JP2003205040A - Magnetic flux radiation apparatus - Google Patents

Magnetic flux radiation apparatus

Info

Publication number
JP2003205040A
JP2003205040A JP2002005786A JP2002005786A JP2003205040A JP 2003205040 A JP2003205040 A JP 2003205040A JP 2002005786 A JP2002005786 A JP 2002005786A JP 2002005786 A JP2002005786 A JP 2002005786A JP 2003205040 A JP2003205040 A JP 2003205040A
Authority
JP
Japan
Prior art keywords
magnetic flux
solenoid coil
magnetic
action
irradiating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005786A
Other languages
Japanese (ja)
Other versions
JP3737054B2 (en
Inventor
Kotaro Hirayama
鋼太郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2002005786A priority Critical patent/JP3737054B2/en
Publication of JP2003205040A publication Critical patent/JP2003205040A/en
Application granted granted Critical
Publication of JP3737054B2 publication Critical patent/JP3737054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic flux radiation apparatus with which the magnetic flux of a high density can be efficiently concentrated to a magneto- sensitive heating element in a biopsy sample without need of a circuit to have high voltage. <P>SOLUTION: The magnetic flux radiation apparatus has a solenoid coil 11a and a magnetic core 11b inserted thereto and composed of a ferrite. The solenoid coil 11a is equipped with a basic winding part 11aa wound on the inner peripheral side approximately over the full length of an operation part 11 and a reinforced winding part 11ab wound insides over a short block on the side of an operating terminal 11z. In the operating terminal 11z, magnetic flux generated by the reinforced winding part 11ab is added to magnetic flux generated by the basic winding part 11aa and magnetic flux 12 having a strong magnetic field is efficiently generated. Therefore, the reinforcement of radiation magnetic flux which can not be realized by extending the length of the operation part 11 can be realized by magnetic flux adding operation by the magnetic field of the reinforced winding part 11ab, and the biopsy sample is irradiated with the magnetic flux 12 of the high density. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ソレノイドコイル
を用いて磁束を生じさせ、この磁束を被射体に照射する
ための磁束照射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic flux irradiating device for generating a magnetic flux using a solenoid coil and irradiating a subject with the magnetic flux.

【0002】[0002]

【従来の技術】従来、この種の磁束照射装置としては、
例えば、局部温熱療法(ハイパーサーミア法)に使用さ
れる生体内部加熱装置に用いられているものがある。こ
のハイパーサーミア法の一方式では、特開平11−57
031号公報に開示されているように、鉄系酸化物の微
粒子を主成分とする感磁発熱体が生体の患部に導入さ
れ、磁束照射装置によって感磁発熱体に磁束が照射され
る。感磁発熱体は照射された磁束によって磁気ヒステリ
シス損を生じ、患部はこの磁気ヒステリシス損によって
局所的に加熱される。この加熱は正常細胞が侵襲されな
い程度の温度で行われ、患部の癌細胞のみが選択的に加
熱されて壊死させられる。
2. Description of the Related Art Conventionally, as a magnetic flux irradiator of this type,
For example, there is one used in a living body interior heating device used for local hyperthermia (hyperthermia method). One method of this hyperthermia method is disclosed in JP-A-11-57.
As disclosed in Japanese Patent Publication No. 031, a magnetically sensitive heating element containing iron-based oxide fine particles as a main component is introduced into a diseased part of a living body, and a magnetic flux irradiating device irradiates the magnetically sensitive heating element with magnetic flux. The magnetically sensitive heating element causes a magnetic hysteresis loss due to the applied magnetic flux, and the affected area is locally heated by the magnetic hysteresis loss. This heating is performed at a temperature at which normal cells are not invaded, and only the cancer cells in the affected area are selectively heated and necrosed.

【0003】図1はこのような磁束照射装置の作用部1
の概略構成を示している。作用部1は、被射体である生
体に対してトランスバース配位されたソレノイドコイル
1aおよび磁心1bを有する。ソレノイドコイル1aに
図示しない駆動部から電流が流されると、作用端1zか
ら生体に磁束2が照射され、生体の内部に導入された上
記の感磁発熱体3が加熱される。作用端1zは、作用部
1の片方の端部がこの端部を生体に対向させるトランス
バース配位で充てられて機能する。
FIG. 1 shows an operating portion 1 of such a magnetic flux irradiation device.
Shows a schematic configuration of. The action part 1 has a solenoid coil 1a and a magnetic core 1b which are transversely arranged with respect to a living body as a subject. When an electric current is applied to the solenoid coil 1a from a drive unit (not shown), the living body is irradiated with the magnetic flux 2 from the working end 1z, and the above-mentioned magnetically sensitive heating element 3 introduced into the living body is heated. The working end 1z functions by filling one end of the working portion 1 in a transverse configuration in which this end faces the living body.

【0004】[0004]

【発明が解決しようとする課題】ここで、生体に照射さ
れる磁束は、加熱を要する部位が生体内部の深部にあっ
ても、この深部に高い磁束密度を以て到達することが望
ましい。
Here, it is desirable that the magnetic flux applied to the living body reaches the deep portion with a high magnetic flux density, even if the portion requiring heating is in the deep portion inside the living body.

【0005】この要請を満たすための施策としては、先
ず、作用端1zから出力される磁束2の密度を増すべ
く、ソレノイドコイル1aに流す電流を増すか、ある
いは、作用部1の長さを増してソレノイドコイル1a
の巻回数を多くする、ことが考えられる。また、出力磁
束2を太くすべく、作用部1(ソレノイドコイル1a
および磁心1b)の実効断面積を増すことも考えられ
る。このの施策は、磁束2が描く対流状の磁力線パタ
ーンを作用端1zから遠い位置にまで及んだ形にして、
磁束2の生体内部への到達深さを増すためにも有用であ
る。
As a measure for satisfying this requirement, first, in order to increase the density of the magnetic flux 2 output from the working end 1z, the current flowing through the solenoid coil 1a is increased, or the length of the working portion 1 is increased. Solenoid coil 1a
It is conceivable to increase the number of turns. In addition, in order to thicken the output magnetic flux 2, the action portion 1 (solenoid coil 1a
It is also conceivable to increase the effective area of the magnetic core 1b). In this measure, the convection magnetic flux line pattern drawn by the magnetic flux 2 extends to a position far from the working end 1z,
It is also useful for increasing the depth of arrival of the magnetic flux 2 inside the living body.

【0006】しかしながら、上記の3施策は、いずれも
ソレノイドコイル1aに印加する電圧の高電圧化を要す
る。この高電圧化は数kV〜数十kVに及ぶため、感電
のリスクを増し、さらには、強い電界によって不都合な
誘電的副次作用をもたらすものであって好ましくない。
However, in all of the above three measures, it is necessary to increase the voltage applied to the solenoid coil 1a. This increase in voltage extends from several kV to several tens of kV, which increases the risk of electric shock and further causes an inconvenient dielectric side effect by a strong electric field, which is not preferable.

【0007】さらに、各論的に付け加えるならば、,
の施策については、磁束密度の増大が磁心1bの飽和
磁束密度を以て頭打ちになるという限界がある。因み
に、磁心1bは、飽和磁束密度までの余裕を大きくとら
ない形で使用されていることが多いから、磁束密度の向
上代(向上分)が総じて大きく望めないことになる。
Further, if each argument is added,
However, there is a limit that the increase in the magnetic flux density reaches the ceiling with the saturation magnetic flux density of the magnetic core 1b. Incidentally, the magnetic core 1b is often used in such a form that it does not have a large margin up to the saturation magnetic flux density, so that a large improvement amount (improvement) of the magnetic flux density cannot be expected as a whole.

【0008】また、の作用部1の長さを増す施策は、
出力磁束密度の向上への寄与効果自体が小さい。何故な
ら、ソレノイドコイル1aの巻回数が追加された部分
は、作用端1zとは反対側の端部に在って、この部分の
磁界は、作用端1zとの間の大きな磁気抵抗による磁界
強度降下を経て顕著に弱められた形でしか、作用端1z
の出力増に寄与し得ないからである。
Measures for increasing the length of the action part 1 are:
The contribution itself to the improvement of the output magnetic flux density is small. This is because the portion where the number of turns of the solenoid coil 1a is added exists at the end opposite to the working end 1z, and the magnetic field at this portion is the magnetic field strength due to the large magnetic resistance between the working end 1z. Only in the form that is significantly weakened after descending, the working end 1z
This is because it cannot contribute to the increase in the output.

【0009】また、,の施策は、加熱に寄与しない
回路インピーダンスの増大を伴うため、電力損失率が大
きくなり、所要電力量の割には加熱能率を向上させ得な
いという問題がある。また、の施策は、前記断面積が
増えることにより、飽和磁束量が増すこともあって、上
記3施策の中では最も有用であるが、磁束の局部集中性
が特段に望まれるような用途・目的に対しては、前記磁
束太さの増大が不都合になることもある。
In addition, since the measure (1) is accompanied by an increase in the circuit impedance that does not contribute to heating, there is a problem that the power loss rate becomes large and the heating efficiency cannot be improved for the required amount of power. In addition, the measure (1) is the most useful of the above three measures because the saturation magnetic flux amount increases due to the increase in the cross-sectional area, but it is used in applications where local concentration of magnetic flux is particularly desired. For the purpose, increasing the magnetic flux thickness may be inconvenient.

【0010】なお、上述のコイル印加電圧や電力損失率
の増大は、作用部1に電流を流すための前記駆動部等の
規模増大につながり、磁束照射装置全体の可搬性,操作
性,経済性を減殺するマイナス要因となる。
The increase in the voltage applied to the coil and the power loss rate described above leads to an increase in the size of the drive section for supplying a current to the action section 1, and the portability, operability, and economical efficiency of the entire magnetic flux irradiation apparatus. Will be a negative factor to reduce.

【0011】本発明は、上記事情に鑑みてなされたもの
であって、ソレノイドコイルを用いて磁束を生じさせ、
この磁束を被射体に照射するための磁束照射装置に関す
る、コイルへの印加電圧の増大を要件とせずに、あるい
は、電力損失率の増大を伴わずに、被射体の深部にまで
高い磁束密度の磁束を到達させるという要請に応えるも
のである。
The present invention has been made in view of the above circumstances, and a magnetic flux is generated using a solenoid coil,
Regarding the magnetic flux irradiating device for irradiating this magnetic flux to the object, the high magnetic flux to the deep part of the object without the requirement of increasing the voltage applied to the coil or with the increase of the power loss rate. It meets the demand for reaching a magnetic flux of high density.

【0012】[0012]

【課題を解決するための手段】本発明はこの要請に応え
るため、ソレノイドコイルおよびこれに挿入された磁心
を有する作用部と、ソレノイドコイルに電流を流して磁
束を生じさせる駆動部とを備え、作用部の片方の端部を
充てて機能させる作用端から被射体に磁束が照射される
磁束照射装置において、ソレノイドコイルが、内周側に
且つ作用部の略全長に亘って巻成された基本巻線部と、
その外側に且つ作用端側の短区間に亘って巻成された補
強巻線部とを備える構成にした。
In order to meet this demand, the present invention comprises an operating portion having a solenoid coil and a magnetic core inserted therein, and a drive portion for supplying a current to the solenoid coil to generate a magnetic flux. In a magnetic flux irradiating device in which a magnetic flux is radiated to an object from an operating end that fills one end of the operating part to function, a solenoid coil is wound on the inner peripheral side and over substantially the entire length of the operating part. Basic winding part,
A reinforcing winding portion wound outside the wire and over a short section on the working end side is provided.

【0013】この構成によれば、作用部の長さを増すこ
とでは果たせなかった照射磁束の強化が、作用端寄りに
配置されて磁気回路内の磁界強度の減衰が少ない補強巻
線部の磁界による磁束加算作用によって果たされ、密度
の高い磁束が被射体に照射されることになる。
According to this structure, the strengthening of the irradiation magnetic flux, which cannot be achieved by increasing the length of the working portion, is arranged near the working end, and the magnetic field strength of the reinforcing winding portion in the magnetic circuit is little attenuated. The magnetic flux having a high density is radiated to the object to be irradiated by the magnetic flux adding action of the.

【0014】また、本発明は、ソレノイドコイルが、作
用端の周囲に張り出して形成された磁束制御巻線部を備
えていることを特徴とする。
Further, the present invention is characterized in that the solenoid coil is provided with a magnetic flux control winding portion formed so as to project around the working end.

【0015】この構成によれば、磁束制御巻線部によっ
て作用端の周囲に磁束が張り出して生じ、ソレノイドの
軸中心部に生じる磁束は、張り出して生じた磁束の影響
を受けて作用端からより遠い地点で弧を描く磁力線を形
成する。つまり、ソレノイドの軸中心部に生じる磁束
は、磁束制御巻線部の磁束制御効果により、作用端から
より遠い地点まで到達して分布する。
According to this structure, the magnetic flux is generated around the working end by the magnetic flux control winding portion, and the magnetic flux generated at the central portion of the shaft of the solenoid is affected by the magnetic flux generated by the protruding portion, and is further expanded from the working end. Form magnetic field lines that draw an arc at a distant point. That is, the magnetic flux generated in the central portion of the solenoid shaft reaches and is distributed farther from the working end due to the magnetic flux control effect of the magnetic flux control winding portion.

【0016】また、本発明は、作用部が、極性の揃った
複数基の単位作用部で構成されると共に、各単位作用部
が、その軸線が被射体側に求心状に集まって磁束密度が
加算強化されるように配位されていることを特徴とす
る。
Further, according to the present invention, the acting portion is composed of a plurality of unit acting portions having uniform polarities, and each unit acting portion has its axis gathered in a centripetal manner on the side of the subject to thereby reduce the magnetic flux density. It is characterized by being coordinated so as to be added and strengthened.

【0017】この構成によれば、複数基の各単位作用部
に生じる各磁束の加算された磁束が被射体に照射され、
1基の単位作用部に生じる磁束が照射される場合よりも
密度ないし太さの増強された磁束が被射体に照射され
る。
According to this structure, the magnetic flux to which the respective magnetic fluxes generated in each of the plurality of unit action parts are added is applied to the subject,
A magnetic flux having an increased density or thickness is applied to the object as compared with the case where the magnetic flux generated in one unit acting portion is applied.

【0018】また、本発明は、作用部が、複数基の単位
作用部に所属する作用端群の包絡的周縁の周囲に張り出
して形成された磁束制御巻線部を備えていることを特徴
とする。
Further, the present invention is characterized in that the operating portion is provided with a magnetic flux control winding portion formed so as to project around the enveloped peripheral edge of the operating end group belonging to the plurality of unit operating portions. To do.

【0019】この構成によれば、磁束制御巻線部によっ
て複数基の単位作用部の各作用端を包む外周囲に磁束が
張り出して生じ、加算して強め合う各ソレノイドの磁束
は、張り出して生じた磁束の影響を受けて各作用端から
より遠い地点で弧を描く磁力線を形成する。つまり、加
算して強め合う各ソレノイドの磁束は、各作用端からよ
り遠い地点まで到達して分布する。
According to this structure, the magnetic flux is generated by the magnetic flux control winding portion swelling around the outer periphery of the operating ends of the plurality of unit operating portions, and the magnetic fluxes of the respective solenoids that are added and strengthened are generated. Under the influence of the magnetic flux, a magnetic field line is formed which draws an arc at a point farther from each working end. That is, the magnetic fluxes of the respective solenoids, which add and reinforce each other, reach the points farther from the respective working ends and are distributed.

【0020】また、本発明は、磁束制御巻線部が可撓性
を持つ導線から形成されていることを特徴とする。
Further, the present invention is characterized in that the magnetic flux control winding portion is formed of a conductive wire having flexibility.

