光子数を算出して出力する光子数解析装置と、
    前記光検出器の出力パルス信号を基にして、前記1周期の間に最初に検出した光子に対応する出力パルス信号のみを抽出して出力するタイミングピックアップ回路と、
    前記タイミングピックアップ回路の出力を基にして、前記1周期の間に最初に検出した光子の検出時刻を求め、この検出時刻情報を前記光子数解析装置で解析された1周期中に検出された光子数ごとに区分して出力する光子検出頻度解析部と、
    前記光子検出頻度解析部の出力側に設けられて、その区分された出力ごとに検出時刻の範囲に応じて光子の検出回数をそれぞれ蓄積することにより、光子の検出頻度情報として記録する複数個のメモリと、
    前記光子検出頻度情報を前記メモリごとに読み出して、読み出した多数の光子検出頻度情報を統計的に処理することにより、前記被測定光の波形を再現して出力する波形出力装置と、を備えることを特徴とする光波形計測装置。
  3. 前記光検出器は、半導体ターゲットを増倍部に備える光電子増倍管であることを特徴とする請求項1又は2に記載の光波形計測装置。
  4. 前記光検出器は、ホトダイオードを増倍部に備える光電子増倍管であることを特徴とする請求項1又は2に記載の光波形計測装置。
  5. 前記光検出器は、アバランシェホトダイオードを増倍部に備える光電子増倍管であることを特徴とする請求項1又は2に記載の光波形計測装置。
  6. 前記光検出器は、マイクロチャネルプレートを増倍部に備える光電子増倍管であることを特徴とする請求項1又は2に記載の光波形計測装置。
  7. 前記光子数解析装置は、前記光検出器の出力信号の総電荷量を前記1周期内で積分して、積分した総電荷量の範囲に応じた値を光子数として出力することを特徴とする請求項1又は2に記載の光波形計測装置。
  8. 前記光子検出頻度解析部は、時間−電圧変換器を有することを特徴とする請求項1又は2に記載の光波形計測装置。
  9. 前記タイミングピックアップ回路は、前記光検出器から送られてきたパルス信号のうち、前記1周期内の最初のパルス信号のみを、その立ち上がり時刻に対して、0以上の所定の遅延時間を有する立ち上がりが急峻なパルス信号に変換して出力する光波形整形回路であることを特徴とする請求項1又は2に記載の光波形計測装置。
JP19589897A 1997-07-22 1997-07-22 光波形計測装置 Expired - Fee Related JP3742490B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19589897A JP3742490B2 (ja) 1997-07-22 1997-07-22 光波形計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19589897A JP3742490B2 (ja) 1997-07-22 1997-07-22 光波形計測装置

Publications (2)

Publication Number Publication Date
JPH1137850A JPH1137850A (ja) 1999-02-12
JP3742490B2 true JP3742490B2 (ja) 2006-02-01

Family

ID=16348833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19589897A Expired - Fee Related JP3742490B2 (ja) 1997-07-22 1997-07-22 光波形計測装置

Country Status (1)

Country Link
JP (1) JP3742490B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040789B2 (ja) 1999-03-26 2008-01-30 浜松ホトニクス株式会社 光計測装置、シンチレーションカウンタ、パーティクルカウンタ、光計測方法、シンチレーション計数方法及び粒子計数方法
WO2002027284A1 (fr) 2000-09-25 2002-04-04 Hamamatsu Photonics K.K. Appareil et procede de mesure optique
JP3793531B2 (ja) 2003-10-07 2006-07-05 オリンパス株式会社 蛍光寿命測定装置
GB2477961B (en) * 2010-02-19 2012-01-18 Toshiba Res Europ Ltd Photon correlator and method of measuring photon correlation
CN102829863B (zh) * 2012-03-09 2017-02-15 深圳市华唯计量技术开发有限公司 一种光谱仪的无高斯整型的数字多道脉冲分析器
JP6017916B2 (ja) 2012-10-16 2016-11-02 株式会社豊田中央研究所 光検出器
WO2017202980A1 (de) * 2016-05-25 2017-11-30 Leica Microsystems Cms Gmbh Fluoreszenzlebensdauer-mikroskopieverfahren mit zeitkorrelierter einzelphotonenzählung welches höhere lichtintensitäten zulässt

Also Published As

Publication number Publication date
JPH1137850A (ja) 1999-02-12

Similar Documents

Publication Publication Date Title
US20230123152A1 (en) Semiconductor charged particle detector for microscopy
Koppenaal et al. MS detectors
US8884220B2 (en) Multiple channel detection for time of flight mass spectrometer
Art Photon detectors for confocal microscopy
CA2448308C (en) Time of flight mass spectrometer and multiple detector therefor
JP5684273B2 (ja) 荷電粒子を検出する検出装置、荷電粒子を検出する方法および質量分析計
JP5684274B2 (ja) 荷電粒子を検出する検出装置、荷電粒子を検出する方法および質量分析計
EP0714117B1 (en) Photomultiplier
Baron Detectors for nuclear resonant scattering experiments
US7928400B1 (en) X-ray detection system for wavelength dispersive and energy dispersive spectroscopy and electron beam applications
KR102523462B1 (ko) 질량 분석계 검출기 및 이를 이용한 시스템 및 방법
JP2004533611A (ja) 高速可変ゲインシステムおよび該システムの制御方法
CN110416056B (zh) 一种基于微通道板的高增益混合型光电倍增管
GB2330904A (en) Fluorescence lifetime measurement system
JP3742491B2 (ja) 光波形計測装置
US20040129891A1 (en) Illuminant, and, electron beam detector, scanning electron microscope and mass spectroscope each including the same
Siegmund et al. Large area microchannel plate imaging event counting detectors with sub-nanosecond timing
JP3742490B2 (ja) 光波形計測装置
JP2001516033A (ja) ガンマフォトン検出場内におけるスペクトル測定のためのデバイス
Fukasawa et al. High speed HPD for photon counting
US6940589B1 (en) Optical measurement apparatus and method for optical measurement
Seib et al. Photodetectors for the 0.1 to 1.0 μm Spectral Region
Siegmund et al. Optical and UV sensing sealed tube microchannel plate imaging detectors with high time resolution
WO2022034558A1 (en) Method and sensor for measuring electrons
Suyama et al. A hybrid photodetector (HPD) with a III-V photocathode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees