JP3738222B2 - Hydraulic circuit of hydraulic rotating device - Google Patents

Hydraulic circuit of hydraulic rotating device Download PDF

Info

Publication number
JP3738222B2
JP3738222B2 JP2002029695A JP2002029695A JP3738222B2 JP 3738222 B2 JP3738222 B2 JP 3738222B2 JP 2002029695 A JP2002029695 A JP 2002029695A JP 2002029695 A JP2002029695 A JP 2002029695A JP 3738222 B2 JP3738222 B2 JP 3738222B2
Authority
JP
Japan
Prior art keywords
hydraulic
oil passage
branch
hydraulic motor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002029695A
Other languages
Japanese (ja)
Other versions
JP2003232302A (en
Inventor
明 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2002029695A priority Critical patent/JP3738222B2/en
Publication of JP2003232302A publication Critical patent/JP2003232302A/en
Application granted granted Critical
Publication of JP3738222B2 publication Critical patent/JP3738222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築、土木等の基礎工事に用いられるチュービング装置や油圧オーガなどの油圧回転装置のうち、複数の油圧モータで最終1軸を回転駆動する油圧回転装置の油圧回路に関する。
【0002】
【従来の技術】
チュービング装置や油圧オーガなどの油圧回転装置は、例えば、図12に示されるように、それぞれ出力軸のピニオン1を介して1軸のリングギア2を回転駆動する複数の油圧モータ3と、各油圧モータ3に作動油を供給する油圧ポンプ4と、該油圧ポンプ4から各油圧モータ3に作動油を供給する主供給油路5と、各油圧モータ3からタンク6へ作動油を排出する主油排出油路7と、前記主供給油路5及び主排出油路7に設けられて作動油の供給方向を切り換える方向切換弁8とを有し、前記主供給油路5及び主排出油路7に各油圧モータ3への分岐供給油路9及び分岐排出油路10を並列接続する油圧回路を有する構成が多く、色々な工法に応用されるが、その施工効率を考えて、回転負荷の小さいときは高速・低トルクで回転し、負荷の大きいときだけ低速・高トルクで回転させる要求がある。一般的には、油圧モータ3に可変容量の油圧モータを用い、1回転当たりの油量を可変にすることにより回転数とトルクを変えるが、可変容量油圧モータの速度比には限度がある。
【0003】
このため、登録実用新案第2567312号掲載公報に示されるように、1軸のリングギアに3基以上の油圧モータのピニオンを連動連結し、1個の方向切換弁で3基以上の油圧モータを同方向に駆動する並列油圧回路の、方向切換弁と1基の油圧モータとの間の両側給排油路の途中に、該油圧モータの回転を正逆切り換え可能な切換弁を接続し、増速する場合には、この切換弁を逆転方向に切り換え、他の油圧モータにより回転するリングギアにて逆転方向に切り換えられた油圧モータをポンプとして作用させ、このポンプとして作用する油圧モータと隣接する油圧モータとの間で作動油を循環させて、隣接する油圧モータの出力を打ち消し、残りの油圧モータに油圧ポンプから作動油を全量供給することにより、残りの油圧モータを高速回転させるものがある。
【0004】
【発明が解決しようとする課題】
しかし、上述の構造では、ポンプとして作用する油圧モータとペアになる油圧モータが必要となり、有効に活用できるモータ数が減少し、例えば、3基又は4基の油圧モータを使用しても、高速・低速の2段切換しかできず、高速・中速・低速の3段切換を望むなら、最低5基の油圧モータが必要になるというように、速度変更の段数切換が1段増える毎に、油圧モータ2基を必要とする。
【0005】
そこで本発明は、使用するモータ数に対応して広範囲できめの細かい速度変更が可能な油圧回転装置の油圧回路を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記した目的を達成するため、本発明は、それぞれ動力伝達機構を介して1軸を回転駆動する複数の油圧モータと、油圧ポンプと、該油圧ポンプから各油圧モータに作動油を供給する主供給油路と、各油圧モータからタンクへ作動油を排出する主排出油路と、前記主供給油路及び主排出油路に設けられて作動油の供給方向を切り換える方向切換弁とを有し、前記主供給油路及び主排出油路に各油圧モータへの分岐供給油路及び分岐排出油路を並列接続する油圧回転装置の油圧回路において、前記主供給油路及び主排出油路に接続する少なくとも1つの油圧モータの分岐供給油路及び分岐排出油路を除いて、残りの油圧モータの分岐供給油路及び分岐排出油路にそれぞれ切換弁を設け、該残りの油圧モータの分岐供給油路の切換弁に前記少なくとも1つの油圧モータの分岐排出油路から分岐するバイパス油路を、前記残りの油圧モータの分岐排出油路の切換弁に前記少なくとも1つの油圧モータの分岐供給油路から分岐するバイパス油路をそれぞれ接続し、前記少なくとも1つの油圧モータの正回転時には、前記分岐供給油路の切換弁をクロス状態に切り換えて、前記残りの油圧モータの分岐供給油路と正回転している前記少なくとも1つの油圧モータの分岐排出油路から分岐するバイパス油路とを接続し、前記残りの油圧モータの分岐排出油路から前記タンクへ排出される作動油の一部が、正回転している前記少なくとも1つの油圧モータでドレン落ちした分の補給として前記少なくとも1つの油圧モータの分岐排出油路に供給され、前記少なくとも1つのモータの逆回転時には、前記分岐排出油路の切換弁をクロス状態に切り換えて、前記残りの油圧モータの分岐排出油路と逆回転している前記少なくとも1つの油圧モータの分岐供給油路から分岐するバイパス油路とを接続し、前記残りの油圧モータの分岐供給油路から前記タンクへ排出される作動油の一部が、逆回転している前記少なくとも1つの油圧モータでドレン落ちした分の補給として逆回転している前記少なくとも1つの油圧モータの分岐供給油路に供給されることを特徴としている。また、前記切換弁を2つのロジック弁で構成してもよい。
【0007】
【発明の実施の形態】
以下、本発明をチュービング装置の油圧回転装置に適用した第1参考例を図1乃至図4に基づいて説明する。この参考例は、2基の可変容量型の油圧モータを使用する例であって、チュービング装置20は、図4に示されるように、ベースフレーム21に立設した複数のスラストシリンダ22にて昇降フレーム23を昇降可能に支持し、該昇降フレーム23に、油圧回転装置24とチャック装置25とを設けている。
【0008】
油圧回転装置24は、昇降フレーム23に回転可能に設けられる1軸のリング状の回転体26と、該回転体26を回転駆動する2基の油圧モータ27,28(1台は図示せず)とを有し、各油圧モータ27,28は、出力軸に設けたピニオン29と回転体26の外周に形成されたリングギア26aにアイドラ30を介して動力を伝達する。回転体26は、内周にケーシングチューブ31の挿通孔32が形成されている。
【0009】
チャック装置25は、昇降フレーム23に設けた複数のチャックシリンダ33と、該チャックシリンダ33に支持されたリング状の支持フレーム34と、該支持フレーム34に回転可能に設けられるリング状のチャックフレーム35と、該チャックフレーム35に吊持された楔状のチャック部材36とを有している。
【0010】
このチュービング装置20は、回転体26の挿通孔32に挿通されたケーシングチューブ31をチャックシリンダ33の縮小によるチャック部材36の下降で把持し、油圧モータ27,28により回転体26を回転駆動してケーシングチューブ31を回転させながら、スラストシリンダ22にて昇降フレーム23を昇降してケーシングチューブ31の押し込み・引き抜きを行う。
【0011】
前記油圧回転装置24の油圧回路は、図1に示されるように、2基の可変容量型の油圧モータ27,28と、作動油を貯留するタンク37と、該タンク37から各油圧モータ27,28へ作動油を供給する可変容量型の油圧ポンプ38と、該油圧ポンプ38から各油圧モータ27,28に作動油を供給する主供給油路39と、各油圧モータ27,28からタンク37へ作動油を排出する主排出油路40と、前記主供給油路39及び主排出油路40に設けられて作動油の供給方向を切り換える方向切換弁41と、方向切換弁41とタンク37との間に設けられるフィルター42とを有し、前記主供給油路39及び主排出油路40に、各油圧モータ27,28への分岐供給油路27a,28a及び分岐排出油路27b,28bを並列接続している。なお、油圧モータ27,28には、油圧モータ27,28のリーク油をタンク37へ戻すドレン回路43が接続されている。
【0012】
なお、前記主供給油路39及び主排出油路40は、方向切換弁41の切換操作により、主供給油路39が主排出油路に、主排出油路40が主供給油路に入れ変わり、これに伴って、各油圧モータ27,28への分岐供給油路27a,28aが分岐排出油路に、分岐排出油路27b,28bが分岐供給油路に入れ変わる。
【0013】
前記主供給油路39及び主排出油路40から分岐する油圧モータ28の分岐供給油路28a及び分岐排出油路28bには、それぞれ切換弁44,45が設けられている。切換弁44には、主排出油路40から分岐するバイパス油路46が、切換弁45には、主供給油路39から分岐するバイパス油路47がそれぞれ接続されている。これらバイパス油路46,47は、主供給油路39及び主排出油路40から分岐する油圧モータ38の分岐供給油路27a及び分岐排出油路27bの分岐点よりも油圧ポンプ28側で分岐されている。
【0014】
この油圧回転装置24は、切換弁44,45が図1に示されるストレート状態では、主供給油路39と油圧モータ28の分岐供給油路28aとが連通し、主排出油路40と油圧モータ28の分岐排出油路28bとが連通し、バイパス油路46,47が遮断されている。
【0015】
この状態で、方向切換弁41を図1において右へ動かして方向切換弁41のA,Bポートを左位置にすると、油圧ポンプ38からの作動油は、主供給油路39から各油圧モータ27,28の分岐供給油路27a,28aを介して各油圧モータ27,28に供給され、各油圧モータ27,28を回転して回転体26を正回転駆動し、各油圧モータ27,28の分岐排出油路27b,28bから主排出油路40を経てタンク37へ戻る。
【0016】
また、方向切換弁41を図1において左へ動かして方向切換弁41のA,Bポートを右位置にすると、主排出油路40が油圧ポンプ38からの主供給油路に、主供給油路39がタンク37への主排出油路に入れ変わり、油圧ポンプ38からの作動油は、主排出油路40から各油圧モータ27,28の分岐排出油路27b,28bを介して各油圧モータ27,28に供給され、各油圧モータ27,28を回転して回転体26を逆回転駆動し、各油圧モータ27,28の分岐供給油路27a,28aから主供給油路39を経てタンク37へ戻る。