【0021】この構成によれば、被射体の形状に合わせ
て磁束制御巻線部の形状を撓めることにより、磁束制御
巻線部に生じる磁束の分布を、前記制御効果が一層高ま
るように適宜変えることが出来る。
According to this structure, by flexing the shape of the magnetic flux control winding portion in accordance with the shape of the object to be irradiated, the distribution of magnetic flux generated in the magnetic flux control winding portion can be further enhanced. Can be changed appropriately.

【0022】[0022]

【発明の実施の形態】次に、本発明による磁束照射装置
を生体内部加熱装置に適用した第1の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a first embodiment in which the magnetic flux irradiating apparatus according to the present invention is applied to a living body interior heating apparatus will be described.

【0023】本実施形態による磁束照射装置は、図2
(a)に示す作用部11と、同図(b)に示す駆動部2
1とから構成されている。
The magnetic flux irradiation device according to the present embodiment is shown in FIG.
The action part 11 shown in (a) and the drive part 2 shown in FIG.
1 and 1.

【0024】同図(a)に示す作用部11は、ソレノイ
ドコイル11aおよびこれに挿入されたフェライトから
なる磁心11bを有する。ソレノイドコイル11aは、
内周側に且つ作用部11の略全長に亘って巻成された基
本巻線部11aaと、その外側に且つ作用端11z側の短
区間に亘って巻成された補強巻線部と11abとを備えて
いる。作用端11zは作用部11の片方の端部が被射体
にトランスバース配位させる形で充てられて機能させら
れる。ソレノイドコイル11aの作用端11zに生じた
磁束12は、被射体である生体に照射され、生体の内部
に導入された感磁発熱体13に及ぶ。感磁発熱体13
は、比透磁率が100〜2000の鉄系酸化物の微粒子
を主成分としており、その微粒子の平均粒径は10〜1
00[nm]である。
The acting portion 11 shown in FIG. 3A has a solenoid coil 11a and a magnetic core 11b made of ferrite inserted therein. The solenoid coil 11a is
A basic winding portion 11aa wound on the inner peripheral side over substantially the entire length of the acting portion 11, and a reinforcing winding portion 11ab wound on the outside thereof and over a short section on the acting end 11z side. Is equipped with. The working end 11z is filled with one end of the working portion 11 in such a manner that it is transversely coordinated to the object to be operated. The magnetic flux 12 generated at the working end 11z of the solenoid coil 11a is applied to the living body, which is the subject, and reaches the magnetically sensitive heating element 13 introduced into the living body. Magnetic heating element 13
Is mainly composed of iron oxide fine particles having a relative magnetic permeability of 100 to 2000, and the average particle diameter of the fine particles is 10 to 1
It is 00 [nm].

【0025】同図(b)に示す駆動部21は、交流20
0[V]を発生する交流電源22からの給電を受け、この
交流200[V]を整流装置23によって脈流200[V]
に変換する。変換した脈流200[V]はコンデンサ24
によって平滑化され、発振装置25によって矩形波状の
交流250[V]に変換される。発振装置25の出力側に
はコンデンサ26が設けられており、駆動部21の出力
端子21a,21bに上述したソレノイドコイル11a
が接続されると、コンデンサ26とソレノイドコイル1
1aとによって共振回路が形成される。この共振回路の
共振により、ソレノイドコイル11aには50〜400
[kHz]の周波数の高周波電流が流れ、作用端11zに
は磁束12が生じる。
The drive unit 21 shown in FIG.
Power is supplied from an AC power supply 22 that generates 0 [V], and this AC 200 [V] is pulsated by the rectifier 23 to be 200 [V].
Convert to. The converted pulsating flow of 200 [V] is stored in the condenser 24.
Is smoothed by the oscillating device 25 and converted into a rectangular wave AC 250 [V] by the oscillator 25. A capacitor 26 is provided on the output side of the oscillator 25, and the solenoid coil 11a is connected to the output terminals 21a and 21b of the drive unit 21.
Is connected, the capacitor 26 and the solenoid coil 1 are connected.
A resonant circuit is formed by 1a. Due to the resonance of this resonance circuit, 50 to 400 is applied to the solenoid coil 11a.
A high-frequency current having a frequency of [kHz] flows, and a magnetic flux 12 is generated at the working end 11z.

【0026】この構成において、作用部11の作用端1
1zが生体の胸部や腹部等に対向させて配置されると、
作用端11zに発生する磁束12は生体内の感磁発熱体
13に照射される。感磁発熱体13は照射された磁束1
2によって磁気ヒステリシス損を生じ、患部はこの磁気
ヒステリシス損によって加熱される。一方、生体は導電
性がよいので、感磁発熱体13が配置された周囲の生体
には渦電流が生じてジュール熱が発生する。しかし、上
記周波数の交流磁束12の形成は感磁発熱体13の配置
領域に集中するため、感磁発熱体13そのもののヒステ
リシス損による発熱は増大し、その影響を受けて、周囲
の生体に生じるジュール損による発熱は抑えられる。こ
の結果、感磁発熱体13の配置領域を中心とした鋭い温
度分布が形成され、正常細胞が加熱によって侵襲される
ことなく、患部の癌細胞のみが選択的に加熱されて壊死
させられる。
In this structure, the working end 1 of the working portion 11
When 1z is placed facing the chest or abdomen of the living body,
The magnetic flux 12 generated at the working end 11z is applied to the magnetosensitive heating element 13 in the living body. Magnetically sensitive heating element 13 emits magnetic flux 1
2 causes a magnetic hysteresis loss, and the affected area is heated by this magnetic hysteresis loss. On the other hand, since the living body has good conductivity, an eddy current is generated in the surrounding living body in which the magnetosensitive heating element 13 is arranged, and Joule heat is generated. However, since the formation of the AC magnetic flux 12 having the above-mentioned frequency is concentrated in the region where the magnetically sensitive heating element 13 is arranged, the heat generation due to the hysteresis loss of the magnetically sensitive heating element 13 itself increases, and under the influence thereof, it occurs in the surrounding living body. Heat generation due to Joule loss is suppressed. As a result, a sharp temperature distribution is formed centering on the arrangement area of the magnetosensitive heating element 13, and normal cells are not invaded by heating but only the cancer cells in the affected area are selectively heated and necrosed.

【0027】上記第1の実施形態による磁束照射装置の
作用部11の作用端11zからは、図2(c)のグラフ
において、ソレノイドコイル11aの各部分に由来する
磁束を総和した、出力磁束の密度が特性線zで表される
磁束が出力される。同グラフの横軸は、ソレノイドコイ
ル11aの単位巻線(1巻線)の作用端11zからの距
離L、同グラフの縦軸は、作用端11zから出力される
磁束の磁束密度Bを示している。特性線zは、基本巻線
部11aa由来の出力磁束を表した特性線xと、補強巻線
部11ab由来の出力磁束を表した特性線yとを合成する
ことによって得られる。このような特性を示す作用部1
1によれば、作用部11の作用端11zには、基本巻線
部11aaによって発生する磁束に、補強巻線部11abに
よって発生する磁束が加算され、強い磁界を持つ磁束1
2が効率よく発生させられる。
From the working end 11z of the working portion 11 of the magnetic flux irradiating device according to the first embodiment, in the graph of FIG. 2 (c), the output magnetic flux of the sum of the magnetic fluxes derived from the respective portions of the solenoid coil 11a is calculated. The magnetic flux whose density is represented by the characteristic line z is output. The horizontal axis of the graph represents the distance L from the working end 11z of the unit winding (one winding) of the solenoid coil 11a, and the vertical axis of the graph represents the magnetic flux density B of the magnetic flux output from the working end 11z. There is. The characteristic line z is obtained by synthesizing the characteristic line x representing the output magnetic flux derived from the basic winding portion 11aa and the characteristic line y representing the output magnetic flux originating from the reinforcing winding portion 11ab. Working unit 1 having such characteristics
According to 1, the magnetic flux generated by the reinforcing winding portion 11ab is added to the magnetic flux generated by the basic winding portion 11aa at the working end 11z of the acting portion 11, and the magnetic flux 1 having a strong magnetic field is generated.
2 can be efficiently generated.

【0028】従って、作用部11の長さを増すことでは
果たせなかった照射磁束の強化が、作用端11z寄りに
配置されて磁気回路内の磁界強度の減衰が少ない補強巻
線部11abの磁界による磁束加算作用によって果たさ
れ、密度の高い磁束12が生体に照射されることにな
る。
Therefore, the strengthening of the irradiation magnetic flux, which cannot be achieved by increasing the length of the action portion 11, is caused by the magnetic field of the reinforcing winding portion 11ab which is arranged near the action end 11z and has little attenuation of the magnetic field strength in the magnetic circuit. The living body is irradiated with the high-density magnetic flux 12 which is fulfilled by the magnetic flux addition action.

【0029】このため、上記の第1の実施形態による磁
束照射装置によれば、駆動部21の共振回路に高電圧を
発生させることなく、しかも、効率よく、密度が高い磁
束12を生体内の感磁発熱体13に集中させることが出
来、さらに、生体に照射される磁束12の実効深さ(有
効な磁束密度を持つ磁束が作用する深さ)を増やすこと
が出来る。また、作用部11は、その有効長さを大きく
したり、その断面積を増やして大型化する必要が無いた
め、加熱に寄与しない回路インピーダンスの増大が抑制
され、電力損失率の増大を防ぐことが出来る。さらに、
作用部11の可搬性が損なわれないため、加温を要する
胸部や腹部といった生体部位にも容易にその作用端11
zを配置することが出来る。
Therefore, according to the magnetic flux irradiating apparatus of the first embodiment, the high density magnetic flux 12 can be efficiently generated in the living body without generating a high voltage in the resonance circuit of the drive section 21. The magnetic flux can be concentrated on the magnetosensitive heating element 13, and the effective depth of the magnetic flux 12 applied to the living body (the depth at which the magnetic flux having an effective magnetic flux density acts) can be increased. In addition, since the action portion 11 does not need to be enlarged in size by increasing its effective length or increasing its cross-sectional area, increase in circuit impedance that does not contribute to heating is suppressed, and increase in power loss rate is prevented. Can be done. further,
Since the portability of the action part 11 is not impaired, the action end 11 can be easily applied to a living body part such as the chest or abdomen that requires heating.
z can be arranged.

【0030】次に、本発明による磁束照射装置を生体内
部加熱装置に適用した第2の実施形態について説明す
る。
Next, a second embodiment in which the magnetic flux irradiating device according to the present invention is applied to a living body interior heating device will be described.

【0031】第2の実施形態による磁束照射装置は、図
3(a)に示す作用部31と、図2(b)に示す駆動部
21とから構成されており、上述した第1の実施形態に
よる磁束照射装置とは作用部31の構成だけが相違して
いる。なお、図3において図2(a)と同一または相当
する部分には同一符号を付してその説明は省略する。
The magnetic flux irradiating device according to the second embodiment comprises an operating portion 31 shown in FIG. 3 (a) and a driving portion 21 shown in FIG. 2 (b). The magnetic flux irradiating device of FIG. In FIG. 3, parts that are the same as or correspond to those in FIG. 2A are assigned the same reference numerals and explanations thereof are omitted.

【0032】第2の実施形態による作用部31は、作用
端31zのソレノイドコイル31aの周囲に、図で斜線
が付された磁束制御巻線部31bが張り出して形成され
ている。この磁束制御巻線部31bは、ソレノイドコイ
ル31aの巻線が作用端31zの周囲において張り出し
て巻かれて形成されており、磁束制御巻線部31bを備
えたソレノイドコイル31aは1本の導線から形成され
ている。なお、磁束制御巻線部31bをソレノイドコイ
ル31aとは別の巻線で形成し、磁束制御巻線部31b
とソレノイドコイル31aとに同相の電流を流すように
構成してもよい。
The action portion 31 according to the second embodiment is formed by surrounding the solenoid coil 31a at the action end 31z with a magnetic flux control winding portion 31b, which is shaded in the figure, protruding. The magnetic flux control winding portion 31b is formed by winding the winding of the solenoid coil 31a so as to project around the working end 31z, and the solenoid coil 31a including the magnetic flux control winding portion 31b is formed from one conductor wire. Has been formed. The magnetic flux control winding portion 31b is formed by a winding different from the solenoid coil 31a, and
The same phase current may be applied to the solenoid coil 31a and the solenoid coil 31a.

【0033】このような作用部31からなる第2の実施
形態による磁束照射装置では、磁束制御巻線部31bに
よって作用端31zの周囲に磁束33が図で点線で示す
ように張り出して生じ、ソレノイドコイル31aの軸中
心部に生じる磁束32は、張り出して生じた磁束33の
影響を受けて作用端31zからより遠い地点で弧を描く
磁力線を形成する。つまり、ソレノイドコイル31aの
軸中心部に生じる磁束32は、磁束制御巻線部31bの
磁束制御効果により、作用端31zからより遠い地点ま
で到達して分布する。
In the magnetic flux irradiating device according to the second embodiment having such an action portion 31, a magnetic flux 33 is generated by the magnetic flux control winding portion 31b so as to project around the action end 31z as shown by a dotted line in the figure, and the solenoid The magnetic flux 32 generated in the axial center portion of the coil 31a is affected by the magnetic flux 33 generated by the protrusion, and forms a magnetic force line that draws an arc at a position farther from the working end 31z. That is, the magnetic flux 32 generated at the axial center of the solenoid coil 31a reaches and is distributed farther from the working end 31z due to the magnetic flux control effect of the magnetic flux control winding portion 31b.

【0034】このため、上記の第2の実施形態による磁
束照射装置によっても、共振回路を高電圧化する必要な
く、しかも、効率よく、生体内の感磁発熱体13に密度
が高い磁束32を集中させることが出来、さらに、生体
に照射される磁束32の実効深さをさらに増やすことが
出来る。また、この第2の実施形態でも、作用部31を
大型化する必要が無いため、加熱に寄与しない回路イン
ピーダンスの増大が抑制され、電力損失率の増大を防ぐ
ことが出来る。さらに、作用部31の可搬性は損なわれ
ないため、加温を要する生体の各部に容易にその作用端
31zを配置することが出来る。
Therefore, even with the magnetic flux irradiating device according to the second embodiment described above, it is not necessary to increase the voltage of the resonance circuit, and moreover, the magnetic flux 32 having a high density can be efficiently and efficiently supplied to the magnetosensitive heating element 13 in the living body. The magnetic flux 32 can be concentrated and the effective depth of the magnetic flux 32 applied to the living body can be further increased. Further, also in the second embodiment, since it is not necessary to increase the size of the action portion 31, it is possible to suppress an increase in circuit impedance that does not contribute to heating and prevent an increase in power loss rate. Furthermore, since the portability of the action part 31 is not impaired, the action end 31z can be easily arranged at each part of the living body that requires heating.

【0035】次に、本発明による磁束照射装置を生体内
部加熱装置に適用した第3の実施形態について説明す
る。
Next, a third embodiment in which the magnetic flux irradiating device according to the present invention is applied to a living body interior heating device will be described.

【0036】第3の実施形態による磁束照射装置は、図
3(b)に示す作用部41と、図2(b)に示す駆動部
21とから構成されており、上述した第2の実施形態に
よる磁束照射装置とは作用部41の構成だけが相違して
いる。
The magnetic flux irradiating device according to the third embodiment comprises an operating portion 41 shown in FIG. 3 (b) and a driving portion 21 shown in FIG. 2 (b). The magnetic flux irradiating device of FIG.

【0037】第3の実施形態による作用部41は、作用
端41zのソレノイドコイル41aの周囲に、図で斜線
が付された磁束制御巻線部41bが張り出して形成され
ている点は、第2の実施形態の作用部31と同様である
が、この磁束制御巻線41bが可撓性を持つ導線から形
成されている点が、第2の実施形態の作用部31と相違
している。この第3の実施形態では、ソレノイドコイル
41aの巻線も可撓性を持つ導線から形成されており、
磁束制御巻線部41bは、この可撓性導線が作用端41
zの周囲において張り出して巻かれて形成されている。
なお、磁束制御巻線部41bのみ可撓性導線から形成
し、ソレノイドコイル41aの導線と直列に接続するよ
うに形成してもよい。また、磁束制御巻線部41bをソ
レノイドコイル41aとは別の可撓性導線で形成し、磁
束制御巻線部41bとソレノイドコイル41aとに同相
の電流を流すように構成してもよい。
The action portion 41 according to the third embodiment is formed by a magnetic flux control winding portion 41b, which is shaded in the figure, projecting around the solenoid coil 41a at the action end 41z. It is similar to the operating portion 31 of the second embodiment, but is different from the operating portion 31 of the second embodiment in that the magnetic flux control winding 41b is formed of a flexible conductive wire. In the third embodiment, the winding of the solenoid coil 41a is also formed of a flexible conductor wire,
In the magnetic flux control winding portion 41b, this flexible conductor wire is used as the working end 41.
It is formed by projecting and winding around z.
Alternatively, only the magnetic flux control winding portion 41b may be formed of a flexible conductive wire and connected so as to be connected in series with the conductive wire of the solenoid coil 41a. Alternatively, the magnetic flux control winding portion 41b may be formed of a flexible conductor different from the solenoid coil 41a, and a current of the same phase may flow through the magnetic flux control winding portion 41b and the solenoid coil 41a.

【0038】このような作用部41からなる上記第3の
実施形態による磁束照射装置では、生体14の形状に合
わせて磁束制御巻線部41bの形状を図に示すように撓
めることにより、磁束制御巻線部41bに生じる磁束の
分布を、磁束制御巻線部41bによる磁束制御効果が一
層高まるように、適宜変えることが出来る。従って、こ
の磁束の分布の影響を受ける、ソレノイドコイル41a
の軸中心部に生じて生体14に照射される磁束42の分
布は、磁束制御巻線部41bの形状を変えることによ
り、作用端41zからより遠い地点まで到達させられ、
しかも、生体14の状況に応じて最適な所望の状態に分
布させられる。よって、この第3の実施形態による磁束
照射装置によれば、上述した第2の実施形態による作用
効果が奏されるばかりではなく、患部の状況に応じて適
宜最適な磁束を照射することが可能になる。
In the magnetic flux irradiating device according to the third embodiment, which is composed of the acting portion 41 as described above, the shape of the magnetic flux control winding portion 41b is bent as shown in FIG. The distribution of the magnetic flux generated in the magnetic flux control winding portion 41b can be appropriately changed so that the magnetic flux control effect of the magnetic flux control winding portion 41b is further enhanced. Therefore, the solenoid coil 41a is affected by the distribution of the magnetic flux.
The distribution of the magnetic flux 42 that is generated in the center of the axis and is applied to the living body 14 is made to reach a point farther from the working end 41z by changing the shape of the magnetic flux control winding portion 41b.
Moreover, it can be distributed in an optimum desired state according to the situation of the living body 14. Therefore, according to the magnetic flux irradiation device of the third embodiment, not only the function and effect of the second embodiment described above can be obtained, but also the optimum magnetic flux can be appropriately irradiated depending on the condition of the affected area. become.

【0039】次に、本発明による磁束照射装置を生体内
部加熱装置に適用した第4の実施形態について説明す
る。
Next, a fourth embodiment in which the magnetic flux irradiating device according to the present invention is applied to a living body interior heating device will be described.

【0040】第4の実施形態による磁束照射装置は、図
3(c)に示す2基の単位作用部51,52からなる作
用部と、図2(b)に示す駆動部21とから構成されて
おり、前述した第1の実施形態による磁束照射装置とは
駆動部21の構成だけが共通している。なお、本実施形
態では図示の便宜上、作用部を2基の単位作用部51,
52から構成しているが、実際には3基か4基程度の単
位作用部から作用部を構成すると、各単位作用部の作用
端が立体的な被射体の外表面に沿って配置され、好適で
ある。
The magnetic flux irradiating device according to the fourth embodiment is composed of an operating portion composed of two unit operating portions 51 and 52 shown in FIG. 3 (c) and a drive portion 21 shown in FIG. 2 (b). Therefore, only the configuration of the drive unit 21 is common to the magnetic flux irradiation apparatus according to the first embodiment described above. In the present embodiment, for the sake of convenience of illustration, two action units 51,
Although it is composed of 52, in actuality, when the action portion is made up of about 3 or 4 unit action portions, the action end of each unit action portion is arranged along the outer surface of the three-dimensional object. Is preferred.

【0041】第4の実施形態による磁束照射装置では、
2基の単位作用部51,52が図3(c)に示すように
それらの作用端が寄り添って配置されており、各単位作
用部51,52を構成するソレノイドコイルの軸線が被
射体側に求心状に集まって磁束密度が加算強化されるよ
うに配位されている。さらに、第4の実施形態では、寄
り添った各作用端を包む外周囲に磁束制御巻線部53が
張り出して形成されている。この第4の実施形態では、
各単位作用部51,52のソレノイドコイルおよび磁束
制御巻線部53は、それらによって生じる磁界の位相が
揃うように直列接続し、前記駆動部21に接続して通電
する。従って、各単位作用部51,52の作用端には同
じ位相の磁束が揃って出力され、これらは生体内の感磁
発熱体13で合流して加算強化される。すなわち、この
第4の実施形態によれば、生体内の特定の部位に焦点を
定めた加熱が行える。
In the magnetic flux irradiation device according to the fourth embodiment,
As shown in FIG. 3C, the two unit action parts 51 and 52 are arranged such that their action ends are close to each other, and the axis of the solenoid coil forming each unit action part 51 and 52 is located on the side of the subject. They are arranged in a centripetal manner so that the magnetic flux density is added and strengthened. Further, in the fourth embodiment, the magnetic flux control winding portion 53 is formed so as to project around the outer periphery that encloses each of the leaning action ends. In this fourth embodiment,
The solenoid coil and the magnetic flux control winding portion 53 of each unit acting portion 51, 52 are connected in series so that the phases of the magnetic fields generated by them are aligned, and are connected to the driving portion 21 to be energized. Therefore, the magnetic fluxes of the same phase are uniformly output to the action ends of the respective unit action portions 51 and 52, and these are merged by the magnetically sensitive heating element 13 in the living body to be added and strengthened. That is, according to the fourth embodiment, it is possible to perform the heating while focusing on a specific part of the living body.

【0042】上述のように、本実施形態にあっても、回
路を高電圧化する必要なく、しかも、効率よく、生体内
の感磁発熱体13に密度が高い磁束54,55を集中さ
せることが出来、さらに、生体に照射される磁束54,
55の集中性を深さ方向についても改善することが出来
る。
As described above, even in the present embodiment, it is not necessary to increase the voltage of the circuit, and moreover, it is possible to efficiently concentrate the high-density magnetic fluxes 54 and 55 on the magnetosensitive heating element 13 in the living body. And the magnetic flux 54 that irradiates the living body,
The concentration of 55 can be improved also in the depth direction.

【0043】また、本実施形態では、磁束制御巻線部5
3によって単位作用部51,52の各作用端を包む外周
囲に図で点線で示す磁束56が張り出して生じ、加算し
て強め合う各単位作用部51,52の磁束54,55
は、張り出して生じた磁束56の影響を受けて単位作用
部51,52の各作用端からより遠い地点で弧を描く磁
力線を形成する。つまり、加算して強め合う単位作用部
51,52の磁束54,55は、各作用端からより遠い
地点まで到達して分布する。
Further, in the present embodiment, the magnetic flux control winding section 5
The magnetic fluxes 56 and 55 of the unit action parts 51 and 52, which are added and reinforce each other, are generated by the magnetic flux 56 shown by a dotted line in the figure projecting around the outer periphery enclosing the action ends of the unit action parts 51 and 52 by 3.
Under the influence of the magnetic flux 56 generated by the overhang, magnetic force lines that form an arc are formed at points farther from the respective action ends of the unit action portions 51 and 52. That is, the magnetic fluxes 54 and 55 of the unit action portions 51 and 52 that add and reinforce each other reach the points farther from the respective action ends and are distributed.

【0044】このため、磁束制御巻線部53を備えた第
4の実施形態による磁束照射装置によれば、生体に照射
される磁束54,55の実効深さをさらに増やすことが
出来る。また、この第4の実施形態において、磁束制御
巻線部53を可撓性を持つ導線から形成した場合には、
上述した第3の実施形態と同様な作用効果が奏される。
なお、上記複数基の単位作用部51,52を有するが、
磁束制御巻線部53は備えていない構成も用途・目的に
応じて有用である。
Therefore, the magnetic flux irradiating apparatus according to the fourth embodiment having the magnetic flux controlling winding portion 53 can further increase the effective depth of the magnetic fluxes 54 and 55 applied to the living body. In addition, in the fourth embodiment, when the magnetic flux control winding portion 53 is formed of a flexible conductive wire,
The same effect as that of the above-described third embodiment is obtained.
In addition, although it has the plurality of unit action parts 51 and 52,
A configuration not provided with the magnetic flux control winding section 53 is also useful according to the use and purpose.

【0045】また、上述した各実施形態を適宜複合させ
て磁束照射装置を構成することも出来る。
Further, a magnetic flux irradiating device can be constructed by appropriately combining the above-mentioned respective embodiments.

【0046】例えば、図2(a)に作用部が示される第
1の実施形態による磁束照射装置において、基本巻線部
11aaおよび補強巻線部11abを有するソレノイドコイ
ル11aに、さらに、図3(a)に作用部31が示され
る第2の実施形態における磁束制御巻線部31bを備え
るように構成することが出来る。また、この場合、図3
(b)に作用部41が示される第3の実施形態のよう
に、磁束制御巻線部31bを可撓性を持つ磁束制御巻線
部41bにすることも出来る。また、図3(c)に作用
部が示される第4の実施形態による磁束照射装置におい
て、複数基の各単位作用部51,52を、第1の実施形
態の作用部11のように、基本巻線部11aaと補強巻線
部11abとを備えたソレノイドコイル11aから構成す
ることが出来る。
For example, in the magnetic flux irradiating device according to the first embodiment, the operating portion of which is shown in FIG. 2A, the solenoid coil 11a having the basic winding portion 11aa and the reinforcing winding portion 11ab is further provided in FIG. It can be configured to include the magnetic flux control winding portion 31b in the second embodiment in which the acting portion 31 is shown in a). Also, in this case, FIG.
As in the third embodiment in which the action portion 41 is shown in (b), the magnetic flux control winding portion 31b can be a flexible magnetic flux control winding portion 41b. Further, in the magnetic flux irradiating device according to the fourth embodiment in which the operating portion is shown in FIG. 3C, the plurality of unit operating portions 51 and 52 are basically the same as the operating portion 11 of the first embodiment. The solenoid coil 11a may include a winding portion 11aa and a reinforcing winding portion 11ab.

【0047】このような各構成によれば、組み合わされ
た各構成が持つ作用・効果が相乗して発生し、上述した
各実施形態単独の際に奏される効果よりも高い磁束発生
効果を奏する磁束照射装置が実現される。
According to such respective configurations, the actions and effects of the combined configurations are synergistically generated, and a magnetic flux generating effect higher than the effect obtained in the above-described respective embodiments alone is exerted. A magnetic flux irradiation device is realized.

【0048】なお、上述した各実施形態では、本発明に
よる磁束照射装置を生体内部加熱装置に適用して生体に
磁束を照射する場合について説明したが、本発明はこれ
に限定されることはない。例えば、金属等の被射体に磁
束を照射し、金属等を加熱する場合などにも同様に適用
することが出来、この場合においても上述した各実施形
態と同様な作用効果が奏される。
In each of the above-described embodiments, the case where the magnetic flux irradiating device according to the present invention is applied to the living body interior heating device to irradiate the living body with magnetic flux is described, but the present invention is not limited to this. . For example, it can be similarly applied to the case of irradiating magnetic flux to an object such as a metal to heat the metal or the like, and in this case, the same effect as that of each of the above-described embodiments can be obtained.

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、作
用部が、内周側に且つ作用部の略全長に亘って巻成され
た基本巻線部と、その外側に且つ作用端側の短区間に亘
って巻成された補強巻線部とを備えているソレノイドコ
イルから構成される場合、作用部の長さを増すことでは
果たせなかった照射磁束の強化が、作用端寄りに配置さ
れて磁気回路内の磁界強度の減衰が少ない補強巻線部の
磁界による磁束加算作用によって果たされ、密度の高い
磁束が被射体に照射されることになる。
As described above, according to the present invention, the working portion has the basic winding portion wound on the inner peripheral side and over substantially the entire length of the working portion, and on the outer side and the working end side. In the case of a solenoid coil having a reinforcing winding part wound over a short section of, the strengthening of the irradiation magnetic flux, which could not be achieved by increasing the length of the operating part, is arranged near the operating end. Then, the attenuation of the magnetic field strength in the magnetic circuit is reduced, and the magnetic field is added by the magnetic field of the reinforcing winding portion, and the dense magnetic flux is applied to the object.

【0050】このため、回路を高電圧化する必要なく、
しかも、効率よく、密度が高い磁束を被射体内に集中さ
せることが出来、さらに、被射体に照射される磁束の実
効深さを増やすことが出来る。また、作用部を大型化す
る必要が無く、加熱に寄与しない回路インピーダンスの
増大が抑制されるため、電力損失率の増大を防ぐことが
出来る。さらに、作用部の可搬性は損なわれないため、
被射体の所望の位置に容易に作用端を配置することが出
来る。
Therefore, it is not necessary to increase the voltage of the circuit,
Moreover, the magnetic flux having a high density can be efficiently concentrated in the subject, and the effective depth of the magnetic flux applied to the subject can be increased. Further, since it is not necessary to increase the size of the acting portion and the increase of the circuit impedance that does not contribute to heating is suppressed, it is possible to prevent the increase of the power loss rate. Furthermore, since the portability of the action part is not impaired,
The working end can be easily arranged at a desired position on the subject.

【0051】また、ソレノイドコイルが、作用端の周囲
に張り出して形成された磁束制御巻線部を備えている構
成の場合には、磁束制御巻線部によって作用端の周囲に
磁束が張り出して生じ、ソレノイドの軸中心部に生じる
磁束は、作用端からより遠い地点まで到達して分布す
る。このため、本構成によっても、回路を高電圧化する
必要なく、しかも、効率よく、密度が高い磁束を被射体
内に集中させることが出来、さらに、被射体に照射され
る磁束の実効深さをさらに増やすことが出来る。また、
電力損失率の増大を防ぐことが出来、さらに、被射体の
所望の位置に容易に作用端を配置することが出来る。
Further, in the case where the solenoid coil is provided with the magnetic flux control winding portion formed to project around the working end, the magnetic flux control winding portion causes the magnetic flux to project around the working end. The magnetic flux generated in the central part of the solenoid shaft reaches and is distributed farther from the working end. Therefore, even with this configuration, it is possible to efficiently concentrate the high-density magnetic flux in the object without increasing the voltage of the circuit, and further, to increase the effective depth of the magnetic flux applied to the object. Can be further increased. Also,
It is possible to prevent an increase in the power loss rate, and further it is possible to easily arrange the working end at a desired position on the subject.

【0052】また、作用部が、極性の揃った複数基の単
位作用部で構成されると共に、各単位作用部が、その軸
線が被射体側に求心状に集まって磁束密度が加算強化さ
れるように配位されている構成の場合には、複数基の各
単位作用部に生じる各磁束が被射体に照射され、1基の
単位作用部に生じる磁束が照射される場合よりも密度な
いし太さの増強された磁束が被射体に照射される。この
ため、本構成によっても、回路を高電圧化する必要な
く、しかも、効率よく、密度が高い磁束を被射体内に集
中させることが出来、さらに、被射体に照射される磁束
の実効深さを増やすことが出来る。
Further, the acting portion is composed of a plurality of unit acting portions having uniform polarities, and the axis lines of each unit acting portion are gathered in a centripetal manner on the side of the object to add and strengthen the magnetic flux density. In the case of such a configuration, the magnetic flux generated in each unit action portion of the plurality of groups is applied to the irradiation target, and the density or The magnetic flux with the increased thickness is applied to the object. Therefore, even with this configuration, it is possible to efficiently concentrate the high-density magnetic flux in the object without increasing the voltage of the circuit, and further, to increase the effective depth of the magnetic flux applied to the object. Can be increased.

【0053】また、作用部が、複数基の単位作用部に所
属する作用端群の包絡的周縁の周囲に張り出して形成さ
れた磁束制御巻線部を備えている構成の場合には、磁束
制御巻線部によって複数基の単位作用部の各作用端を包
む外周囲に磁束が張り出して生じ、加算して強め合う各
ソレノイドの磁束は、各作用端からより遠い地点まで到
達して分布する。このため、本構成によれば、被射体に
照射される磁束の実効深さをさらに増やすことが出来
る。
Further, in the case of a structure in which the operating portion is provided with a magnetic flux control winding portion formed so as to project around the enveloping peripheral edge of the operating end group belonging to a plurality of unit operating portions, the magnetic flux control is performed. The magnetic flux of the solenoids is generated by the winding portion swelling around the outer circumference of each working end of the plurality of unit working portions, and the magnetic fluxes of the respective solenoids, which add and reinforce each other, reach a point farther from each working end and are distributed. Therefore, according to this configuration, the effective depth of the magnetic flux with which the subject is irradiated can be further increased.

【0054】また、磁束制御巻線部が可撓性を持つ導線
から形成されている構成の場合には、被射体の形状に合
わせて磁束制御巻線部の形状を撓めることにより、磁束
制御巻線部に生じる磁束の分布を、磁束制御効果が一層
高まるように適宜変えることが出来る。このため、被射
体に照射される磁束は、被射体の状況に応じて最適な所
望の状態に分布させられる。
In the case where the magnetic flux control winding portion is formed of a flexible conductive wire, the shape of the magnetic flux control winding portion is bent in accordance with the shape of the object, The distribution of the magnetic flux generated in the magnetic flux control winding portion can be appropriately changed so that the magnetic flux control effect is further enhanced. Therefore, the magnetic flux applied to the object is distributed in an optimum desired state according to the situation of the object.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁束照射装置の作用部の概略構成を示す
図である。
FIG. 1 is a diagram showing a schematic configuration of a working portion of a conventional magnetic flux irradiation device.

【図2】(a)は本発明の第1の実施形態による磁束照
射装置に用いられている作用部の概略構成、(b)は本
発明の各実施形態による磁束照射装置に用いられている
駆動部の概略構成を示す図であり、(c)は(a)に示
すトランスバース型ソレノイドコイルの巻線位置と作用
端に作用する磁束密度との関係を模式的に示すグラフで
ある。
FIG. 2A is a schematic configuration of an action part used in the magnetic flux irradiation device according to the first embodiment of the present invention, and FIG. 2B is used in the magnetic flux irradiation device according to each embodiment of the present invention. It is a figure which shows schematic structure of a drive part, (c) is a graph which shows typically the relationship between the winding position of the transverse type solenoid coil shown to (a), and the magnetic flux density which acts on a working end.

【図3】(a)は本発明の第2の実施形態による磁束照
射装置の作用部の概略構成、(b)は本発明の第3の実
施形態による磁束照射装置の作用部の概略構成、(c)
は本発明の第4の実施形態による磁束照射装置の作用部
を構成する2基の単位作用部の概略構成を示す図であ
る。
3A is a schematic configuration of a working portion of a magnetic flux irradiation device according to a second embodiment of the present invention, and FIG. 3B is a schematic configuration of a working portion of a magnetic flux irradiation device according to a third embodiment of the present invention; (C)
[Fig. 8] is a diagram showing a schematic configuration of two unit action parts constituting an action part of a magnetic flux irradiator according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,31,41…作用部 51,52…単位作用部 11a,31a,41a…トランスバース型ソレノイド
コイル 11aa…基本巻線部 11ab…補強巻線部 11b…磁心 11z,31z,41z…作用部11,31,41の作
用端 12,32,33,42,54,55,56…磁束 13…感磁発熱体 14…生体 21…駆動部 31b,41b,53…磁束制御巻線部
11, 31, 41 ... Working parts 51, 52 ... Unit working parts 11a, 31a, 41a ... Transverse solenoid coil 11aa ... Basic winding part 11ab ... Reinforcing winding part 11b ... Magnetic cores 11z, 31z, 41z ... Working part 11 , 31, 41 working ends 12, 32, 33, 42, 54, 55, 56 ... Magnetic flux 13 ... Magnetically sensitive heating element 14 ... Living body 21 ... Drive portions 31b, 41b, 53 ... Magnetic flux control winding portion

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ソレノイドコイルおよびこれに挿入され
た磁心を有する作用部と、前記ソレノイドコイルに電流
を流して磁束を生じさせる駆動部とを備え、前記作用部
の片方の端部を充てて機能させる作用端から被射体に磁
束が照射される磁束照射装置において、前記ソレノイド
コイルは、内周側に且つ前記作用部の略全長に亘って巻
成された基本巻線部と、その外側に且つ前記作用端側の
短区間に亘って巻成された補強巻線部とを備えているこ
とを特徴とする磁束照射装置。
1. A functioning part having a solenoid coil and a magnetic core inserted therein, and a drive part for causing a current to flow through the solenoid coil to generate a magnetic flux. One end of the functioning part is filled to function. In the magnetic flux irradiating device in which magnetic flux is radiated from the working end to the object to be radiated, the solenoid coil has a basic winding part wound on the inner peripheral side and over substantially the entire length of the operating part, and on the outside thereof. A magnetic flux irradiating device comprising: a reinforcing winding part wound over a short section on the working end side.
【請求項2】 ソレノイドコイルおよびこれに挿入され
た磁心を有する作用部と、前記ソレノイドコイルに電流
を流して磁束を生じさせる駆動部とを備え、前記作用部
の片方の端部を充てて機能させる作用端から被射体に磁
束が照射される磁束照射装置において、前記ソレノイド
コイルは、前記作用端の周囲に張り出して形成された磁
束制御巻線部を備えていることを特徴とする磁束照射装
置。
2. A solenoid coil and an action part having a magnetic core inserted therein, and a drive part for causing an electric current to flow through the solenoid coil to generate a magnetic flux, and one end of the action part is filled to function. In the magnetic flux irradiating device in which magnetic flux is radiated from the working end to the object to be radiated, the solenoid coil includes a magnetic flux control winding portion formed to project around the working end. apparatus.
【請求項3】 ソレノイドコイルおよびこれに挿入され
た磁心を有する作用部と、前記ソレノイドコイルに電流
を流して磁束を生じさせる駆動部とを備え、前記作用部
の片方の端部を充てて機能させる作用端から被射体に磁
束が照射される磁束照射装置において、前記作用部は極
性の揃った複数基の単位作用部で構成されると共に、各
単位作用部はその軸線が前記被射体側に求心状に集まっ
て磁束密度が加算強化されるように配位されていること
を特徴とする磁束照射装置。
3. A functioning part having a solenoid coil and a magnetic core inserted in the solenoid coil, and a drive part for causing a current to flow through the solenoid coil to generate a magnetic flux. In the magnetic flux irradiating device in which magnetic flux is radiated from the working end to the subject, the acting portion is composed of a plurality of unit acting portions having uniform polarities, and each unit acting portion has an axis line on the subject side. A magnetic flux irradiating device, wherein the magnetic flux irradiating device is arranged so that the magnetic flux densities are gathered in a centripetal manner and the magnetic flux density is added and strengthened.
【請求項4】 前記ソレノイドコイルは、前記作用端の
周囲に張り出して形成された磁束制御巻線部を備えてい
ることを特徴とする請求項1に記載の磁束照射装置。
4. The magnetic flux irradiating device according to claim 1, wherein the solenoid coil includes a magnetic flux control winding portion formed to project around the working end.
【請求項5】 前記単位作用部のソレノイドコイルは、
内周側に且つ前記単位作用部の略全長に亘って巻成され
た基本巻線部と、その外側に且つ前記作用端側の短区間
に亘って巻成された補強巻線部とを備えていることを特
徴とする請求項3に記載の磁束照射装置。
5. The solenoid coil of the unit acting portion comprises:
A basic winding portion wound on the inner peripheral side over substantially the entire length of the unit operating portion, and a reinforcing winding portion wound on the outer side thereof over a short section on the operating end side. The magnetic flux irradiation device according to claim 3, wherein
【請求項6】 前記作用部は、前記複数基の単位作用部
に所属する前記作用端の群の包絡的周縁の周囲に張り出
して形成された磁束制御巻線部を備えていることを特徴
とする請求項3または請求項5に記載の磁束照射装置。
6. The action section includes a magnetic flux control winding section formed so as to project around an envelope peripheral edge of a group of the action ends belonging to the plurality of unit action sections. The magnetic flux irradiating device according to claim 3 or 5.
【請求項7】 前記磁束制御巻線部は可撓性を持つ導線
から形成されていることを特徴とする請求項2または請
求項4または請求項6に記載の磁束照射装置。
7. The magnetic flux irradiating apparatus according to claim 2, wherein the magnetic flux control winding portion is formed of a flexible conductive wire.
【請求項8】 前記被射体は生体であることを特徴とす
る請求項1から請求項7のいずれか1項に記載の磁束照
射装置。
8. The magnetic flux irradiating device according to claim 1, wherein the subject is a living body.
JP2002005786A 2002-01-15 2002-01-15 Magnetic flux irradiation device Expired - Lifetime JP3737054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005786A JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005786A JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005254332A Division JP4255466B2 (en) 2005-09-02 2005-09-02 Magnetic flux irradiation device for internal living body heating

