WO2018168179A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2018168179A1
WO2018168179A1 PCT/JP2018/001069 JP2018001069W WO2018168179A1 WO 2018168179 A1 WO2018168179 A1 WO 2018168179A1 JP 2018001069 W JP2018001069 W JP 2018001069W WO 2018168179 A1 WO2018168179 A1 WO 2018168179A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
closed circuit
pumps
hydraulic pumps
driven
Prior art date
Application number
PCT/JP2018/001069
Other languages
French (fr)
Japanese (ja)
Inventor
平工 賢二
隆史 草間
相原 三男
宏政 高橋
自由理 清水
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2018168179A1 publication Critical patent/WO2018168179A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps

Definitions

  • the present invention relates to a hydraulic system for a construction machine, and more particularly to a hydraulic system for a construction machine using a hydraulic closed circuit in which a hydraulic actuator is directly driven by a hydraulic pump.
  • hydraulic closed circuit A hydraulic system that uses a closed hydraulic circuit (hereinafter referred to as “hydraulic closed circuit”) connects the hydraulic pump and hydraulic actuator in a closed circuit, and supplies and discharges the pressure oil directly between them.
  • Hydraulic closed circuit system applies “hydraulic closed circuit system” in the hydraulic closed circuit.
  • the hydraulic closed circuit there is no pressure loss due to the control valve, and there is no flow rate loss because the pump discharges only the necessary flow rate. Further, the potential energy of the hydraulic actuator and the energy during deceleration can be regenerated. For this reason, it is possible to save energy in the construction machine by applying the hydraulic closed circuit system.
  • Patent Document 1 discloses a hydraulic closed circuit system applied to a construction machine.
  • each of a plurality of hydraulic pumps is selectively closed-circuited to any one of a plurality of hydraulic actuators via an electromagnetic switching valve, thereby enabling combined operation and high-speed operation of the hydraulic actuators.
  • the configuration is described.
  • an ultra-large excavator for a mine has two engines (or electric motors).
  • As a method of applying the hydraulic closed circuit system to such a construction machine having two engines it is conceivable to mount two hydraulic closed circuit systems for one engine excavator described in Patent Document 1.
  • the hydraulic closed circuit system described in Patent Document 1 includes a large number of electromagnetic switching valves so that a plurality of bidirectional discharge hydraulic pumps can be connected in a closed circuit to a plurality of hydraulic actuators. And since most of the hydraulic valve block is constituted by these many electromagnetic switching valves, the longitudinal dimension (left-right direction) of the hydraulic valve block increases in proportion to the number of electromagnetic switching valves. For this reason, when two hydraulic closed circuit systems described in Patent Document 1 are mounted, the size of the hydraulic valve block in the left-right direction is approximately doubled by doubling the number of switching valves.
  • the horizontal dimension (width dimension) of the mounting space for the hydraulic valve block is 1.3 times (2 times the size) even if the fuselage volume is increased to twice that of one engine excavator, for example.
  • the width of the mounting space for the hydraulic valve block cannot be doubled due to the provision of a vehicle body structure that can be divided into sizes that can be transported by truck. For this reason, it is difficult to fit a hydraulic valve block in which a double number of electromagnetic switching valves are arranged in a single row on the left and right sides to a width of 1.3 times.
  • the vertical and longitudinal dimensions of the hydraulic valve block are also increased by about 1.3 times (twice the cube root), so the hydraulic valve block is divided into two parts, and the vertical and longitudinal dimensions are 2 It is also difficult to arrange them side by side. Therefore, it is not easy to mount two hydraulic closed circuit systems for one engine excavator described in Patent Document 1 on a two-engine super large excavator.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the mountability of a hydraulic closed circuit system on a two-engine construction machine and realize high energy saving. Is to provide.
  • the present invention provides a lower traveling body, an upper revolving body that is rotatably mounted on the lower traveling body, and a front device that is rotatably attached to the upper revolving body in the vertical direction.
  • a first prime mover a plurality of hydraulic pumps for closed circuit having two discharge ports, a plurality of hydraulic actuators, and a plurality of electromagnetic switching valves, and selectively selecting the plurality of electromagnetic switching valves
  • the two discharge ports of the plurality of hydraulic pumps are selectively connected to at least some of the plurality of hydraulic actuators, and at least one of the plurality of hydraulic pumps and the plurality of hydraulic actuators is switched to the communication position.
  • the hydraulic closed circuit system further includes a second prime mover, and the plurality of hydraulic pressures
  • the pump includes at least four hydraulic pumps, and the at least four hydraulic pumps include a hydraulic pump driven by the first prime mover and a hydraulic pump driven by the second prime mover, and at least four of the hydraulic pumps
  • the hydraulic pump when the plurality of electromagnetic switching valves are selectively switched to the communication position, two pumps discharge oil from one of the two discharge ports upstream of the plurality of electromagnetic switching valves. It has a connection structure in which the joined pressure oil is supplied to the plurality of electromagnetic switching valves.
  • the discharge port of the hydraulic pump driven by the first prime mover and the discharge port of the hydraulic pump driven by the second prime mover are connected to the pump 2 upstream of the plurality of electromagnetic switching valves.
  • the number of electromagnetic switching valves constituting most of the hydraulic valve block can be suppressed to the same level as the hydraulic closed circuit system for one engine excavator.
  • each dimension of the hydraulic valve block can be kept small, so that the hydraulic closed circuit system can be easily mounted on a two-engine hydraulic excavator.
  • the mountability of the hydraulic closed circuit system on a two-engine construction machine is improved, and high energy saving can be realized in the two-engine construction machine.
  • FIG. 1 is a side view of a hydraulic excavator according to a first embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view of the upper swing body shown in FIG. 1.
  • FIG. 2 is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on the hydraulic excavator shown in FIG. 1. It is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on a hydraulic excavator according to a second embodiment of the present invention.
  • FIG. 1 is a side view of a hydraulic excavator according to a first embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view of the upper swing body 102 shown in FIG.
  • FIG. 3 is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on the hydraulic excavator 100 shown in FIG.
  • a hydraulic excavator 100 is mounted on a lower traveling body 101 equipped with crawler-type left and right traveling apparatuses 101a and 101b, and on the lower traveling body 101 so as to be capable of turning via a turning device 102a.
  • the upper swing body 102 and a front device 103 attached to the front side of the upper swing body 102 so as to be rotatable in the vertical direction are provided.
  • the traveling devices 101 a and 101 b are driven by hydraulic motors (hereinafter referred to as “traveling motors”) 8 a and 8 b, and the turning device 102 a is driven by a hydraulic motor (hereinafter referred to as “swing motor”) 7.
  • the upper swing body 102 includes a swing frame 104, a counterweight 105, and a cab 106.
  • the turning frame 104 is a basic lower structure of the upper turning body 102, and a front device 103 is attached to the front portion of the turning frame 104 so as to be rotatable in the vertical direction.
  • a counterweight 105 that balances the weight with the front device 103 is provided on the rear end side of the revolving frame 104.
  • a cab 106 on which an operator rides is provided on the left side of the front part 103 and on the left side of the front part of the turning frame 104.
  • the front device 103 includes a boom 2 whose base end is attached to the front portion of the swing frame 104 so as to be rotatable in the vertical direction, and an arm that is attached to the distal end portion of the boom 2 so as to be rotatable in the vertical and forward / backward directions. 4, a bucket 6 attached to the tip of the arm 4 so as to be pivotable in the vertical and longitudinal directions, a single rod hydraulic cylinder (hereinafter referred to as “boom cylinder”) 1 for pivoting the boom 2, and an arm 4.
  • boom cylinder single rod hydraulic cylinder
  • arm cylinder a single rod hydraulic cylinder
  • bucket cylinder single rod hydraulic cylinder
  • the upper-part turning body 102 includes a left engine room (first machine room) 107 disposed on the left side (lower side in FIG. 2) on the turning frame 104 and a right side ( And a right engine room (second machine room) 108 disposed on the upper side in FIG.
  • Two engines (or electric motors) 9a and 9b having the same output are mounted on the rear sides of the left and right engine rooms 107 and 108, respectively.
  • the engine 9a mounted in the left engine room 107 is referred to as a “left engine”
  • the engine 9b mounted in the right engine room 108 is referred to as a “right engine”.
  • Each engine 9a, 9b drives a plurality of hydraulic pumps 12a-19a, 12b-19b via power transmission devices 10a, 10b comprising a plurality of gear trains.
  • the pressure oil discharged from the plurality of hydraulic pumps 12a to 19a, 12b to 19b is supplied to a hydraulic valve block 70, which will be described later, including a large number of electromagnetic switching valves and the like through piping (not shown).
  • Radiators 20a and 20b are disposed behind the left and right engines 9a and 9b, respectively.
  • Radiator cooling fans 21a and 21b are attached to the rear sides of the left and right engines 9a and 9b, respectively.
  • the radiator cooling fans 21a and 21b are driven by the left and right engines 9a and 9b to supply the generated cooling air to the radiators 20a and 20b.
  • the radiators 20a and 20b exchange the heat of the engine cooling water heated by the left and right engines 9a and 9b with the cooling air.
  • a fuel tank 22 for storing the fuel of the left and right engines 9a and 9b and a hydraulic oil tank 23 for storing the hydraulic oil of the hydraulic pumps 12a to 19a and 12b to 19b are arranged.
  • a hydraulic oil tank 23 for storing the hydraulic oil of the hydraulic pumps 12a to 19a and 12b to 19b is arranged.
  • hydraulic pumps 12a to 19a and 12b to 19b are connected to the hydraulic actuators 1, 3, 5, 7, 8a and 8b.
  • a hydraulic valve block 70 for controlling the flow of pressure oil is disposed.
  • An oil cooler 24 and an oil cooler cooling fan 25 attached to the oil cooler 24 are disposed on the front side of the right engine room 108.
  • the oil cooler cooling fan 25 is driven by a motor to supply the generated cooling air to the oil cooler 24.
  • the oil cooler 24 exchanges heat with the cooling air from the return oil from the hydraulic actuators 1, 3, 5, 7, 8 a, 8 b and returns to the hydraulic oil tank 23.
  • a left passage 109 a is formed on the left side of the upper swing body 102
  • a right passage 109 b is formed on the right side of the upper swing body 102
  • a substantially L-shaped central passage 109 c is formed at the center of the upper swing body 102.
  • the upper turning body 102 has a structure that can be divided for mounting on a truck to be transported to the mine site.
  • the left part is based on the left frame 104a
  • the right part is based on the right frame 104b
  • the center frame 104c is the basis.
  • the counterweight 105 is divided into at least four.
  • the turning frame 104 has a structure in which the left and right frames 104a and 104b are mounted on the center frame 104c and fastened, and the left and right engine rooms 107 and 108 are mounted on the left and right frames 104a and 104b, respectively.
  • the hydraulic valve block 70 needs to be accommodated in the width dimension W sandwiched between the two engine rooms 107 and 108.
  • each dimension in the vertical and longitudinal directions of the hydraulic valve block 70 is also increased by about 1.3 times (twice the third root), so the hydraulic valve block 70 is divided into two, and the vertical and longitudinal directions. It is also difficult to arrange two of them side by side. Therefore, it is not easy to mount two conventional hydraulic closed circuit systems for one engine excavator on the two-engine hydraulic excavator 100.
  • the closed circuit for the hydraulic circuit protects the circuit by specifying a charge pump for maintaining the normal circuit pressure, a flushing valve for compensating for excess or deficiency of oil in the closed circuit, a make-up check valve, and the maximum circuit pressure.
  • a relief valve or the like is provided for the purpose of illustration, but is omitted here in order to avoid complication of notation.
  • the left engine 9a is a bi-directional discharge type variable displacement hydraulic pump (hereinafter referred to as “closed circuit pump” as appropriate) 12a, 14a, 16a, 18a, a one-way discharge type via a power transmission device 10a.
  • Variable displacement hydraulic pumps hereinafter referred to as “open circuit pumps” as appropriate
  • 13a, 15a, 17a, 19a are driven.
  • the right engine 9b drives the closed circuit pumps 12b, 14b, 16b, 18b and the open circuit pumps 13b, 15b, 17b, 19b via the power transmission device 10b.
  • One discharge port 12c of the closed circuit pump 12a joins with one discharge port 12d of the closed circuit pump 12b, and then merges with an electromagnetic switching valve (hereinafter simply referred to as “switching valve”) 43a to 43c via one combined oil passage 31a.
  • the other discharge port 12e of the closed circuit pump 12a is connected to the other discharge port 12f of the closed circuit pump 12b and then connected to the switching valves 43a to 43d via the other combined oil passage 31b. Yes.
  • One discharge port 14c of the closed circuit pump 14a merges with one discharge port 14d of the closed circuit pump 14b and is connected to the switching valves 45a to 45d via one merged oil passage 31c, and the other of the closed circuit pump 14a.
  • the discharge port 14e joins with the other discharge port 14f of the closed circuit pump 14b, and is then connected to the switching valves 45a to 45d via the other combined oil passage 31d.
  • One discharge port 16c of the closed circuit pump 16a joins with one of the discharge ports 16d of the closed circuit pump 16b and then is connected to the switching valves 47a to 47d through one merged oil passage 31e, and the other of the closed circuit pump 16a.
  • the discharge port 16e joins with the other discharge port 16f of the closed circuit pump 16b, and then is connected to the switching valves 47a to 47d via the other combined oil passage 31f.
  • One discharge port 18c of the closed circuit pump 18a joins with one of the discharge ports 18d of the closed circuit pump 18b and then is connected to the switching valves 49a to 49d via one merged oil passage 31g, and the other of the closed circuit pump 18a.
  • the discharge port 18e joins with the other discharge port 18f of the closed circuit pump 18b and is then connected to the switching valves 49a to 49d via the other combined oil passage 31h.
  • the switching valve 43a is connected to the boom cylinder 1 via a pair of actuator oil passages 32a and 32b.
  • the switching valve 43a opens and closes in response to a signal from the controller 41.
  • the switching valve 43a is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32a and 32b.
  • the switching valve 43a is in the communication position, and the pair of merging oil passages 31a and 31b are electrically connected to the pair of actuator oil passages 32a and 32b.
  • the switching valve 43a when the switching valve 43a is in the communication position, the other switching valves 43b, 43c, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position.
  • the switching valve 43a when the switching valve 43a is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the boom cylinder 1 via the pair of merged oil passages 31a and 31b and the pair of actuator oil passages 32a and 32b. .
  • the switching valve 43b is connected to the arm cylinder 3 via a pair of actuator oil passages 32c and 32d.
  • the switching valve 43b opens and closes in response to a signal from the controller 41.
  • the switching valve 43b is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32c and 32d.
  • the switching valve 43b is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32c and 32d.
  • the switching valve 43b when the switching valve 43b is in the communication position, the other switching valves 43a, 43c, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position.
  • the switching valve 43b when the switching valve 43b is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the arm cylinder 3 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32c and 32d. .
  • the switching valve 43c is connected to the bucket cylinder 5 through a pair of actuator oil passages 32e and 32f.
  • the switching valve 43c opens and closes in response to a signal from the controller 41.
  • the switching valve 43c is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32e and 32f.
  • the switching valve 43c is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32e and 32f.
  • the switching valve 43c when the switching valve 43c is in the communication position, the other switching valves 43a, 43b, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position.
  • the switching valve 43c when the switching valve 43c is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the bucket cylinder 5 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32e and 32f. .
  • the switching valve 43d is connected to the turning motor 7 through a pair of actuator oil passages 32g and 32h.
  • the switching valve 43d opens and closes in response to a signal from the controller 41.
  • the switching valve 43d is in the cutoff position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32g and 32h.
  • the switching valve 43d is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32g and 32h.
  • the switching valve 43d when the switching valve 43d is in the communication position, the other switching valves 43a, 43b, 43c connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position.
  • the switching valve 43d when the switching valve 43d is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the swing motor 7 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32g and 32h. .
  • the switching valves 43a to 43d selectively connect the closed circuit pumps 12a and 12b to any one of the plurality of hydraulic actuators 1, 3, 5, and 7, and the closed circuit pumps 12a and 12b and the hydraulic actuators A closed circuit is formed between 1, 3, 5, and 7.
  • the switching valves 45a to 45d selectively connect the closed circuit pumps 14a and 12b to any one of the plurality of hydraulic actuators 1, 3, 5 and 7, and the closed circuit pumps 12a and 12b and the hydraulic actuator 1 , 3, 5 and 7 form a closed circuit.
  • the switching valves 47a to 47d selectively connect the closed circuit pumps 16a, 16 to any one of the plurality of hydraulic actuators 1, 3, 5, 7, and the closed circuit pumps 16a, 16b and the hydraulic actuators 1, 3, A closed circuit is formed between 5 and 7.
  • the switching valves 49a to 49d selectively connect the closed circuit pumps 18a and 18b to any one of the plurality of hydraulic actuators 1, 3, 5, and 7, and the closed circuit pumps 18a and 18b and the hydraulic actuators 1, 3, and 3 A closed circuit is formed between 5 and 7.
  • the discharge port 13c of the open circuit pump 13a joins with the discharge port 13d of the open circuit pump 13b, and then is connected to the switching valves 44a to 44d and the bleed-off valve 64 via the merged oil passage 33a.
  • the discharge port 15c of the open circuit pump 15a and the discharge port 15d of the open circuit pump 15b are connected to the switching valves 46a to 46d and the bleed-off valve 65 after merging in the merging oil passage 33b.
  • the discharge port 17c of the open circuit pump 17a merges with the discharge port 17d of the open circuit pump 17b, and then is connected to the switching valves 48a to 48d and the bleed-off valve 66 through the merged oil passage 33c.
  • the discharge port 19c of the open circuit pump 19a joins with the discharge port 19d of the open circuit pump 19b, and then is connected to the switching valves 50a to 50d and the bleed-off valve 67 via the merged oil passage 33d.
  • the switching valve 44a is connected to the bottom side of the boom cylinder 1 via the actuator oil passage 32b.
  • the switching valve 44a opens and closes in response to a signal from the controller 41.
  • the switching valve 44a is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32b.
  • the switching valve 44a is in the communication position, and the merged oil passage 33a communicates with the actuator oil passage 32b.
  • the switching valve 44a is in the communication position, the other switching valves 44b to 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position.
  • the open circuit pumps 13a and 13b are connected to the bottom side of the boom cylinder 1 via the merged oil passage 33a and the actuator oil passage 32b.
  • the switching valve 44b is connected to the bottom side of the arm cylinder 3 via the actuator oil passage 32d.
  • the switching valve 44b opens and closes in response to a signal from the controller 41.
  • the switching valve 44b is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32d.
  • the switching valve 44b is in the communication position, and the merging oil passage 33a is electrically connected to the actuator oil passage 32d.
  • the switching valve 44b is in the communication position, the other switching valves 44a, 44c, 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position.
  • the switching valve 44b is in the communication position, the open circuit pumps 13a and 13b are connected to the bottom side of the arm cylinder 3 via the merging oil passage 33a and the actuator oil passage 32d.
  • the switching valve 44c is connected to the bottom side of the bucket cylinder 5 via the actuator oil passage 32f.
  • the switching valve 44c opens and closes in response to a signal from the controller 41.
  • the switching valve 44c is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32f.
  • the switching valve 44c is in the communication position, and the merging oil passage 33a is electrically connected to the actuator oil passage 32f.
  • the switching valve 44c is in the communication position, the other switching valves 44a, 44b, 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position.
  • the switching valve 44c is in the communication position, the open circuit pumps 13a and 13b are connected to the bottom side of the bucket cylinder 5 via the merging oil passage 33a and the actuator oil passage 32f.
  • the switching valve 44d is connected to the control valve 54 via the pressure oil supply oil passage 34.
  • the control valve 54 is connected to the left travel motor 8a via a pair of actuator oil passages 35a and 35b.
  • the switching valve 44d opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 44d is in the cutoff position, and the merged oil passage 33a is cut off from the pressure oil supply oil passage 34. On the other hand, when a signal is input from the controller 41, the switching valve 44d is in the communication position, and the merging oil passage 33a is electrically connected to the pressure oil supply oil passage.
  • the switching valve 44d when the switching valve 44d is in the communication position, the other switching valves 44a to 44c connected to the merging oil passage 33a are all controlled to be in the cutoff position.
  • the open circuit pumps 13a and 13b travel left via the merging oil passage 33a, the pressure oil supply oil passage 34, the control valve 54, and the pair of actuator oil passages 35a and 35b.
  • the control valve 54 adjusts the rotational direction and rotational speed of the left traveling motor 8a by controlling the flow of pressure oil supplied to and discharged from the left traveling motor 8a in accordance with a command from the controller 41.
  • the switching valves 44a to 44d selectively connect the open circuit pumps 13a and 13b to any one of the bottom sides of the hydraulic cylinders 1, 3, and 5 or the left traveling motor 8a.
  • the switching valves 46a to 46d selectively connect the open circuit pumps 15a and 15b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the left traveling motor 8a.
  • the switching valves 48a to 48d selectively connect the open circuit pumps 17a and 17b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the right traveling motor 8b.
  • the switching valves 50a to 50d selectively connect the open circuit pumps 19a and 19b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the right traveling motor 8b.
  • the combined oil passages 33a to 33d connected to the open circuit pumps 13a, 13b, 15a, 15b, 17a, 17b, 19a, and 19b are connected to the hydraulic oil tank 23 via bleed-off valves 64 to 67, respectively.
  • the bleed-off valves 64 to 67 are opened and closed in response to a signal from the controller 41, and a part of the pressure oil discharged from the bottom side of each hydraulic cylinder 1, 3, 5 is discharged to the hydraulic oil tank 23.
  • the switching valves 43 to 50 and the bleed-off valves 64 to 67 are integrated as a hydraulic valve block 70 and mounted on the center frame 104c (shown in FIG. 2).
  • the switching valves 43a and 44a are turned on, and pressure oil is discharged from the closed circuit pumps 12a and 12b and the open circuit pumps 13a and 13b.
  • the flow volume for four pumps flows into the bottom side of the boom cylinder 1, and the boom cylinder 1 extends.
  • the discharge flow rate from the rod side of the boom cylinder 1 is sucked into the closed circuit pumps 12a and 12b, but if the flow rate becomes excessive, it is discharged from a flushing valve (not shown) to the charge pressure line outside the closed circuit, and the flow rate is insufficient. If this happens, the hydraulic fluid is sucked into the closed circuit from the charge line via the flushing valve or makeup check valve.
  • the extension speed of the cylinder can be increased by increasing the number of hydraulic pumps connected to the boom cylinder 1.
  • the switching valves 43a, 45a, 47a, 49a, 44a, 46a, 48a, and 50a conductive, it is possible to perform a high-speed extension operation using all 16 hydraulic pumps.
  • the arm cylinder 3 and the bucket cylinder 5 can be operated in the same manner as the boom cylinder 1. Further, by selectively switching the plurality of switching valves 43 to 50 to the communication position and connecting a hydraulic pump to two or more of the plurality of hydraulic actuators 1, 3, 5, 7, 8a, 8b, a plurality of hydraulic pressures are obtained. Two or more of the actuators 1, 3, 5, 7, 8a, and 8b can be simultaneously operated (combined operation).
  • Discharge ports of a plurality of closed circuit pumps (hydraulic pumps) 12b, 14b, 16b, 18b driven by the right engine (second prime mover) 9b are pumps 2 upstream of the plurality of electromagnetic switching valves 43, 45, 47, 49.
  • the discharge ports of the plurality of open circuit pumps 13a, 15a, 17a, 19b driven by the left engine 9a and the discharge ports of the plurality of open circuit pumps 13b, 15b, 17b, 19b driven by the right engine 9b The ports are joined by two pumps on the upstream side of the plurality of electromagnetic switching valves 44, 46, 48, 50.
  • the number of switching valves 43 to 50 constituting most of the hydraulic valve block 70 can be suppressed to the same level as the hydraulic closed circuit system for one engine excavator.
  • the horizontal dimension of the hydraulic valve block 70 is kept small, and the hydraulic valve block 70 fits in the width dimension W sandwiched between the engine rooms 107 and 108, so that the hydraulic closed circuit system is replaced with a two-engine hydraulic excavator 100. Can be easily mounted. By mounting the hydraulic closed circuit system, high energy saving performance can be realized in the two-engine hydraulic excavator 100.
  • the rated capacity of the switching valves 43 to 50 may be set to double. Even if the rated flow rate is set to twice, the outer dimensions of the switching valves 43 to 50 only increase by 1.3 times (twice the third root), and the outer dimensions of the hydraulic valve block 70 are also 1.3 times. It only increases to a certain extent. Therefore, even if the rated flow rate of the switching valves 43 to 50 is doubled, the hydraulic valve block 70 can be accommodated in the width dimension W sandwiched between the engine rooms 107 and 108.
  • the switching valves 43 to 50 are selectively switched to the communication position, and the hydraulic pumps 12b to 19b driven by the right engine 9b are connected to the plurality of hydraulic actuators 1, 3, and 3. 5, 7, 8a, 8b.
  • the excavator 100 can continue to operate, or the vehicle body can be moved to a place where engine repair is possible, and downtime can be minimized. Improves.
  • the discharge oil from each of the hydraulic pumps 12a to 19a and 12b to 19b can be used.
  • Delivery filters (not shown) for removing foreign substances are not the discharge ports 12c-12f, 13c, 13d, 14c-14f, 15c, 15d, 16c-16f, 17c, 17d, 18c-18f, 19c, 19d, What is necessary is just to provide in the confluence
  • horsepower control is performed in which the discharge amount of the hydraulic pump is changed in accordance with the increase or decrease of the engine rotation speed to effectively use the engine horsepower.
  • the pump absorption horsepower is increased to increase the engine load and increase the operating speed of the actuator, and when the engine speed is lower than the set speed, the pump absorption horsepower is decreased.
  • the engine load is reduced to protect the engine from overload and prevent engine stall.
  • the pump absorption horsepower is represented by the product of the pump flow rate and the pump pressure, and the pump flow rate, that is, the pump discharge amount is controlled while observing the pump pressure so that the total absorption horsepower of the pump does not exceed the engine horsepower.
  • two hydraulic pumps are included, one each in the plurality of hydraulic pumps 12a to 19a driven by the left engine 9a and the plurality of hydraulic pumps 12b to 19b driven by the right engine 9b.
  • the discharge pressures of the closed circuit pumps 12a and 12b are equal
  • the discharge pressures of the open circuit pumps 13a and 13b are equal, and so on.
  • the total absorption horsepower of the pumps can be increased by the left engine 9a and the right engine 9b. And are equal.
  • the control of the absorption horsepower of the hydraulic pump can be made the same for each pump pair, so that the hydraulic closed circuit system includes two engines 9a and 9b and 16 hydraulic pumps 12a to 19a and 12b to 19b.
  • the hydraulic closed circuit system includes two engines 9a and 9b and 16 hydraulic pumps 12a to 19a and 12b to 19b.
  • it can be handled equivalently to a hydraulic closed circuit system for one engine excavator having one engine and eight hydraulic pumps, and the control is simplified, so that the reliability can be improved.
  • the loads of the two engines 9a and 9b are equal, the degree of aging of the engines 9a and 9b is also equal, and maintenance cycles such as oil change and overhaul can be made the same, improving long-term reliability. Can contribute.
  • FIG. 4 shows a hydraulic circuit diagram of a hydraulic closed circuit system mounted on a hydraulic excavator according to a second embodiment of the present invention.
  • the hydraulic closed circuit system according to the present embodiment is switched by combining two hydraulic pumps and then connecting to the switching valves 43 to 50.
  • the number of valves 43 to 50 is suppressed to the same level as that of a hydraulic closed circuit system for one engine excavator, and the hydraulic valve block 70 can be easily accommodated in the width dimension W sandwiched between the left and right engine rooms 107 and 108. Is an improvement.
  • the difference from the first embodiment will be mainly described.
  • one discharge port 12c of the closed circuit pump 12a driven by the left engine 9a merges with one discharge port 14c of the closed circuit pump 14a similarly driven by the left engine 9a, and then one combined oil.
  • the other discharge port 12e of the closed circuit pump 12a joins with the other discharge port 14e of the closed circuit pump 14a and is then connected via the merged oil passage 31b. 43a to 43d.
  • One discharge port 16c of the closed circuit pump 16a driven by the left engine 9a merges with one discharge port 18c of the closed circuit pump 18a similarly driven by the left engine 9a, and then passes through one merged oil passage 31c.
  • the other discharge port 16e of the closed circuit pump 16a merges with the other discharge port 18e of the closed circuit pump 18a, and then is connected to the switch valves 45a to 45d via the merged oil passage 31d. It is connected.
  • One discharge port 12d of the closed circuit pump 12b driven by the right engine 9b merges with one discharge port 14d of the closed circuit pump 14b also driven by the right engine 9b, and then passes through one merged oil passage 31e.
  • the other discharge port 12f of the closed circuit pump 12b joins with the other discharge port 14f of the closed circuit pump 14b, and then is connected to the switch valves 47a to 47d via the merged oil passage 31f. It is connected.
  • One discharge port 16d of the closed circuit pump 16b driven by the right engine 9b merges with one discharge port 18f of the closed circuit pump 18b also driven by the right engine 9b, and then passes through one merged oil passage 31g.
  • the other discharge port 16f of the closed circuit pump 16b joins with the other discharge port 18f of the closed circuit pump 18b, and then joins the changeover valves 49a to 49d via the merged oil passage 31h. It is connected.
  • the discharge port 13c of the open circuit pump 13a driven by the left engine 9a merges with the discharge port 15c of the open circuit pump 15a also driven by the left engine 9a, and then switches the switching valves 44a to 44d via the merged oil passage 33a. And a bleed-off valve 64.
  • the discharge port 17c of the open circuit pump 17a driven by the left engine 9a merges with the discharge port 19c of the open circuit pump 19a also driven by the left engine 9a, and then the switching valves 48a to 48d via the merged oil passage 33c. And a bleed-off valve 66.
  • the discharge port 13d of the open circuit pump 13b driven by the right engine 9b merges with the discharge port 15d of the open circuit pump 15b also driven by the right engine 9b, and then switches the switching valves 46a to 46d via the merged oil passage 33b. And a bleed-off valve 65.
  • the discharge port 17d of the open circuit pump 17b driven by the right engine 9b merges with the discharge port 19d of the open circuit pump 19b also driven by the right engine 9b, and then switches the switching valves 50a to 50d via the merged oil passage 33d. And a bleed-off valve 67.
  • the closed circuit pumps driven by the same engine (that is, arranged close to each other) and the open circuit pumps are merged in the engine rooms 107 and 108, and the merged pipes (merged oil paths 31a to 31a) are joined.
  • 31h, 33a to 33d) are connected to the switching valves 43 to 50, so that a total of 24 pipes (discharge ports 12c to 12f, 13c, 13d, 14c to 14f, 15c, 15d, 16c to 16f, 17c, 17d, 18c to 18f, 19c, and 19d) do not need to be routed outside the engine rooms 107 and 108, and a total of 12 pipes after joining (merging oil passages 31a to 31h, 33a to 33d) ) Only from the engine compartments 107 and 108 to the hydraulic valve block 70, so that the mountability is greatly improved as compared with the first embodiment.
  • the closest closed circuit pumps and the open circuit pumps form a pair, but the present invention is not limited to this, and the same A pair may be formed in any way as long as the closed circuit pumps arranged in the engine room and the open circuit pumps are arranged.
  • the hydraulic excavator 100 when one of the engines fails and the operation is stopped, the hydraulic excavator 100 can be operated by the other engine.
  • the boom cylinder 1 is extended by switching the switching valve 47a to the communication position and discharging the pressure oil from the closed circuit pumps 12b and 14b.
  • the switching valve 46d is switched to the communication position, pressure oil is discharged from the open circuit pumps 13b and 15b, and the control valve 54 is opened to drive the left travel motor 8a, and the switching valve 50d is switched to the communication position.
  • the right traveling motor 8b is driven by discharging pressure oil from 17b and 19b and opening the control valve 55. Thereby, the vehicle body can travel back and forth while raising the boom 2. Further, the arm 4, the bucket 6, and the turning device 102a can be driven in the same manner as the boom 1 by selectively switching the plurality of electromagnetic switching valves 43 to 50 to the communication position.
  • Example of this invention was explained in full detail, this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, and delete a part of the configuration of a certain embodiment or replace it with a part of another embodiment. Is possible.
  • the present invention is applied to a hydraulic excavator equipped with two engines.
  • the present invention is not limited to this, and the present invention is also applied to a construction machine such as a crane equipped with two engines. Applicable.
  • Controller 43a to 43d , 44a to 44d, 45a to 45d, 46a to 46d, 47a to 47d, 48a to 48d, 49a to 49d, 50a to 50d ... electromagnetic switching valve, 54, 55 ... control valve, 64 to 67 ... bleed-off valve, 70 ... Hydraulic valve block, 100 ... hydraulic excavator, 101 ... lower traveling body, 101a, 101b ... traveling device, 102 ... upper turning body, 102a ... turning device, 103 ... front device, 104 ... turning frame, 104a ... left frame, 104b ... Right frame, 104c ... Center frame, 105 ... Counterweight, 106 ... , 107 ... the left engine room, 108 ... right engine room, 109a ... left passage, 109b ... the right passage, 109c ... central passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Provided is a 2-engine construction machine capable of allowing a hydraulic closed circuit system to be more easily and efficiently mounted in the 2-engine construction machine, and achieving high energy saving performance. The hydraulic closed circuit system is further provided with a second engine (9b), at least four units of closed circuit pumps (12a, 12b, 14a, 14b, 16a, 16b, 18a, 18b) comprise closed circuit pumps (12a, 14a, 16a, 18a) driven by a first engine (9a) and closed circuit pumps (12b, 14b, 16b, 18b) driven by the second engine (9b), and the at least four units of closed circuit pumps have a connection structure in which, when a plurality of solenoid valves (43, 45, 47, 49) are selectively switched to a communication position, every two pumps merge oil discharged from one of two discharge ports on an upstream side of the plurality of solenoid valves, with the merged pressure oil being fed to the plurality of solenoid valves.

Description

建設機械Construction machinery
 本発明は、建設機械の油圧システムに関わり、特に油圧ポンプにより直接に油圧アクチュエータを駆動する油圧閉回路を用いた建設機械の油圧システムに関する。 The present invention relates to a hydraulic system for a construction machine, and more particularly to a hydraulic system for a construction machine using a hydraulic closed circuit in which a hydraulic actuator is directly driven by a hydraulic pump.
 近年、油圧ショベルやホイールローダなどの建設機械において、省エネ化が重要な開発項目になっている。建設機械の省エネ化には油圧システム自体の省エネ化が重要であり、油圧ポンプと油圧アクチュエータとを閉回路接続し両者間で直接圧油を給排する油圧閉回路を用いた油圧システム(以下「油圧閉回路システム」という。)の適用が検討されている。油圧閉回路では、制御弁による圧損がなく、必要な流量のみをポンプが吐出するため流量損失もない。また、油圧アクチュエータの位置エネルギや減速時のエネルギを回生することもできる。このため、油圧閉回路システム適用することにより、建設機械の省エネ化が可能となる。 In recent years, energy saving has become an important development item in construction machines such as hydraulic excavators and wheel loaders. To save energy in construction machinery, it is important to save energy in the hydraulic system itself. A hydraulic system that uses a closed hydraulic circuit (hereinafter referred to as “hydraulic closed circuit”) connects the hydraulic pump and hydraulic actuator in a closed circuit, and supplies and discharges the pressure oil directly between them. Application of “hydraulic closed circuit system”) is under consideration. In the hydraulic closed circuit, there is no pressure loss due to the control valve, and there is no flow rate loss because the pump discharges only the necessary flow rate. Further, the potential energy of the hydraulic actuator and the energy during deceleration can be regenerated. For this reason, it is possible to save energy in the construction machine by applying the hydraulic closed circuit system.
 建設機械に適用した油圧閉回路システムを開示するものとして、例えば特許文献1がある。特許文献1には、複数の油圧ポンプのそれぞれを複数の油圧アクチュエータのいずれか1つに電磁切換弁を介して選択的に閉回路接続することにより、油圧アクチュエータの複合動作と高速動作を可能にした構成が記載されている。 For example, Patent Document 1 discloses a hydraulic closed circuit system applied to a construction machine. In Patent Document 1, each of a plurality of hydraulic pumps is selectively closed-circuited to any one of a plurality of hydraulic actuators via an electromagnetic switching valve, thereby enabling combined operation and high-speed operation of the hydraulic actuators. The configuration is described.
特開2015-48899号公報JP 2015-48899 A
 例えば鉱山用の超大型ショベルは、2台のエンジン(又は電動機)を備えている。このような2台のエンジンを備えた建設機械に油圧閉回路システムを適用する方法として、特許文献1に記載の1エンジンショベル用の油圧閉回路システムを2つ搭載することが考えられる。 For example, an ultra-large excavator for a mine has two engines (or electric motors). As a method of applying the hydraulic closed circuit system to such a construction machine having two engines, it is conceivable to mount two hydraulic closed circuit systems for one engine excavator described in Patent Document 1.
 ここで、特許文献1に記載の油圧閉回路システムは、複数の両方向吐出型の油圧ポンプをそれぞれ複数の油圧アクチュエータに閉回路接続可能とするため、多数の電磁切換弁を備えている。そして、これら多数の電磁切換弁によって油圧弁ブロックの大部分が構成されることにより、油圧弁ブロックの長手方向(左右方向)の寸法は電磁切換弁の数に比例して大きくなる。そのため、特許文献1に記載の油圧閉回路システムを2つ搭載する場合、切換弁の数が2倍になることで油圧弁ブロックの左右方向の寸法が約2倍に拡大する。 Here, the hydraulic closed circuit system described in Patent Document 1 includes a large number of electromagnetic switching valves so that a plurality of bidirectional discharge hydraulic pumps can be connected in a closed circuit to a plurality of hydraulic actuators. And since most of the hydraulic valve block is constituted by these many electromagnetic switching valves, the longitudinal dimension (left-right direction) of the hydraulic valve block increases in proportion to the number of electromagnetic switching valves. For this reason, when two hydraulic closed circuit systems described in Patent Document 1 are mounted, the size of the hydraulic valve block in the left-right direction is approximately doubled by doubling the number of switching valves.
 しかしながら、2エンジン式の超大型ショベルでは、機体容積が1エンジンショベルの例えば2倍に増えても、油圧弁ブロックの搭載スペースの左右方向の寸法(幅寸法)は1.3倍(2倍の3乗根)程度しか増えず、また、トラックで運搬可能なサイズに分割できる車体構造を備える都合上、油圧弁ブロックの搭載スペースの幅寸法を2倍に拡張することもできない。このため、2倍の数の電磁切換弁を左右一列に配置した油圧弁ブロックを1.3倍の幅寸法に収めることは困難である。また、油圧弁ブロックの上下、前後方向の各寸法も同様に1.3倍(2倍の3乗根)程度しか増えないため、油圧弁ブロックを2つに分割し、上下、前後方向に2つ並べて配置することも困難である。従って、2エンジン式の超大型ショベルに特許文献1に記載の1エンジンショベル用の油圧閉回路システムを2つ搭載することは容易ではない。 However, in a two-engine super-large excavator, the horizontal dimension (width dimension) of the mounting space for the hydraulic valve block is 1.3 times (2 times the size) even if the fuselage volume is increased to twice that of one engine excavator, for example. The width of the mounting space for the hydraulic valve block cannot be doubled due to the provision of a vehicle body structure that can be divided into sizes that can be transported by truck. For this reason, it is difficult to fit a hydraulic valve block in which a double number of electromagnetic switching valves are arranged in a single row on the left and right sides to a width of 1.3 times. Similarly, the vertical and longitudinal dimensions of the hydraulic valve block are also increased by about 1.3 times (twice the cube root), so the hydraulic valve block is divided into two parts, and the vertical and longitudinal dimensions are 2 It is also difficult to arrange them side by side. Therefore, it is not easy to mount two hydraulic closed circuit systems for one engine excavator described in Patent Document 1 on a two-engine super large excavator.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、油圧閉回路システムの2エンジン式の建設機械への搭載性を向上し、高い省エネ性を実現できる2エンジン式の建設機械を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the mountability of a hydraulic closed circuit system on a two-engine construction machine and realize high energy saving. Is to provide.
 上記目的を達成するために、本発明は、下部走行体と、この下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に上下方向に回動可能に取り付けられたフロント装置とを備え、かつ第1原動機と、2つの吐出ポートをする閉回路用の複数の油圧ポンプと、複数の油圧アクチュエータと、複数の電磁切換弁とを備え、前記複数の電磁切換弁を選択的に連通位置に切り換えることで、前記複数の油圧ポンプの2つの吐出ポートが前記複数の油圧アクチュエータの少なくとも一部のものに選択的に接続され、前記複数の油圧ポンプと前記複数の油圧アクチュエータの少なくとも一部のものとの間に閉回路を形成する油圧閉回路システムを備えた建設機械において、前記油圧閉回路システムは第2原動機を更に備え、前記複数の油圧ポンプは少なくとも4台の油圧ポンプを含み、前記少なくとも4台の油圧ポンプは前記第1原動機によって駆動される油圧ポンプと、前記第2原動機によって駆動される油圧ポンプとを含み、少なくとも4台の前記油圧ポンプは、前記複数の電磁切換弁が選択的に連通位置に切り換えられたときに、2つの前記吐出ポートの一方からの吐出油を前記複数の電磁切換弁の上流側においてポンプ2台ずつで合流させ、この合流した圧油が前記複数の電磁切換弁に供給される接続構造を有するものとする。 In order to achieve the above object, the present invention provides a lower traveling body, an upper revolving body that is rotatably mounted on the lower traveling body, and a front device that is rotatably attached to the upper revolving body in the vertical direction. And a first prime mover, a plurality of hydraulic pumps for closed circuit having two discharge ports, a plurality of hydraulic actuators, and a plurality of electromagnetic switching valves, and selectively selecting the plurality of electromagnetic switching valves The two discharge ports of the plurality of hydraulic pumps are selectively connected to at least some of the plurality of hydraulic actuators, and at least one of the plurality of hydraulic pumps and the plurality of hydraulic actuators is switched to the communication position. In a construction machine including a hydraulic closed circuit system that forms a closed circuit with a part of the machine, the hydraulic closed circuit system further includes a second prime mover, and the plurality of hydraulic pressures The pump includes at least four hydraulic pumps, and the at least four hydraulic pumps include a hydraulic pump driven by the first prime mover and a hydraulic pump driven by the second prime mover, and at least four of the hydraulic pumps In the hydraulic pump, when the plurality of electromagnetic switching valves are selectively switched to the communication position, two pumps discharge oil from one of the two discharge ports upstream of the plurality of electromagnetic switching valves. It has a connection structure in which the joined pressure oil is supplied to the plurality of electromagnetic switching valves.
 以上のように構成した本発明によれば、第1原動機によって駆動される油圧ポンプの吐出ポートと第2原動機によって駆動される油圧ポンプの吐出ポートとを複数の電磁切換弁の上流側においてポンプ2台ずつで合流させたことにより、油圧弁ブロックの大部分を構成する電磁切換弁の数を1エンジンショベル用の油圧閉回路システムと同程度に抑えることができる。これにより、油圧弁ブロックの各寸法が小さく抑えられるため、油圧閉回路システムを2エンジン式の油圧ショベルに容易に搭載することできる。そして、油圧閉回路システムを搭載することにより、2エンジン式の建設機械において高い省エネ性を実現することできる。 According to the present invention configured as above, the discharge port of the hydraulic pump driven by the first prime mover and the discharge port of the hydraulic pump driven by the second prime mover are connected to the pump 2 upstream of the plurality of electromagnetic switching valves. By joining the units one by one, the number of electromagnetic switching valves constituting most of the hydraulic valve block can be suppressed to the same level as the hydraulic closed circuit system for one engine excavator. As a result, each dimension of the hydraulic valve block can be kept small, so that the hydraulic closed circuit system can be easily mounted on a two-engine hydraulic excavator. By installing a hydraulic closed circuit system, it is possible to achieve high energy savings in a two-engine construction machine.
 本発明によれば、油圧閉回路システムの2エンジン式の建設機械への搭載性が向上し、2エンジン式の建設機械において高い省エネ性を実現することができる。 According to the present invention, the mountability of the hydraulic closed circuit system on a two-engine construction machine is improved, and high energy saving can be realized in the two-engine construction machine.
本発明の第1の実施例に係る油圧ショベルの側面図である。1 is a side view of a hydraulic excavator according to a first embodiment of the present invention. 図1に示す上部旋回体の水平断面図である。FIG. 2 is a horizontal sectional view of the upper swing body shown in FIG. 1. 図1に示す油圧ショベルに搭載された油圧閉回路システムの油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on the hydraulic excavator shown in FIG. 1. 本発明の第2の実施例に係る油圧ショベルに搭載された油圧閉回路システムの油圧回路図である。It is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on a hydraulic excavator according to a second embodiment of the present invention.
 以下、本発明の実施の形態に係る建設機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。 Hereinafter, a hydraulic excavator will be described as an example of a construction machine according to an embodiment of the present invention and will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to an equivalent member and the overlapping description is abbreviate | omitted suitably.
 図1は、本発明の第1の実施例に係る油圧ショベルの側面図である。図2は、図1に示す上部旋回体102の水平断面図である。図3は、図1に示す油圧ショベル100に搭載された油圧閉回路システムの油圧回路図である。 FIG. 1 is a side view of a hydraulic excavator according to a first embodiment of the present invention. FIG. 2 is a horizontal sectional view of the upper swing body 102 shown in FIG. FIG. 3 is a hydraulic circuit diagram of a hydraulic closed circuit system mounted on the hydraulic excavator 100 shown in FIG.
 図1に示すように、油圧ショベル100は、クローラ式の左右の走行装置101a,101bを装備した下部走行体101と、この下部走行体101上に旋回装置102aを介して旋回可能に搭載された上部旋回体102と、この上部旋回体102の前側に上下方向に回動可能に取り付けられたフロント装置103とを備えている。走行装置101a,101bは油圧モータ(以下「走行モータ」という。)8a,8bによって駆動され、旋回装置102aは油圧モータ(以下「旋回モータ」という。)7によって駆動される。 As shown in FIG. 1, a hydraulic excavator 100 is mounted on a lower traveling body 101 equipped with crawler-type left and right traveling apparatuses 101a and 101b, and on the lower traveling body 101 so as to be capable of turning via a turning device 102a. The upper swing body 102 and a front device 103 attached to the front side of the upper swing body 102 so as to be rotatable in the vertical direction are provided. The traveling devices 101 a and 101 b are driven by hydraulic motors (hereinafter referred to as “traveling motors”) 8 a and 8 b, and the turning device 102 a is driven by a hydraulic motor (hereinafter referred to as “swing motor”) 7.
 上部旋回体102は、旋回フレーム104と、カウンタウエイト105と、キャブ106とを備えている。旋回フレーム104は、上部旋回体102の基礎下部構造であり、この旋回フレーム104の前部には、フロント装置103が上下方向に回動可能に取り付けられている。旋回フレーム104の後端側には、フロント装置103との重量バランスをとるカウンタウエイト105が設けられている。旋回フレーム104の前部左側であってフロント装置103の左側には、オペレータが搭乗するキャブ106が設けられている。 The upper swing body 102 includes a swing frame 104, a counterweight 105, and a cab 106. The turning frame 104 is a basic lower structure of the upper turning body 102, and a front device 103 is attached to the front portion of the turning frame 104 so as to be rotatable in the vertical direction. A counterweight 105 that balances the weight with the front device 103 is provided on the rear end side of the revolving frame 104. A cab 106 on which an operator rides is provided on the left side of the front part 103 and on the left side of the front part of the turning frame 104.
 フロント装置103は、基端部が旋回フレーム104の前部に上下方向に回動可能に取り付けられたブーム2と、このブーム2の先端部に上下、前後方向に回動可能に取り付けられたアーム4と、このアーム4の先端部に上下、前後方向に回動可能に取り付けられたバケット6、ブーム2を回動させる片ロッド式油圧シリンダ(以下「ブームシリンダ」という。)1と、アーム4を回動させる片ロッド式油圧シリンダ(以下「アームシリンダ」という。)3と、バケット6を回動させる片ロッド式油圧シリンダ(以下「バケットシリンダ」という。)5とを備えている。 The front device 103 includes a boom 2 whose base end is attached to the front portion of the swing frame 104 so as to be rotatable in the vertical direction, and an arm that is attached to the distal end portion of the boom 2 so as to be rotatable in the vertical and forward / backward directions. 4, a bucket 6 attached to the tip of the arm 4 so as to be pivotable in the vertical and longitudinal directions, a single rod hydraulic cylinder (hereinafter referred to as “boom cylinder”) 1 for pivoting the boom 2, and an arm 4. Are provided with a single rod hydraulic cylinder (hereinafter referred to as “arm cylinder”) 3 and a single rod hydraulic cylinder (hereinafter referred to as “bucket cylinder”) 5 for rotating the bucket 6.
 図2に示すように、上部旋回体102は、旋回フレーム104上の左側(図2中下側)に配設された左エンジンルーム(第1機械室)107と、旋回フレーム104上の右側(図2中上側)に配設された右エンジンルーム(第2機械室)108とを有する。これら左右のエンジンルーム107,108の各後方側には、出力が等しい2台のエンジン(又は電動機)9a,9bがそれぞれ搭載されている。以降適宜、左エンジンルーム107に搭載されたエンジン9aを「左エンジン」、右エンジンルーム108に搭載されたエンジン9bを「右エンジン」と呼称する。各エンジン9a,9bは、複数の歯車列からなる動力伝達装置10a,10bを介して複数の油圧ポンプ12a~19a,12b~19bを駆動する。これら複数の油圧ポンプ12a~19a,12b~19bから吐出された圧油は図示しない配管を介して多数の電磁切換弁等からなる後述の油圧弁ブロック70に供給される。 As shown in FIG. 2, the upper-part turning body 102 includes a left engine room (first machine room) 107 disposed on the left side (lower side in FIG. 2) on the turning frame 104 and a right side ( And a right engine room (second machine room) 108 disposed on the upper side in FIG. Two engines (or electric motors) 9a and 9b having the same output are mounted on the rear sides of the left and right engine rooms 107 and 108, respectively. Hereinafter, as appropriate, the engine 9a mounted in the left engine room 107 is referred to as a “left engine”, and the engine 9b mounted in the right engine room 108 is referred to as a “right engine”. Each engine 9a, 9b drives a plurality of hydraulic pumps 12a-19a, 12b-19b via power transmission devices 10a, 10b comprising a plurality of gear trains. The pressure oil discharged from the plurality of hydraulic pumps 12a to 19a, 12b to 19b is supplied to a hydraulic valve block 70, which will be described later, including a large number of electromagnetic switching valves and the like through piping (not shown).
 左右のエンジン9a,9bの各後方には、それぞれラジエータ20a,20bが配置されている。左右のエンジン9a,9bの各後方側には、ラジエータ用冷却ファン21a,21bが取り付けられている。ラジエータ用冷却ファン21a,21bは左右のエンジン9a,9bによって駆動され、生起した冷却風をラジエータ20a,20bに供給する。これにより、ラジエータ20a,20bは左右のエンジン9a,9bにより加熱されたエンジン冷却水を冷却風と熱交換するようになっている。 Radiators 20a and 20b are disposed behind the left and right engines 9a and 9b, respectively. Radiator cooling fans 21a and 21b are attached to the rear sides of the left and right engines 9a and 9b, respectively. The radiator cooling fans 21a and 21b are driven by the left and right engines 9a and 9b to supply the generated cooling air to the radiators 20a and 20b. Thus, the radiators 20a and 20b exchange the heat of the engine cooling water heated by the left and right engines 9a and 9b with the cooling air.
 左右のエンジンルーム107,108の間には、左右のエンジン9a,9bの燃料を貯留する燃料タンク22と、油圧ポンプ12a~19a,12b~19bの作動油を貯留する作動油タンク23とが配置されている。左右のエンジンルーム107,108の間でかつ燃料タンク22及び作動油タンク23の前方側には、油圧ポンプ12a~19a,12b~19bから油圧アクチュエータ1,3,5,7,8a,8bへの圧油の流れを制御する油圧弁ブロック70が配置されている。 Between the left and right engine rooms 107 and 108, a fuel tank 22 for storing the fuel of the left and right engines 9a and 9b and a hydraulic oil tank 23 for storing the hydraulic oil of the hydraulic pumps 12a to 19a and 12b to 19b are arranged. Has been. Between the left and right engine rooms 107 and 108 and on the front side of the fuel tank 22 and the hydraulic oil tank 23, hydraulic pumps 12a to 19a and 12b to 19b are connected to the hydraulic actuators 1, 3, 5, 7, 8a and 8b. A hydraulic valve block 70 for controlling the flow of pressure oil is disposed.
 右エンジンルーム108の前方側には、オイルクーラ24と、このオイルクーラ24に付設したオイルクーラ用冷却ファン25が配置されている。このオイルクーラ用冷却ファン25がモータ駆動され、生起した冷却風をオイルクーラ24に供給する。これにより、オイルクーラ24は油圧アクチュエータ1,3,5,7,8a,8bからの戻り油を冷却風と熱交換し、作動油タンク23に還流するようになっている。 An oil cooler 24 and an oil cooler cooling fan 25 attached to the oil cooler 24 are disposed on the front side of the right engine room 108. The oil cooler cooling fan 25 is driven by a motor to supply the generated cooling air to the oil cooler 24. As a result, the oil cooler 24 exchanges heat with the cooling air from the return oil from the hydraulic actuators 1, 3, 5, 7, 8 a, 8 b and returns to the hydraulic oil tank 23.
 上部旋回体102の左側には左側通路109aが形成され、上部旋回体102の右側には右側通路109bが形成され、上部旋回体102の中央部には略L字形状の中央通路109cが形成されている。 A left passage 109 a is formed on the left side of the upper swing body 102, a right passage 109 b is formed on the right side of the upper swing body 102, and a substantially L-shaped central passage 109 c is formed at the center of the upper swing body 102. ing.
 上部旋回体102は、トラックに載せて鉱山現地まで輸送するために分割できる構造となっており、左フレーム104aを基礎とする左側部分、右フレーム104bを基礎とする右側部分、センターフレーム104cを基礎とする中央部分及びカウンタウエイト105の少なくとも4つに分割される。ここで、旋回フレーム104は、センターフレーム104cに左右のフレーム104a,104bを載せて締結する構造となっており、左右のフレーム104a,104bには左右のエンジンルーム107,108がそれぞれ載っている。このため、油圧弁ブロック70は2つのエンジンルーム107、108に挟まれた幅寸法Wに収める必要がある。 The upper turning body 102 has a structure that can be divided for mounting on a truck to be transported to the mine site. The left part is based on the left frame 104a, the right part is based on the right frame 104b, and the center frame 104c is the basis. And the counterweight 105 is divided into at least four. Here, the turning frame 104 has a structure in which the left and right frames 104a and 104b are mounted on the center frame 104c and fastened, and the left and right engine rooms 107 and 108 are mounted on the left and right frames 104a and 104b, respectively. For this reason, the hydraulic valve block 70 needs to be accommodated in the width dimension W sandwiched between the two engine rooms 107 and 108.
 ここで、2エンジン式の油圧ショベル100に従来の1エンジンショベル用の油圧閉回路システムを2つ搭載しようとした場合、油圧弁ブロック70の大部分を占める多数の電磁切換弁の数が2倍に増えることで油圧弁ブロック70の長手方向(左右方向)の寸法が約2倍に増える。しかし、2エンジン式の油圧ショベル100では、機体容積が例えば2倍に増えても、油圧弁ブロック70の搭載スペースの左右方向の寸法(幅寸法W)は1.3倍(2倍の3乗根)程度しか増えず、また、上述した輸送サイズの制約があるため、幅寸法Wを2倍に拡げることもできない。そのため、切換弁を左右一列に配置した油圧弁ブロック70を幅寸法Wに収めることは困難である。また、油圧弁ブロック70の上下、前後方向の各寸法も同様に1.3倍(2倍の3乗根)程度しか増えないため、油圧弁ブロック70を2つに分割し、上下、前後方向に2つ並べて配置することも困難である。そのため、2エンジン式の油圧ショベル100に従来の1エンジンショベル用の油圧閉回路システムを2つ搭載することは容易ではない。 Here, when two conventional hydraulic closed circuit systems for a single engine excavator are to be mounted on the two-engine hydraulic excavator 100, the number of electromagnetic switching valves occupying most of the hydraulic valve block 70 is doubled. As a result, the dimension in the longitudinal direction (left-right direction) of the hydraulic valve block 70 is increased approximately twice. However, in the two-engine hydraulic excavator 100, even if the body volume increases, for example, twice, the horizontal dimension (width dimension W) of the mounting space of the hydraulic valve block 70 is 1.3 times (twice the third power). Root) only increases, and because of the restrictions on the transport size described above, the width W cannot be doubled. Therefore, it is difficult to fit the hydraulic valve block 70 in which the switching valves are arranged in the left and right rows within the width dimension W. Similarly, each dimension in the vertical and longitudinal directions of the hydraulic valve block 70 is also increased by about 1.3 times (twice the third root), so the hydraulic valve block 70 is divided into two, and the vertical and longitudinal directions. It is also difficult to arrange two of them side by side. Therefore, it is not easy to mount two conventional hydraulic closed circuit systems for one engine excavator on the two-engine hydraulic excavator 100.
 そこで、本発明では図3の油圧回路図に示すように、油圧ポンプを2台ずつ合流した後に電磁切換弁に接続する構成とすることで、電磁切換弁の数を1エンジンショベルの油圧閉回路システムと同程度に抑え、油圧弁ブロックが図2で示した幅寸法Wに容易に収まるようにして搭載性を向上させた。 Therefore, in the present invention, as shown in the hydraulic circuit diagram of FIG. 3, two hydraulic pumps are joined together and then connected to the electromagnetic switching valve, so that the number of electromagnetic switching valves is reduced to the hydraulic closed circuit of one engine excavator. The mounting performance was improved by keeping the hydraulic valve block within the width W shown in FIG.
 以下、図3の油圧回路図について説明する。なお、油圧閉回路には通常回路圧を保持するためのチャージポンプや、閉回路内の油の過不足を補償するためのフラッシング弁、メイクアップチェック弁、回路の最高圧を規定し回路を保護するためのリリーフ弁などが設けられるが、ここでは表記上の煩雑さを避けるために省略してある。 Hereinafter, the hydraulic circuit diagram of FIG. 3 will be described. Note that the closed circuit for the hydraulic circuit protects the circuit by specifying a charge pump for maintaining the normal circuit pressure, a flushing valve for compensating for excess or deficiency of oil in the closed circuit, a make-up check valve, and the maximum circuit pressure. A relief valve or the like is provided for the purpose of illustration, but is omitted here in order to avoid complication of notation.
 図3において、左エンジン9aは、動力伝達装置10aを介して両方向吐出型で可変容量式の油圧ポンプ(以下適宜「閉回路ポンプ」という。)12a,14a,16a,18a、一方向吐出型で可変容量式の油圧ポンプ(以下適宜「開回路ポンプ」という。)13a,15a,17a,19aを駆動する。右エンジン9bは、動力伝達装置10bを介して閉回路ポンプ12b,14b,16b,18b、開回路ポンプ13b,15b,17b,19bを駆動する。 In FIG. 3, the left engine 9a is a bi-directional discharge type variable displacement hydraulic pump (hereinafter referred to as “closed circuit pump” as appropriate) 12a, 14a, 16a, 18a, a one-way discharge type via a power transmission device 10a. Variable displacement hydraulic pumps (hereinafter referred to as “open circuit pumps” as appropriate) 13a, 15a, 17a, 19a are driven. The right engine 9b drives the closed circuit pumps 12b, 14b, 16b, 18b and the open circuit pumps 13b, 15b, 17b, 19b via the power transmission device 10b.
 閉回路ポンプ12aの一方の吐出ポート12cは、閉回路ポンプ12bの一方の吐出ポート12dと合流した後に一方の合流油路31aを介して電磁切換弁(以下単に「切換弁」という。)43a~43dに接続され、閉回路ポンプ12aの他方の吐出ポート12eは、閉回路ポンプ12bの他方の吐出ポート12fと合流した後に、他方の合流油路31bを介して切換弁43a~43dに接続されている。 One discharge port 12c of the closed circuit pump 12a joins with one discharge port 12d of the closed circuit pump 12b, and then merges with an electromagnetic switching valve (hereinafter simply referred to as “switching valve”) 43a to 43c via one combined oil passage 31a. The other discharge port 12e of the closed circuit pump 12a is connected to the other discharge port 12f of the closed circuit pump 12b and then connected to the switching valves 43a to 43d via the other combined oil passage 31b. Yes.
 閉回路ポンプ14aの一方の吐出ポート14cは、閉回路ポンプ14bの一方の吐出ポート14dと合流した後に一方の合流油路31cを介して切換弁45a~45dに接続され、閉回路ポンプ14aの他方の吐出ポート14eは、閉回路ポンプ14bの他方の吐出ポート14fと合流した後に、他方の合流油路31dを介して切換弁45a~45dに接続されている。 One discharge port 14c of the closed circuit pump 14a merges with one discharge port 14d of the closed circuit pump 14b and is connected to the switching valves 45a to 45d via one merged oil passage 31c, and the other of the closed circuit pump 14a. The discharge port 14e joins with the other discharge port 14f of the closed circuit pump 14b, and is then connected to the switching valves 45a to 45d via the other combined oil passage 31d.
 閉回路ポンプ16aの一方の吐出ポート16cは、閉回路ポンプ16bの一方の吐出ポート16dと合流した後に一方の合流油路31eを介して切換弁47a~47dに接続され、閉回路ポンプ16aの他方の吐出ポート16eは、閉回路ポンプ16bの他方の吐出ポート16fと合流した後に、他方の合流油路31fを介して切換弁47a~47dに接続されている。 One discharge port 16c of the closed circuit pump 16a joins with one of the discharge ports 16d of the closed circuit pump 16b and then is connected to the switching valves 47a to 47d through one merged oil passage 31e, and the other of the closed circuit pump 16a. The discharge port 16e joins with the other discharge port 16f of the closed circuit pump 16b, and then is connected to the switching valves 47a to 47d via the other combined oil passage 31f.
 閉回路ポンプ18aの一方の吐出ポート18cは、閉回路ポンプ18bの一方の吐出ポート18dと合流した後に一方の合流油路31gを介して切換弁49a~49dに接続され、閉回路ポンプ18aの他方の吐出ポート18eは、閉回路ポンプ18bの他方の吐出ポート18fと合流した後に、他方の合流油路31hを介して切換弁49a~49dに接続されている。 One discharge port 18c of the closed circuit pump 18a joins with one of the discharge ports 18d of the closed circuit pump 18b and then is connected to the switching valves 49a to 49d via one merged oil passage 31g, and the other of the closed circuit pump 18a. The discharge port 18e joins with the other discharge port 18f of the closed circuit pump 18b and is then connected to the switching valves 49a to 49d via the other combined oil passage 31h.
 切換弁43aは、一対のアクチュエータ油路32a,32bを介してブームシリンダ1に接続されている。切換弁43aは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁43aは遮断位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32a,32bから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁43aは連通位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32a,32bと導通する。ここで、切換弁43aが連通位置にあるときは、一対の合流油路31a,31bに接続されている他の切換弁43b,43c,43dは全て遮断位置となるように制御される。これにより、切換弁43aが連通位置にあるときは、閉回路ポンプ12a,12bが一対の合流油路31a,31b及び一対のアクチュエータ油路32a,32bを介してブームシリンダ1に閉回路接続される。 The switching valve 43a is connected to the boom cylinder 1 via a pair of actuator oil passages 32a and 32b. The switching valve 43a opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 43a is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32a and 32b. On the other hand, when a signal is input from the controller 41, the switching valve 43a is in the communication position, and the pair of merging oil passages 31a and 31b are electrically connected to the pair of actuator oil passages 32a and 32b. Here, when the switching valve 43a is in the communication position, the other switching valves 43b, 43c, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position. Thus, when the switching valve 43a is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the boom cylinder 1 via the pair of merged oil passages 31a and 31b and the pair of actuator oil passages 32a and 32b. .
 切換弁43bは、一対のアクチュエータ油路32c,32dを介してアームシリンダ3に接続されている。切換弁43bは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁43bは遮断位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32c,32dから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁43bは連通位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32c,32dと連通する。ここで、切換弁43bが連通位置にあるときは、一対の合流油路31a,31bに接続されている他の切換弁43a,43c,43dは全て遮断位置となるように制御される。これにより、切換弁43bが連通位置にあるときは、閉回路ポンプ12a,12bが一対の合流油路31a,31b及び一対のアクチュエータ油路32c,32dを介してアームシリンダ3に閉回路接続される。 The switching valve 43b is connected to the arm cylinder 3 via a pair of actuator oil passages 32c and 32d. The switching valve 43b opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 43b is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32c and 32d. On the other hand, when a signal is input from the controller 41, the switching valve 43b is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32c and 32d. Here, when the switching valve 43b is in the communication position, the other switching valves 43a, 43c, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position. Thus, when the switching valve 43b is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the arm cylinder 3 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32c and 32d. .
 切換弁43cは、一対のアクチュエータ油路32e,32fを介してバケットシリンダ5に接続されている。切換弁43cは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁43cは遮断位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32e,32fから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁43cは連通位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32e,32fと連通する。ここで、切換弁43cが連通位置にあるときは、一対の合流油路31a,31bに接続されている他の切換弁43a,43b,43dは全て遮断位置となるように制御される。これにより、切換弁43cが連通位置にあるときは、閉回路ポンプ12a,12bが一対の合流油路31a,31b及び一対のアクチュエータ油路32e,32fを介してバケットシリンダ5に閉回路接続される。 The switching valve 43c is connected to the bucket cylinder 5 through a pair of actuator oil passages 32e and 32f. The switching valve 43c opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 43c is in the shut-off position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32e and 32f. On the other hand, when a signal is input from the controller 41, the switching valve 43c is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32e and 32f. Here, when the switching valve 43c is in the communication position, the other switching valves 43a, 43b, 43d connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position. Thus, when the switching valve 43c is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the bucket cylinder 5 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32e and 32f. .
 切換弁43dは、一対のアクチュエータ油路32g,32hを介して旋回モータ7に接続されている。切換弁43dは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁43dは遮断位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32g,32hから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁43dは連通位置にあり、一対の合流油路31a,31bは一対のアクチュエータ油路32g,32hと連通する。ここで、切換弁43dが連通位置にあるときは、一対の合流油路31a,31bに接続されている他の切換弁43a,43b,43cは全て遮断位置となるように制御される。これにより、切換弁43dが連通位置にあるときは、閉回路ポンプ12a,12bが一対の合流油路31a,31b及び一対のアクチュエータ油路32g,32hを介して旋回モータ7に閉回路接続される。 The switching valve 43d is connected to the turning motor 7 through a pair of actuator oil passages 32g and 32h. The switching valve 43d opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 43d is in the cutoff position, and the pair of combined oil passages 31a and 31b are shut off from the pair of actuator oil passages 32g and 32h. On the other hand, when a signal is input from the controller 41, the switching valve 43d is in the communication position, and the pair of merging oil passages 31a and 31b communicate with the pair of actuator oil passages 32g and 32h. Here, when the switching valve 43d is in the communication position, the other switching valves 43a, 43b, 43c connected to the pair of merging oil passages 31a, 31b are all controlled to be in the blocking position. Thus, when the switching valve 43d is in the communication position, the closed circuit pumps 12a and 12b are closed circuit connected to the swing motor 7 via the pair of merging oil passages 31a and 31b and the pair of actuator oil passages 32g and 32h. .
 このように、切換弁43a~43dは、閉回路ポンプ12a,12bを複数の油圧アクチュエータ1,3,5,7のいずれか1つに選択的に接続し、閉回路ポンプ12a,12bと油圧アクチュエータ1,3,5,7との間に閉回路を形成する。同様に、切換弁45a~45dは、閉回路ポンプ14a,12bを複数の油圧アクチュエータ1,3,5,7のいずれか1つに選択的に接続し、閉回路ポンプ12a,12bと油圧アクチュエータ1,3,5,7との間に閉回路を形成する。切換弁47a~47dは、閉回路ポンプ16a,16を複数の油圧アクチュエータ1,3,5,7のいずれか1つに選択的に接続し、閉回路ポンプ16a,16bと油圧アクチュエータ1,3,5,7との間に閉回路を形成する。切換弁49a~49dは、閉回路ポンプ18a,18bを複数の油圧アクチュエータ1,3,5,7のいずれか1つに選択的に接続し、閉回路ポンプ18a,18bと油圧アクチュエータ1,3,5,7との間に閉回路を形成する。 Thus, the switching valves 43a to 43d selectively connect the closed circuit pumps 12a and 12b to any one of the plurality of hydraulic actuators 1, 3, 5, and 7, and the closed circuit pumps 12a and 12b and the hydraulic actuators A closed circuit is formed between 1, 3, 5, and 7. Similarly, the switching valves 45a to 45d selectively connect the closed circuit pumps 14a and 12b to any one of the plurality of hydraulic actuators 1, 3, 5 and 7, and the closed circuit pumps 12a and 12b and the hydraulic actuator 1 , 3, 5 and 7 form a closed circuit. The switching valves 47a to 47d selectively connect the closed circuit pumps 16a, 16 to any one of the plurality of hydraulic actuators 1, 3, 5, 7, and the closed circuit pumps 16a, 16b and the hydraulic actuators 1, 3, A closed circuit is formed between 5 and 7. The switching valves 49a to 49d selectively connect the closed circuit pumps 18a and 18b to any one of the plurality of hydraulic actuators 1, 3, 5, and 7, and the closed circuit pumps 18a and 18b and the hydraulic actuators 1, 3, and 3 A closed circuit is formed between 5 and 7.
 開回路ポンプ13aの吐出ポート13cは、開回路ポンプ13bの吐出ポート13dと合流した後に、合流油路33aを介して切換弁44a~44d及びブリードオフ弁64に接続されている。開回路ポンプ15aの吐出ポート15cと開回路ポンプ15bの吐出ポート15dは、合流油路33bにて合流した後に切換弁46a~46d及びブリードオフ弁65に接続されている。開回路ポンプ17aの吐出ポート17cは、開回路ポンプ17bの吐出ポート17dと合流した後に、合流油路33cを介して切換弁48a~48d及びブリードオフ弁66に接続されている。開回路ポンプ19aの吐出ポート19cは、開回路ポンプ19bの吐出ポート19dと合流した後に、合流油路33dを介して切換弁50a~50d及びブリードオフ弁67に接続されている。 The discharge port 13c of the open circuit pump 13a joins with the discharge port 13d of the open circuit pump 13b, and then is connected to the switching valves 44a to 44d and the bleed-off valve 64 via the merged oil passage 33a. The discharge port 15c of the open circuit pump 15a and the discharge port 15d of the open circuit pump 15b are connected to the switching valves 46a to 46d and the bleed-off valve 65 after merging in the merging oil passage 33b. The discharge port 17c of the open circuit pump 17a merges with the discharge port 17d of the open circuit pump 17b, and then is connected to the switching valves 48a to 48d and the bleed-off valve 66 through the merged oil passage 33c. The discharge port 19c of the open circuit pump 19a joins with the discharge port 19d of the open circuit pump 19b, and then is connected to the switching valves 50a to 50d and the bleed-off valve 67 via the merged oil passage 33d.
 切換弁44aは、アクチュエータ油路32bを介してブームシリンダ1のボトム側に接続されている。切換弁44aは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁44aは遮断位置にあり、合流油路33aはアクチュエータ油路32bから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁44aは連通位置にあり、合流油路33aはアクチュエータ油路32bと連通する。ここで、切換弁44aが連通位置にあるときは、合流油路33aに接続されている他の切換弁44b~44dは全て遮断位置となるように制御される。これにより、切換弁44aが連通位置にあるときは、開回路ポンプ13a,13bが合流油路33a及びアクチュエータ油路32bを介してブームシリンダ1のボトム側に接続される。 The switching valve 44a is connected to the bottom side of the boom cylinder 1 via the actuator oil passage 32b. The switching valve 44a opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 44a is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32b. On the other hand, when a signal is input from the controller 41, the switching valve 44a is in the communication position, and the merged oil passage 33a communicates with the actuator oil passage 32b. Here, when the switching valve 44a is in the communication position, the other switching valves 44b to 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position. Thus, when the switching valve 44a is in the communication position, the open circuit pumps 13a and 13b are connected to the bottom side of the boom cylinder 1 via the merged oil passage 33a and the actuator oil passage 32b.
 切換弁44bは、アクチュエータ油路32dを介してアームシリンダ3のボトム側に接続されている。切換弁44bは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁44bは遮断位置にあり、合流油路33aはアクチュエータ油路32dから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁44bは連通位置にあり、合流油路33aはアクチュエータ油路32dと導通する。ここで、切換弁44bが連通位置にあるときは、合流油路33aに接続されている他の切換弁44a,44c,44dは全て遮断位置となるように制御される。これにより、切換弁44bが連通位置にあるときは、開回路ポンプ13a,13bが合流油路33a及びアクチュエータ油路32dを介してアームシリンダ3のボトム側に接続される。 The switching valve 44b is connected to the bottom side of the arm cylinder 3 via the actuator oil passage 32d. The switching valve 44b opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 44b is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32d. On the other hand, when a signal is input from the controller 41, the switching valve 44b is in the communication position, and the merging oil passage 33a is electrically connected to the actuator oil passage 32d. Here, when the switching valve 44b is in the communication position, the other switching valves 44a, 44c, 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position. As a result, when the switching valve 44b is in the communication position, the open circuit pumps 13a and 13b are connected to the bottom side of the arm cylinder 3 via the merging oil passage 33a and the actuator oil passage 32d.
 切換弁44cは、アクチュエータ油路32fを介してバケットシリンダ5のボトム側に接続されている。切換弁44cは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁44cは遮断位置にあり、合流油路33aはアクチュエータ油路32fから遮断される。一方、コントローラ41から信号が入力されているときは、切換弁44cは連通位置にあり、合流油路33aはアクチュエータ油路32fと導通する。ここで、切換弁44cが連通位置にあるときは、合流油路33aに接続されている他の切換弁44a,44b,44dは全て遮断位置となるように制御される。これにより、切換弁44cが連通位置にあるときは、開回路ポンプ13a,13bが合流油路33a及びアクチュエータ油路32fを介してバケットシリンダ5のボトム側に接続される。 The switching valve 44c is connected to the bottom side of the bucket cylinder 5 via the actuator oil passage 32f. The switching valve 44c opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 44c is in the cutoff position, and the merged oil passage 33a is cut off from the actuator oil passage 32f. On the other hand, when a signal is input from the controller 41, the switching valve 44c is in the communication position, and the merging oil passage 33a is electrically connected to the actuator oil passage 32f. Here, when the switching valve 44c is in the communication position, the other switching valves 44a, 44b, 44d connected to the merging oil passage 33a are all controlled to be in the cutoff position. As a result, when the switching valve 44c is in the communication position, the open circuit pumps 13a and 13b are connected to the bottom side of the bucket cylinder 5 via the merging oil passage 33a and the actuator oil passage 32f.
 切換弁44dは、圧油供給油路34を介してコントロールバルブ54に接続されている。コントロールバルブ54は、一対のアクチュエータ油路35a,35bを介して左走行モータ8aに接続されている。切換弁44dは、コントローラ41からの信号に応じて開閉動作する。コントローラ41から信号が入力されていないときは、切換弁44dは遮断位置にあり、合流油路33aは圧油供給油路34から遮断される。一方、コントローラ41から信号が入力されているときは、切換弁44dは連通位置にあり、合流油路33aは圧油供給油路34と導通する。ここで、切換弁44dが連通位置にあるときは、合流油路33aに接続されている他の切換弁44a~44cは全て遮断位置となるように制御される。これにより、切換弁44dが連通位置にあるときは、開回路ポンプ13a,13bが合流油路33a、圧油供給油路34、コントロールバルブ54及び一対のアクチュエータ油路35a,35bを介して左走行モータ8aに接続される。コントロールバルブ54は、コントローラ41からの指令に応じて左走行モータ8aに給排される圧油の流れを制御することにより、左走行モータ8aの回転方向及び回転速度を調整する。 The switching valve 44d is connected to the control valve 54 via the pressure oil supply oil passage 34. The control valve 54 is connected to the left travel motor 8a via a pair of actuator oil passages 35a and 35b. The switching valve 44d opens and closes in response to a signal from the controller 41. When no signal is input from the controller 41, the switching valve 44d is in the cutoff position, and the merged oil passage 33a is cut off from the pressure oil supply oil passage 34. On the other hand, when a signal is input from the controller 41, the switching valve 44d is in the communication position, and the merging oil passage 33a is electrically connected to the pressure oil supply oil passage. Here, when the switching valve 44d is in the communication position, the other switching valves 44a to 44c connected to the merging oil passage 33a are all controlled to be in the cutoff position. Thus, when the switching valve 44d is in the communication position, the open circuit pumps 13a and 13b travel left via the merging oil passage 33a, the pressure oil supply oil passage 34, the control valve 54, and the pair of actuator oil passages 35a and 35b. Connected to the motor 8a. The control valve 54 adjusts the rotational direction and rotational speed of the left traveling motor 8a by controlling the flow of pressure oil supplied to and discharged from the left traveling motor 8a in accordance with a command from the controller 41.
 このように、切換弁44a~44dは、開回路ポンプ13a,13bを油圧シリンダ1,3,5の各ボトム側又は左走行モータ8aのいずれか1つに選択的に接続する。同様に、切換弁46a~46dは、開回路ポンプ15a,15bを複数の油圧シリンダ1,3,5の各ボトム側又は左走行モータ8aのいずれか1つに選択的に接続する。切換弁48a~48dは、開回路ポンプ17a,17bを複数の油圧シリンダ1,3,5の各ボトム側又は右走行モータ8bのいずれか1つに選択的に接続する。切換弁50a~50dは、開回路ポンプ19a,19bを複数の油圧シリンダ1,3,5の各ボトム側又は右走行モータ8bのいずれか1つに選択的に接続する。 Thus, the switching valves 44a to 44d selectively connect the open circuit pumps 13a and 13b to any one of the bottom sides of the hydraulic cylinders 1, 3, and 5 or the left traveling motor 8a. Similarly, the switching valves 46a to 46d selectively connect the open circuit pumps 15a and 15b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the left traveling motor 8a. The switching valves 48a to 48d selectively connect the open circuit pumps 17a and 17b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the right traveling motor 8b. The switching valves 50a to 50d selectively connect the open circuit pumps 19a and 19b to any one of the bottom sides of the plurality of hydraulic cylinders 1, 3, and 5 or the right traveling motor 8b.
 開回路ポンプ13a,13b,15a,15b,17a,17b,19a,19bに接続された合流油路33a~33dは、それぞれ、ブリードオフ弁64~67を介して作動油タンク23に接続されている。ブリードオフ弁64~67は、コントローラ41からの信号に応じて開閉動作し、各油圧シリンダ1,3,5のボトム側から排出された圧油の一部を作動油タンク23に排出する。 The combined oil passages 33a to 33d connected to the open circuit pumps 13a, 13b, 15a, 15b, 17a, 17b, 19a, and 19b are connected to the hydraulic oil tank 23 via bleed-off valves 64 to 67, respectively. . The bleed-off valves 64 to 67 are opened and closed in response to a signal from the controller 41, and a part of the pressure oil discharged from the bottom side of each hydraulic cylinder 1, 3, 5 is discharged to the hydraulic oil tank 23.
 切換弁43~50及びブリードオフ弁64~67は、油圧弁ブロック70として一体化されており、センターフレーム104c(図2に示す)上に搭載されている。 The switching valves 43 to 50 and the bleed-off valves 64 to 67 are integrated as a hydraulic valve block 70 and mounted on the center frame 104c (shown in FIG. 2).
 以上ように構成した油圧閉回路システムの動作について、ブームシリンダ1を動作させる場合を例に説明する。 The operation of the hydraulic closed circuit system configured as described above will be described by taking the case of operating the boom cylinder 1 as an example.
 ブームシリンダ1の伸長動作を行う場合は、例えば切換弁43a,44aを導通状態とし、閉回路ポンプ12a,12b及び開回路ポンプ13a,13bから圧油を吐出する。これによりブームシリンダ1のボトム側にはポンプ4台分の流量が流入し、ブームシリンダ1が伸長する。ブームシリンダ1のロッド側からの排出流量は閉回路ポンプ12a,12bに吸入されるが、流量が余剰になった場合は図示しないフラッシング弁から閉回路外のチャージ圧ラインに排出され、流量が不足した場合は逆にチャージラインからフラッシング弁またはメイクアップチェック弁を介して閉回路内に作動油が吸入される。 When the boom cylinder 1 is extended, for example, the switching valves 43a and 44a are turned on, and pressure oil is discharged from the closed circuit pumps 12a and 12b and the open circuit pumps 13a and 13b. Thereby, the flow volume for four pumps flows into the bottom side of the boom cylinder 1, and the boom cylinder 1 extends. The discharge flow rate from the rod side of the boom cylinder 1 is sucked into the closed circuit pumps 12a and 12b, but if the flow rate becomes excessive, it is discharged from a flushing valve (not shown) to the charge pressure line outside the closed circuit, and the flow rate is insufficient. If this happens, the hydraulic fluid is sucked into the closed circuit from the charge line via the flushing valve or makeup check valve.
 なお、ブームシリンダ1に接続する油圧ポンプの数を増やすことでシリンダの伸長速度を増すことができる。例えば、切換弁43a,45a,47a,49a,44a,46a,48a,50aを導通状態とすることで16台全ての油圧ポンプを使って高速な伸長動作をさせることが可能である。 In addition, the extension speed of the cylinder can be increased by increasing the number of hydraulic pumps connected to the boom cylinder 1. For example, by making the switching valves 43a, 45a, 47a, 49a, 44a, 46a, 48a, and 50a conductive, it is possible to perform a high-speed extension operation using all 16 hydraulic pumps.
 一方、ブームシリンダ1の引込動作を行う場合は、切換弁43a,44aを導通状態とし、閉回路ポンプ12a,12bを先ほどとは逆方向に吐出させ、さらにブリードオフ弁64を開口する。これによりブームシリンダ1のボトム側から圧油が排出され、ブームシリンダ1は引込動作する。 On the other hand, when the retracting operation of the boom cylinder 1 is performed, the switching valves 43a and 44a are turned on, the closed circuit pumps 12a and 12b are discharged in the opposite direction, and the bleed-off valve 64 is opened. As a result, the pressure oil is discharged from the bottom side of the boom cylinder 1, and the boom cylinder 1 is retracted.
 なお、アームシリンダ3、バケットシリンダ5もブームシリンダ1と同様に動作させることができる。また、複数の切換弁43~50を選択的に連通位置に切り換えて、複数の油圧アクチュエータ1,3,5,7,8a,8bの2つ以上に油圧ポンプを接続することにより、複数の油圧アクチュエータ1,3,5,7,8a,8bの2つ以上を同時に動作(複合動作)させることもできる。 The arm cylinder 3 and the bucket cylinder 5 can be operated in the same manner as the boom cylinder 1. Further, by selectively switching the plurality of switching valves 43 to 50 to the communication position and connecting a hydraulic pump to two or more of the plurality of hydraulic actuators 1, 3, 5, 7, 8a, 8b, a plurality of hydraulic pressures are obtained. Two or more of the actuators 1, 3, 5, 7, 8a, and 8b can be simultaneously operated (combined operation).
 以上のように構成した本実施例に係る油圧ショベル100によれば、左エンジン(第1原動機)9aによって駆動される複数の閉回路ポンプ(油圧ポンプ)12a,14a,16a,18aの吐出ポートと右エンジン(第2原動機)9bによって駆動される複数の閉回路ポンプ(油圧ポンプ)12b,14b,16b,18bの吐出ポートが複数の電磁切換弁43,45,47,49の上流側においてポンプ2台ずつで合流し、左エンジン9aによって駆動される複数の開回路ポンプ13a,15a,17a,19bの吐出ポートと右エンジン9bによって駆動される複数の開回路ポンプ13b,15b,17b,19bの吐出ポートが複数の電磁切換弁44,46,48,50の上流側においてポンプ2台ずつで合流する。これにより、油圧弁ブロック70の大部分を構成する切換弁43~50の数を1エンジンショベル用の油圧閉回路システムと同程度に抑えることができる。その結果、油圧弁ブロック70の左右方向寸法が小さく抑えられ、油圧弁ブロック70がエンジンルーム107,108に挟まれた幅寸法Wに収まるため、油圧閉回路システムを2エンジン式の油圧ショベル100に容易に搭載することできる。そして、油圧閉回路システムを搭載することにより、2エンジン式の油圧ショベル100において高い省エネ性を実現することできる。 According to the hydraulic excavator 100 according to the present embodiment configured as described above, the discharge ports of the plurality of closed circuit pumps (hydraulic pumps) 12a, 14a, 16a, 18a driven by the left engine (first prime mover) 9a Discharge ports of a plurality of closed circuit pumps (hydraulic pumps) 12b, 14b, 16b, 18b driven by the right engine (second prime mover) 9b are pumps 2 upstream of the plurality of electromagnetic switching valves 43, 45, 47, 49. The discharge ports of the plurality of open circuit pumps 13a, 15a, 17a, 19b driven by the left engine 9a and the discharge ports of the plurality of open circuit pumps 13b, 15b, 17b, 19b driven by the right engine 9b The ports are joined by two pumps on the upstream side of the plurality of electromagnetic switching valves 44, 46, 48, 50. As a result, the number of switching valves 43 to 50 constituting most of the hydraulic valve block 70 can be suppressed to the same level as the hydraulic closed circuit system for one engine excavator. As a result, the horizontal dimension of the hydraulic valve block 70 is kept small, and the hydraulic valve block 70 fits in the width dimension W sandwiched between the engine rooms 107 and 108, so that the hydraulic closed circuit system is replaced with a two-engine hydraulic excavator 100. Can be easily mounted. By mounting the hydraulic closed circuit system, high energy saving performance can be realized in the two-engine hydraulic excavator 100.
 ここで、切換弁43~50には油圧ポンプが2台ずつ接続されており、各切換弁43~50の通過流量は1エンジンショベル用の油圧閉回路システムと比較して2倍に増える。そのため、切換弁43~50の定格容量を1エンジンショベルの油圧閉回路システムと同一に設定した場合、切換弁43~50における圧力損失が増えることにより省エネ性が若干低下する。これを改善するには、切換弁43~50の定格容量を2倍に設定すればよい。定格流量を2倍に設定しても切換弁43~50の各外形寸法は1.3倍(2倍の3乗根)程度しか増えず、油圧弁ブロック70の各外形寸法も1.3倍程度しか増えない。従って、切換弁43~50の定格流量を2倍にしても、エンジンルーム107,108に挟まれた幅寸法Wに油圧弁ブロック70を収めることができる。 Here, two hydraulic pumps are connected to each of the switching valves 43 to 50, and the passage flow rate of each switching valve 43 to 50 is doubled as compared with a hydraulic closed circuit system for one engine excavator. For this reason, when the rated capacity of the switching valves 43 to 50 is set to be the same as that of the hydraulic closed circuit system of one engine excavator, the energy loss is slightly reduced due to an increase in pressure loss in the switching valves 43 to 50. In order to improve this, the rated capacity of the switching valves 43 to 50 may be set to double. Even if the rated flow rate is set to twice, the outer dimensions of the switching valves 43 to 50 only increase by 1.3 times (twice the third root), and the outer dimensions of the hydraulic valve block 70 are also 1.3 times. It only increases to a certain extent. Therefore, even if the rated flow rate of the switching valves 43 to 50 is doubled, the hydraulic valve block 70 can be accommodated in the width dimension W sandwiched between the engine rooms 107 and 108.
 また、左エンジン9aによって駆動される複数の油圧ポンプ12a~19aと右エンジン9bによって駆動される複数の油圧ポンプ12b~19bに1台ずつ含まれる2台の油圧ポンプを合流させたことにより、例えば左エンジン9aが故障して動作しなくなった場合でも、切換弁43~50を選択的に連通位置に切り換えて、右エンジン9bによって駆動される油圧ポンプ12b~19bを複数の油圧アクチュエータ1,3,5,7,8a,8bに接続することができる。これにより、一方のエンジンが故障した場合でも、油圧ショベル100を稼働し続けることができ、あるいは、エンジン修理が可能な場所まで車体を移動させてダウンタイムを最小限に抑えることができるため、生産性が向上する。 Further, by combining two hydraulic pumps, one each included in the plurality of hydraulic pumps 12a to 19a driven by the left engine 9a and the plurality of hydraulic pumps 12b to 19b driven by the right engine 9b, for example, Even when the left engine 9a fails and does not operate, the switching valves 43 to 50 are selectively switched to the communication position, and the hydraulic pumps 12b to 19b driven by the right engine 9b are connected to the plurality of hydraulic actuators 1, 3, and 3. 5, 7, 8a, 8b. As a result, even if one engine fails, the excavator 100 can continue to operate, or the vehicle body can be moved to a place where engine repair is possible, and downtime can be minimized. Improves.
 また、複数の油圧ポンプ12a~19a,12b~19bを複数の電磁切換弁43~50の上流側においてポンプ2台ずつで合流させることにより、各油圧ポンプ12a~19a,12b~19bの吐出油から異物を除去するデリバリフィルタ(図示せず)は、各吐出ポート12c~12f,13c,13d,14c~14f,15c,15d,16c~16f,17c,17d,18c~18f,19c,19dではなく、2台の油圧ポンプの吐出油が合流する合流油路31a~31h,33a~33dにそれぞれ設ければ良い。これにより、デリバリフィルタの数を1エンジンショベル用の油圧閉回路システムと同程度に抑えることができる。 In addition, by combining the plurality of hydraulic pumps 12a to 19a, 12b to 19b with two pumps upstream of the plurality of electromagnetic switching valves 43 to 50, the discharge oil from each of the hydraulic pumps 12a to 19a and 12b to 19b can be used. Delivery filters (not shown) for removing foreign substances are not the discharge ports 12c-12f, 13c, 13d, 14c-14f, 15c, 15d, 16c-16f, 17c, 17d, 18c-18f, 19c, 19d, What is necessary is just to provide in the confluence | merging oil path 31a-31h and 33a-33d where the discharge oil of two hydraulic pumps merges, respectively. Thereby, the number of delivery filters can be suppressed to the same level as the hydraulic closed circuit system for one engine excavator.
 ここで、油圧ショベル100においては、エンジン回転速度の増減に応じて油圧ポンプの吐出量を変化させ、エンジン馬力を有効に活用する馬力制御が行われている。これは、エンジン回転速度が設定回転速度より高い場合はポンプ吸収馬力を増加させてエンジン負荷を増やし、アクチュエータの動作速度を速め、エンジン回転速度が設定回転速度よりも低い場合はポンプ吸収馬力を減少させてエンジン負荷を減らし、エンジンを過負荷から保護してエンストを防止するという制御である。ポンプ吸収馬力はポンプ流量とポンプ圧力の積で表され、ポンプ合計の吸収馬力がエンジン馬力を超えないようにポンプ圧力を見ながらポンプ流量、すなわちポンプ吐出量を制御している。 Here, in the excavator 100, horsepower control is performed in which the discharge amount of the hydraulic pump is changed in accordance with the increase or decrease of the engine rotation speed to effectively use the engine horsepower. This is because when the engine speed is higher than the set speed, the pump absorption horsepower is increased to increase the engine load and increase the operating speed of the actuator, and when the engine speed is lower than the set speed, the pump absorption horsepower is decreased. The engine load is reduced to protect the engine from overload and prevent engine stall. The pump absorption horsepower is represented by the product of the pump flow rate and the pump pressure, and the pump flow rate, that is, the pump discharge amount is controlled while observing the pump pressure so that the total absorption horsepower of the pump does not exceed the engine horsepower.
 図3に示す油圧閉回路システムでは、左エンジン9aによって駆動される複数の油圧ポンプ12a~19aと右エンジン9bによって駆動される複数の油圧ポンプ12b~19bに1台ずつ含まれる2台の油圧ポンプを合流させたことにより、例えば閉回路ポンプ12a,12bの吐出圧力は等しく、開回路ポンプ13a,13bの吐出圧力も等しい、という具合にいずれのポンプペアも等しい吐出圧力となっている。このため、左エンジン9aの油圧ポンプ12a~19aと右エンジン9bの油圧ポンプ12b~19bの各ペアのポンプ吐出量を同一に制御することにより、ポンプ合計の吸収馬力は左エンジン9aと右エンジン9bとで等しくなる。これにより、油圧ポンプの吸収馬力の制御を各ポンプペアで同じにすることができるため、2台のエンジン9a,9bと16台の油圧ポンプ12a~19a,12b~19bとを備えた油圧閉回路システムでありながら、1台のエンジンと8台の油圧ポンプとを備えた1エンジンショベル用の油圧閉回路システムと等価に扱うことができ、制御が簡素化するので信頼性を向上できる。また、2台のエンジン9a,9bの負荷は等しくなるので、エンジン9a,9bの経年劣化の程度も等しくなり、オイル交換やオーバーホールなどのメンテナンス周期を同じすることができ、長期信頼性の向上に寄与することができる。 In the hydraulic closed circuit system shown in FIG. 3, two hydraulic pumps are included, one each in the plurality of hydraulic pumps 12a to 19a driven by the left engine 9a and the plurality of hydraulic pumps 12b to 19b driven by the right engine 9b. Are combined, for example, the discharge pressures of the closed circuit pumps 12a and 12b are equal, the discharge pressures of the open circuit pumps 13a and 13b are equal, and so on. For this reason, by controlling the pump discharge amount of each pair of the hydraulic pumps 12a to 19a of the left engine 9a and the hydraulic pumps 12b to 19b of the right engine 9b, the total absorption horsepower of the pumps can be increased by the left engine 9a and the right engine 9b. And are equal. As a result, the control of the absorption horsepower of the hydraulic pump can be made the same for each pump pair, so that the hydraulic closed circuit system includes two engines 9a and 9b and 16 hydraulic pumps 12a to 19a and 12b to 19b. However, it can be handled equivalently to a hydraulic closed circuit system for one engine excavator having one engine and eight hydraulic pumps, and the control is simplified, so that the reliability can be improved. In addition, since the loads of the two engines 9a and 9b are equal, the degree of aging of the engines 9a and 9b is also equal, and maintenance cycles such as oil change and overhaul can be made the same, improving long-term reliability. Can contribute.
 図4に本発明の第2の実施例に係る油圧ショベルに搭載された油圧閉回路システムの油圧回路図を示す。本実施例に係る油圧閉回路システムも、第1の実施例(図3に示す)と同様に、油圧ポンプを2台ずつ合流した後に切換弁43~50に接続する構成とすることで、切換弁43~50の数を1エンジンショベル用の油圧閉回路システムと同程度に抑え、油圧弁ブロック70が左右のエンジンルーム107,108に挟まれた幅寸法Wに容易に収まるようにして搭載性を向上させたものである。以下、第1の実施例との相違点を中心に説明する。 FIG. 4 shows a hydraulic circuit diagram of a hydraulic closed circuit system mounted on a hydraulic excavator according to a second embodiment of the present invention. Similarly to the first embodiment (shown in FIG. 3), the hydraulic closed circuit system according to the present embodiment is switched by combining two hydraulic pumps and then connecting to the switching valves 43 to 50. The number of valves 43 to 50 is suppressed to the same level as that of a hydraulic closed circuit system for one engine excavator, and the hydraulic valve block 70 can be easily accommodated in the width dimension W sandwiched between the left and right engine rooms 107 and 108. Is an improvement. Hereinafter, the difference from the first embodiment will be mainly described.
 図4において、左エンジン9aによって駆動される閉回路ポンプ12aの一方の吐出ポート12cは、同じく左エンジン9aによって駆動される閉回路ポンプ14aの一方の吐出ポート14cと合流した後に、一方の合流油路31aを介して切換弁43a~43dに接続され、閉回路ポンプ12aの他方の吐出ポート12eは、閉回路ポンプ14aの他方の吐出ポート14eと合流した後に、合流油路31bを介して切換弁43a~43dに接続されている。 In FIG. 4, one discharge port 12c of the closed circuit pump 12a driven by the left engine 9a merges with one discharge port 14c of the closed circuit pump 14a similarly driven by the left engine 9a, and then one combined oil. The other discharge port 12e of the closed circuit pump 12a joins with the other discharge port 14e of the closed circuit pump 14a and is then connected via the merged oil passage 31b. 43a to 43d.
 左エンジン9aによって駆動される閉回路ポンプ16aの一方の吐出ポート16cは、同じく左エンジン9aによって駆動される閉回路ポンプ18aの一方の吐出ポート18cと合流した後に、一方の合流油路31cを介して切換弁45a~45dに接続され、閉回路ポンプ16aの他方の吐出ポート16eは、閉回路ポンプ18aの他方の吐出ポート18eと合流した後に、合流油路31dを介して切換弁45a~45dに接続されている。 One discharge port 16c of the closed circuit pump 16a driven by the left engine 9a merges with one discharge port 18c of the closed circuit pump 18a similarly driven by the left engine 9a, and then passes through one merged oil passage 31c. The other discharge port 16e of the closed circuit pump 16a merges with the other discharge port 18e of the closed circuit pump 18a, and then is connected to the switch valves 45a to 45d via the merged oil passage 31d. It is connected.
 右エンジン9bによって駆動される閉回路ポンプ12bの一方の吐出ポート12dは、同じく右エンジン9bによって駆動される閉回路ポンプ14bの一方の吐出ポート14dと合流した後に、一方の合流油路31eを介して切換弁47a~47dに接続され、閉回路ポンプ12bの他方の吐出ポート12fは、閉回路ポンプ14bの他方の吐出ポート14fと合流した後に、合流油路31fを介して切換弁47a~47dに接続されている。 One discharge port 12d of the closed circuit pump 12b driven by the right engine 9b merges with one discharge port 14d of the closed circuit pump 14b also driven by the right engine 9b, and then passes through one merged oil passage 31e. The other discharge port 12f of the closed circuit pump 12b joins with the other discharge port 14f of the closed circuit pump 14b, and then is connected to the switch valves 47a to 47d via the merged oil passage 31f. It is connected.
 右エンジン9bによって駆動される閉回路ポンプ16bの一方の吐出ポート16dは、同じく右エンジン9bによって駆動される閉回路ポンプ18bの一方の吐出ポート18fと合流した後に、一方の合流油路31gを介して切換弁49a~49dに接続され、閉回路ポンプ16bの他方の吐出ポート16fは、閉回路ポンプ18bの他方の吐出ポート18fと合流した後に、合流油路31hを介して切換弁49a~49dに接続されている。 One discharge port 16d of the closed circuit pump 16b driven by the right engine 9b merges with one discharge port 18f of the closed circuit pump 18b also driven by the right engine 9b, and then passes through one merged oil passage 31g. The other discharge port 16f of the closed circuit pump 16b joins with the other discharge port 18f of the closed circuit pump 18b, and then joins the changeover valves 49a to 49d via the merged oil passage 31h. It is connected.
 左エンジン9aによって駆動される開回路ポンプ13aの吐出ポート13cは、同じく左エンジン9aによって駆動される開回路ポンプ15aの吐出ポート15cと合流した後に、合流油路33aを介して切換弁44a~44d及びブリードオフ弁64に接続されている。 The discharge port 13c of the open circuit pump 13a driven by the left engine 9a merges with the discharge port 15c of the open circuit pump 15a also driven by the left engine 9a, and then switches the switching valves 44a to 44d via the merged oil passage 33a. And a bleed-off valve 64.
 左エンジン9aによって駆動される開回路ポンプ17aの吐出ポート17cは、同じく左エンジン9aによって駆動される開回路ポンプ19aの吐出ポート19cと合流した後に、合流油路33cを介して切換弁48a~48d及びブリードオフ弁66に接続されている。 The discharge port 17c of the open circuit pump 17a driven by the left engine 9a merges with the discharge port 19c of the open circuit pump 19a also driven by the left engine 9a, and then the switching valves 48a to 48d via the merged oil passage 33c. And a bleed-off valve 66.
 右エンジン9bによって駆動される開回路ポンプ13bの吐出ポート13dは、同じく右エンジン9bによって駆動される開回路ポンプ15bの吐出ポート15dと合流した後に、合流油路33bを介して切換弁46a~46d及びブリードオフ弁65に接続されている。 The discharge port 13d of the open circuit pump 13b driven by the right engine 9b merges with the discharge port 15d of the open circuit pump 15b also driven by the right engine 9b, and then switches the switching valves 46a to 46d via the merged oil passage 33b. And a bleed-off valve 65.
 右エンジン9bによって駆動される開回路ポンプ17bの吐出ポート17dは、同じく右エンジン9bによって駆動される開回路ポンプ19bの吐出ポート19dと合流した後に、合流油路33dを介して切換弁50a~50d及びブリードオフ弁67に接続されている。 The discharge port 17d of the open circuit pump 17b driven by the right engine 9b merges with the discharge port 19d of the open circuit pump 19b also driven by the right engine 9b, and then switches the switching valves 50a to 50d via the merged oil passage 33d. And a bleed-off valve 67.
 以上のように構成した本実施例においても、第1の実施例と同様の効果が得られる。 Also in the present embodiment configured as described above, the same effects as in the first embodiment can be obtained.
 また、同一のエンジンによって駆動される(すなわち、近接して配置された)閉回路ポンプ同士、開回路ポンプ同士を各エンジンルーム107,108内で合流させ、合流後の配管(合流油路31a~31h,33a~33d)を切換弁43~50に接続する構成としたことにより、ポンプ同士を合流させる計24本の配管(吐出ポート12c~12f,13c,13d,14c~14f,15c,15d,16c~16f,17c,17d,18c~18f,19c,19d)をエンジンルーム107,108の外で取り回す必要が無く、合流後の計12本の配管(合流油路31a~31h,33a~33d)のみをエンジンルーム107,108から油圧弁ブロック70まで取り回せばよいため、第1の実施例と比較して搭載性を大幅に向上させることができる。なお、図4に示す例では、各エンジンルーム107,108において、最も近接している閉回路ポンプ同士、開回路ポンプ同士でペアを構成しているが、本発明はこれに限られず、同一のエンジンルームに配置された閉回路ポンプ同士、開回路ポンプ同士であれば、どのようにペアを構成しても良い。 Further, the closed circuit pumps driven by the same engine (that is, arranged close to each other) and the open circuit pumps are merged in the engine rooms 107 and 108, and the merged pipes (merged oil paths 31a to 31a) are joined. 31h, 33a to 33d) are connected to the switching valves 43 to 50, so that a total of 24 pipes (discharge ports 12c to 12f, 13c, 13d, 14c to 14f, 15c, 15d, 16c to 16f, 17c, 17d, 18c to 18f, 19c, and 19d) do not need to be routed outside the engine rooms 107 and 108, and a total of 12 pipes after joining (merging oil passages 31a to 31h, 33a to 33d) ) Only from the engine compartments 107 and 108 to the hydraulic valve block 70, so that the mountability is greatly improved as compared with the first embodiment. It is possible to improve. In the example shown in FIG. 4, in each engine room 107, 108, the closest closed circuit pumps and the open circuit pumps form a pair, but the present invention is not limited to this, and the same A pair may be formed in any way as long as the closed circuit pumps arranged in the engine room and the open circuit pumps are arranged.
