JP3737054B2 - Magnetic flux irradiation device - Google Patents

Magnetic flux irradiation device Download PDF

Info

Publication number
JP3737054B2
JP3737054B2 JP2002005786A JP2002005786A JP3737054B2 JP 3737054 B2 JP3737054 B2 JP 3737054B2 JP 2002005786 A JP2002005786 A JP 2002005786A JP 2002005786 A JP2002005786 A JP 2002005786A JP 3737054 B2 JP3737054 B2 JP 3737054B2
Authority
JP
Japan
Prior art keywords
magnetic flux
action
winding portion
magnetic
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002005786A
Other languages
Japanese (ja)
Other versions
JP2003205040A (en
Inventor
鋼太郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2002005786A priority Critical patent/JP3737054B2/en
Publication of JP2003205040A publication Critical patent/JP2003205040A/en
Application granted granted Critical
Publication of JP3737054B2 publication Critical patent/JP3737054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ソレノイドコイルを用いて磁束を生じさせ、この磁束を被射体に照射するための磁束照射装置に関するものである。
【0002】
【従来の技術】
従来、この種の磁束照射装置としては、例えば、局部温熱療法(ハイパーサーミア法)に使用される生体内部加熱装置に用いられているものがある。このハイパーサーミア法の一方式では、特開平11−57031号公報に開示されているように、鉄系酸化物の微粒子を主成分とする感磁発熱体が生体の患部に導入され、磁束照射装置によって感磁発熱体に磁束が照射される。感磁発熱体は照射された磁束によって磁気ヒステリシス損を生じ、患部はこの磁気ヒステリシス損によって局所的に加熱される。この加熱は正常細胞が侵襲されない程度の温度で行われ、患部の癌細胞のみが選択的に加熱されて壊死させられる。
【0003】
図1はこのような磁束照射装置の作用部1の概略構成を示している。作用部1は、被射体である生体に対してトランスバース配位されたソレノイドコイル1aおよび磁心1bを有する。ソレノイドコイル1aに図示しない駆動部から電流が流されると、作用端1zから生体に磁束2が照射され、生体の内部に導入された上記の感磁発熱体3が加熱される。作用端1zは、作用部1の片方の端部がこの端部を生体に対向させるトランスバース配位で充てられて機能する。
【0004】
【発明が解決しようとする課題】
ここで、生体に照射される磁束は、加熱を要する部位が生体内部の深部にあっても、この深部に高い磁束密度を以て到達することが望ましい。
【0005】
この要請を満たすための施策としては、先ず、作用端1zから出力される磁束2の密度を増すべく、▲1▼ソレノイドコイル1aに流す電流を増すか、あるいは、▲2▼作用部1の長さを増してソレノイドコイル1aの巻回数を多くする、ことが考えられる。また、出力磁束2を太くすべく、▲3▼作用部1(ソレノイドコイル1aおよび磁心1b)の実効断面積を増すことも考えられる。この▲3▼の施策は、磁束2が描く対流状の磁力線パターンを作用端1zから遠い位置にまで及んだ形にして、磁束2の生体内部への到達深さを増すためにも有用である。
【0006】
しかしながら、上記の3施策は、いずれもソレノイドコイル1aに印加する電圧の高電圧化を要する。この高電圧化は数kV〜数十kVに及ぶため、感電のリスクを増し、さらには、強い電界によって不都合な誘電的副次作用をもたらすものであって好ましくない。
【0007】
さらに、各論的に付け加えるならば、▲1▼,▲2▼の施策については、磁束密度の増大が磁心1bの飽和磁束密度を以て頭打ちになるという限界がある。因みに、磁心1bは、飽和磁束密度までの余裕を大きくとらない形で使用されていることが多いから、磁束密度の向上代(向上分)が総じて大きく望めないことになる。
【0008】
また、▲2▼の作用部1の長さを増す施策は、出力磁束密度の向上への寄与効果自体が小さい。何故なら、ソレノイドコイル1aの巻回数が追加された部分は、作用端1zとは反対側の端部に在って、この部分の磁界は、作用端1zとの間の大きな磁気抵抗による磁界強度降下を経て顕著に弱められた形でしか、作用端1zの出力増に寄与し得ないからである。
【0009】
また、▲2▼,▲3▼の施策は、加熱に寄与しない回路インピーダンスの増大を伴うため、電力損失率が大きくなり、所要電力量の割には加熱能率を向上させ得ないという問題がある。また、▲3▼の施策は、前記断面積が増えることにより、飽和磁束量が増すこともあって、上記3施策の中では最も有用であるが、磁束の局部集中性が特段に望まれるような用途・目的に対しては、前記磁束太さの増大が不都合になることもある。
【0010】
なお、上述のコイル印加電圧や電力損失率の増大は、作用部1に電流を流すための前記駆動部等の規模増大につながり、磁束照射装置全体の可搬性,操作性,経済性を減殺するマイナス要因となる。
【0011】
本発明は、上記事情に鑑みてなされたものであって、ソレノイドコイルを用いて磁束を生じさせ、この磁束を被射体に照射するための磁束照射装置に関する、コイルへの印加電圧の増大を要件とせずに、あるいは、電力損失率の増大を伴わずに、被射体の深部にまで高い磁束密度の磁束を到達させるという要請に応えるものである。
【0012】
【課題を解決するための手段】
本発明はこの要請に応えるため、ソレノイドコイルおよびこれに挿入された磁心を有する作用部と、ソレノイドコイルに高周波交流電流を流して高周波交流磁束を生じさせる駆動部とを備え、作用部の片方の端部を充てて機能させる作用端から生体の内部に設けられた感磁発熱体に磁束が照射される磁束照射装置において、作用部が、感磁発熱体に照射する磁束を生じさせる磁束発生巻線部と、作用端の周囲に張り出して形成された磁束制御巻線部とを備え、磁束発生巻線部は、極性の揃った複数基の単位作用部で構成されると共に、各単位作用部はその軸線が感磁発熱体側に求心状に集まって磁束密度が加算強化されるように配位され、磁束制御巻線部は、複数基の単位作用部に所属する作用端の群の包絡的周縁の周囲に張り出して形成されている構成にした。
【0015】
この構成によれば、磁束制御巻線部によって作用端の周囲に磁束が張り出して生じ、磁束発生巻線部によってソレノイドの軸中心部に生じる磁束は、張り出して生じた磁束の影響を受けて作用端からより遠い地点で弧を描く磁力線を形成する。つまり、磁束発生巻線部によってソレノイドの軸中心部に生じる磁束は、磁束制御巻線部の磁束制御効果により、作用端からより遠い地点まで到達して分布する。
【0017】
また、複数基の各単位作用部に生じる各磁束の加算された磁束が感磁発熱体に照射され、1基の単位作用部に生じる磁束が照射される場合よりも密度ないし太さの増強された磁束が感磁発熱体に照射される。
【0019】
また、磁束制御巻線部によって、複数基の単位作用部の各作用端を包む外周囲に磁束が張り出して生じ、加算して強め合う各ソレノイドの磁束は、張り出して生じた磁束の影響を受けて各作用端からより遠い地点で弧を描く磁力線を形成する。つまり、加算して強め合う各ソレノイドの磁束は、各作用端からより遠い地点まで到達して分布する。
【0020】
また、本発明は、磁束制御巻線部が、その形状を磁束発生巻線部によって生じる磁束の分布を所望の分布となるように設定できる構造となっていることを特徴とする。
【0021】
この構成によれば、生体の形状に合わせて磁束制御巻線部の形状を設定することにより、磁束制御巻線部に生じる磁束の分布を、前記制御効果が一層高まるように適宜変えることが出来る。
【0022】
【発明の実施の形態】
次に、本発明による磁束照射装置を生体内部加熱装置に適用した第1の実施形態について説明する。
【0023】
本実施形態による磁束照射装置は、図2(a)に示す作用部11と、同図(b)に示す駆動部21とから構成されている。
【0024】
同図(a)に示す作用部11は、ソレノイドコイル11aおよびこれに挿入されたフェライトからなる磁心11bを有する。ソレノイドコイル11aは、内周側に且つ作用部11の略全長に亘って巻成された基本巻線部11aaと、その外側に且つ作用端11z側の短区間に亘って巻成された補強巻線部と11abとを備えている。作用端11zは作用部11の片方の端部が被射体にトランスバース配位させる形で充てられて機能させられる。ソレノイドコイル11aの作用端11zに生じた磁束12は、被射体である生体に照射され、生体の内部に導入された感磁発熱体13に及ぶ。感磁発熱体13は、比透磁率が100〜2000の鉄系酸化物の微粒子を主成分としており、その微粒子の平均粒径は10〜100[nm]である。
【0025】
同図(b)に示す駆動部21は、交流200[V]を発生する交流電源22からの給電を受け、この交流200[V]を整流装置23によって脈流200[V]に変換する。変換した脈流200[V]はコンデンサ24によって平滑化され、発振装置25によって矩形波状の交流250[V]に変換される。発振装置25の出力側にはコンデンサ26が設けられており、駆動部21の出力端子21a,21bに上述したソレノイドコイル11aが接続されると、コンデンサ26とソレノイドコイル11aとによって共振回路が形成される。この共振回路の共振により、ソレノイドコイル11aには50〜400[kHz]の周波数の高周波電流が流れ、作用端11zには磁束12が生じる。
【0026】
この構成において、作用部11の作用端11zが生体の胸部や腹部等に対向させて配置されると、作用端11zに発生する磁束12は生体内の感磁発熱体13に照射される。感磁発熱体13は照射された磁束12によって磁気ヒステリシス損を生じ、患部はこの磁気ヒステリシス損によって加熱される。一方、生体は導電性がよいので、感磁発熱体13が配置された周囲の生体には渦電流が生じてジュール熱が発生する。しかし、上記周波数の交流磁束12の形成は感磁発熱体13の配置領域に集中するため、感磁発熱体13そのもののヒステリシス損による発熱は増大し、その影響を受けて、周囲の生体に生じるジュール損による発熱は抑えられる。この結果、感磁発熱体13の配置領域を中心とした鋭い温度分布が形成され、正常細胞が加熱によって侵襲されることなく、患部の癌細胞のみが選択的に加熱されて壊死させられる。
【0027】
上記第1の実施形態による磁束照射装置の作用部11の作用端11zからは、図2(c)のグラフにおいて、ソレノイドコイル11aの各部分に由来する磁束を総和した、出力磁束の密度が特性線zで表される磁束が出力される。同グラフの横軸は、ソレノイドコイル11aの単位巻線(1巻線)の作用端11zからの距離L、同グラフの縦軸は、作用端11zから出力される磁束の磁束密度Bを示している。特性線zは、基本巻線部11aa由来の出力磁束を表した特性線xと、補強巻線部11ab由来の出力磁束を表した特性線yとを合成することによって得られる。このような特性を示す作用部11によれば、作用部11の作用端11zには、基本巻線部11aaによって発生する磁束に、補強巻線部11abによって発生する磁束が加算され、強い磁界を持つ磁束12が効率よく発生させられる。
【0028】
従って、作用部11の長さを増すことでは果たせなかった照射磁束の強化が、作用端11z寄りに配置されて磁気回路内の磁界強度の減衰が少ない補強巻線部11abの磁界による磁束加算作用によって果たされ、密度の高い磁束12が生体に照射されることになる。
【0029】
このため、上記の第1の実施形態による磁束照射装置によれば、駆動部21の共振回路に高電圧を発生させることなく、しかも、効率よく、密度が高い磁束12を生体内の感磁発熱体13に集中させることが出来、さらに、生体に照射される磁束12の実効深さ(有効な磁束密度を持つ磁束が作用する深さ)を増やすことが出来る。また、作用部11は、その有効長さを大きくしたり、その断面積を増やして大型化する必要が無いため、加熱に寄与しない回路インピーダンスの増大が抑制され、電力損失率の増大を防ぐことが出来る。さらに、作用部11の可搬性が損なわれないため、加温を要する胸部や腹部といった生体部位にも容易にその作用端11zを配置することが出来る。
【0030】
次に、本発明による磁束照射装置を生体内部加熱装置に適用した第2の実施形態について説明する。
【0031】
第2の実施形態による磁束照射装置は、図3(a)に示す作用部31と、図2(b)に示す駆動部21とから構成されており、上述した第1の実施形態による磁束照射装置とは作用部31の構成だけが相違している。なお、図3において図2(a)と同一または相当する部分には同一符号を付してその説明は省略する。
【0032】
第2の実施形態による作用部31は、作用端31zのソレノイドコイル31aの周囲に、図で斜線が付された磁束制御巻線部31bが張り出して形成されている。この磁束制御巻線部31bは、ソレノイドコイル31aの巻線が作用端31zの周囲において張り出して巻かれて形成されており、磁束制御巻線部31bを備えたソレノイドコイル31aは1本の導線から形成されている。なお、磁束制御巻線部31bをソレノイドコイル31aとは別の巻線で形成し、磁束制御巻線部31bとソレノイドコイル31aとに同相の電流を流すように構成してもよい。
【0033】
このような作用部31からなる第2の実施形態による磁束照射装置では、磁束制御巻線部31bによって作用端31zの周囲に磁束33が図で点線で示すように張り出して生じ、ソレノイドコイル31aの軸中心部に生じる磁束32は、張り出して生じた磁束33の影響を受けて作用端31zからより遠い地点で弧を描く磁力線を形成する。つまり、ソレノイドコイル31aの軸中心部に生じる磁束32は、磁束制御巻線部31bの磁束制御効果により、作用端31zからより遠い地点まで到達して分布する。
【0034】
このため、上記の第2の実施形態による磁束照射装置によっても、共振回路を高電圧化する必要なく、しかも、効率よく、生体内の感磁発熱体13に密度が高い磁束32を集中させることが出来、さらに、生体に照射される磁束32の実効深さをさらに増やすことが出来る。また、この第2の実施形態でも、作用部31を大型化する必要が無いため、加熱に寄与しない回路インピーダンスの増大が抑制され、電力損失率の増大を防ぐことが出来る。さらに、作用部31の可搬性は損なわれないため、加温を要する生体の各部に容易にその作用端31zを配置することが出来る。
【0035】
次に、本発明による磁束照射装置を生体内部加熱装置に適用した第3の実施形態について説明する。
【0036】
第3の実施形態による磁束照射装置は、図3(b)に示す作用部41と、図2(b)に示す駆動部21とから構成されており、上述した第2の実施形態による磁束照射装置とは作用部41の構成だけが相違している。
【0037】
第3の実施形態による作用部41は、作用端41zのソレノイドコイル41aの周囲に、図で斜線が付された磁束制御巻線部41bが張り出して形成されている点は、第2の実施形態の作用部31と同様であるが、この磁束制御巻線41bが可撓性を持つ導線から形成されている点が、第2の実施形態の作用部31と相違している。この第3の実施形態では、ソレノイドコイル41aの巻線も可撓性を持つ導線から形成されており、磁束制御巻線部41bは、この可撓性導線が作用端41zの周囲において張り出して巻かれて形成されている。なお、磁束制御巻線部41bのみ可撓性導線から形成し、ソレノイドコイル41aの導線と直列に接続するように形成してもよい。また、磁束制御巻線部41bをソレノイドコイル41aとは別の可撓性導線で形成し、磁束制御巻線部41bとソレノイドコイル41aとに同相の電流を流すように構成してもよい。
【0038】
このような作用部41からなる上記第3の実施形態による磁束照射装置では、生体14の形状に合わせて磁束制御巻線部41bの形状を図に示すように撓めることにより、磁束制御巻線部41bに生じる磁束の分布を、磁束制御巻線部41bによる磁束制御効果が一層高まるように、適宜変えることが出来る。従って、この磁束の分布の影響を受ける、ソレノイドコイル41aの軸中心部に生じて生体14に照射される磁束42の分布は、磁束制御巻線部41bの形状を変えることにより、作用端41zからより遠い地点まで到達させられ、しかも、生体14の状況に応じて最適な所望の状態に分布させられる。よって、この第3の実施形態による磁束照射装置によれば、上述した第2の実施形態による作用効果が奏されるばかりではなく、患部の状況に応じて適宜最適な磁束を照射することが可能になる。
【0039】
次に、本発明による磁束照射装置を生体内部加熱装置に適用した第4の実施形態について説明する。
【0040】
第4の実施形態による磁束照射装置は、図3(c)に示す2基の単位作用部51,52からなる作用部と、図2(b)に示す駆動部21とから構成されており、前述した第1の実施形態による磁束照射装置とは駆動部21の構成だけが共通している。なお、本実施形態では図示の便宜上、作用部を2基の単位作用部51,52から構成しているが、実際には3基か4基程度の単位作用部から作用部を構成すると、各単位作用部の作用端が立体的な被射体の外表面に沿って配置され、好適である。
【0041】
第4の実施形態による磁束照射装置では、2基の単位作用部51,52が図3(c)に示すようにそれらの作用端が寄り添って配置されており、各単位作用部51,52を構成するソレノイドコイルの軸線が被射体側に求心状に集まって磁束密度が加算強化されるように配位されている。さらに、第4の実施形態では、寄り添った各作用端を包む外周囲に磁束制御巻線部53が張り出して形成されている。この第4の実施形態では、各単位作用部51,52のソレノイドコイルおよび磁束制御巻線部53は、それらによって生じる磁界の位相が揃うように直列接続し、前記駆動部21に接続して通電する。従って、各単位作用部51,52の作用端には同じ位相の磁束が揃って出力され、これらは生体内の感磁発熱体13で合流して加算強化される。すなわち、この第4の実施形態によれば、生体内の特定の部位に焦点を定めた加熱が行える。
【0042】
上述のように、本実施形態にあっても、回路を高電圧化する必要なく、しかも、効率よく、生体内の感磁発熱体13に密度が高い磁束54,55を集中させることが出来、さらに、生体に照射される磁束54,55の集中性を深さ方向についても改善することが出来る。
【0043】
また、本実施形態では、磁束制御巻線部53によって単位作用部51,52の各作用端を包む外周囲に図で点線で示す磁束56が張り出して生じ、加算して強め合う各単位作用部51,52の磁束54,55は、張り出して生じた磁束56の影響を受けて単位作用部51,52の各作用端からより遠い地点で弧を描く磁力線を形成する。つまり、加算して強め合う単位作用部51,52の磁束54,55は、各作用端からより遠い地点まで到達して分布する。
【0044】
このため、磁束制御巻線部53を備えた第4の実施形態による磁束照射装置によれば、生体に照射される磁束54,55の実効深さをさらに増やすことが出来る。また、この第4の実施形態において、磁束制御巻線部53を可撓性を持つ導線から形成した場合には、上述した第3の実施形態と同様な作用効果が奏される。なお、上記複数基の単位作用部51,52を有するが、磁束制御巻線部53は備えていない構成も用途・目的に応じて有用である。
【0045】
また、上述した各実施形態を適宜複合させて磁束照射装置を構成することも出来る。
【0046】
例えば、図2(a)に作用部が示される第1の実施形態による磁束照射装置において、基本巻線部11aaおよび補強巻線部11abを有するソレノイドコイル11aに、さらに、図3(a)に作用部31が示される第2の実施形態における磁束制御巻線部31bを備えるように構成することが出来る。また、この場合、図3(b)に作用部41が示される第3の実施形態のように、磁束制御巻線部31bを可撓性を持つ磁束制御巻線部41bにすることも出来る。また、図3(c)に作用部が示される第4の実施形態による磁束照射装置において、複数基の各単位作用部51,52を、第1の実施形態の作用部11のように、基本巻線部11aaと補強巻線部11abとを備えたソレノイドコイル11aから構成することが出来る。
【0047】
このような各構成によれば、組み合わされた各構成が持つ作用・効果が相乗して発生し、上述した各実施形態単独の際に奏される効果よりも高い磁束発生効果を奏する磁束照射装置が実現される。
【0048】
なお、上述した各実施形態では、本発明による磁束照射装置を生体内部加熱装置に適用して生体に磁束を照射する場合について説明したが、本発明はこれに限定されることはない。例えば、金属等の被射体に磁束を照射し、金属等を加熱する場合などにも同様に適用することが出来、この場合においても上述した各実施形態と同様な作用効果が奏される。
【0051】
【発明の効果】
以上説明したように本発明によれば、作用部が、作用端の周囲に張り出して形成された磁束制御巻線部を備えているため、磁束制御巻線部によって作用端の周囲に磁束が張り出して生じ、磁束発生巻線部によってソレノイドの軸中心部に生じる磁束は、作用端からより遠い地点まで到達して分布する。また、磁束発生巻線部が、極性の揃った複数基の単位作用部で構成されると共に、各単位作用部が、その軸線が感磁発熱体側に求心状に集まって磁束密度が加算強化されるように配位されているため、複数基の各単位作用部に生じる各磁束が感磁発熱体に照射され、1基の単位作用部に生じる磁束が照射される場合よりも密度ないし太さの増強された磁束が感磁発熱体に照射される。また、磁束制御巻線部が、複数基の単位作用部に所属する作用端群の包絡的周縁の周囲に張り出して形成されているため、磁束制御巻線部によって、複数基の単位作用部の各作用端を包む外周囲に磁束が張り出して生じ、加算して強め合う各磁束発生巻線部の磁束は、各作用端からより遠い地点まで到達して分布する。このため、回路を高電圧化する必要なく、しかも、効率よく、密度が高い磁束を感磁発熱体に集中させることが出来、さらに、生体に照射される磁束の実効深さを増やすことが出来る。また、電力損失率の増大を防ぐことが出来、さらに、生体の所望の位置に容易に作用端を配置することが出来る。
【0054】
また、磁束制御巻線部が、その形状を磁束発生巻線部によって生じる磁束の分布を所望の分布となるように設定できる構造となっている場合には、生体の形状に合わせて磁束制御巻線部の形状を設定することにより、磁束制御巻線部に生じる磁束の分布を、磁束制御効果が一層高まるように適宜変えることが出来る。このため、感磁発熱体に照射される磁束は、生体の状況に応じて最適な所望の状態に分布させられる。
【図面の簡単な説明】
【図1】従来の磁束照射装置の作用部の概略構成を示す図である。
【図2】(a)は本発明の第1の実施形態による磁束照射装置に用いられている作用部の概略構成、(b)は本発明の各実施形態による磁束照射装置に用いられている駆動部の概略構成を示す図であり、(c)は(a)に示すトランスバース型ソレノイドコイルの巻線位置と作用端に作用する磁束密度との関係を模式的に示すグラフである。
【図3】(a)は本発明の第2の実施形態による磁束照射装置の作用部の概略構成、(b)は本発明の第3の実施形態による磁束照射装置の作用部の概略構成、(c)は本発明の第4の実施形態による磁束照射装置の作用部を構成する2基の単位作用部の概略構成を示す図である。
【符号の説明】
11,31,41…作用部
51,52…単位作用部
11a,31a,41a…トランスバース型ソレノイドコイル
11aa…基本巻線部
11ab…補強巻線部
11b…磁心
11z,31z,41z…作用部11,31,41の作用端
12,32,33,42,54,55,56…磁束
13…感磁発熱体
14…生体
21…駆動部
31b,41b,53…磁束制御巻線部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic flux irradiating apparatus for generating magnetic flux using a solenoid coil and irradiating an irradiated body with the magnetic flux.
[0002]
[Prior art]
Conventionally, as this kind of magnetic flux irradiation device, there is one used for a living body internal heating device used for local thermotherapy (hyperthermia method), for example. In one method of this hyperthermia method, as disclosed in JP-A-11-57031, a magneto-sensitive heating element mainly composed of fine particles of iron-based oxide is introduced into an affected area of a living body, and is applied by a magnetic flux irradiation device. Magnetic flux is irradiated to the magnetosensitive heating element. The magnetosensitive heating element generates a magnetic hysteresis loss due to the irradiated magnetic flux, and the affected part is locally heated by the magnetic hysteresis loss. This heating is performed at a temperature at which normal cells are not invaded, and only the cancer cells in the affected area are selectively heated and necrotic.
[0003]
FIG. 1 shows a schematic configuration of the action unit 1 of such a magnetic flux irradiation apparatus. The action unit 1 includes a solenoid coil 1a and a magnetic core 1b that are transversely coordinated with a living body that is a subject. When a current is supplied to the solenoid coil 1a from a drive unit (not shown), the living body is irradiated with the magnetic flux 2 from the working end 1z, and the magnetosensitive heating element 3 introduced into the living body is heated. The action end 1z functions with one end of the action part 1 being filled with a transverse configuration in which this end is opposed to a living body.
[0004]
[Problems to be solved by the invention]
Here, it is desirable that the magnetic flux irradiated to the living body reaches the deep portion with a high magnetic flux density even if the portion requiring heating is in the deep portion inside the living body.
[0005]
As a measure for satisfying this requirement, first, in order to increase the density of the magnetic flux 2 output from the working end 1z, (1) the current flowing through the solenoid coil 1a is increased, or (2) the length of the working section 1 is increased. It is conceivable to increase the number of turns of the solenoid coil 1a. Further, in order to increase the output magnetic flux 2, it is conceivable to increase the effective sectional area of the action part 1 (solenoid coil 1a and magnetic core 1b). This measure of (3) is useful for increasing the depth of the magnetic flux 2 reaching the inside of the living body by extending the convective magnetic line pattern drawn by the magnetic flux 2 to a position far from the action end 1z. is there.
[0006]
However, all of the above three measures require an increase in the voltage applied to the solenoid coil 1a. Since this increase in voltage ranges from several kV to several tens of kV, the risk of electric shock is increased, and an undesirable dielectric side effect is caused by a strong electric field, which is not preferable.
[0007]
Furthermore, if it adds to each theory, about the measure of (1) and (2), there exists a limit that the increase in magnetic flux density reaches the peak with the saturation magnetic flux density of the magnetic core 1b. Incidentally, since the magnetic core 1b is often used in a form that does not allow a large margin up to the saturation magnetic flux density, an increase in the magnetic flux density cannot be expected.
[0008]
Further, the measure (2) for increasing the length of the action part 1 has a small contribution effect itself for improving the output magnetic flux density. This is because the portion where the number of turns of the solenoid coil 1a is added is at the end opposite to the working end 1z, and the magnetic field of this portion is the magnetic field strength due to the large magnetoresistance with the working end 1z. This is because it can contribute to the increase in the output of the working end 1z only in a form that is significantly weakened through the lowering.
[0009]
In addition, the measures (2) and (3) involve an increase in circuit impedance that does not contribute to heating, so that the power loss rate increases, and the heating efficiency cannot be improved for the required amount of power. . The measure (3) is the most useful among the above three measures because the amount of saturation magnetic flux increases as the cross-sectional area increases. However, local concentration of magnetic flux seems to be particularly desired. The increase in the magnetic flux thickness may be inconvenient for various applications and purposes.
[0010]
In addition, the increase in the above-described coil application voltage and power loss rate leads to an increase in the scale of the drive unit and the like for causing current to flow through the action unit 1, thereby reducing the portability, operability, and economy of the entire magnetic flux irradiation device. It becomes a negative factor.
[0011]
The present invention has been made in view of the above circumstances, and relates to a magnetic flux irradiating device for generating magnetic flux using a solenoid coil and irradiating the subject with the magnetic flux, and increasing the applied voltage to the coil. The present invention meets the demand for reaching a magnetic flux having a high magnetic flux density to the deep part of the subject without increasing the power loss rate.
[0012]
[Means for Solving the Problems]
In order to meet this requirement, the present invention includes a solenoid coil and an action part having a magnetic core inserted in the solenoid coil, and a drive part that causes a high-frequency alternating current to flow through the solenoid coil to generate a high-frequency alternating current magnetic flux. In a magnetic flux irradiating apparatus in which magnetic flux is irradiated to a magneto-sensitive heating element provided inside the living body from an action end that fills and functions the end, a magnetic flux generating winding that generates a magnetic flux that is applied to the magneto-sensitive heating element. A magnetic flux control winding portion that is formed to project around the action end, and the magnetic flux generation winding portion is composed of a plurality of unit action portions having the same polarity, and each unit action portion Is arranged so that its axis is centripetally gathered on the magneto-sensitive heating element side and the magnetic flux density is added and strengthened, and the magnetic flux control winding part is an envelope of a group of action ends belonging to multiple unit action parts Formed around the periphery It was to Configurations.
[0015]
According to this configuration, the magnetic flux is generated around the working end by the magnetic flux control winding, and the magnetic flux generated at the central axis of the solenoid by the magnetic flux generation winding is affected by the magnetic flux generated by the extension. Forms magnetic field lines that draw an arc at a point farther from the edge. That is, the magnetic flux generated in the axial center portion of the solenoid by the magnetic flux generating winding portion reaches a point farther from the working end and is distributed due to the magnetic flux control effect of the magnetic flux control winding portion.
[0017]
Further , the magnetic flux generated by adding the magnetic fluxes generated in each unit action portion of the plurality of units is irradiated to the magnetosensitive heating element, and the density or thickness is increased as compared with the case where the magnetic flux generated in one unit action portion is irradiated. Magnetic flux is irradiated to the magnetosensitive heating element.
[0019]
Further, the flux control winding unit, occur flux flared periphery wrapping the working end of the unit acting portion of the multiple number groups, flux of each solenoid constructive by adding the effects of the magnetic flux generated overhangs The magnetic field lines that draw an arc at a point farther away from each working end are formed. That is, the magnetic fluxes of the solenoids that are strengthened by addition reach and reach points farther from the action ends.
[0020]
Further, the present invention is characterized in that the magnetic flux control winding portion has a structure in which the shape of the magnetic flux generated by the magnetic flux generation winding portion can be set to a desired distribution .
[0021]
According to this configuration, by setting the shape of the magnetic flux control winding portion in accordance with the shape of the living body , the distribution of magnetic flux generated in the magnetic flux control winding portion can be appropriately changed so that the control effect is further enhanced. .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment in which the magnetic flux irradiation device according to the present invention is applied to a living body internal heating device will be described.
[0023]
The magnetic flux irradiation apparatus according to the present embodiment includes an action unit 11 shown in FIG. 2A and a drive unit 21 shown in FIG.
[0024]
The action part 11 shown to the figure (a) has the magnetic core 11b which consists of a solenoid coil 11a and the ferrite inserted in this. The solenoid coil 11a includes a basic winding portion 11aa wound on the inner peripheral side and substantially the entire length of the action portion 11, and a reinforcing winding wound on the outer side and a short section on the action end 11z side. It has a line part and 11ab. The action end 11z is filled with one end of the action part 11 so as to be transversely coordinated with the subject to function. The magnetic flux 12 generated at the working end 11z of the solenoid coil 11a is irradiated to a living body that is a subject to be irradiated and reaches a magnetosensitive heating element 13 introduced into the living body. The magnetosensitive heating element 13 is mainly composed of iron oxide fine particles having a relative magnetic permeability of 100 to 2000, and the fine particles have an average particle size of 10 to 100 [nm].
[0025]
The drive unit 21 shown in FIG. 6B receives power from an AC power source 22 that generates AC 200 [V], and converts the AC 200 [V] into a pulsating flow 200 [V] by the rectifier 23. The converted pulsating flow 200 [V] is smoothed by the capacitor 24 and converted to a rectangular wave AC 250 [V] by the oscillation device 25. A capacitor 26 is provided on the output side of the oscillation device 25. When the solenoid coil 11a described above is connected to the output terminals 21a and 21b of the drive unit 21, a resonance circuit is formed by the capacitor 26 and the solenoid coil 11a. The Due to the resonance of the resonance circuit, a high-frequency current having a frequency of 50 to 400 [kHz] flows through the solenoid coil 11a, and a magnetic flux 12 is generated at the working end 11z.
[0026]
In this configuration, when the action end 11z of the action part 11 is arranged to face the chest or abdomen of the living body, the magnetic flux 12 generated at the action end 11z is irradiated to the magnetosensitive heating element 13 in the living body. The magnetosensitive heating element 13 causes a magnetic hysteresis loss due to the irradiated magnetic flux 12, and the affected part is heated by this magnetic hysteresis loss. On the other hand, since the living body has good conductivity, an eddy current is generated in the surrounding living body where the magnetosensitive heating element 13 is disposed, and Joule heat is generated. However, since the formation of the alternating magnetic flux 12 having the above-mentioned frequency is concentrated in the arrangement region of the magnetosensitive heating element 13, the heat generation due to the hysteresis loss of the magnetosensitive heating element 13 itself increases and is affected by it and is generated in the surrounding living body. Heat generation due to Joule loss can be suppressed. As a result, a sharp temperature distribution centering on the arrangement area of the magnetosensitive heating element 13 is formed, and only the cancer cells in the affected area are selectively heated and necrotic without causing normal cells to be invaded by heating.
[0027]
From the action end 11z of the action part 11 of the magnetic flux irradiation apparatus according to the first embodiment, the density of the output magnetic flux, which is the sum of the magnetic fluxes derived from each part of the solenoid coil 11a in the graph of FIG. The magnetic flux represented by the line z is output. The horizontal axis of the graph shows the distance L from the working end 11z of the unit winding (one winding) of the solenoid coil 11a, and the vertical axis of the graph shows the magnetic flux density B of the magnetic flux output from the working end 11z. Yes. The characteristic line z is obtained by synthesizing the characteristic line x representing the output magnetic flux derived from the basic winding part 11aa and the characteristic line y representing the output magnetic flux derived from the reinforcing winding part 11ab. According to the action part 11 exhibiting such characteristics, the action end 11z of the action part 11 is added with the magnetic flux generated by the reinforcing winding part 11ab to the magnetic flux generated by the basic winding part 11aa, thereby generating a strong magnetic field. The magnetic flux 12 is efficiently generated.
[0028]
Therefore, the magnetic flux addition action by the magnetic field of the reinforcing winding part 11ab, which is arranged near the action end 11z and has a small attenuation of the magnetic field strength in the magnetic circuit, cannot be achieved by increasing the length of the action part 11. The living body is irradiated with the magnetic flux 12 having a high density.
[0029]
For this reason, according to the magnetic flux irradiation device according to the first embodiment, the magnetic flux 12 having high density is efficiently generated in the living body without generating a high voltage in the resonance circuit of the drive unit 21 and efficiently. Further, the effective depth of the magnetic flux 12 irradiated to the living body (the depth at which the magnetic flux having an effective magnetic flux density acts) can be increased. Moreover, since the action part 11 does not need to enlarge the effective length or enlarge the cross-sectional area, it suppresses the increase in the circuit impedance which does not contribute to heating, and prevents the increase in the power loss rate. I can do it. Furthermore, since the portability of the action part 11 is not impaired, the action end 11z can be easily arranged on a living body part such as a chest or abdomen that requires heating.
[0030]
Next, a second embodiment in which the magnetic flux irradiation device according to the present invention is applied to a living body internal heating device will be described.
[0031]
The magnetic flux irradiation apparatus according to the second embodiment includes an action unit 31 shown in FIG. 3A and a drive unit 21 shown in FIG. 2B. The magnetic flux irradiation according to the first embodiment described above. Only the structure of the action part 31 is different from the apparatus. 3 that are the same as or correspond to those in FIG. 2A are assigned the same reference numerals, and descriptions thereof are omitted.
[0032]
The action part 31 according to the second embodiment is formed by projecting a magnetic flux control winding part 31b hatched in the figure around the solenoid coil 31a of the action end 31z. The magnetic flux control winding portion 31b is formed by winding the winding of the solenoid coil 31a around the working end 31z, and the solenoid coil 31a including the magnetic flux control winding portion 31b is formed from one conductor. Is formed. Note that the magnetic flux control winding portion 31b may be formed by a winding different from the solenoid coil 31a, and an in-phase current may flow through the magnetic flux control winding portion 31b and the solenoid coil 31a.
[0033]
In the magnetic flux irradiating device according to the second embodiment composed of the action part 31 as described above, the magnetic flux 33 is generated around the action end 31z by the magnetic flux control winding part 31b as shown by the dotted line in FIG. The magnetic flux 32 generated in the central portion of the shaft is affected by the magnetic flux 33 generated by overhanging, and forms magnetic field lines that draw an arc at a point farther from the working end 31z. That is, the magnetic flux 32 generated in the axial center portion of the solenoid coil 31a reaches a point farther from the working end 31z and is distributed due to the magnetic flux control effect of the magnetic flux control winding portion 31b.
[0034]
For this reason, even with the magnetic flux irradiation device according to the second embodiment, it is not necessary to increase the voltage of the resonance circuit, and the magnetic flux 32 having a high density can be efficiently concentrated on the in-vivo magneto-sensitive heating element 13. In addition, the effective depth of the magnetic flux 32 applied to the living body can be further increased. Also in this second embodiment, since it is not necessary to increase the size of the action part 31, an increase in circuit impedance that does not contribute to heating is suppressed, and an increase in power loss rate can be prevented. Furthermore, since the portability of the action part 31 is not impaired, the action end 31z can be easily disposed in each part of the living body that requires heating.
[0035]
Next, a third embodiment in which the magnetic flux irradiation device according to the present invention is applied to a living body internal heating device will be described.
[0036]
The magnetic flux irradiation apparatus according to the third embodiment includes an action unit 41 shown in FIG. 3B and a drive unit 21 shown in FIG. 2B. The magnetic flux irradiation according to the second embodiment described above. Only the structure of the action part 41 is different from the apparatus.
[0037]
The action part 41 according to the third embodiment is that the magnetic flux control winding part 41b hatched in the drawing is formed around the solenoid coil 41a of the action end 41z so as to protrude. However, the point that the magnetic flux control winding 41b is formed of a flexible conductive wire is different from the action portion 31 of the second embodiment. In the third embodiment, the winding of the solenoid coil 41a is also formed of a flexible conducting wire, and the magnetic flux control winding portion 41b is wound with the flexible conducting wire protruding around the working end 41z. It is formed. Note that only the magnetic flux control winding portion 41b may be formed from a flexible conductive wire and connected in series with the conductive wire of the solenoid coil 41a. Further, the magnetic flux control winding portion 41b may be formed of a flexible conductive wire different from the solenoid coil 41a, and a current in the same phase may flow through the magnetic flux control winding portion 41b and the solenoid coil 41a.
[0038]
In the magnetic flux irradiating device according to the third embodiment configured as described above, the magnetic flux control winding is performed by bending the shape of the magnetic flux control winding portion 41b in accordance with the shape of the living body 14 as shown in the figure. The distribution of the magnetic flux generated in the line portion 41b can be appropriately changed so that the magnetic flux control effect by the magnetic flux control winding portion 41b is further enhanced. Accordingly, the distribution of the magnetic flux 42 that is affected by the distribution of the magnetic flux and is generated at the axial center portion of the solenoid coil 41a and applied to the living body 14 is changed from the action end 41z by changing the shape of the magnetic flux control winding portion 41b. It is possible to reach a farther point, and to be distributed in an optimal desired state according to the state of the living body 14. Therefore, according to the magnetic flux irradiation apparatus according to the third embodiment, not only the operational effects of the second embodiment described above can be achieved, but also an optimal magnetic flux can be appropriately irradiated according to the condition of the affected area. become.
[0039]
Next, a fourth embodiment in which the magnetic flux irradiation device according to the present invention is applied to a living body internal heating device will be described.
[0040]
The magnetic flux irradiating device according to the fourth embodiment is composed of an action part composed of two unit action parts 51 and 52 shown in FIG. 3C and a drive part 21 shown in FIG. Only the configuration of the drive unit 21 is common to the magnetic flux irradiation apparatus according to the first embodiment described above. In the present embodiment, for convenience of illustration, the action part is composed of two unit action parts 51 and 52, but in practice, if the action part is composed of about three or four unit action parts, The action end of the unit action part is preferably arranged along the outer surface of the three-dimensional subject.
[0041]
In the magnetic flux irradiation apparatus according to the fourth embodiment, the two unit action portions 51 and 52 are arranged with their action ends close to each other as shown in FIG. The solenoid coils are arranged so that the axes of the solenoid coils are concentrated on the subject side in a centripetal manner and the magnetic flux density is added and strengthened. Furthermore, in the fourth embodiment, the magnetic flux control winding portion 53 is formed so as to protrude from the outer periphery that encloses the working ends that are close to each other. In the fourth embodiment, the solenoid coils and the magnetic flux control winding portions 53 of the unit operation portions 51 and 52 are connected in series so that the phases of the magnetic fields generated by them are aligned, and are connected to the drive portion 21 and energized. To do. Accordingly, magnetic fluxes having the same phase are output together at the action ends of the unit action parts 51 and 52, and these are joined and strengthened by the magnetosensitive heating element 13 in the living body. That is, according to the fourth embodiment, heating with a focus on a specific part in the living body can be performed.
[0042]
As described above, even in the present embodiment, it is not necessary to increase the voltage of the circuit, and the high-density magnetic fluxes 54 and 55 can be efficiently concentrated on the in-vivo magneto-sensitive heating element 13. Furthermore, the concentration of the magnetic fluxes 54 and 55 applied to the living body can be improved in the depth direction.
[0043]
Further, in the present embodiment, the magnetic flux control winding portion 53 causes the magnetic flux 56 indicated by the dotted line in the figure to protrude from the outer periphery that wraps the respective action ends of the unit action portions 51 and 52, and adds and strengthens each unit action portion. The magnetic fluxes 54 and 55 of 51 and 52 form magnetic lines of force that draw an arc at points farther from the action ends of the unit action portions 51 and 52 due to the influence of the magnetic flux 56 generated by overhanging. That is, the magnetic fluxes 54 and 55 of the unit action portions 51 and 52 that are strengthened by addition reach and reach points farther from the action ends.
[0044]
For this reason, according to the magnetic flux irradiation apparatus according to the fourth embodiment provided with the magnetic flux control winding part 53, the effective depth of the magnetic fluxes 54 and 55 applied to the living body can be further increased. Further, in the fourth embodiment, when the magnetic flux control winding portion 53 is formed from a flexible conductive wire, the same effects as those of the third embodiment described above are achieved. In addition, although it has the said multiple unit action parts 51 and 52, the structure which is not equipped with the magnetic flux control coil | winding part 53 is useful according to a use and the objective.
[0045]
Moreover, the magnetic flux irradiation apparatus can be configured by appropriately combining the above-described embodiments.
[0046]
For example, in the magnetic flux irradiation apparatus according to the first embodiment whose action part is shown in FIG. 2 (a), the solenoid coil 11a having the basic winding part 11aa and the reinforcing winding part 11ab is further changed to FIG. 3 (a). It can comprise so that the magnetic flux control winding part 31b in 2nd Embodiment in which the action part 31 is shown may be provided. Further, in this case, as in the third embodiment in which the action part 41 is shown in FIG. 3B, the magnetic flux control winding part 31b can be a flexible magnetic flux control winding part 41b. In addition, in the magnetic flux irradiation apparatus according to the fourth embodiment whose action part is shown in FIG. 3C, each of the plurality of unit action parts 51 and 52 is basically the same as the action part 11 of the first embodiment. It can be comprised from the solenoid coil 11a provided with the coil | winding part 11aa and the reinforcement | strengthening coil | winding part 11ab.
[0047]
According to each of these configurations, the action and effect of the combined components are generated in a synergistic manner, and the magnetic flux irradiating device has a higher magnetic flux generation effect than the effect exhibited in each of the above-described embodiments alone Is realized.
[0048]
In each of the above-described embodiments, the case where the magnetic flux irradiation apparatus according to the present invention is applied to the living body internal heating apparatus to irradiate the living body with the magnetic flux has been described, but the present invention is not limited to this. For example, the present invention can be similarly applied to the case of irradiating an object to be irradiated such as metal with magnetic flux and heating the metal or the like. In this case, the same effects as those of the above-described embodiments can be obtained.
[0051]
【The invention's effect】
As described above, according to the present invention, since the action portion includes the magnetic flux control winding portion formed to protrude around the action end, the magnetic flux extends around the action end by the magnetic flux control winding portion. The magnetic flux generated at the center of the solenoid shaft by the magnetic flux generating winding portion reaches a point farther from the working end and is distributed. In addition, the magnetic flux generating winding part is composed of a plurality of unit action parts with the same polarity, and each unit action part is concentrated in a centripetal manner on the magnetosensitive heating element side, and the magnetic flux density is added and strengthened. Therefore, the magnetic flux generated in each unit action part of a plurality of units is irradiated to the magnetosensitive heating element, and the density or thickness is larger than the case where the magnetic flux generated in one unit action part is irradiated. The enhanced magnetic flux is applied to the magnetosensitive heating element. In addition, since the magnetic flux control winding portion is formed so as to protrude around the envelope peripheral edge of the working end group belonging to the plurality of unit action portions, the magnetic flux control winding portion allows the plurality of unit action portions to be The magnetic flux generated by the magnetic flux projecting around the outer periphery surrounding each working end and added and strengthened reaches and distributes to a point farther from each working end. Therefore, without having to high voltage circuits, moreover, efficiently, it is possible to concentrate the dense flux sensitive磁発heat body, further, it Yasu increase the effective depth of the magnetic flux is irradiated to the living body I can do it. Moreover, an increase in the power loss rate can be prevented, and the working end can be easily arranged at a desired position of the living body.
[0054]
Further, when the magnetic flux control winding portion has a structure in which the shape of the magnetic flux generated by the magnetic flux generation winding portion can be set to a desired distribution , the magnetic flux control winding portion is adapted to the shape of the living body . By setting the shape of the line portion, the distribution of magnetic flux generated in the magnetic flux control winding portion can be appropriately changed so that the magnetic flux control effect is further enhanced. For this reason, the magnetic flux irradiated to the magnetosensitive heating element is distributed in an optimal desired state according to the state of the living body .
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an action part of a conventional magnetic flux irradiation device.
2A is a schematic configuration of an action unit used in the magnetic flux irradiation apparatus according to the first embodiment of the present invention, and FIG. 2B is used in the magnetic flux irradiation apparatus according to each embodiment of the present invention. It is a figure which shows schematic structure of a drive part, (c) is a graph which shows typically the relationship between the winding position of the transverse type solenoid coil shown to (a), and the magnetic flux density which acts on an action end.