Publications (2)

Publication Number Publication Date
JP2003205040A true JP2003205040A (en) 2003-07-22
JP3737054B2 JP3737054B2 (en) 2006-01-18

Family

ID=27644732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005786A Expired - Lifetime JP3737054B2 (en) 2002-01-15 2002-01-15 Magnetic flux irradiation device

Country Status (1)

Country Link
JP (1) JP3737054B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104622A1 (en) * 2004-04-23 2005-11-03 Japan Science And Technology Agency Coil device and magnetic field generator
JP2009536073A (en) * 2006-05-05 2009-10-08 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Deep brain localization transtemporal magnetic stimulation system based on trajectory
US8265910B2 (en) 2007-10-09 2012-09-11 Cervel Neurotech, Inc. Display of modeled magnetic fields
US8523753B2 (en) 2007-11-27 2013-09-03 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
EP2384223A4 (en) * 2009-01-07 2014-06-18 Cervel Neurotech Inc Shaped coils for transcranial magnetic stimulation
US8795148B2 (en) 2009-10-26 2014-08-05 Cervel Neurotech, Inc. Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US8845508B2 (en) 2004-04-09 2014-09-30 The Board Of Trustees Of The Leland Stanford Junior University Robotic apparatus for targeting and producing deep, focused transcranial magnetic stimulation
US8956274B2 (en) 2007-08-05 2015-02-17 Cervel Neurotech, Inc. Transcranial magnetic stimulation field shaping
US8956273B2 (en) 2007-08-20 2015-02-17 Cervel Neurotech, Inc. Firing patterns for deep brain transcranial magnetic stimulation
US9352167B2 (en) 2006-05-05 2016-05-31 Rio Grande Neurosciences, Inc. Enhanced spatial summation for deep-brain transcranial magnetic stimulation
US9492679B2 (en) 2010-07-16 2016-11-15 Rio Grande Neurosciences, Inc. Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187364A (en) 2013-09-20 2016-11-04 第一高周波工業株式会社 Magnetic flux irradiation device
JP2016537034A (en) 2013-09-20 2016-12-01 第一高周波工業株式会社 Magnetic flux irradiation device and components
JP6716591B2 (en) 2015-03-02 2020-07-01 カイオ セラピー,エルエルシー System and method for providing alternating magnetic field therapy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845508B2 (en) 2004-04-09 2014-09-30 The Board Of Trustees Of The Leland Stanford Junior University Robotic apparatus for targeting and producing deep, focused transcranial magnetic stimulation
US8062204B2 (en) 2004-04-23 2011-11-22 Kanazawa University Coil device and magnetic field generating device
WO2005104622A1 (en) * 2004-04-23 2005-11-03 Japan Science And Technology Agency Coil device and magnetic field generator
JP2009536073A (en) * 2006-05-05 2009-10-08 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Deep brain localization transtemporal magnetic stimulation system based on trajectory
US9486639B2 (en) 2006-05-05 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
US9352167B2 (en) 2006-05-05 2016-05-31 Rio Grande Neurosciences, Inc. Enhanced spatial summation for deep-brain transcranial magnetic stimulation
US8956274B2 (en) 2007-08-05 2015-02-17 Cervel Neurotech, Inc. Transcranial magnetic stimulation field shaping
US8956273B2 (en) 2007-08-20 2015-02-17 Cervel Neurotech, Inc. Firing patterns for deep brain transcranial magnetic stimulation
US8265910B2 (en) 2007-10-09 2012-09-11 Cervel Neurotech, Inc. Display of modeled magnetic fields
US8523753B2 (en) 2007-11-27 2013-09-03 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
US9132277B2 (en) 2009-01-07 2015-09-15 Cerval Neurotech, Inc. Shaped coils for transcranial magnetic stimulation
EP2384223A4 (en) * 2009-01-07 2014-06-18 Cervel Neurotech Inc Shaped coils for transcranial magnetic stimulation
US9381374B2 (en) 2009-01-07 2016-07-05 Rio Grande Neurosciences, Inc. Shaped coils for transcranial magnetic stimulation
US8795148B2 (en) 2009-10-26 2014-08-05 Cervel Neurotech, Inc. Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US9492679B2 (en) 2010-07-16 2016-11-15 Rio Grande Neurosciences, Inc. Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation

Also Published As

Publication number Publication date
JP3737054B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP2003205040A (en) Magnetic flux radiation apparatus
JPWO2005104622A1 (en) Coil device and magnetic field generator
JP4255466B2 (en) Magnetic flux irradiation device for internal living body heating
JP2001046050A (en) Apparatus and method for treating cell by using electromagnetic radiation
JP6460373B2 (en) Coil unit and wireless power transmission device
WO2022131131A1 (en) Induction heating type heat treatment device for wound core and heat treatment method therefor
JP5005320B2 (en) Induction heating device
Serrano et al. Nonplanar overlapped inductors applied to domestic induction heating appliances
JP3767820B2 (en) Magnetic flux irradiation device
US20030169142A1 (en) Magnetic-flux conduits
WO2020059852A1 (en) System for exciting iron core in electrical machine, method for exciting iron core in electrical machine, program, and modulation operation setting device for inverter power source
Sobol High frequency x‐ray generator basics
CN110265278A (en) A kind of magnetic lenses and exciting current control method
JP2014127296A (en) Electron beam irradiation device
CN114337294B (en) Design method and device of magnetic integrated converter of LLC topological structure
JP6340968B2 (en) Coil unit and wireless power transmission device
Li et al. Design and Optimization with Litz Wire Version of PCB in Solid-State Transformer
JP2008218091A (en) Induction cooker
JP4279647B2 (en) Electromagnetic field line shielding mechanism
JPH05245217A (en) High frequency hyperthermia device
Stadler et al. The calculation of eddy current losses in tube wound high current transformer windings
JPWO2005104146A1 (en) Magnetic field generator
RU2605764C1 (en) Parametric resonance generator and method of exciting electric oscillations in generator
JP2591133B2 (en) Induction heating iron
JPH0717315Y2 (en) Simple local induction heating type applicator device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3737054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term