【0017】
したがって、油圧ポンプ38からの作動油は、各油圧モータ27,28へ供給されるから、回転体26は、低速・高トルクで、方向切換弁41の操作に伴って正回転又は逆回転する。
【0018】
次に、図2に示されるように、方向切換弁41を右へ動かして方向切換弁41のA,Bポートを左位置にし、切換弁44を切換操作してクロス状態に、切換弁45をストレート状態にすると、油圧ポンプ38からの作動油は、図中の矢印で示されるように、主供給油路39から油圧モータ27の分岐供給油路27aを介して油圧モータ27に供給され、油圧モータ27を回転して回転体26を正回転駆動し、油圧モータ27の分岐排出油路27bから主排出油路40を経てタンク37へ戻る。
【0019】
一方、油圧モータ28は、切換弁44がクロス状態であることから、分岐供給油路28aと主供給油路39との連通が遮断され、分岐供給油路28aは、バイパス油路46を介して主排出油路40と短絡する。したがって、油圧モータ28には、油圧ポンプ38からの作動油が直接供給されないが、油圧モータ28は、ピニオン29を介して回転体26により回転し、油圧モータ28から排出される作動油は、図中の矢印で示されるように、分岐排出油路28bから切換弁45、主排出油路40、バイパス油路46、切換弁44、分岐供給油路28aを通って油圧モータ28に循環する。
【0020】
また、図3に示されるように、方向切換弁41を左へ動かして方向切換弁41のA,Bポートを右位置にし、切換弁44をストレート状態に、切換弁45を切換操作してクロス状態にした逆回転状態では、油圧ポンプ38からの作動油は、図中の矢印で示されるように、主供給油路となる主排出油路40から油圧モータ27の分岐排出油路27bを介して油圧モータ27に供給され、油圧モータ27を回転して回転体26を逆回転駆動し、油圧モータ27の分岐供給油路27aから主供給油路39を経てタンク37へ戻る。
【0021】
一方、油圧モータ28は、切換弁45がクロス状態であることから、分岐排出油路28bと主排出油路40との連通が遮断され、分岐排出油路28bは、バイパス油路47を介して主供給油路39と短絡し、油圧モータ28には、油圧ポンプ38からの作動油が直接供給されないが、油圧モータ28は、ピニオン29を介して回転体26により回転し、油圧モータ28から排出される作動油は、図中の矢印で示されるように、分岐供給油路28aから切換弁44、主供給油路39、バイパス油路47、切換弁45、分岐排出油路28bを通って油圧モータ28に循環する。
【0022】
したがって、図2,3に示される回路図の状態では、油圧モータ27のみに油圧ポンプ38からの作動油が直接供給され、油圧モータ28には油圧ポンプ38からの作動油が直接供給されず、油圧モータ28は、正回転では、分岐排出油路28b、切換弁45、主排出油路40、バイパス油路46、切換弁44、分岐供給油路28aを通る循環回路を、逆回転では、分岐供給油路28a、切換弁44、主供給油路39、バイパス油路47、切換弁45、分岐排出油路28bを通る循環回路を構成する。このため、油圧モータ27のみが回転体26を回転駆動することになるので、回転体26は、2基の油圧モータ27,28で回転体26を回転駆動していた図1に示される回路図の状態に比べて、2倍の速度と1/2のトルクで回転する。
【0023】
この際に、油圧モータ28には、油圧モータ27からタンク37へ排出される側の圧力の作動油が循環するから、油圧モータ28のA,Bポートは同圧(タンク圧)になる。また、バイパス油路46,47が油圧モータ27の分岐供給油路27a及び分岐排出油路27bの分岐点よりもタンク37側で分岐しているから、油圧モータ28を循環する作動油は、循環する間に、フィルター42を通過してきた作動油、すなわち、油圧モータ27から排出される作動油と一部入れ替わるから、油劣化、ゴミ等によるモータの損傷を低減できる。
【0024】
図5乃至図7は第1実施形態例を示すもので、以降の実施形態例において前記第1参考例と同一要素には同一の符号を付して説明する。本実施形態例は、2基の油圧モータを使用する例であって、切換弁44に接続されるバイパス油路46を油圧モータ27の分岐排出油路27bから、切換弁45に接続されるバイパス油路47を油圧モータ27の分岐供給油路27aからそれぞれ分岐させたもので、このように構成することにより、前記第1実施形態例と同様に、図5に示される切換弁44,45を操作しない状態では、各油圧モータ27,28が回転体26を回転駆動し、図6に示されるように、方向切換弁41の正回転切換に合わせて切換弁44をクロス状態に切り換えると、油圧モータ28は、図中の矢印で示されるように、油圧モータ27の分岐排出油路27bから排出されるタンク圧の作動油を吸い込んで分岐排出油路28bを介してタンク37へ排出することになって仕事をせず、油圧モータ27のみが、図5の回路図の状態に比べて2倍の速度と1/2のトルクで回転体26を正回転駆動し、図7に示されるように、方向切換弁41の逆回転切換に合わせて切換弁45をクロス状態に切り換えると、油圧モータ28は、図中の矢印で示されるように、油圧モータ27の排出油路となる分岐供給油路27aから排出されるタンク圧の作動油を吸い込んで、油圧モータ28の排出油路となる分岐供給油路28aを介してタンク37へ排出することになって仕事をせず、油圧モータ27のみが、図5の回路図の状態に比べて2倍の速度と1/2のトルクで回転体26を逆回転駆動する。
【0025】
したがって、前記第1参考例と同様の効果を奏するとともに、1モータ正回転時には、油圧モータ28の分岐排出油路28bからタンク37へ排出される作動油の一部が、油圧モータ27でドレン落ちした分の補給として油圧モータ27の分岐排出油路27bに供給され、1モータ逆回転時には、油圧モータ28の分岐供給油路28aからタンク37へ排出される作動油の一部が、油圧モータ27でドレン落ちした分の補給として油圧モータ27の分岐供給油路27aに供給される。
【0026】
このため、油圧モータ28には、油圧モータ27を通過してきた作動油(フィルター42を通過してきた作動油)のほとんどと、油圧モータ27でドレン落ちした分の補給として油圧モータ28を通過してきた作動油の一部との合流した作動油がバイパス油路46,47を介して供給されるので、油劣化、ゴミ等によるモータの損傷を低減できる。
【0027】
なお、上記第1参考例及び第1実施形態例における切換弁44,45の駆動方式は、手動、電動、油圧パイロット等のいずれの方式であってもよい。
【0028】
図8は第2実施形態例を示すもので、本実施形態例も2基の油圧モータを使用する例であって、前記第1実施形態例の回路構成における切換弁44,45をそれぞれ2つのロジック弁44a,44b,45a,45bで構成される切換弁としたもので、ロジック弁44a,44bの間から油圧モータ28の分岐供給油路28aを、ロジック弁45a,45bの間から油圧モータ28の分岐排出油路28bをそれぞれ分岐しており、1モータ正回転時には、切換弁44のロジック弁44aを遮断状態、ロジック弁44bを連通状態に、1モータ逆回転時には、切換弁45のロジック弁45aを遮断状態、ロジック弁45bを連通状態にすることによって、上記第1実施形態例と同様に作用する。
【0029】
このように、2つのロジック弁44a,44b,45a,45bで構成される切換弁44,45とすることにより、切換弁44,45のTポートが高圧になるのに対応できる一般的な切換弁の種類の少なさを克服できる。また、ロジック弁を用いることで大流量の油圧回路に対応可能である。
【0030】
図9は、3基の油圧モータを使用する第2参考例を示すもので、主供給油路39からは、油圧モータ27の分岐供給回路27aと、油圧モータ28の分岐供給油路28aと、油圧モータ50の分岐供給油路50aとが分岐し、主排出油路40からは、油圧モータ27の分岐排出回路27bと、油圧モータ28の分岐排出油路28bと、油圧モータ50の分岐排出油路50bとが分岐している。
【0031】
油圧モータ28の分岐供給油路28aに切換弁44が、油圧モータ28の分岐排出油路28bに切換弁45が、油圧モータ50の分岐供給油路50aに切換弁51が、油圧モータ50の分岐排出油路50bに切換弁52がそれぞれ設けられている。切換弁44と切換弁51には、主排出油路40からのバイパス油路46が、切換弁45と切換弁52には、主供給油路39からのバイパス油路47がそれぞれ接続されている。
【0032】
この構成では、方向切換弁41の正回転切換に合わせて油圧モータ50の切換弁51をクロス状態に切換操作すると、油圧モータ50の分岐供給油路50aと主供給油路39との連通が遮断され、分岐供給油路50aはバイパス油路46を介して主排出油路40と短絡する。したがって、油圧ポンプ38から供給される作動油は油圧モータ27,28に供給され、油圧モータ50は回転体26を介して回転し、油圧モータ50から排出される作動油は、分岐排出油路50bから主排出油路40、バイパス油路46を介して切換弁51を通って分岐供給油路50aへ流れ油圧モータ50に循環するから、油圧モータ27,28は、3基の油圧モータ27,28,50で回転体26を回転駆動していたときよりも1.5倍の速度で回転する。なお、油圧モータ50の切換弁51を切り換えずに、油圧モータ28の切換弁44をクロス状態に切り換えても同様である。
【0033】
また、方向切換弁41の正回転切換に合わせて切換弁44と切換弁51の双方をクロス状態に切換操作すると、油圧ポンプ38から供給される作動油は油圧モータ27のみに供給され、油圧モータ27は、3基の油圧モータ27,28,50で回転体26を回転駆動していたときよりも3倍の速度で回転する。
【0034】
方向切換弁41の逆回転切換の場合は、切換弁52あるいは切換弁45のみをクロス状態に切換操作すると1.5倍の速度で、切換弁45と切換弁52の双方をクロス状態に切換操作すると3倍の速度で回転する。
【0035】
図10は、第3実施形態例を示すもので、本実施形態例は、3基の油圧モータを使用し、油圧モータ27の分岐供給油路27aから切換弁45へのバイパス油路47aと切換弁52へのバイパス油路47bとを、油圧モータ27の分岐排出油路27bから切換弁44へのバイパス油路46aと切換弁51へのバイパス油路46bとをそれぞれ分岐させたものである。
【0036】
この構成では、方向切換弁41の正回転切換に合わせて切換弁44と切換弁51の双方をクロス状態に切換操作した1モータ正回転時には、油圧モータ27の分岐排出油路27bから排出されたタンク圧の作動油は、回転体26を介して回転される油圧モータ28の吸い込み作用により、主にバイパス油路46aから油圧モータ28の分岐供給油路28aに流れ、油圧モータ28を通って分岐排出油路28bから主排出油路40を経てタンク37に戻る。一方、回転体26を介して回転される油圧モータ50は、主に分岐排出油路50bから排出される作動油を、主排出油路40から分岐する油圧モータ27の分岐排出油路27b及びバイパス油路46bを介して切換弁51から分岐供給油路50aに吸い込む循環回路を構成する。この際に、分岐排出油路50bから排出される作動油は、主排出油路40で油圧モータ28から分岐排出油路28bを通って排出される作動油と混合して分岐供給油路50aに吸い込まれる。
【0037】
また、方向切換弁41の逆回転切換に合わせて切換弁45と切換弁52の双方をクロス状態に切換操作した1モータ逆回転時には、油圧モータ27の分岐供給油路27aから排出されたタンク圧の作動油は、回転体26を介して回転される油圧モータ28の吸い込み作用により、主にバイパス油路47aから油圧モータ28の分岐排出油路28bを経て、油圧モータ28を通って分岐供給油路28aに流れ、主供給油路39を経てタンク37に戻る。一方、回転体26を介して回転される油圧モータ50は、主に分岐供給油路50aから排出される作動油を、主供給油路39から分岐する油圧モータ27の分岐供給油路27a及びバイパス油路47bを介して切換弁52から分岐排出油路50bに吸い込む循環回路を構成する。この際に、主に分岐供給油路50aから排出される作動油は、主供給油路39で油圧モータ28から分岐供給油路28aを通って排出される作動油と混合して分岐排出油路50bに吸い込まれる。
【0038】
図11は、第4実施形態例を示すもので、本実施形態例も3基の油圧モータを使用し、油圧モータ27の分岐供給油路27aから切換弁45へのバイパス油路47aを、分岐排出油路27bから切換弁44へのバイパス油路46aをそれぞれ分岐し、さらに、油圧モータ28の分岐供給油路28aから切換弁52へのバイパス油路47bを、分岐排出油路28bから切換弁51へのバイパス油路46bをそれぞれ分岐させたものである。
【0039】
この構成では、方向切換弁41の正回転切換に合わせて切換弁44と切換弁51の双方をクロス状態に切換操作した1モータ正回転時には、油圧モータ27の分岐排出油路27bから排出されたタンク圧の作動油は、回転体26を介して回転される油圧モータ28の吸い込み作用により、主にバイパス油路46aから油圧モータ28の分岐供給油路28aに流れて、油圧モータ28を通って分岐排出油路28bから排出され、回転体26を介して回転される油圧モータ50の吸い込み作用により、主にバイパス油路46bを経て、切換弁51、分岐供給油路50aを介して油圧モータ50を通り、分岐排出油路50bから主排出油路40を経てタンク37に戻る。
【0040】
また、方向切換弁41の逆回転切換に合わせて切換弁45と切換弁52の双方をクロス状態に切換操作した1モータ逆回転時には、油圧モータ27の分岐供給油路27aから排出されたタンク圧の作動油は、回転体26を介して回転される油圧モータ28の吸い込み作用により、主にバイパス油路47aから油圧モータ28の分岐排出油路28bを経て、油圧モータ28を通って分岐供給油路28aに流れ、回転体26を介して回転される油圧モータ50の吸い込み作用により、主にバイパス油路47bを経て、切換弁52、分岐排出油路50bを介して油圧モータ50を通り、分岐供給油路50aから主供給油路39を経てタンク37に戻る。
【0041】
上述の第3,4実施形態例でも、第2参考例で説明したように、正回転時に切換弁44又は切換弁51のいずれかを切り換え、また、逆回転時に切換弁45又は切換弁52のいずれかを切り換えることにより、1.5倍速にすることも可能である。また、第2参考例及び第3,4実施形態例においても、第1参考例及び第1実施形態例と同様に循環回路を構成していても、完全な閉回路でなく、一部の作動油が入れ替わるので、油劣化、ゴミ等によるモータの損傷を低減できる。
【0042】
なお、4基以上の油圧モータを使用する場合も同様の構成とすることにより、最大で使用するモータ数分の速度切換が可能である。このように、従来の油圧回路に切換弁を追加し、作動油給排回路を少し変更するだけの簡単かつ安価な構造で広範囲にきめの細かい速度切換ができる。また、高速回転時に、作動油が循環する油圧モータは、A,B両ポートともタンク圧の作動油が流れるので、特殊なモータを用いることなく、市販品で対応できる。
【0043】
しかも、使用する油圧モータは定容量型モータでもよいが、上記実施形態例のように可変容量型油圧モータを用いればさらに広範囲の速度切換が可能である。また、上記実施形態例では、本発明をチュービング装置の油圧回転装置に適用したもので説明したが、本発明はこれに限らず、同様の構成を有する例えば油圧オーガ等の油圧回転装置に適用可能である。
【0044】
【発明の効果】
以上説明したように、本発明の油圧回転装置の油圧回路は、方向切換弁を有する主供給油路及び主排出油路に並列接続された複数の油圧モータの、少なくとも1つの油圧モータの分岐供給油路及び分岐排出油路を除いて、残りの油圧モータの分岐供給油路及び分岐排出油路にそれぞれ切換弁を設け、残りの油圧モータの分岐供給油路の切換弁に少なくとも1つの油圧モータの分岐排出油路から分岐するバイパス油路を、残りの油圧モータの分岐排出油路の切換弁に少なくとも1つの油圧モータの分岐供給油路から分岐するバイパス油路をそれぞれ接続したので、方向切換弁の正回転切換の場合は残りの油圧モータの分岐供給油路の切換弁を、方向切換弁の逆回転切換の場合は残りの油圧モータの分岐排出油路の切換弁を切換操作することによって、油圧ポンプからの作動油は、切換弁を設けていない油圧モータと切換弁を切換操作されていない油圧モータに供給され、切換弁を切換操作された油圧モータの作動油はバイパス回路を介して循環することになり、切換弁を切換操作された油圧モータは直接油圧ポンプから作動油を供給されないから、切換弁を設けていない油圧モータと切換操作されていない油圧モータは、切換操作された油圧モータを含めた数の油圧モータで回転していたときよりも高速で回転する。したがって、最大で使用するモータ数分の速度切換が可能で、従来の油圧回路に切換弁を追加し、作動油給排回路を少し変更するだけの簡単かつ安価な構造で広範囲できめ細かな速度切換ができる。また、切換操作された油圧モータのA,B両ポートともタンク圧の作動油が流れるので、特殊なモータを用いることなく、市販品で対応できる。
【図面の簡単な説明】
【図1】 第1参考例の油圧回路図
【図2】 同じく高速正回転時の切換弁の状態を示す油圧回路図
【図3】 同じく高速逆回転時の切換弁の状態を示す油圧回路図
【図4】 チュービング装置の要部を示す一部断面図
【図5】 第1実施形態例の油圧回路図
【図6】 同じく高速正回転時の切換弁の状態を示す油圧回路図
【図7】 同じく高速逆回転時の切換弁の状態を示す油圧回路図
【図8】 第2実施形態例の油圧回路図
【図9】 第2参考例の油圧回路図
【図10】 第3実施形態例の油圧回路図
【図11】 第4実施形態例の油圧回路図
【図12】 従来の油圧回路図
【符号の説明】
20…チュービング装置、26…回転体、27,28,50…油圧モータ、27a,28a,50a…分岐供給油路、27b,28b,50b…分岐排出油路、29…ピニオン、37…タンク、38…油圧ポンプ、29…主供給油路、40…主排出油路、41…方向切換弁、44,45,51,52…切換弁、46,47…バイパス油路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic circuit of a hydraulic rotating device that rotates a final one axis with a plurality of hydraulic motors among hydraulic rotating devices such as a tubing device and a hydraulic auger used for foundation works such as construction and civil engineering.
[0002]
[Prior art]
For example, as shown in FIG. 12, a hydraulic rotating device such as a tubing device or a hydraulic auger includes a plurality of hydraulic motors 3 that rotate and drive a uniaxial ring gear 2 via an output shaft pinion 1, and each hydraulic pressure. A hydraulic pump 4 that supplies hydraulic oil to the motor 3, a main supply oil passage 5 that supplies hydraulic oil from the hydraulic pump 4 to each hydraulic motor 3, and a main oil that discharges hydraulic oil from each hydraulic motor 3 to the tank 6. A discharge oil passage 7; and a direction switching valve 8 that is provided in the main supply oil passage 5 and the main discharge oil passage 7 and switches a supply direction of hydraulic oil. The main supply oil passage 5 and the main discharge oil passage 7 There are many configurations having a hydraulic circuit for connecting the branch supply oil passage 9 and the branch discharge oil passage 10 to each hydraulic motor 3 in parallel, and it is applied to various construction methods, but considering the construction efficiency, the rotational load is small. When rotating at high speed and low torque, load There is only required to rotate at a low speed and high torque is greater. In general, a variable displacement hydraulic motor is used as the hydraulic motor 3 and the rotation speed and torque are changed by varying the amount of oil per rotation, but there is a limit to the speed ratio of the variable displacement hydraulic motor.
[0003]
