JP3767820B2 - Magnetic flux irradiation device - Google Patents

Magnetic flux irradiation device Download PDF

Info

Publication number
JP3767820B2
JP3767820B2 JP2003013397A JP2003013397A JP3767820B2 JP 3767820 B2 JP3767820 B2 JP 3767820B2 JP 2003013397 A JP2003013397 A JP 2003013397A JP 2003013397 A JP2003013397 A JP 2003013397A JP 3767820 B2 JP3767820 B2 JP 3767820B2
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
magnetic core
working end
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003013397A
Other languages
Japanese (ja)
Other versions
JP2004228289A (en
Inventor
鋼太郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2003013397A priority Critical patent/JP3767820B2/en
Publication of JP2004228289A publication Critical patent/JP2004228289A/en
Application granted granted Critical
Publication of JP3767820B2 publication Critical patent/JP3767820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、外部の被射体に高密度の磁束を照射するために作用端から外部へ向けて磁束を出射する磁束照射装置に関し、特に、ソレノイドコイルにて磁束を発生させるとともにその磁束を磁心にて強化する磁束照射装置に関する。
【0002】
【従来の技術】
磁束照射装置は、局部温熱療法(ハイパーサーミア法)等に有用であり、基本的に、人体等の被射体に磁束を照射するため磁束発生用のコイルを有する作用部と、そのコイルに電流を流して磁束を生じさせる駆動部とを備えている。コイル内に被射体を置く第1タイプの装置は一般に磁心(コア)を持たないが(例えば特許文献1の図1参照)、コイルの外に被射体を置く他タイプの作用部には、磁束を強化するため、透磁率の高いフェライト等からなる磁心も設けられ、これがコイルに挿入されている。
このような磁心付きの磁束照射装置は、対をなす磁極(磁心端部)で被射体を両側から挟んで用いるために作用部の両端を共に作用端とする第2タイプと、被射体に向けて一方向から高密度の磁束を照射するために作用部の一端だけを作用端とし他端は非作用端とする第3タイプとに大別される。
【0003】
磁心両端で挟む第2タイプにあっては、作用部の両端に位置する磁極を対向させるために、躯幹部が「コ」の字状に曲がったヨーク(磁心)が採用される。そのため、作用部は棒切れ状(直線状)になっていない。このタイプでは、磁極を脱着可能にしたものや(例えば特許文献2,3参照)、磁極先端を広げたもの(例えば特許文献2,3参照)、磁極を先細りにしたもの(例えば特許文献3参照)、磁極を含めてヨーク全体をほぼ同じ太さにしたもの(例えば特許文献3や,特許文献1の図2を参照)などが知られている。
これに対し、一方向照射の第3タイプにあっては、大抵、作用部が棒切れ状(棒片状、直線状、真っ直ぐな棒状)に形成されていて、作用端から外部の被射体へ向けて高密度で発した磁束が、分散して低密度になった外部空間磁路を経由してから再び高密度に集束されて非作用端へ戻るようになっている。
【0004】
図6は、このような第3タイプの磁束照射装置の典型的な構成を示しており、(a)が作用部40の縦断端面図、(b)が駆動部30の概要回路図およびそれと作用部40との電気接続図である。
被射体10の典型例は人体であり、その体外から患部へ向けて局所的に高密度の磁束43を照射するために、例えば密度300mT(ミリ・テスラ)程度の磁束を数百mm2 〜数千mm2 程度の面に照射するために、その照射面積に断面積がほぼ等しい概ね真直の例えばフェライト棒からなる磁心60と、この磁心60の外周に磁心60より少し太い筒状に捲回されたソレノイドコイル50と、それらを囲って保持するハウジング44とを具えている。
【0005】
磁心60とソレノイドコイル50はほぼ同じ長さに形成されており、中心軸を一致させて嵌合することで軸方向すなわち長手方向の磁束が強化されている。このような棒切れ状に形成された作用部40は両端が反対の外側を向いており、その両端のうち一方の作用端41は、外部の被射体10へ磁束43を有効に照射するため、電気配線の引出等の無い自由状態となっている。電気配線の引出等は、大抵、作用部40の両端のうち他方の非作用端42でなされる。
【0006】
駆動部30は、磁束の発生に必要な電流をソレノイドコイル50に流すために、出力端子がソレノイドコイル50の一対の引出線に対してシールドケーブル等で通電可能に接続されるとともに、入力端子が例えば三相交流200Vの電源20に対して受電可能に接続される。駆動部30には、整流回路や、平滑回路、発振用切換回路などが設けられていて、電圧は同じ200Vでも、所定周波数たとえば50kHz〜400kHz程度の高周波を発生するようになっている。この高周波電流はコンデンサ31を介してソレノイドコイル50に供給されるが、コンデンサ31の容量と作用部40のインダクタンスとで構成される共振系が所定周波数で共振するようにコンデンサ31が選定または調節されている。
【0007】
【特許文献1】
特開平11−57031号公報 (図1、図2)
【特許文献2】
実開平2−35757号公報 (第3図)
【特許文献3】
特開昭63−226367号公報 (第1図、第2図)
【0008】
【発明が解決しようとする課題】
ところで、磁心付きの磁束照射装置のうち、磁心両端で挟む第2タイプのものは、対向磁極間隔を大きくとっていないことが多く、このため、磁束密度10〜100mT程度で使用され、これは磁心の一般的な材料であるフェライトの飽和磁束密度(200〜500mT程度)より十分に小さいため、上述したような作用端を広げたり細めたりした何れの形態にあっても磁束密度に強化の余地が残されている。
しかしながら、磁心付きの磁束照射装置のうち、一方向照射の第3タイプのものは、上述したように磁束密度300mT程度で使用されるが、この磁束密度は、100℃超でのフェライトの飽和磁束密度に極めて近い。もともと限界付近の高密度磁束を出射するよう設計しているのであるから、当然の帰結ではあるが、そのような理由から、作用端を現在より細くすることは難しい。とは云え、被射体との取合関係や操作性などの要請により、第3タイプが望まれるケースが多い。
【0009】
そして、このような第3タイプの従来装置を作動させた場合、高周波の高密度磁束を発生させる関係で、交番磁界に基づく磁気ヒステリシスが大きく、このため、被射体10内の感磁発熱体といった目的物が発熱するばかりか、磁心60も発熱する。磁心60は加熱対象外であるが、こちらの方が不所望なほど高温になる。図7は、そのような状況を説明するための参考図であり、同図(a)は磁心60の縦断端面図、同図(b)〜(d)は何れも作用部40の縦断端面図である。磁心60で強い発熱が続いて、磁心60の温度が上がり、200℃超のキュリー温度(キュリー点)に達すると、急激に透磁率が低下して磁束集束能力が低下する。そのため、連続運転は難しく、間欠運転を行わざるを得ない。無理に運転し続けると、駆動部30に過負荷が掛かるばかりか、発熱が最大になる磁心60の中央部分に割れ60aを生じることもある(図7(a)参照)
【0010】
そこで、稼動率や使い易さを向上させるべく、磁心60の昇温が抑制されるように作用部40を改良することが重要な課題となるが、温度は発熱と放熱とのバランスであり、昇温抑制は放熱の強化と発熱の抑制との連携であり、放熱強化の直截的手法としては強制冷却が考えられる。
具体的には(図7(b)参照)、強制冷却のため、磁心60の周囲に外流路71を形成して、そこに水等の冷媒を送給するのであるが、磁心60の熱伝導が良くないため、磁心60の中心部分の過熱は大して改善されない。
【0011】
また、発熱抑制に関しては、要求磁束数を減らすことが出来ないことから、総発熱量の抑制は無理なので、過熱部における発熱密度の抑制を考えてみる。発熱密度と磁束密度には強い正の相関があるので、磁束43の分布状態を考察すると(図7(c)参照)、磁心60が軸方向(長手方向)の何れのところも同径の真直棒である場合、漏洩磁束の最も少ない軸方向中央のところが最も密になると思われる。そこの磁束密度を下げるべく磁心60を太くした場合(図7(d)参照)、径の増加によって、磁束密度は顕著に低下するが、伝熱抵抗の増加は小さいので、磁心60の中央かつ中心の過熱状態は大きく改善される。もっとも、磁心60を単純に太くしたのでは、作用端から出射される磁束の密度まで低下してしまうことから、要求仕様に適わないので、実用にはならない。
【0012】
そこで、作用端から外部へ出射する磁束の密度を磁心材料の飽和磁束密度付近から下げることなく、磁心の中の過熱部に対して、強制冷却の適用または/および発熱密度の抑制による昇温の抑制が行えるよう、作用部の構造を改めることが技術的な課題となる。
この発明は、このような課題を解決するためになされたものであり、出射する磁束密度が高くても磁心の過熱が生じないか又は少ない磁束照射装置を実現することを目的とする。
【0013】
【課題を解決するための手段】
このような課題を解決するために創案された本発明の請求項1記載の磁束照射装置は、ソレノイドコイル及びこれに挿入された磁心を有する作用部と、前記ソレノイドコイルに電流を流して磁束を生じさせる駆動部とを備え、前記作用部の一端を外部へ向けて磁束を出射するための作用端とし他端を非作用端とする磁束照射装置において、前記磁心の外面に、加えて前記磁心の中にも又は間にも、長手方向に延びた流路が形成され、前記流路へ冷媒を送給する冷却手段が付設されている、というものである。
【0014】
このような磁束照射装置にあっては、磁心の中が直に冷却されるので、過熱が強く抑制される。また、内外の流路を冷媒の往復路に割り当てることで、送給された冷媒が磁心全体に行渡るとともに環流も円滑になる。さらに、冷却手段用部材が非作用端側に集められているので、作用端を被射体に向けたり当てたりするときの操作性が損なわれることも無い。
このように、磁心の中で特に発熱密度の高い過熱部へ直に冷媒を送込むようにしたことにより、放熱が強化されるので、例え作用端から外部へ出射する磁束の密度を磁心材料の飽和磁束密度付近から下げないために発熱量が減らなくても、磁心の昇温は抑制される。
したがって、この発明によれば、磁束密度が高くても磁心の過熱が生じないか又は少ない磁束照射装置を実現することができる。
【0015】
また、この発明の請求項2記載の磁束照射装置は、ソレノイドコイル及びこれに挿入された磁心を有する作用部と、前記ソレノイドコイルに電流を流して磁束を生じさせる駆動部とを備え、前記作用部の一端を外部へ向けて磁束を出射する作用端とし他端を非作用端とするために前記作用部が棒切れ状(棒片状、直線状、真っ直ぐな棒状、両端を共に作用部にする程には曲がっていない状態)に形成されている磁束照射装置において、前記磁心の前記非作用端側が前記作用端側より太くなっている、というものである。
【0016】
この場合、磁心の作用端は太くならないので、作用端から外部へ出射する磁束の密度は、ほとんど変わらず、磁心材料の飽和磁束密度付近に維持される。これに対し、磁心の非作用端側は、磁心が例えば台形断面の部分円錐形に形成され、あるいは、凸字断面円柱形に形成されていて、太くなっているので、磁束密度最大部の磁束密度ひいては発熱密度が小さくなっている。
このように作用端の磁束密度は現状を維持しつつ残部の磁束密度は下げるようにしたことにより、過熱部の発熱密度が低下するので、その昇温は昇温速度および到達温度の両面から抑制される。
したがって、この発明によれば、磁束密度が高くても磁心の過熱が生じないか又は少ない磁束照射装置を実現することができる。
【0017】
さらに、この発明の請求項3記載の磁束照射装置は、上記の請求項2記載の磁束照射装置であって、前記磁心が前記作用端側の短片と前記非作用端側の長片とを具えている、というものである。
この場合、磁心が太さの異なる複数片に分割して制作されそれから作用部に組込まれるので、製造が容易になる。また、作用端側の細い短片と、非作用端側の太い長片とを相互に離間させて配置したり更にはその離間間隔を調整したりできるため、磁束密度最大部を擁していわば磁気ソース(磁気源)となっている太い長片から見た磁気インピーダンスマッチングの改善、あるいは、太い長片で生じる大きな発熱の細い短片への伝熱の抑制による、細い短片の磁束収束能力(出射性能)の確保に好都合となる。
【0018】
また、この発明の請求項4記載の磁束照射装置は、ソレノイドコイル及びこれに挿入された磁心を有する作用部と、前記ソレノイドコイルに電流を流して磁束を生じさせる駆動部とを備え、前記作用部の一端を外部へ向けて磁束を出射するための作用端とし他端を非作用端とする磁束照射装置において、前記磁心が前記作用端側の短片と前記非作用端側の太い長片とを具えたものであり、前記短片と前記長片とが離隔配置されている、というものである。
【0019】
この場合、非作用端側の磁心を太くしたことにより最高磁束密度が低下すること。更には、磁心を離隔配置したことにより、先ずは、太い長片を磁気ソースに見立てたときの主たる磁気負荷として作用端の磁心短片の他に太い長片との間の離隔空隙が加わって(空隙に代えて非強磁性体を介在させた形態としてもよい)負荷系の磁気インピーダンスが程よく増大したとき、磁気ソースから見た磁気インピーダンスマッチングが適正化されると同時に太い長片内の磁束密度はむしろ減少して事足りている状況、即ち、太い長片内の磁束密度は小さくてもこの磁束が作用端側に効率よく伝えられ、作用端から高密度の磁束を出射できる状況が実現されることと、次には、太い長片内の発熱最大部である磁束密度最大部が空隙の介在によって空隙側に偏位し、その結果、太い長片の放熱が良くなること。これらの3点が相まって、高密度磁束の出射が磁心の過熱を伴わずに実現されることとなる。逆に云えば、従来の磁心入りソレノイドコイルでは、磁束密度最大部を中心とした磁気ソース部の過熱によって磁心の飽和磁束密度が直ちに激減して磁気ソース部の磁気抵抗が過大になる。そして、出射すべき磁束量に必要な磁界を立てるためには法外に高いコイル電圧(ついては電流も)を要して更なる過熱を招くという悪循環をもたらすこととなり、大抵は駆動用電源の過電流停止という事態に至って、要は、好ましい解決が図れないのである。
【0020】
また、この発明の請求項5記載の磁束照射装置は、上記の磁束照射装置であって、前記長片の外面に、加えて前記長片の中にも又は間にも、長手方向に延びた流路が形成され、この流路へ冷媒を送給する冷却手段が付設されている、というものである。
この場合、非作用端側の拡大による最高磁束密度の低下と、磁心分離による最高過熱部位と最高磁束密度部位との乖離効果とに加えて、強制冷却の効果も働く。しかも、強制冷却は、相対的に細い作用端側短片の断面積を減らすことなく、断面積に余裕のある非作用端側長片の中に対して直に行われるうえ、高い放熱能力を求められる磁心片間の空隙にも及ぶ。このように発熱密度の抑制と過熱部への直接的な強制冷却とを無理なく融合させたことにより、格段の昇温抑制効果が発揮される。
【0021】
また、この発明の請求項6記載の磁束照射装置は、上記の磁束照射装置であって、前記作用端側で前記ソレノイドコイルの周囲に巻成された追加巻線部が付設されている、というものである。
この場合、ソレノイドコイル及び磁心によって作用端から出射された磁束が集束状態を維持している領域が、追加巻線部による磁束集束作用によって出射方向に関する遠方側まで拡張されるため、高密度磁束が遠くまで届くこととなる。これにより、例えば局部温熱療法では奥深い患部まで治療することができる。
【0022】
【発明の実施の形態】
図面を引用して本発明の実施形態を幾つか具体的に説明する。本発明の磁束照射装置は、作用部40と駆動部30とからなるが、駆動部30は既述した図6(b)のものと同じで良いので、以下、作用部40の改良点を説明する。なお、それらの図示に際し従来と対応する構成要素には同一の符号を付して示した。また、簡明化等のため、簡略端面図を用いて、要部構造を示した。さらに、二点鎖線で磁束も示したが、これは動作状態の理解を助けるためのものであり、構成部材ではない。
【0023】
図1は、本発明の磁束照射装置の一例を示し、(a)が作用部40の縦断端面図、(b)が作用部40の横断端面図である。
図1の作用部40が図7(b)の既述例と相違するのは、磁心60の中心軸を貫いて内流路72が形成されている点である。これにより、この作用部40は、磁心60外面の外流路71に加えて磁心60の中にも長手方向に延びた内流路72が形成されたものとなっている。また、これに付設されている冷却手段70は、非作用端42に接続されて、冷媒を内流路72へ送込んで外流路71を帰還させるようになっている。
【0024】
より具体的には、磁心60は、焼結フェライトなどの強磁性体を筒状に形成したりアルミナ製などの筒状容器に磁性体ペレットを充填して作成され、一例を挙げると長さが150mm,外径が30mm,内径が10mmにされる。この内径は内流路72の直径になり、磁心60の外径は外流路71の内径になる。外流路71の外面を画する部材は、磁気を妨げない材料たとえばプラスチック等で専用に作成されたものでも良く、ソレノイドコイル50のボビンを流用したものでも良いが、その径は磁心60の径より大きく例えば50mmにされる。ソレノイドコイル50は、長さが磁心60のそれと同じで、内径が磁心60及び内流路72の外径より大きい例えば55mmにされる。ソレノイドコイル50は、銅線を例えば10回ほど巻いて筒状にしたものであり、その腔中(中空)に磁心60が外流路71形成部材と共に挿入される。
【0025】
このような作用部40を具えた磁束照射装置にあっては、使用に際して、駆動部30からソレノイドコイル50に既述の高周波電流が流されるとともに、冷却手段70によって水等の冷媒が内流路72へ送込まれる。
なお、内流路72の形成により磁心60の横断面積が減少して磁心60各部の磁束密度は上がることとなるが、流路71,72によって内外から磁心60が冷やされて、飽和磁束密度が高位に維持されて、各部の磁束密度の増加による発熱密度の上昇があっても、磁心60の過熱は十分抑制される。
【0026】
図2(a)〜(d)に示したものは、何れも、上述した図1のものの変形例である。
図2(a)に横断端面図を示した作用部40は、磁心60を細い3本の円筒体に分けて並置したものである。内流路72は各磁心60毎に形成される。
このような作用部40を具えた磁束照射装置にあっても、複数磁心60の外接円が図1(b)の磁心60の外周に等しくなっていれば、それと同様に使用でき、同様の動作結果が得られる。
【0027】
図2(b)に横断端面図を示した作用部40は、磁心60を3枚の板状体に分け更に間を開けて並置したものである。内流路72内の流送方向は磁心60同士の間に形成され外流路71内の流送方向と同方向にしてもよいし、逆方向にしてもよいし、また、中央の磁心60で仕切られた逆方向流送としてもよい。
このような作用部40を具えた磁束照射装置にあっても、複数磁心60の外接円が図1(b)の磁心60の外周に等しくなっていれば、それと同様に使用でき、同様の動作結果が得られる。
【0028】
図2(c)に横断端面図を示した作用部40は、磁心60を細い3本の円柱体に分けて並置したものである。内流路72は複数の円柱体で囲まれて中心軸のところに形成される。この場合も、上述したのと同様に使用できる。
【0029】
図3(a)〜(d)に示した作用部40は、何れも、磁心60の非作用端42側を作用端41側より太くするために、ソレノイドコイル50及び磁心60をテーパ状にしたものである。
図3(a)に縦断端面図を示した作用部40は、ソレノイドコイル50も中実の磁心60も長さや径が作用端41のところでは上述の図1や既述の図7(c)と同じであるが、非作用端42のところでは、磁心60の直径が50mm、ソレノイドコイル50の直径が70mmで、作用端41のところより20mmほど太くなっている。作用端41と非作用端42との間では径が直線的に変化してテーパになっている。
【0030】
このような作用部40を具えた磁束照射装置にあっては、作用端41から外部へ向けて出射される磁束密度は約300mTで従来と同じであるが、非作用端42側では磁束が広がっている。これに伴い、異径の磁心60内部における磁束分布状態も同径のときとは異なると推察される。具体的には、同径のときには軸方向(長手方向)の丁度中央のところで径方向の中心に絞り込まれたように集まっていた磁束が、テーパ角によって、最高磁束密度部位が作用端41側へ移動するとともに、最高磁束密度が低下した形で高密度磁束の出射が可能となっている。
【0031】
図3(b)に縦断端面図を示した作用部40が図3(a)のものと相違するのは、磁心60が短くなったことである。
非作用端42側では、ソレノイドコイル50も磁心60も同じままであるが、作用端41側では、磁心60の端面が非作用端42の方(図では下方)へ後退し、さらにソレノイドコイル50が細くなっている。これに伴い、磁心60もソレノイドコイル50もテーパがきつくなっている。
【0032】
このような作用部40を具えた磁束照射装置にあっては、作用端41のところで磁心60端面の後退による磁束の広がりがソレノイドコイル50の細りによる締め付けによって相殺されるので、作用端41から外部へ向けて出射される磁束密度はやはり約300mTで同じである。一方、磁心60端面の後退によりその端面より前方の作用端41側に出来た空間に最高磁束密度部位が出るので、磁心内の磁束密度(発熱密度)が低下するとともに、放熱状態も改善されており、これらの効果が温度上昇の抑制に奏功する。
【0033】
図3(c)に縦断端面図を示した作用部40が図3(a)のものと相違するのは、磁心60が軸方向(長手方向)で短片61と長片62とに分かれて両者の間に間隙63が確保されたことである。
短片61は、作用端41のところにとどまっており、径はほぼ30mmと同じままであるが、長さは例えば15mmと短くなっている。
長片62は、後方(図では下方)へ移動して大径の端部が非作用端42のところでソレノイドコイル50からはみ出ている。例えば、長片62の径は、大径が50mm、小径が40mmであり、長片62の長さは、100mmである。
間隙63は、例えば10mmである。
【0034】
このような作用部40を具えた磁束照射装置にあっては、作用端41のところの短片61(磁心60)の断面積が変わらないので、作用端41から外部へ向けて出射される磁束密度はやはり約300mTで同じである。一方、磁心60の分割および離隔配置によって出来た間隙63に最高磁束密度部位が出るので、図3(b)の場合と同様の昇温抑制効果が奏される。
この図3(c)の形態は、たとえば作用部40の全インダクタンスを、駆動部30との取合事情などのために大きく設定しながら前記磁気インピーダンスマッチングを適正化できる形態として有用である。
【0035】
図3(d)に縦断端面図を示した作用部40が、図3(c)のものと相違するのは、長片62の中心軸を貫いて内流路72が形成されている点である。これにより、この作用部40は、長片62外面の外流路71に加えて長片62の中にも長手方向に延びた内流路72が形成されたものとなっている。また、これに付設されている冷却手段70は、非作用端42に接続されて、冷媒を内流路72へ送込んで外流路71を帰還させるようになっている。なお、間隙63が少し短縮されて、非作用端42から後方への長片62の突出しが小さくなっている。
【0036】
この場合、図1や図2のものと同様の強制冷却効果が図3(c)のものに加わるので、間隙63が短くなって最高磁束密度部位および過熱部が長片62の前端部あたりに入って来ても、昇温の抑制は大幅に改善される。しかも、磁心60において横断面積の最も少ない短片61は中実なので、図1や図2のものと異なり、横断面積の減少に伴う不都合は無い。すなわち、横断面積の減少に伴う磁束密度の増加によって磁心60の飽和磁束密度に関する余裕度が減ってしまう、という不都合が無い。短片61の過熱部は、外流路71と内流路72とを繋ぐ間隙63を流れる冷媒によって的確に冷却される。こうして、この場合、高密度磁束の出射や,駆動部30の仕様,装置の使用方法などは、従来通りで良いのに、装置能力の利用率は格段に向上する。
【0037】
図4(a)〜(d)に縦断端面図を示した作用部40は、何れも、磁心60の非作用端42側を作用端41側より太くする際に、製造し易さを考慮して、磁心60を細い短片61と太い長片62とに分割したものである。
短片61は、中実で、直径が上述の図1や既述の図7(c)と同じであるが、長さが15mmと短くなっており、外向きの端面(図では上端面)を作用端41に一致させた状態で配置される。長片62は、直径が50mmと短片61より太くなっており、非作用端42側に配置されるが、配置位置は各例で多少異なる。ソレノイドコイル50は、長さが変わらず100mmであるが、太さが長片62の拡径に対応して60mmと太くなっている。このようなソレノイドコイル50,短片61,及び長片62は、横断面が何処でも同じ円筒体・円柱体に形成されていて、製造容易なものとなっている。
【0038】
そのうち図4(a)に縦断端面図を示した作用部40は、短片61と長片62とを当接させて直列に並べたものであり、その合計長がソレノイドコイル50の長さに一致するよう、長片62の長さが定められる。
この場合、上述した図3(a)のものと概ね同様の効果が得られるうえ、製造容易という利点もある。
【0039】
図4(b)に縦断端面図を示した作用部40は、短片61と長片62とを離隔配置して間隙63を確保したものであり、間隙63の分だけ例えば15mmほど長片62が短くなっている。この場合、ソレノイドコイル50の作用端41側を細くしなくても、短片61の存在によって、上述した図3(b)のものと概ね同様の効果が得られる。そのうえ、製造容易という利点も享受できる。また、この場合、長片62を更に太くすることで、間隙63形成によるインダクタンス減少を補償することも可能である。
【0040】
図4(c)に縦断端面図を示した作用部40は、長片62を短縮して間隙63を形成するのでなく、長片62を後方(図では下方)にずらして一部を非作用端42から突出させることで、間隙63を確保している。この場合、上述した図3(c)とほぼ同様の効果が得られるうえ、製造容易という利点もある。
図4(d)に縦断端面図を示した作用部40は、上述した図3(d)のものと同様に長片62の中心軸を貫いて内流路72を形成したものである。冷却手段70の付設や、間隙63の短縮も同様になされていて、同様の昇温抑制効果が得られる。しかも、各部材に円筒体・円柱体を採用したので、製造容易という利点もある。
【0041】
図5(a)に縦断端面図を示した作用部40は、図3(c)のものに追加巻線部51を付加したものであり、図5(b)に縦断端面図を示した作用部40は、図4(d)のものに追加巻線部51を付加したものである。
追加巻線部51は、鍔状・環状に捲回されていて、ソレノイドコイル50の作用端41部分を拡径する状態でそこに付設される。ソレノイドコイル50と追加巻線部51との接続は、直列接続でも並列接続でも良い。
【0042】
このような作用部40を具えた磁束照射装置にあっては、それぞれ基礎の装置の昇温抑制効果を奏するのに加えて、追加巻線部51の付設による高密度磁束43の遠方到達という更なる利点も享受することができる。
なお、追加巻線部51の捲回数や外径は使用目的や要求仕様によって適宜設定されるので具体的な数値例は割愛する。また、追加巻線部51に可撓性を持たせることで、磁束集束機能が高まるので、例えば使用時に追加巻線部51を撓めて被射体10に適合させることで、被射体10内の感磁発熱体に高密度磁束を的中させる、といったことも可能かつ容易になる。
【0043】
【実施例】
対比のため、作用部40を、図6(a)の従来構造と、図1の放熱強化構造と、図3(a)の発熱密度抑制構造と、図4(d)の融合構造とで夫々試作した。ソレノイドコイル50の捲回数および長さと、磁心60の材料および作用端41での径とは、全構造で同じに揃えたが、それ以外の寸法はそれぞれの構造に基づいて異なる値とした。具体的には、上述した典型値を採用した。磁心60の材料には、いずれも、フェライトコア TDK H-7C4 を選定した。駆動部30には、図6(b)に示した従来と同じ高周波電源装置を採用し、各種の磁束照射装置を構成させた。
【0044】
そして、作用端41の近くにワンターンコイルを置いて、作用部40から射出される磁束密度を測定しながら、磁束照射装置を作動させた。初期状態では、駆動部30の出力調整等を行って磁束密度を300mTにして作動を開始し、それから飽和磁束密度の減少とこれに伴うコイル電流の増大が進んで駆動部の電源が過電流で停止するまでの時間Tbを計測した。
その結果、上記Tbが、図6(a)の従来構造では約2分であったが、図1の放熱強化構造では約10分となり、図3(a)の発熱密度抑制構造では約60分となり、図4(d)の融合構造では6時間を超えても電源が停止せず連続稼働で可能と見なされた。
【0045】
【その他】
なお、上記の各例では、内流路72が往路で外流路71が復路になっていたが、冷媒の流れは逆向きでも良い。
また、上述した作用部40構成部材の材質や寸法は、一例にすぎない。各部材の材質や寸法は、それに限られる訳でなく、応用目的に応じて適宜変更することができる。
さらに、冷媒は、水冷の場合、電気絶縁の観点から純水や蒸留水を用いるのが望ましいが水道水でも使えないことはない。水冷が不都合な場合には、他の液体でも良く、空気や窒素ガス等の気体を用いても良い。
また、本発明の磁束照射装置の利用は、被射体10が生体の場合に限られる訳でなく、例えば、被射体10が金属等であっても良く、その局所過熱などにも有用である。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明の磁束照射装置にあっては、磁心の中で特に発熱密度の高い過熱部へ直に冷媒を送込むようにしたことにより、放熱が強化されるので、磁束密度が高くても磁心の過熱が生じないか又は少ない磁束照射装置を実現することができる。
また、磁束密度が最大になる部位の磁心の太さを増してこの部位の磁束密度を、ひいては発熱密度を下げるようにしたことにより、作用端の磁束密度は現状を維持しつつ過熱部の昇温は昇温速度および到達温度の両面から抑制される。
さらに、磁心を太さの異なる複数片に分割したことにより、製造が容易になる。
【0047】
また、磁心を分離して空隙を確保したことにより、作用部内の磁気インピーダンスアンバランスが解消されるとともに冷却効果が更に増して、過熱部の昇温が抑制される。
また、発熱密度の抑制と過熱部への直接的な強制冷却とを無理なく融合させたことにより、格段の昇温抑制効果が発揮される。
また、追加巻線部の磁界にて作用端側の磁束の集束状態が遠方にまで及ぶようにしたことにより、高密度磁束が遠くまで届くようになる。
【図面の簡単な説明】
【図1】 本発明の磁束照射装置の一実施形態について、(a)が作用部の縦断端面図、(b)が作用部の横断端面図である。
【図2】 (a)〜(c)何れも作用部の横断端面図であるが、これらは部分的に異なる種々の変形例を示している。
【図3】 本発明の磁束照射装置の他の実施形態について、(a)は作用部の縦断端面図である。(b)〜(d)も作用部の縦断端面図であるが、これらは何れも変形例を示している。
【図4】 本発明の磁束照射装置の別の実施形態について、(a)は作用部の縦断端面図である。(b)〜(d)も作用部の縦断端面図であるが、これらは何れも変形例を示している。
【図5】 本発明の磁束照射装置の更なる実施形態について、(a)は作用部の縦断端面図である。(b)も作用部の縦断端面図であるが、これは変形例を示している。
【図6】 従来の磁束照射装置について、(a)が作用部の縦断端面図、(b)が駆動部の概要回路図および電気接続図である。
【図7】 課題説明用であり、(a)が磁心の縦断端面図、(b)〜(d)が作用部の縦断端面図である。
【符号の説明】
10…被射体、20…電源、
30…駆動部、31…コンデンサ、
40…作用部、41…作用端、42…非作用端、43…磁束
50…ソレノイドコイル、51…追加巻線部、
60…磁心、61…短片、62…長片、63…間隙、
70…冷却手段、71…外流路、72…内流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic flux irradiation device that emits a magnetic flux from an action end to the outside in order to irradiate a high-density magnetic flux to an external subject, and in particular, generates a magnetic flux by a solenoid coil and uses the magnetic flux as a magnetic core. The present invention relates to a magnetic flux irradiation apparatus strengthened by
[0002]
[Prior art]
The magnetic flux irradiation device is useful for local thermotherapy (hyperthermia method) and the like. Basically, in order to irradiate a subject such as a human body with magnetic flux, an action part having a coil for generating magnetic flux and a current to the coil are supplied. And a drive unit that generates a magnetic flux by flowing. The first type of device that places the subject in the coil generally does not have a magnetic core (for example, see FIG. 1 of Patent Document 1), but other types of working parts that place the subject outside the coil include In order to strengthen the magnetic flux, a magnetic core made of ferrite or the like having a high magnetic permeability is also provided, and this is inserted into the coil.
Such a magnetic flux irradiating device with a magnetic core includes a second type in which both ends of the working part are working ends in order to sandwich the subject from both sides with a pair of magnetic poles (magnetic core ends), and the subject In order to irradiate a high-density magnetic flux from one direction toward the surface, it is roughly classified into a third type in which only one end of the action portion is an action end and the other end is a non-action end.
[0003]
In the second type sandwiched between both ends of the magnetic core, a yoke (magnetic core) in which the trunk portion is bent in a “U” shape is employed in order to oppose the magnetic poles located at both ends of the action portion. Therefore, the action part is not rod-shaped (straight). In this type, the magnetic pole is removable (see, for example, Patent Documents 2 and 3), the magnetic pole tip is widened (for example, see Patent Documents 2 and 3), or the magnetic pole is tapered (see, for example, Patent Document 3). ), And the like, in which the entire yoke including the magnetic poles has substantially the same thickness (see, for example, Patent Document 3 and FIG. 2 of Patent Document 1).
On the other hand, in the third type of unidirectional irradiation, the action portion is usually formed in a rod-like shape (bar piece shape, linear shape, straight rod shape), and from the action end to an external subject. The magnetic flux generated at a high density toward the target passes through the external space magnetic path that has been dispersed to a low density, and is then focused again at a high density to return to the non-working end.