 また、本実施例に係る油圧ショベルにおいても、いずれか一方のエンジンが故障して動作を停止した場合に、他方のエンジンで油圧ショベル100を稼働させることが可能である。例えば左エンジン9aが故障して動作を停止した場合に、右エンジン9bだけで各油圧ポンプ12b~19bを駆動し、ブームシリンダ1を伸長動作させて走行するという例を説明する。まず、切換弁47aを連通位置に切り換え、閉回路ポンプ12b,14bから圧油を吐出することでブームシリンダ1は伸長動作する。切換弁46dを連通位置に切り換え、開回路ポンプ13b,15bから圧油を吐出し、コントロールバルブ54を開口することで左走行モータ8aが駆動され、切換弁50dを連通位置に切り換え、開回路ポンプ17b,19bから圧油を吐出し、コントロールバルブ55を開口することで右走行モータ8bが駆動される。これにより、ブーム2を上げつつ車体を前後に走行することができる。また、アーム4、バケット6、旋回装置102aも複数の電磁切換弁43~50を選択的に連通位置に切り換えることでブーム1と同様に駆動することができる。 Also, in the hydraulic excavator according to the present embodiment, when one of the engines fails and the operation is stopped, the hydraulic excavator 100 can be operated by the other engine. For example, an example will be described in which when the left engine 9a breaks down and stops operating, the hydraulic pumps 12b to 19b are driven only by the right engine 9b and the boom cylinder 1 is extended to travel. First, the boom cylinder 1 is extended by switching the switching valve 47a to the communication position and discharging the pressure oil from the closed circuit pumps 12b and 14b. The switching valve 46d is switched to the communication position, pressure oil is discharged from the open circuit pumps 13b and 15b, and the control valve 54 is opened to drive the left travel motor 8a, and the switching valve 50d is switched to the communication position. The right traveling motor 8b is driven by discharging pressure oil from 17b and 19b and opening the control valve 55. Thereby, the vehicle body can travel back and forth while raising the boom 2. Further, the arm 4, the bucket 6, and the turning device 102a can be driven in the same manner as the boom 1 by selectively switching the plurality of electromagnetic switching valves 43 to 50 to the communication position.
 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。また、上記した実施例は、本発明を2台のエンジンを備えた油圧ショベルに適用したものであるが、本発明はこれに限られず、2台のエンジンを備えたクレーン等の建設機械にも適用できる。 As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, and delete a part of the configuration of a certain embodiment or replace it with a part of another embodiment. Is possible. In the above-described embodiment, the present invention is applied to a hydraulic excavator equipped with two engines. However, the present invention is not limited to this, and the present invention is also applied to a construction machine such as a crane equipped with two engines. Applicable.
 1…ブームシリンダ、2…ブーム、3…アームシリンダ、4…アーム、5…バケットシリンダ、6…バケット、7…旋回モータ、8a,8b…走行モータ、9a…左エンジン、9b…右エンジン、10a,10b…動力伝達装置、12a,12b,14a,14b,16a,16b,18a,18b…閉回路ポンプ(油圧ポンプ)、12c~12f,14c~14f,16c~16f,18c~18f…吐出ポート、13a,13b,15a,15b,17a,17b,19a,19b…開回路ポンプ、13c,13d,15c,15d,17c,17d,19c,19d…吐出ポート、20a,20b…ラジエータ、21a,21b…ラジエータ用冷却ファン、22…燃料タンク、23…作動油タンク、24…オイルクーラ、25…オイルクーラ用冷却ファン、31a~31h,33a~33d…合流油路、32a~32h,35a,35b,37a,37b…アクチュエータ油路、34,36…圧油供給油路、41…コントローラ、43a~43d,44a~44d,45a~45d,46a~46d,47a~47d,48a~48d,49a~49d,50a~50d…電磁切換弁、54,55…コントロールバルブ、64~67…ブリードオフ弁、70…油圧弁ブロック、100…油圧ショベル、101…下部走行体、101a,101b…走行装置、102…上部旋回体、102a…旋回装置、103…フロント装置、104…旋回フレーム、104a…左フレーム、104b…右フレーム、104c…センターフレーム、105…カウンタウエイト、106…キャブ、107…左エンジンルーム、108…右エンジンルーム、109a…左側通路、109b…右側通路、109c…中央通路。 DESCRIPTION OF SYMBOLS 1 ... Boom cylinder, 2 ... Boom, 3 ... Arm cylinder, 4 ... Arm, 5 ... Bucket cylinder, 6 ... Bucket, 7 ... Turning motor, 8a, 8b ... Traveling motor, 9a ... Left engine, 9b ... Right engine, 10a , 10b ... power transmission device, 12a, 12b, 14a, 14b, 16a, 16b, 18a, 18b ... closed circuit pump (hydraulic pump), 12c-12f, 14c-14f, 16c-16f, 18c-18f ... discharge port, 13a, 13b, 15a, 15b, 17a, 17b, 19a, 19b ... open circuit pump, 13c, 13d, 15c, 15d, 17c, 17d, 19c, 19d ... discharge port, 20a, 20b ... radiator, 21a, 21b ... radiator Cooling fan, 22 ... fuel tank, 23 ... hydraulic oil tank, 24 ... oil cooler, 25 ... oi Cooling fan for cooler, 31a to 31h, 33a to 33d ... Merge oil passage, 32a to 32h, 35a, 35b, 37a, 37b ... Actuator oil passage, 34, 36 ... Pressure oil supply oil passage, 41 ... Controller, 43a to 43d , 44a to 44d, 45a to 45d, 46a to 46d, 47a to 47d, 48a to 48d, 49a to 49d, 50a to 50d ... electromagnetic switching valve, 54, 55 ... control valve, 64 to 67 ... bleed-off valve, 70 ... Hydraulic valve block, 100 ... hydraulic excavator, 101 ... lower traveling body, 101a, 101b ... traveling device, 102 ... upper turning body, 102a ... turning device, 103 ... front device, 104 ... turning frame, 104a ... left frame, 104b ... Right frame, 104c ... Center frame, 105 ... Counterweight, 106 ... , 107 ... the left engine room, 108 ... right engine room, 109a ... left passage, 109b ... the right passage, 109c ... central passage.

Claims (4)

  1.  下部走行体と、
     この下部走行体に旋回可能に搭載された上部旋回体と、
     前記上部旋回体に上下方向に回動可能に取り付けられたフロント装置とを備え、かつ
     第1原動機と、2つの吐出ポートをする閉回路用の複数の油圧ポンプと、複数の油圧アクチュエータと、複数の電磁切換弁とを備え、前記複数の電磁切換弁を選択的に連通位置に切り換えることで、前記複数の油圧ポンプの2つの吐出ポートが前記複数の油圧アクチュエータの少なくとも一部のものに選択的に接続され、前記複数の油圧ポンプと前記複数の油圧アクチュエータの少なくとも一部のものとの間に閉回路を形成する油圧閉回路システムを備えた建設機械において、
     前記油圧閉回路システムは第2原動機を更に備え、
     前記複数の油圧ポンプは少なくとも4台の油圧ポンプを含み、前記少なくとも4台の油圧ポンプは前記第1原動機によって駆動される油圧ポンプと、前記第2原動機によって駆動される油圧ポンプとを含み、
     少なくとも4台の前記油圧ポンプは、前記複数の電磁切換弁が選択的に連通位置に切り換えられたときに、2つの前記吐出ポートの一方からの吐出油を前記複数の電磁切換弁の上流側においてポンプ2台ずつで合流させ、この合流した圧油が前記複数の電磁切換弁に供給される接続構造を有することを特徴とする建設機械。
    A lower traveling body,
    An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
    A first device, a plurality of closed-circuit hydraulic pumps having two discharge ports, a plurality of hydraulic actuators, and a plurality of hydraulic actuators. The two switching ports of the plurality of hydraulic pumps are selectively used for at least some of the plurality of hydraulic actuators by selectively switching the plurality of electromagnetic switching valves to a communication position. In a construction machine including a hydraulic closed circuit system that is connected to and forms a closed circuit between the plurality of hydraulic pumps and at least some of the plurality of hydraulic actuators,
    The hydraulic closed circuit system further comprises a second prime mover,
    The plurality of hydraulic pumps include at least four hydraulic pumps, and the at least four hydraulic pumps include a hydraulic pump driven by the first prime mover and a hydraulic pump driven by the second prime mover,
    At least four of the hydraulic pumps, when the plurality of electromagnetic switching valves are selectively switched to the communication position, discharge oil from one of the two discharge ports on the upstream side of the plurality of electromagnetic switching valves. A construction machine characterized by having a connection structure in which two pumps are joined together and the joined pressure oil is supplied to the plurality of electromagnetic switching valves.
  2.  請求項1記載の建設機械において、
     4台の前記油圧ポンプは、前記第1原動機によって駆動される2台の油圧ポンプと、前記第2原動機によって駆動される2台の油圧ポンプとを有し、
     前記第1原動機によって駆動される2台の油圧ポンプと前記第2原動機によって駆動される2台の油圧ポンプに1台ずつ含まれる2台の油圧ポンプで吐出油を合流させたことを特徴とする建設機械。
    The construction machine according to claim 1,
    The four hydraulic pumps have two hydraulic pumps driven by the first prime mover and two hydraulic pumps driven by the second prime mover,
    Discharged oil is merged by two hydraulic pumps, one included in each of two hydraulic pumps driven by the first prime mover and two hydraulic pumps driven by the second prime mover. Construction machinery.
  3.  請求項1記載の建設機械において、
     4台の前記油圧ポンプは、前記第1原動機によって駆動される2台の油圧ポンプと、前記第2原動機によって駆動される2台の油圧ポンプとを有し、
     前記第1原動機によって駆動される2台の油圧ポンプで吐出油を合流させ、かつ前記第2原動機によって駆動される2台の油圧ポンプで吐出油を合流させたことを特徴とする建設機械。
    The construction machine according to claim 1,
    The four hydraulic pumps have two hydraulic pumps driven by the first prime mover and two hydraulic pumps driven by the second prime mover,
    A construction machine characterized in that the discharge oil is merged by two hydraulic pumps driven by the first prime mover and the discharge oil is merged by two hydraulic pumps driven by the second prime mover.
  4.  請求項1記載の建設機械において、
     前記上部旋回体は、基礎下部構造としての旋回フレームを備え、
     前記旋回フレームは、センターフレームと、このセンターフレームの左側に締結された左フレームと、前記センターフレームの右側に締結された左フレームとを有し、
     前記第1原動機は、前記左フレーム上に設けられた第1機械室に配置され、
     前記第2原動機は、前記右フレーム上に設けられた第2機械室に配置され、
     4台の前記油圧ポンプは、前記第1機械室に配置され前記第1原動機によって駆動される2台の油圧ポンプと、前記第2機械室に配置され前記第2原動機によって駆動される2台の油圧ポンプとを有し、
     前記複数の電磁切換弁は、前記センターフレーム上でかつ前記第1及び第2機械室の間に配置されたことを特徴とする建設機械。
    The construction machine according to claim 1,
    The upper swing body includes a swing frame as a foundation lower structure,
    The swivel frame has a center frame, a left frame fastened to the left side of the center frame, and a left frame fastened to the right side of the center frame,
    The first prime mover is disposed in a first machine room provided on the left frame,
    The second prime mover is disposed in a second machine room provided on the right frame,
    The four hydraulic pumps are arranged in the first machine room and driven by the first prime mover, and two hydraulic pumps are arranged in the second machine room and driven by the second prime mover. A hydraulic pump,
    The construction machine, wherein the plurality of electromagnetic switching valves are arranged on the center frame and between the first and second machine rooms.
PCT/JP2018/001069 2017-03-14 2018-01-16 Construction machine WO2018168179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049154A JP6782183B2 (en) 2017-03-14 2017-03-14 Construction machinery
JP2017-049154 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168179A1 true WO2018168179A1 (en) 2018-09-20

Family

ID=63522021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001069 WO2018168179A1 (en) 2017-03-14 2018-01-16 Construction machine

Country Status (2)

Country Link
JP (1) JP6782183B2 (en)
WO (1) WO2018168179A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220402627A1 (en) * 2021-06-18 2022-12-22 Bell Textron Inc. Thermal hydraulic active warming system
WO2023190381A1 (en) * 2022-03-29 2023-10-05 日立建機株式会社 Construction machine
WO2023189867A1 (en) * 2022-03-30 2023-10-05 日立建機株式会社 Construction machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101682A (en) * 1975-03-03 1976-09-08 Hitachi Construction Machinery YUATSUSHOBERUNOYUATSUKAIRO
JPH11124879A (en) * 1997-10-23 1999-05-11 Hitachi Constr Mach Co Ltd Upper slewing body of construction machine
JP2014045665A (en) * 2012-08-29 2014-03-17 Ryozo Matsumoto Transportation vehicle with plural engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101682A (en) * 1975-03-03 1976-09-08 Hitachi Construction Machinery YUATSUSHOBERUNOYUATSUKAIRO
JPH11124879A (en) * 1997-10-23 1999-05-11 Hitachi Constr Mach Co Ltd Upper slewing body of construction machine
JP2014045665A (en) * 2012-08-29 2014-03-17 Ryozo Matsumoto Transportation vehicle with plural engines

Also Published As

Publication number Publication date
JP2018151036A (en) 2018-09-27
JP6782183B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
EP1584822B1 (en) Hydraulic control system and construction machine
JP5669448B2 (en) Hydraulic drive system for excavator
JP4380643B2 (en) Hydraulic control device for work machine
WO2014045672A1 (en) Drive device for working machine and working machine provided with same
JP5383591B2 (en) Hydraulic drive unit for construction machinery
KR101754290B1 (en) Hydraulic drive system for construction machine
JP5996778B2 (en) Hydraulic drive unit for construction machinery
US10370824B2 (en) Work machine
WO2018168179A1 (en) Construction machine
WO2014021015A1 (en) Hydraulic drive device for construction machine
WO2015137177A1 (en) Control valve device
JP2009167618A (en) Hydraulic circuit of hydraulic excavator
JP2013100879A (en) Hydraulic circuit of construction machine
JP2015206420A (en) Hydraulic transmission of construction machine
JP6023391B2 (en) Construction machine drive
JPH11141504A (en) Hydraulic circuit device
JP2003184815A (en) Hydraulic controlled device of construction machine and hydraulic controlled device of hydraulic power shovel
JP3597693B2 (en) Hydraulic drive circuit
JP3659549B2 (en) Upper swing body for construction machinery
JP2016133206A (en) Hydraulic circuit for construction machine
JP5087047B2 (en) Hydraulic work machine
JP2018053474A (en) Hydraulic drive device for construction machine with booms
JP2020133752A (en) Construction machine
WO2001096748A1 (en) Hydraulic circuit for working machines
JP7439036B2 (en) Operation control device for work vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768167

Country of ref document: EP

Kind code of ref document: A1