For this reason, as shown in the registered utility model No. 2567312 publication, three or more hydraulic motor pinions are linked to one ring gear and three or more hydraulic motors are connected by one directional switching valve. In the parallel hydraulic circuit that drives in the same direction, a switching valve that can switch the rotation of the hydraulic motor forward and reverse is connected in the middle of the both-side supply and discharge oil passage between the direction switching valve and one hydraulic motor. In the case of speed, the switching valve is switched in the reverse direction, and the hydraulic motor switched in the reverse direction by the ring gear rotated by another hydraulic motor is operated as a pump, and is adjacent to the hydraulic motor acting as the pump. Circulating hydraulic oil to and from the hydraulic motor, canceling the output of the adjacent hydraulic motor, and supplying the entire amount of hydraulic oil from the hydraulic pump to the remaining hydraulic motor, speeding up the remaining hydraulic motor There are things to be rolling.
[0004]
[Problems to be solved by the invention]
However, the above-described structure requires a hydraulic motor paired with a hydraulic motor acting as a pump, and the number of motors that can be effectively used is reduced. For example, even if three or four hydraulic motors are used, high speed can be achieved.・ If you can only switch to two stages at low speed and want to switch to three stages at high speed, medium speed, and low speed, you will need at least 5 hydraulic motors. Requires two hydraulic motors.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydraulic circuit for a hydraulic rotating apparatus capable of fine speed change in a wide range corresponding to the number of motors used.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a plurality of hydraulic motors that rotate and drive one shaft via a power transmission mechanism, a hydraulic pump, and a main supply that supplies hydraulic oil from the hydraulic pump to each hydraulic motor. An oil passage, a main discharge oil passage that discharges hydraulic oil from each hydraulic motor to the tank, and a direction switching valve that is provided in the main supply oil passage and the main discharge oil passage and switches a supply direction of the hydraulic oil, In a hydraulic circuit of a hydraulic rotating device in which a branch supply oil passage and a branch discharge oil passage to each hydraulic motor are connected in parallel to the main supply oil passage and the main discharge oil passage, the main supply oil passage and the main discharge oil passage are connected to the main supply oil passage and the main discharge oil passage. With the exception of the branch supply oil passage and the branch discharge oil passage of at least one hydraulic motor, a switching valve is provided in each of the remaining branch motor oil supply passage and branch discharge oil passage, A bypass oil passage that branches from the branch discharge oil passage of the at least one hydraulic motor is connected to the switching valve of the branch supply oil passage of the remaining hydraulic motor, and the at least one of the switching valves of the branch discharge oil passage of the remaining hydraulic motor. Branch supply oil passage of two hydraulic motors Connect each bypass oil passage that branches off from At the time of forward rotation of the at least one hydraulic motor, the switching valve of the branch supply oil passage is switched to a cross state so that the at least one hydraulic motor rotating forward with the branch supply oil passage of the remaining hydraulic motor The at least one hydraulic motor that is connected to a bypass oil passage that branches from the branch discharge oil passage and in which a part of the hydraulic oil discharged from the branch discharge oil passage of the remaining hydraulic motor to the tank is rotating forward. Is supplied to the branch discharge oil passage of the at least one hydraulic motor as a replenishment of drainage at the time of reverse rotation of the at least one motor, the switching valve of the branch discharge oil passage is switched to the cross state, and the remaining And a bypass oil passage that branches from a branch supply oil passage of the at least one hydraulic motor that is rotating in reverse with the branch discharge oil passage of the hydraulic motor of The at least one hydraulic pressure that reversely rotates as a replenishment of a part of the hydraulic oil discharged from the branch supply oil passage of the pressure motor to the tank by the at least one hydraulic motor that rotates reversely Supplied to the branch supply oil passage of the motor It is characterized by that. The switching valve may be composed of two logic valves.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention is applied to a hydraulic rotating device of a tubing device. First reference example Will be described with reference to FIGS. This reference example is an example using two variable displacement hydraulic motors, As shown in FIG. 4, the tubing device 20 supports a lifting frame 23 by a plurality of thrust cylinders 22 erected on a base frame 21 so that the lifting frame 23 can be lifted and lowered. A hydraulic rotating device 24 and a chuck device are supported on the lifting frame 23. 25.