[0004]
FIG. 6 shows a typical configuration of such a third type magnetic flux irradiating apparatus, where (a) is a longitudinal end view of the action part 40, and (b) is a schematic circuit diagram of the drive part 30 and its action. FIG. 6 is an electrical connection diagram with a unit 40.
A typical example of the subject 10 is a human body. In order to irradiate a high-density magnetic flux 43 locally from the outside of the body toward the affected part, for example, a magnetic flux with a density of about 300 mT (milli Tesla) is several hundred mm. 2 ~ Thousands of mm 2 In order to irradiate a certain surface, a substantially straight magnetic core 60 made of, for example, a ferrite rod whose cross-sectional area is almost equal to the irradiation area, and a solenoid coil wound around the magnetic core 60 in a cylindrical shape slightly thicker than the magnetic core 60 50 and a housing 44 surrounding and holding them.
[0005]
The magnetic core 60 and the solenoid coil 50 are formed to have substantially the same length, and the magnetic flux in the axial direction, that is, the longitudinal direction is reinforced by fitting the central axes so as to coincide with each other. The action part 40 formed in such a rod-like shape has both ends facing the opposite outer side, and one action end 41 of the both ends effectively irradiates the magnetic flux 43 to the external subject 10, It is in a free state with no electrical wiring drawn out. The lead-out of the electrical wiring is usually performed at the other non-working end 42 of the both ends of the working unit 40.
[0006]
The drive unit 30 has an output terminal connected to a pair of lead wires of the solenoid coil 50 so as to be able to be energized with a shielded cable or the like so that a current necessary for generating magnetic flux flows through the solenoid coil 50. For example, it is connected to a power source 20 of a three-phase AC 200V so as to be able to receive power. The drive unit 30 is provided with a rectifier circuit, a smoothing circuit, an oscillation switching circuit, and the like, and generates a high frequency of a predetermined frequency, for example, about 50 kHz to 400 kHz even when the voltage is the same 200V. This high-frequency current is supplied to the solenoid coil 50 via the capacitor 31. The capacitor 31 is selected or adjusted so that the resonance system composed of the capacitance of the capacitor 31 and the inductance of the action unit 40 resonates at a predetermined frequency. ing.
[0007]
[Patent Document 1]
JP-A-11-57031 (FIGS. 1 and 2)
[Patent Document 2]
Japanese Utility Model Publication No. 2-35757 (FIG. 3)
[Patent Document 3]
Japanese Patent Laid-Open No. 63-226367 (FIGS. 1 and 2)
[0008]
[Problems to be solved by the invention]
By the way, among the magnetic flux irradiation devices with a magnetic core, the second type sandwiched between both ends of the magnetic core often does not take a large interval between the opposed magnetic poles, and is therefore used at a magnetic flux density of about 10 to 100 mT. Since the saturation magnetic flux density (about 200 to 500 mT) of ferrite, which is a general material, is sufficiently smaller, there is room for strengthening the magnetic flux density in any form in which the working end is expanded or narrowed as described above. It is left.
However, among the magnetic flux irradiating devices with magnetic cores, the third type of unidirectional irradiation is used at a magnetic flux density of about 300 mT as described above, and this magnetic flux density is the saturation magnetic flux of ferrite above 100 ° C. Very close to density. Since it is originally designed to emit a high-density magnetic flux near the limit, it is a natural consequence, but it is difficult to make the working end thinner than that for the reason. However, there are many cases where the third type is desired due to the request for the relationship with the subject and the operability.
[0009]
And when such a 3rd type conventional apparatus is operated, the magnetic hysteresis based on an alternating magnetic field is large in relation to generate a high-frequency high-density magnetic flux. In addition to the target object, the magnetic core 60 also generates heat. Although the magnetic core 60 is not subject to heating, it becomes so hot that it is undesirable. FIG. 7 is a reference diagram for explaining such a situation. FIG. 7A is a longitudinal end view of the magnetic core 60, and FIGS. 7B to 7D are all longitudinal end views of the action portion 40. It is. When strong heat generation continues in the magnetic core 60 and the temperature of the magnetic core 60 rises and reaches a Curie temperature (Curie point) higher than 200 ° C., the magnetic permeability rapidly decreases and the magnetic flux focusing ability decreases. Therefore, continuous operation is difficult, and intermittent operation must be performed. If the operation is continued forcibly, an overload is applied to the drive unit 30, and a crack 60a may occur in the central portion of the magnetic core 60 where the heat generation is maximized (see FIG. 7A).
[0010]
Therefore, in order to improve the operating rate and ease of use, it is an important issue to improve the action part 40 so that the temperature rise of the magnetic core 60 is suppressed, but the temperature is a balance between heat generation and heat dissipation, The temperature rise suppression is a linkage between the enhancement of heat dissipation and the suppression of heat generation, and forced cooling can be considered as a straightforward method for enhancing heat dissipation.
Specifically (see FIG. 7B), for the purpose of forced cooling, an outer flow path 71 is formed around the magnetic core 60, and a coolant such as water is supplied to the outer flow path 71. Therefore, the overheating of the central portion of the magnetic core 60 is not greatly improved.
[0011]
In addition, regarding the suppression of heat generation, since the required number of magnetic fluxes cannot be reduced, it is impossible to suppress the total heat generation amount. Therefore, it is considered to suppress the heat generation density in the overheated part. Since there is a strong positive correlation between the heat generation density and the magnetic flux density, considering the distribution state of the magnetic flux 43 (see FIG. 7C), the magnetic core 60 is straight with the same diameter everywhere in the axial direction (longitudinal direction). In the case of a rod, the center in the axial direction with the least leakage magnetic flux seems to be the densest. When the magnetic core 60 is thickened so as to reduce the magnetic flux density (see FIG. 7D), the magnetic flux density is remarkably lowered by the increase in the diameter, but the increase in the heat transfer resistance is small. The central overheating condition is greatly improved. However, if the magnetic core 60 is simply made thicker, the magnetic core 60 is reduced to the density of the magnetic flux emitted from the working end, so that it does not meet the required specifications and is not practical.
[0012]
Therefore, without reducing the density of the magnetic flux emitted from the working end to the vicinity of the saturation magnetic flux density of the magnetic core material, it is possible to increase the temperature by applying forced cooling or / and suppressing the heat generation density to the superheated part in the magnetic core. It is a technical problem to change the structure of the action part so that it can be suppressed.
The present invention has been made to solve such a problem, and an object of the present invention is to realize a magnetic flux irradiating apparatus in which the magnetic core is not overheated or reduced even when the emitted magnetic flux density is high.