3A is a schematic configuration of an action part of a magnetic flux irradiation apparatus according to a second embodiment of the present invention, and FIG. 3B is a schematic configuration of an action part of a magnetic flux irradiation apparatus according to a third embodiment of the present invention. (C) is a figure which shows schematic structure of the two unit action parts which comprise the action part of the magnetic flux irradiation apparatus by the 4th Embodiment of this invention.
[Explanation of symbols]
11, 31, 41 ... action parts 51, 52 ... unit action parts 11 a, 31 a, 41 a ... transverse solenoid coil 11 aa ... basic winding part 11 ab ... reinforcing winding part 11 b ... magnetic cores 11 z, 31 z, 41 z ... action part 11 , 31, 41 working ends 12, 32, 33, 42, 54, 55, 56 ... magnetic flux 13 ... magnetosensitive heating element 14 ... biological body 21 ... drive parts 31b, 41b, 53 ... magnetic flux control winding part

Claims (2)

ソレノイドコイルおよびこれに挿入された磁心を有する作用部と、前記ソレノイドコイルに高周波交流電流を流して高周波交流磁束を生じさせる駆動部とを備え、前記作用部の片方の端部を充てて機能させる作用端から生体の内部に設けられた感磁発熱体に磁束が照射される磁束照射装置において、
前記作用部は、前記感磁発熱体に照射する磁束を生じさせる磁束発生巻線部と、前記作用端の周囲に張り出して形成された磁束制御巻線部とを備え
前記磁束発生巻線部は、極性の揃った複数基の単位作用部で構成されると共に、各単位作用部はその軸線が前記感磁発熱体側に求心状に集まって磁束密度が加算強化されるように配位され、
前記磁束制御巻線部は、前記複数基の単位作用部に所属する前記作用端の群の包絡的周縁の周囲に張り出して形成されている
ことを特徴とする磁束照射装置。
A solenoid coil and an action part having a magnetic core inserted in the solenoid coil, and a drive part for generating a high-frequency alternating current magnetic flux by causing a high-frequency alternating current to flow through the solenoid coil, and filling and functioning one end of the action part In the magnetic flux irradiation device in which magnetic flux is irradiated from the working end to the magnetosensitive heating element provided inside the living body,
The action portion includes a magnetic flux generation winding portion that generates a magnetic flux to be irradiated to the magnetosensitive heating element, and a magnetic flux control winding portion that is formed to protrude around the action end ,
The magnetic flux generating winding part is composed of a plurality of unit action parts having the same polarity, and the axis of each unit action part is concentrated in a centripetal manner on the magnetosensitive heating element side, and the magnetic flux density is added and strengthened. Coordinated as
The magnetic flux control device according to claim 1, wherein the magnetic flux control winding portion is formed to project around an envelope peripheral edge of the group of working ends belonging to the plurality of unit action portions .
前記磁束制御巻線部は、その形状を前記磁束発生巻線部によって生じる磁束の分布を所望の分布となるように設定できる構造となっていることを特徴とする請求項1に記載の磁束照射装置。2. The magnetic flux irradiation according to claim 1 , wherein the magnetic flux control winding portion has a structure in which a shape of the magnetic flux generated by the magnetic flux generation winding portion can be set to a desired distribution. apparatus.
JP2002005786A 2002-01-15 2002-01-15 Magnetic flux irradiation device Expired - Lifetime JP3737054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005786A JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005786A JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005254332A Division JP4255466B2 (en) 2005-09-02 2005-09-02 Magnetic flux irradiation device for internal living body heating

Publications (2)

Publication Number Publication Date
JP2003205040A JP2003205040A (en) 2003-07-22
JP3737054B2 true JP3737054B2 (en) 2006-01-18

Family

ID=27644732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005786A Expired - Lifetime JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Country Status (1)

Country Link
JP (1) JP3737054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520848B2 (en) 2004-04-09 2009-04-21 The Board Of Trustees Of The Leland Stanford Junior University Robotic apparatus for targeting and producing deep, focused transcranial magnetic stimulation
US8052591B2 (en) 2006-05-05 2011-11-08 The Board Of Trustees Of The Leland Stanford Junior University Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
EP1742511A4 (en) * 2004-04-23 2009-02-25 Japan Science & Tech Agency Coil device and magnetic field generator
US8267850B2 (en) 2007-11-27 2012-09-18 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
US9352167B2 (en) 2006-05-05 2016-05-31 Rio Grande Neurosciences, Inc. Enhanced spatial summation for deep-brain transcranial magnetic stimulation
US8956274B2 (en) 2007-08-05 2015-02-17 Cervel Neurotech, Inc. Transcranial magnetic stimulation field shaping
AU2008288967A1 (en) 2007-08-20 2009-02-26 Cervel NeuroTech, Inc Firing patterns for deep brain transcranial magnetic stimulation
US8265910B2 (en) 2007-10-09 2012-09-11 Cervel Neurotech, Inc. Display of modeled magnetic fields
US8795148B2 (en) 2009-10-26 2014-08-05 Cervel Neurotech, Inc. Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US8723628B2 (en) 2009-01-07 2014-05-13 Cervel Neurotech, Inc. Shaped coils for transcranial magnetic stimulation
WO2012009603A2 (en) 2010-07-16 2012-01-19 Cervel Neurotech, Inc. Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy

Also Published As

Publication number Publication date
JP2003205040A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3737054B2 (en) Magnetic flux irradiation device
JP5289555B2 (en) Induction heating cooker
JP5235836B2 (en) Induction cooking device
JPWO2005104622A1 (en) Coil device and magnetic field generator
Skumiel et al. The comparison of magnetic circuits used in magnetic hyperthermia
US20040119577A1 (en) Coil arrangement with variable inductance
JP4255466B2 (en) Magnetic flux irradiation device for internal living body heating
JP2000511348A (en) Controllable inductor
JPH0563086B2 (en)
Skumiel A new way to generate a rotating magnetic field in the high frequency range
Serrano et al. Nonplanar overlapped inductors applied to domestic induction heating appliances
Orikawa et al. A winding structure of air-core planar inductors for reducing high-frequency eddy currents
JP4966575B2 (en) Biological heating device
JP2020048985A (en) Organism stimulating magnetic field generating device
JP3767820B2 (en) Magnetic flux irradiation device
WO2022131131A1 (en) Induction heating type heat treatment device for wound core and heat treatment method therefor
JP2007080715A (en) Electromagnetic induction fluid heating device
JP2008218091A (en) Induction cooker
Kaittan Comparison study between solid and litz wires of induction cooker
US5232433A (en) Hyperthermia device
JP3684104B2 (en) core
JPH05245217A (en) High frequency hyperthermia device
JP2002323260A (en) Instantaneous water-heating equipment
JPH0482162B2 (en)
Kahil et al. Assessment of AC losses in cobalt ferrite nanoparticles using a varying frequency induction heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3737054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term