[0008]
The hydraulic rotating device 24 includes a uniaxial ring-shaped rotating body 26 that is rotatably provided on the elevating frame 23, and two hydraulic motors 27 and 28 (one is not shown) that rotationally drives the rotating body 26. The hydraulic motors 27 and 28 transmit power via an idler 30 to a pinion 29 provided on the output shaft and a ring gear 26 a formed on the outer periphery of the rotating body 26. The rotating body 26 has an insertion hole 32 for the casing tube 31 formed on the inner periphery.
[0009]
The chuck device 25 includes a plurality of chuck cylinders 33 provided on the lifting frame 23, a ring-shaped support frame 34 supported by the chuck cylinder 33, and a ring-shaped chuck frame 35 provided rotatably on the support frame 34. And a wedge-shaped chuck member 36 suspended from the chuck frame 35.
[0010]
The tubing device 20 grips the casing tube 31 inserted through the insertion hole 32 of the rotating body 26 by the lowering of the chuck member 36 due to the reduction of the chuck cylinder 33, and rotationally drives the rotating body 26 by hydraulic motors 27 and 28. While the casing tube 31 is rotated, the elevating frame 23 is moved up and down by the thrust cylinder 22 to push and pull out the casing tube 31.
[0011]
As shown in FIG. 1, the hydraulic circuit of the hydraulic rotating device 24 includes two variable displacement hydraulic motors 27 and 28, a tank 37 that stores hydraulic oil, and each hydraulic motor 27, 28, a variable displacement hydraulic pump 38 that supplies hydraulic oil to the hydraulic oil 28, a main supply oil passage 39 that supplies hydraulic oil from the hydraulic pump 38 to the hydraulic motors 27 and 28, and the hydraulic motors 27 and 28 to the tank 37. A main discharge oil passage 40 that discharges hydraulic oil, a direction switching valve 41 that is provided in the main supply oil passage 39 and the main discharge oil passage 40 and switches the supply direction of the hydraulic oil, and a direction switching valve 41 and a tank 37. And a branch supply oil passage 27a, 28a and branch discharge oil passages 27b, 28b to the hydraulic motors 27, 28 in parallel with the main supply oil passage 39 and the main discharge oil passage 40. Connected The hydraulic motors 27 and 28 are connected to a drain circuit 43 that returns leaked oil from the hydraulic motors 27 and 28 to the tank 37.
[0012]
The main supply oil passage 39 and the main discharge oil passage 40 are replaced by the main supply oil passage 39 and the main discharge oil passage 40 by the switching operation of the direction switching valve 41. Accordingly, the branch supply oil paths 27a and 28a to the hydraulic motors 27 and 28 are replaced with the branch discharge oil paths, and the branch discharge oil paths 27b and 28b are replaced with the branch supply oil paths.
[0013]
Switching valves 44 and 45 are provided in the branch supply oil passage 28a and the branch discharge oil passage 28b of the hydraulic motor 28 branched from the main supply oil passage 39 and the main discharge oil passage 40, respectively. A bypass oil passage 46 branched from the main discharge oil passage 40 is connected to the switching valve 44, and a bypass oil passage 47 branched from the main supply oil passage 39 is connected to the switching valve 45. These bypass oil passages 46 and 47 are branched on the hydraulic pump 28 side from the branch points of the branch supply oil passage 27a and the branch discharge oil passage 27b of the hydraulic motor 38 branching from the main supply oil passage 39 and the main discharge oil passage 40. ing.
[0014]
In the hydraulic rotating device 24, when the switching valves 44 and 45 are in the straight state shown in FIG. 1, the main supply oil passage 39 and the branch supply oil passage 28a of the hydraulic motor 28 communicate with each other, and the main discharge oil passage 40 and the hydraulic motor. 28 branch discharge oil passages 28b communicate with each other, and bypass oil passages 46 and 47 are blocked.
[0015]
In this state, when the direction switching valve 41 is moved to the right in FIG. 1 and the A and B ports of the direction switching valve 41 are set to the left position, the hydraulic oil from the hydraulic pump 38 is supplied from the main supply oil passage 39 to each hydraulic motor 27. , 28 are supplied to the hydraulic motors 27, 28 via the branch supply oil passages 27 a, 28 a, rotate the hydraulic motors 27, 28 to drive the rotating body 26 in the normal direction, and branch the hydraulic motors 27, 28. It returns to the tank 37 through the main oil discharge passage 40 from the oil discharge passages 27b and 28b.
[0016]
Further, when the direction switching valve 41 is moved to the left in FIG. 1 and the A and B ports of the direction switching valve 41 are set to the right position, the main discharge oil passage 40 is connected to the main supply oil passage from the hydraulic pump 38. 39 is replaced by a main discharge oil passage to the tank 37, and hydraulic oil from the hydraulic pump 38 is supplied from the main discharge oil passage 40 through the branch discharge oil passages 27b and 28b of the respective hydraulic motors 27 and 28. , 28, the hydraulic motors 27, 28 are rotated to drive the rotating body 26 in reverse rotation, and the branch supply oil paths 27 a, 28 a of the hydraulic motors 27, 28 are passed through the main supply oil path 39 to the tank 37. Return.
[0017]
Accordingly, since the hydraulic oil from the hydraulic pump 38 is supplied to the hydraulic motors 27 and 28, the rotating body 26 rotates at a low speed and a high torque in the forward or reverse direction according to the operation of the direction switching valve 41.
[0018]
Next, as shown in FIG. 2, the direction switching valve 41 is moved to the right to set the A and B ports of the direction switching valve 41 to the left position, the switching valve 44 is switched to the cross state, and the switching valve 45 is set to the cross state. In the straight state, the hydraulic oil from the hydraulic pump 38 is supplied from the main supply oil passage 39 to the hydraulic motor 27 through the branch supply oil passage 27a of the hydraulic motor 27 as shown by the arrows in the drawing, The motor 27 is rotated to drive the rotating body 26 in the normal direction, and returns from the branch discharge oil passage 27 b of the hydraulic motor 27 to the tank 37 through the main discharge oil passage 40.
[0019]
On the other hand, in the hydraulic motor 28, since the switching valve 44 is in the cross state, the communication between the branch supply oil passage 28a and the main supply oil passage 39 is blocked, and the branch supply oil passage 28a is connected via the bypass oil passage 46. Short circuit with main discharge oil passage 40. Accordingly, hydraulic oil from the hydraulic pump 38 is not directly supplied to the hydraulic motor 28, but the hydraulic motor 28 is rotated by the rotating body 26 via the pinion 29, and the hydraulic oil discharged from the hydraulic motor 28 is As indicated by the arrow in the middle, the oil is circulated from the branch discharge oil passage 28b to the hydraulic motor 28 through the switching valve 45, the main discharge oil passage 40, the bypass oil passage 46, the switching valve 44, and the branch supply oil passage 28a.
[0020]
Further, as shown in FIG. 3, the direction switching valve 41 is moved to the left so that the A and B ports of the direction switching valve 41 are set to the right position, the switching valve 44 is set in a straight state, and the switching valve 45 is switched to perform crossover. In the reverse rotation state, the hydraulic oil from the hydraulic pump 38 flows from the main discharge oil passage 40 serving as the main supply oil passage through the branch discharge oil passage 27b of the hydraulic motor 27 as shown by the arrows in the figure. The hydraulic motor 27 is rotated to rotate the rotating body 26 in the reverse direction, and returns to the tank 37 from the branch supply oil passage 27 a of the hydraulic motor 27 through the main supply oil passage 39.
[0021]
On the other hand, in the hydraulic motor 28, since the switching valve 45 is in the cross state, the communication between the branch discharge oil passage 28b and the main discharge oil passage 40 is cut off, and the branch discharge oil passage 28b passes through the bypass oil passage 47. The hydraulic oil is short-circuited to the main supply oil passage 39 and hydraulic oil is not directly supplied to the hydraulic motor 28, but the hydraulic motor 28 is rotated by the rotating body 26 via the pinion 29 and discharged from the hydraulic motor 28. As shown by the arrows in the figure, the hydraulic oil is hydraulically passed from the branch supply oil passage 28a through the switching valve 44, the main supply oil passage 39, the bypass oil passage 47, the switching valve 45, and the branch discharge oil passage 28b. Circulates to the motor 28.