[0013]
[Means for Solving the Problems]
The magnetic flux irradiating device according to claim 1 of the present invention, which has been created to solve such a problem, has a solenoid coil and a working part having a magnetic core inserted in the solenoid coil, and a magnetic flux generated by passing a current through the solenoid coil. In the magnetic flux irradiation apparatus having one end of the action part as an action end for emitting magnetic flux to the outside and the other end as a non-action end, in addition to the outer surface of the magnetic core, the magnetic core A channel extending in the longitudinal direction is formed inside or in between, and a cooling means for feeding the refrigerant to the channel is provided.
[0014]
In such a magnetic flux irradiation device, since the inside of the magnetic core is directly cooled, overheating is strongly suppressed. In addition, by assigning the inner and outer flow paths to the refrigerant reciprocation path, the supplied refrigerant spreads over the entire magnetic core and the circulation is smooth. Further, since the cooling means members are gathered on the non-acting end side, the operability when the working end is directed to or against the subject is not impaired.
As described above, since the refrigerant is directly sent to the superheated portion having a particularly high heat generation density in the magnetic core, the heat radiation is enhanced. For example, the density of the magnetic flux emitted from the working end to the outside is reduced. The temperature rise of the magnetic core is suppressed even if the calorific value does not decrease because it is not lowered from around the saturation magnetic flux density.
Therefore, according to the present invention, it is possible to realize a magnetic flux irradiation device in which the magnetic core is not overheated or reduced even when the magnetic flux density is high.
[0015]
According to a second aspect of the present invention, there is provided a magnetic flux irradiation device comprising: a solenoid coil and an action portion having a magnetic core inserted therein; and a drive portion for causing a current to flow through the solenoid coil to generate a magnetic flux. In order to make one end of the part an action end that emits magnetic flux to the outside and the other end is a non-action end, the action part has a rod-like shape (a bar piece shape, a straight shape, a straight rod shape, and both ends are action portions. In the magnetic flux irradiating device formed in a state that is not bent as much), the non-working end side of the magnetic core is thicker than the working end side.
[0016]
In this case, since the working end of the magnetic core does not become thick, the density of the magnetic flux emitted from the working end to the outside hardly changes and is maintained near the saturation magnetic flux density of the magnetic core material. On the other hand, on the non-working end side of the magnetic core, the magnetic core is formed in, for example, a partial conical shape with a trapezoidal cross section, or formed into a convex cross section cylindrical shape, and is thickened. The density and thus the heat generation density is small.
In this way, the heat flux density in the superheated portion is reduced by maintaining the current magnetic flux density at the working end while lowering the remaining magnetic flux density, so that the temperature rise is suppressed from both the heating rate and the ultimate temperature. Is done.
Therefore, according to the present invention, it is possible to realize a magnetic flux irradiation device in which the magnetic core is not overheated or reduced even when the magnetic flux density is high.
[0017]
Furthermore, a magnetic flux irradiation apparatus according to a third aspect of the present invention is the magnetic flux irradiation apparatus according to the second aspect, wherein the magnetic core includes a short piece on the working end side and a long piece on the non-working end side. It is that.
In this case, since the magnetic core is produced by being divided into a plurality of pieces having different thicknesses, and then incorporated into the action part, the manufacture becomes easy. In addition, the thin short piece on the working end side and the thick long piece on the non-working end side can be arranged apart from each other, and further, the spacing interval can be adjusted. Magnetic flux converging ability (outgoing performance) by improving the magnetic impedance matching seen from the thick long piece (magnetic source) or by suppressing heat transfer to the thin short piece of large heat generated by the thick long piece It is convenient for securing.
[0018]
According to a fourth aspect of the present invention, there is provided a magnetic flux irradiation apparatus comprising: a solenoid coil and an action portion having a magnetic core inserted therein; and a drive portion for causing a current to flow through the solenoid coil to generate a magnetic flux. In a magnetic flux irradiation apparatus having a working end for emitting a magnetic flux with one end of the part directed to the outside and a non-working end at the other end, the magnetic core includes a short piece on the working end side and a thick long piece on the non-working end side. The short piece and the long piece are spaced apart from each other.
[0019]
In this case, the maximum magnetic flux density is reduced by thickening the magnetic core on the non-acting end side. Furthermore, by separating the magnetic cores, first, as a main magnetic load when the thick long piece is regarded as a magnetic source, a separation gap between the thick long piece and the magnetic short piece at the working end is added ( (It is also possible to use a non-ferromagnetic material in place of the air gap.) When the magnetic impedance of the load system increases moderately, the magnetic impedance matching from the viewpoint of the magnetic source is optimized, and at the same time, the magnetic flux density in the thick strip Rather, it is sufficient to decrease, that is, even if the magnetic flux density in the thick long piece is small, this magnetic flux can be efficiently transmitted to the working end side, and a high-density magnetic flux can be emitted from the working end. Next, the maximum magnetic flux density portion, which is the maximum heat generation portion in the thick long piece, is displaced to the gap side by the presence of the gap, and as a result, the heat radiation of the thick long piece is improved. Combined with these three points, high-density magnetic flux is emitted without overheating of the magnetic core. In other words, in the conventional solenoid coil with a magnetic core, the saturation magnetic flux density of the magnetic core is immediately drastically reduced due to overheating of the magnetic source part centering on the magnetic flux density maximum part, and the magnetic resistance of the magnetic source part becomes excessive. In order to create a magnetic field necessary for the amount of magnetic flux to be emitted, a high coil voltage (and current) is required, which leads to further overheating. In short, a current solution is stopped, and in short, a preferable solution cannot be achieved.
[0020]
The magnetic flux irradiation apparatus according to claim 5 of the present invention is the magnetic flux irradiation apparatus described above, and extends in the longitudinal direction on the outer surface of the long piece, and also in or between the long pieces. A flow path is formed, and cooling means for supplying the refrigerant to the flow path is attached.
In this case, in addition to the decrease in the maximum magnetic flux density due to the enlargement of the non-acting end side and the effect of separation between the maximum overheated portion and the maximum magnetic flux density portion due to magnetic core separation, the effect of forced cooling also works. Moreover, forced cooling is performed directly on the non-working end side long piece with a sufficient cross-sectional area without reducing the cross-sectional area of the relatively thin working end side short piece, and also requires high heat dissipation capability. It extends to the gap between the magnetic core pieces. Thus, the remarkable temperature rise suppression effect is exhibited by unifying the suppression of the heat generation density and the direct forced cooling to the superheated part without difficulty.
[0021]
The magnetic flux irradiation device according to claim 6 of the present invention is the magnetic flux irradiation device described above, wherein an additional winding portion wound around the solenoid coil on the working end side is attached. Is.