[0022]
Therefore, in the state of the circuit diagram shown in FIGS. 2 and 3, the hydraulic oil from the hydraulic pump 38 is directly supplied only to the hydraulic motor 27, and the hydraulic oil from the hydraulic pump 38 is not directly supplied to the hydraulic motor 28. The hydraulic motor 28 passes through a circulation circuit that passes through the branch discharge oil passage 28b, the switching valve 45, the main discharge oil passage 40, the bypass oil passage 46, the switching valve 44, and the branch supply oil passage 28a in the forward rotation, and branches in the reverse rotation. A circulation circuit is formed that passes through the supply oil passage 28a, the switching valve 44, the main supply oil passage 39, the bypass oil passage 47, the switching valve 45, and the branch discharge oil passage 28b. For this reason, since only the hydraulic motor 27 rotates and drives the rotating body 26, the rotating body 26 rotates the rotating body 26 by the two hydraulic motors 27 and 28. The circuit diagram shown in FIG. Compared to this state, it rotates at twice the speed and half the torque.
[0023]
At this time, since hydraulic oil having a pressure discharged from the hydraulic motor 27 to the tank 37 circulates in the hydraulic motor 28, the A and B ports of the hydraulic motor 28 have the same pressure (tank pressure). Further, since the bypass oil passages 46 and 47 are branched on the tank 37 side from the branch point of the branch supply oil passage 27a and the branch discharge oil passage 27b of the hydraulic motor 27, the hydraulic oil circulating through the hydraulic motor 28 is circulated. In the meantime, the hydraulic oil that has passed through the filter 42, that is, the hydraulic oil discharged from the hydraulic motor 27 is partially replaced, so that the motor damage due to oil deterioration, dust, and the like can be reduced.
[0024]
5 to 7 are First embodiment In the following embodiment examples, First reference example The same elements as those in FIG. In this embodiment, An example using two hydraulic motors, The bypass oil passage 46 connected to the switching valve 44 is branched from the branch discharge oil passage 27b of the hydraulic motor 27, and the bypass oil passage 47 connected to the switching valve 45 is branched from the branch supply oil passage 27a of the hydraulic motor 27. With this configuration, as in the first embodiment, the hydraulic motors 27 and 28 rotate and drive the rotating body 26 when the switching valves 44 and 45 shown in FIG. 5 are not operated. As shown in FIG. 6, when the switching valve 44 is switched to the cross state in accordance with the forward rotation switching of the direction switching valve 41, the hydraulic motor 28 divides the hydraulic motor 27 as indicated by the arrow in the figure. The hydraulic oil of the tank pressure discharged from the discharge oil passage 27b is sucked and discharged to the tank 37 through the branch discharge oil passage 28b, and no work is performed. Only the hydraulic motor 27 is shown in the circuit diagram of FIG. The rotating body 26 is driven to rotate in the forward direction at twice the speed and half the torque compared to the above state, and the switching valve 45 is set to the cross state in accordance with the reverse rotation switching of the direction switching valve 41 as shown in FIG. When switched, the hydraulic motor 28 sucks in the hydraulic oil of the tank pressure discharged from the branch supply oil passage 27a serving as the discharge oil passage of the hydraulic motor 27 as shown by the arrow in the figure, and discharges the hydraulic motor 28. Since the oil is discharged to the tank 37 through the branch supply oil passage 28a serving as an oil passage, only the hydraulic motor 27 has a speed twice that of the state of the circuit diagram of FIG. The rotating body 26 is driven in reverse rotation with the torque of.
[0025]
Therefore, said First reference example The hydraulic motor serves as a replenishment of a portion of the hydraulic oil discharged from the branch discharge oil passage 28b of the hydraulic motor 28 to the tank 37 during the normal rotation of one motor. The hydraulic oil 27 supplies a part of the hydraulic fluid that is supplied to the branch discharge oil passage 27b and discharged from the branch supply oil passage 28a of the hydraulic motor 28 to the tank 37 when one motor rotates backward. Is supplied to the branch supply oil passage 27a of the hydraulic motor 27.
[0026]
For this reason, most of the hydraulic oil that has passed through the hydraulic motor 27 (hydraulic oil that has passed through the filter 42) has passed through the hydraulic motor 28 as replenishment for the drainage that has been drained by the hydraulic motor 27. Since the hydraulic oil that has merged with a part of the hydraulic oil is supplied via the bypass oil passages 46 and 47, it is possible to reduce damage to the motor due to oil deterioration and dust.
[0027]
The above First Reference Example and First Embodiment Example The switching valve 44, 45 may be driven by any of manual, electric, hydraulic pilot and the like.
[0028]
Figure 8 Second embodiment In this embodiment Is an example of using two hydraulic motors, and is the first embodiment. In this circuit configuration, the switching valves 44 and 45 are switching valves each composed of two logic valves 44a, 44b, 45a and 45b, and the branch supply oil passage 28a of the hydraulic motor 28 is interposed between the logic valves 44a and 44b. The branch discharge oil passage 28b of the hydraulic motor 28 is branched from between the logic valves 45a and 45b. When one motor is rotating forward, the logic valve 44a of the switching valve 44 is shut off and the logic valve 44b is connected. 1 When the motor rotates reversely, the logic valve 45a of the switching valve 45 is shut off and the logic valve 45b is connected to First embodiment Works in the same way.
[0029]
In this way, by using the switching valves 44 and 45 including the two logic valves 44a, 44b, 45a, and 45b, a general switching valve that can cope with the T port of the switching valves 44 and 45 becoming high pressure. You can overcome the small number of types. Moreover, it is possible to cope with a hydraulic circuit with a large flow rate by using a logic valve.
[0030]
FIG. 9 uses three hydraulic motors Second reference example From the main supply oil passage 39, a branch supply circuit 27a of the hydraulic motor 27, a branch supply oil passage 28a of the hydraulic motor 28, and a branch supply oil passage 50a of the hydraulic motor 50 are branched to cause main discharge. From the oil passage 40, a branch discharge circuit 27 b of the hydraulic motor 27, a branch discharge oil passage 28 b of the hydraulic motor 28, and a branch discharge oil passage 50 b of the hydraulic motor 50 are branched.
[0031]
The switching valve 44 is connected to the branch supply oil passage 28 a of the hydraulic motor 28, the switching valve 45 is connected to the branch discharge oil passage 28 b of the hydraulic motor 28, and the switching valve 51 is connected to the branch supply oil passage 50 a of the hydraulic motor 50. A switching valve 52 is provided in each discharge oil passage 50b. A bypass oil passage 46 from the main discharge oil passage 40 is connected to the switching valve 44 and the switching valve 51, and a bypass oil passage 47 from the main supply oil passage 39 is connected to the switching valve 45 and the switching valve 52, respectively. .
[0032]
In this configuration, when the switching valve 51 of the hydraulic motor 50 is switched to the cross state in accordance with the forward rotation switching of the direction switching valve 41, the communication between the branch supply oil passage 50a and the main supply oil passage 39 of the hydraulic motor 50 is interrupted. The branch supply oil passage 50 a is short-circuited with the main discharge oil passage 40 via the bypass oil passage 46. Therefore, the hydraulic oil supplied from the hydraulic pump 38 is supplied to the hydraulic motors 27 and 28, the hydraulic motor 50 rotates through the rotating body 26, and the hydraulic oil discharged from the hydraulic motor 50 is branched and discharged oil passage 50b. From the main oil discharge passage 40 and the bypass oil passage 46 to the branch supply oil passage 50a through the switching valve 51 and circulate to the hydraulic motor 50, the hydraulic motors 27 and 28 have three hydraulic motors 27 and 28. , 50 is rotated at a speed 1.5 times higher than when the rotating body 26 is rotationally driven. The same applies when the switching valve 44 of the hydraulic motor 28 is switched to the cross state without switching the switching valve 51 of the hydraulic motor 50.
[0033]
When both the switching valve 44 and the switching valve 51 are switched to the cross state in accordance with the forward rotation switching of the direction switching valve 41, the hydraulic oil supplied from the hydraulic pump 38 is supplied only to the hydraulic motor 27, and the hydraulic motor 27 rotates three times faster than when the rotating body 26 is rotationally driven by the three hydraulic motors 27, 28, and 50.
[0034]
In the case of reverse rotation switching of the direction switching valve 41, when only the switching valve 52 or the switching valve 45 is switched to the cross state, the switching valve 45 and the switching valve 52 are switched to the cross state at a speed of 1.5 times. Then it rotates at 3 times speed.
[0035]
FIG. In the third embodiment, this embodiment uses three hydraulic motors, A bypass oil passage 47 a from the branch supply oil passage 27 a of the hydraulic motor 27 to the switching valve 45 and a bypass oil passage 47 b to the switching valve 52 are connected. A bypass oil passage from the branch discharge oil passage 27 b of the hydraulic motor 27 to the switching valve 44 is provided. 46a and the bypass oil passage 46b to the switching valve 51 are branched.
[0036]
In this configuration, during one motor normal rotation in which both the switching valve 44 and the switching valve 51 are switched to the cross state in accordance with the forward rotation switching of the direction switching valve 41, the discharge is made from the branch discharge oil passage 27b of the hydraulic motor 27. The hydraulic oil of the tank pressure flows mainly from the bypass oil passage 46 a to the branch supply oil passage 28 a of the hydraulic motor 28 by the suction action of the hydraulic motor 28 rotated through the rotating body 26, and branches through the hydraulic motor 28. It returns to the tank 37 via the main oil discharge passage 40 from the oil discharge passage 28b. On the other hand, the hydraulic motor 50 rotated via the rotating body 26 bypasses the bypass discharge oil passage 27b and the bypass of the hydraulic motor 27 that branches the hydraulic oil mainly discharged from the branch discharge oil passage 50b from the main discharge oil passage 40. A circulation circuit that sucks into the branch supply oil passage 50a from the switching valve 51 via the oil passage 46b is configured. At this time, the hydraulic oil discharged from the branch discharge oil passage 50b is mixed with the hydraulic oil discharged from the hydraulic motor 28 through the branch discharge oil passage 28b in the main discharge oil passage 40 to the branch supply oil passage 50a. Inhaled.
[0037]
In addition, when one motor reversely rotates when both the switching valve 45 and the switching valve 52 are switched to the cross state in accordance with the reverse rotation switching of the direction switching valve 41, the tank pressure discharged from the branch supply oil passage 27a of the hydraulic motor 27 is changed. The hydraulic oil 28 is supplied through the hydraulic motor 28 through the hydraulic motor 28 mainly through the bypass oil path 47a and the branch discharge oil path 28b by the suction action of the hydraulic motor 28 rotated through the rotating body 26. It flows into the passage 28a and returns to the tank 37 through the main supply oil passage 39. On the other hand, the hydraulic motor 50 that is rotated via the rotating body 26 bypasses the bypass supply oil passage 27a and the bypass of the hydraulic motor 27 that mainly branches the hydraulic oil discharged from the branch supply oil passage 50a from the main supply oil passage 39. A circulation circuit that sucks into the branch discharge oil passage 50b from the switching valve 52 via the oil passage 47b is configured. At this time, the hydraulic oil mainly discharged from the branch supply oil passage 50a is mixed with the hydraulic oil discharged from the hydraulic motor 28 through the branch supply oil passage 28a in the main supply oil passage 39 to be branched discharge oil passage. It is sucked into 50b.
[0038]
FIG. In the fourth embodiment, this embodiment also uses three hydraulic motors. The bypass oil passage 47a from the branch supply oil passage 27a of the hydraulic motor 27 to the switching valve 45 is branched, the bypass oil passage 46a from the branch discharge oil passage 27b to the switching valve 44 is branched, and further, the branch supply oil of the hydraulic motor 28 is branched. The bypass oil passage 47b from the passage 28a to the switching valve 52 and the bypass oil passage 46b from the branch discharge oil passage 28b to the switching valve 51 are branched.
[0039]
In this configuration, during one motor forward rotation when both the switching valve 44 and the switching valve 51 are switched to the cross state in accordance with the forward rotation switching of the direction switching valve 41, the discharge is made from the branch discharge oil passage 27b of the hydraulic motor 27. The hydraulic oil of the tank pressure mainly flows from the bypass oil passage 46 a to the branch supply oil passage 28 a of the hydraulic motor 28 by the suction action of the hydraulic motor 28 rotated through the rotating body 26, and passes through the hydraulic motor 28. Due to the suction action of the hydraulic motor 50 that is discharged from the branch discharge oil passage 28b and rotated via the rotating body 26, the hydraulic motor 50 mainly passes through the bypass oil passage 46b and the switching valve 51 and the branch supply oil passage 50a. , And returns to the tank 37 from the branch discharge oil passage 50b through the main discharge oil passage 40.
[0040]
In addition, when one motor reversely rotates when both the switching valve 45 and the switching valve 52 are switched to the cross state in accordance with the reverse rotation switching of the direction switching valve 41, the tank pressure discharged from the branch supply oil passage 27a of the hydraulic motor 27 is changed. The hydraulic oil 28 is supplied through the hydraulic motor 28 through the hydraulic motor 28 mainly through the bypass oil path 47a and the branch discharge oil path 28b by the suction action of the hydraulic motor 28 rotated through the rotating body 26. Due to the suction action of the hydraulic motor 50 that flows into the passage 28a and is rotated through the rotating body 26, it mainly passes through the hydraulic oil 50 via the switching valve 52 and the branch discharge oil passage 50b via the bypass oil passage 47b. The supply oil passage 50a returns to the tank 37 via the main supply oil passage 39.
[0041]
Above In the third and fourth embodiments, the second reference example As described in the above, it is possible to switch to either the switching valve 44 or the switching valve 51 at the time of forward rotation and to switch to either the switching valve 45 or the switching valve 52 at the time of reverse rotation so that the speed is 1.5 times faster. Is possible. Also, Second Reference Example and Third and Fourth Embodiment Examples Also in First Reference Example and First Embodiment Example Even if the circulation circuit is configured in the same manner as described above, a part of the hydraulic oil is replaced instead of a complete closed circuit, so that it is possible to reduce motor damage due to oil deterioration and dust.
[0042]
In addition, when using four or more hydraulic motors, the speed can be switched as many as the number of motors to be used by adopting the same configuration. In this way, fine speed switching can be performed over a wide range with a simple and inexpensive structure in which a switching valve is added to the conventional hydraulic circuit and the hydraulic oil supply / discharge circuit is slightly changed. Also, hydraulic motors that circulate the hydraulic oil during high-speed rotation can be handled with commercial products without using a special motor because the hydraulic oil of tank pressure flows through both the A and B ports.
[0043]
In addition, the hydraulic motor to be used may be a constant displacement motor, but a wider range of speed switching is possible if a variable displacement hydraulic motor is used as in the above embodiment. In the above embodiment, the present invention is applied to the hydraulic rotating device of the tubing device. However, the present invention is not limited to this, and can be applied to a hydraulic rotating device such as a hydraulic auger having the same configuration. It is.
[0044]
【The invention's effect】
As described above, the hydraulic circuit of the hydraulic rotating apparatus according to the present invention has a branch supply of at least one hydraulic motor of a plurality of hydraulic motors connected in parallel to the main supply oil passage and the main discharge oil passage having the direction switching valve. With the exception of the oil passage and the branch discharge oil passage, a switching valve is provided in each of the remaining hydraulic motor branch supply oil passage and branch discharge oil passage, Of the remaining hydraulic motor For switching valve of branch supply oil passage At least one hydraulic motor branch A bypass oil passage that branches off from the discharge oil passage Of the remaining hydraulic motor For switching valve of branch discharge oil passage At least one hydraulic motor branch Since bypass oil passages that branch from the supply oil passage are connected to each other, Of the remaining hydraulic motor When switching the branch supply oil path to the reverse rotation of the direction switching valve Of the remaining hydraulic motor By switching the switching valve of the branch discharge oil passage, the hydraulic oil from the hydraulic pump is supplied to the hydraulic motor that is not provided with the switching valve and the hydraulic motor that is not switching the switching valve, and the switching valve is switched. Since the hydraulic oil of the hydraulic motor is circulated through the bypass circuit and the hydraulic motor whose switching valve is switched is not directly supplied with hydraulic oil from the hydraulic pump, it is switched to the hydraulic motor without the switching valve. The hydraulic motor that is not operated rotates at a higher speed than when it is rotated by the number of hydraulic motors including the hydraulic motor that is switched. Therefore, it is possible to switch the speed as many as the number of motors used at the maximum, add a switching valve to the conventional hydraulic circuit, and change the hydraulic oil supply / discharge circuit slightly. Can do. Further, since the hydraulic oil of the tank pressure flows in both the A and B ports of the hydraulic motor that has been switched, a commercially available product can be used without using a special motor.
[Brief description of the drawings]
[Figure 1] First reference example Hydraulic circuit diagram
FIG. 2 is a hydraulic circuit diagram showing the state of the switching valve during high-speed forward rotation.
FIG. 3 is a hydraulic circuit diagram showing the state of the switching valve during reverse rotation at high speed.
FIG. 4 is a partial sectional view showing the main part of the tubing device.
[Figure 5] First embodiment Hydraulic circuit diagram
FIG. 6 is a hydraulic circuit diagram showing the state of the switching valve during high-speed forward rotation.
FIG. 7 is a hydraulic circuit diagram similarly showing the state of the switching valve during high-speed reverse rotation.
[Fig. 8] Second embodiment Hydraulic circuit diagram
FIG. 9 Second reference example Hydraulic circuit diagram
FIG. 10 Third embodiment Hydraulic circuit diagram
FIG. 11 Fourth embodiment Hydraulic circuit diagram
FIG. 12 is a conventional hydraulic circuit diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 20 ... Tubing apparatus, 26 ... Rotating body, 27, 28, 50 ... Hydraulic motor, 27a, 28a, 50a ... Branch supply oil path, 27b, 28b, 50b ... Branch discharge oil path, 29 ... Pinion, 37 ... Tank, 38 ... Hydraulic pump, 29 ... Main supply oil passage, 40 ... Main discharge oil passage, 41 ... Direction switching valve, 44,45,51,52 ... Switching valve, 46,47 ... Bypass oil passage

Claims (2)

それぞれ動力伝達機構を介して1軸を回転駆動する複数の油圧モータと、油圧ポンプと、該油圧ポンプから各油圧モータに作動油を供給する主供給油路と、各油圧モータからタンクへ作動油を排出する主排出油路と、前記主供給油路及び主排出油路に設けられて作動油の供給方向を切り換える方向切換弁とを有し、前記主供給油路及び主排出油路に各油圧モータへの分岐供給油路及び分岐排出油路を並列接続する油圧回転装置の油圧回路において、前記主供給油路及び主排出油路に接続する少なくとも1つの油圧モータの分岐供給油路及び分岐排出油路を除いて、残りの油圧モータの分岐供給油路及び分岐排出油路にそれぞれ切換弁を設け、該残りの油圧モータの分岐供給油路の切換弁に前記少なくとも1つの油圧モータの分岐排出油路から分岐するバイパス油路を、前記残りの油圧モータの分岐排出油路の切換弁に前記少なくとも1つの油圧モータの分岐供給油路から分岐するバイパス油路をそれぞれ接続し、前記少なくとも1つの油圧モータの正回転時には、前記分岐供給油路の切換弁をクロス状態に切り換えて、前記残りの油圧モータの分岐供給油路と正回転している前記少なくとも1つの油圧モータの分岐排出油路から分岐するバイパス油路とを接続し、前記残りの油圧モータの分岐排出油路から前記タンクへ排出される作動油の一部が、正回転している前記少なくとも1つの油圧モータでドレン落ちした分の補給として前記少なくとも1つの油圧モータの分岐排出油路に供給され、前記少なくとも1つのモータの逆回転時には、前記分岐排出油路の切換弁をクロス状態に切り換えて、前記残りの油圧モータの分岐排出油路と逆回転している前記少なくとも1つの油圧モータの分岐供給油路から分岐するバイパス油路とを接続し、前記残りの油圧モータの分岐供給油路から前記タンクへ排出される作動油の一部が、逆回転している前記少なくとも1つの油圧モータでドレン落ちした分の補給として逆回転している前記少なくとも1つの油圧モータの分岐供給油路に供給されることを特徴とする油圧回転装置の油圧回路。A plurality of hydraulic motors that rotate and drive one shaft through a power transmission mechanism, a hydraulic pump, a main supply oil passage that supplies hydraulic oil from the hydraulic pump to each hydraulic motor, and hydraulic oil from each hydraulic motor to the tank A main discharge oil passage, and a direction switching valve provided in the main supply oil passage and the main discharge oil passage for switching the supply direction of hydraulic oil, and each of the main supply oil passage and the main discharge oil passage. In a hydraulic circuit of a hydraulic rotation device that connects a branch supply oil path and a branch discharge oil path to a hydraulic motor in parallel, the branch supply oil path and the branch of at least one hydraulic motor connected to the main supply oil path and the main discharge oil path Except for the oil discharge passage, switching valves are provided in the branch supply oil passage and the branch discharge oil passage of the remaining hydraulic motor, respectively, and the branch valve of the at least one hydraulic motor is provided in the switch valve of the branch supply oil passage of the remaining hydraulic motor. From the drain oil passage A bypass oil passage for Toki, the rest of the hydraulic motor of the on switch valve of the branch oil discharge passage at least one hydraulic motor of the bypass oil passage branched from the branch supply oil passage for connecting each of said at least one hydraulic motor At the time of normal rotation, the branch supply oil passage switching valve is switched to a cross state to bypass the branch supply oil passage of the remaining hydraulic motor and the branch discharge oil passage of the at least one hydraulic motor that is rotating forward. As a replenishment of a part of the hydraulic oil that is connected to the oil passage and drained from the branch discharge oil passage of the remaining hydraulic motor to the tank by the at least one hydraulic motor that is rotating forward The branch discharge oil passage is supplied to the branch discharge oil passage of the at least one hydraulic motor, and the switching valve of the branch discharge oil passage is set to a cross state when the at least one motor rotates reversely. In other words, a branch oil supply path of the at least one hydraulic motor that is rotating in reverse with a branch discharge oil path of the remaining hydraulic motor is connected to a bypass oil path that branches from the branch oil supply path of the at least one hydraulic motor. A branch supply oil of the at least one hydraulic motor in which a part of the hydraulic oil discharged from the oil passage to the tank is reversely rotated as a replenishment for the drain drop by the at least one hydraulic motor rotating in the reverse direction A hydraulic circuit for a hydraulic rotating device, wherein the hydraulic circuit is supplied to a road . 前記切換弁を2つのロジック弁で構成したことを特徴とする請求項1記載の油圧回転装置の油圧回路。 2. The hydraulic circuit for a hydraulic rotary device according to claim 1, wherein the switching valve is constituted by two logic valves .
JP2002029695A 2002-02-06 2002-02-06 Hydraulic circuit of hydraulic rotating device Expired - Lifetime JP3738222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029695A JP3738222B2 (en) 2002-02-06 2002-02-06 Hydraulic circuit of hydraulic rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029695A JP3738222B2 (en) 2002-02-06 2002-02-06 Hydraulic circuit of hydraulic rotating device

Publications (2)

Publication Number Publication Date
JP2003232302A JP2003232302A (en) 2003-08-22
JP3738222B2 true JP3738222B2 (en) 2006-01-25

Family

ID=27773796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029695A Expired - Lifetime JP3738222B2 (en) 2002-02-06 2002-02-06 Hydraulic circuit of hydraulic rotating device

Country Status (1)

Country Link
JP (1) JP3738222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756066A (en) * 2012-07-19 2012-10-31 浙江大学 Front and back lifting hydraulic system for energy-saving forging manipulator

Also Published As

Publication number Publication date
JP2003232302A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
US8408328B2 (en) Methods of controllling hydraulic motors
EP0717198B1 (en) Hydraulic control system
US6662556B2 (en) Hydraulic systems for a small loader
JP3738222B2 (en) Hydraulic circuit of hydraulic rotating device
CN106907376A (en) The electrohydraulic control method of electrohydraulic control system, engineering machinery and pivoting support
JPH11141504A (en) Hydraulic circuit device
CN108150643A (en) A kind of shift valve block, power head multi gear level controlling system and control method and rotary drilling rig
JP3895622B2 (en) Hydraulic motor drive circuit, hydraulic auger
JP2002048101A (en) Speed switching device for hydraulic rotating system
JP2003148611A (en) Drive circuit for hydraulic motor
JP3443705B2 (en) Earth Auger 3-speed output device
JP4543019B2 (en) Pile driver
CN214196805U (en) Hydraulic control system for HD1D motor used for power head motor
JP3502366B2 (en) Hydraulic circuit of foundation construction machine
JP3503059B2 (en) Hydraulic circuit of pile auger lifting device
CN218971528U (en) Control system of four-motor rock drill
CN107630845B (en) Drilling machine rotation control device capable of switching high and low rotation speeds and torque
KR102650559B1 (en) Rotationary drive
CN220151637U (en) Hydraulic system of engineering machinery
JPS60144432A (en) Oil-pressure circuit for excavator with dozer
JP2633976B2 (en) Swing drive for casing driver
CN216076957U (en) High-speed soil throwing system of miniature rotary drilling rig
JP2001336377A (en) Hydraulic pressure circuit for foundation work executing machine
JPS605145Y2 (en) Hydraulic circuit for driving hydraulically driven vehicles
JPH0514001Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Ref document number: 3738222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term