In this case, the region where the magnetic flux emitted from the working end by the solenoid coil and the magnetic core is kept in a focused state is expanded to the far side with respect to the outgoing direction by the magnetic flux focusing action by the additional winding portion, so that the high-density magnetic flux is It will reach far. Thereby, for example, it can treat to a deeply affected part in local thermotherapy.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Several embodiments of the present invention will be specifically described with reference to the drawings. The magnetic flux irradiating apparatus of the present invention includes the action part 40 and the drive part 30. Since the drive part 30 may be the same as that of FIG. 6B described above, the improvements of the action part 40 will be described below. To do. In the drawings, the same reference numerals are given to the components corresponding to the conventional ones. For the sake of simplification and the like, the main part structure is shown using a simplified end view. Furthermore, although the magnetic flux is also shown by a two-dot chain line, this is for helping understanding of the operation state, and is not a constituent member.
[0023]
1A and 1B show an example of a magnetic flux irradiation device of the present invention, in which FIG. 1A is a longitudinal end view of an action part 40, and FIG. 1B is a transverse end view of the action part 40.
1 is different from the above-described example of FIG. 7B in that an inner flow path 72 is formed through the central axis of the magnetic core 60. Thereby, in this action part 40, in addition to the outer flow path 71 on the outer surface of the magnetic core 60, an inner flow path 72 extending in the longitudinal direction is also formed in the magnetic core 60. The cooling means 70 attached thereto is connected to the non-working end 42 so as to feed the refrigerant into the inner flow path 72 and return the outer flow path 71.
[0024]
More specifically, the magnetic core 60 is formed by forming a ferromagnetic body such as sintered ferrite into a cylindrical shape or filling a cylindrical container made of alumina or the like with a magnetic pellet. The outer diameter is 150 mm, the inner diameter is 10 mm. The inner diameter is the diameter of the inner flow path 72, and the outer diameter of the magnetic core 60 is the inner diameter of the outer flow path 71. A member that defines the outer surface of the outer flow path 71 may be a material that does not interfere with magnetism, for example, a plastic material or the like, and may be a diverted bobbin of the solenoid coil 50, but its diameter is larger than the diameter of the magnetic core 60. For example, it is set to 50 mm. The solenoid coil 50 has the same length as that of the magnetic core 60 and an inner diameter that is larger than the outer diameter of the magnetic core 60 and the inner flow path 72, for example, 55 mm. The solenoid coil 50 is formed by winding a copper wire, for example, about 10 times into a cylindrical shape, and the magnetic core 60 is inserted into the cavity (hollow) together with the outer flow path 71 forming member.
[0025]
In the magnetic flux irradiating apparatus provided with such an action part 40, in use, the above-described high-frequency current is caused to flow from the drive part 30 to the solenoid coil 50, and the cooling means 70 causes a coolant such as water to flow into the inner flow path. 72.
Although the cross-sectional area of the magnetic core 60 is reduced by the formation of the inner flow path 72 and the magnetic flux density of each part of the magnetic core 60 is increased, the magnetic core 60 is cooled from the inside and outside by the flow paths 71 and 72, and the saturation magnetic flux density is increased. Even if the heat generation density is increased due to an increase in the magnetic flux density of each part, the overheating of the magnetic core 60 is sufficiently suppressed.
[0026]
2A to 2D are all modifications of the above-described FIG.
The action part 40 whose transverse end view is shown in FIG. 2A is obtained by dividing the magnetic core 60 into three thin cylindrical bodies and juxtaposing them. The inner flow path 72 is formed for each magnetic core 60.
Even in the magnetic flux irradiation device having such an action part 40, if the circumscribed circle of the plurality of magnetic cores 60 is equal to the outer periphery of the magnetic core 60 in FIG. Results are obtained.
[0027]
The action part 40 whose transverse end view is shown in FIG. 2 (b) is obtained by dividing the magnetic core 60 into three plate-like bodies and arranging them side by side. The flow direction in the inner flow path 72 is formed between the magnetic cores 60 and may be the same as the flow direction in the outer flow path 71, or may be in the opposite direction. It is good also as the reverse flow direction divided.
Even in the magnetic flux irradiation device having such an action part 40, if the circumscribed circle of the plurality of magnetic cores 60 is equal to the outer periphery of the magnetic core 60 in FIG. Results are obtained.
[0028]
The action part 40 whose transverse end view is shown in FIG. 2 (c) is one in which the magnetic core 60 is divided into three thin cylindrical bodies and juxtaposed. The inner flow path 72 is surrounded by a plurality of cylindrical bodies and formed at the center axis. In this case, it can be used in the same manner as described above.
[0029]
3 (a) to 3 (d) all have the solenoid coil 50 and the magnetic core 60 tapered so that the non-working end 42 side of the magnetic core 60 is thicker than the working end 41 side. Is.
3 (a) shows a longitudinal end view of the action portion 40. The length and diameter of the solenoid coil 50 and the solid magnetic core 60 at the action end 41 are the same as those in FIG. 1 described above and FIG. 7 (c) described above. However, at the non-working end 42, the magnetic core 60 has a diameter of 50 mm and the solenoid coil 50 has a diameter of 70 mm, which is about 20 mm thicker than the working end 41. Between the working end 41 and the non-working end 42, the diameter changes linearly and is tapered.
[0030]
In the magnetic flux irradiating apparatus having such an action portion 40, the magnetic flux density emitted from the action end 41 to the outside is about 300 mT, which is the same as the conventional one, but the magnetic flux spreads on the non-action end 42 side. ing. In connection with this, it is guessed that the magnetic flux distribution state in the magnetic core 60 of different diameters is also different from that of the same diameter. Specifically, when the diameters are the same, the magnetic flux gathered as if narrowed down to the center in the radial direction just at the center in the axial direction (longitudinal direction) causes the maximum magnetic flux density portion to move to the working end 41 side due to the taper angle. As it moves, the high-density magnetic flux can be emitted in a form in which the maximum magnetic flux density is reduced.
[0031]
The action portion 40 whose longitudinal end view is shown in FIG. 3B is different from that in FIG. 3A in that the magnetic core 60 is shortened.
On the non-working end 42 side, the solenoid coil 50 and the magnetic core 60 remain the same, but on the working end 41 side, the end surface of the magnetic core 60 moves back toward the non-working end 42 (downward in the figure), and the solenoid coil 50 further. Is getting thinner. Accordingly, both the magnetic core 60 and the solenoid coil 50 are tightly tapered.
[0032]
In the magnetic flux irradiating apparatus having such an action portion 40, the spread of magnetic flux due to the retreat of the end face of the magnetic core 60 is offset at the action end 41 by the tightening due to the narrowing of the solenoid coil 50. The magnetic flux density emitted toward the rear is also the same at about 300 mT. On the other hand, since the maximum magnetic flux density portion appears in the space formed on the side of the working end 41 ahead of the end surface due to the retreat of the end surface of the magnetic core 60, the magnetic flux density (heat generation density) in the magnetic core is reduced and the heat dissipation state is also improved. These effects are effective in suppressing the temperature rise.
[0033]
3 (c) is different from that shown in FIG. 3 (a) in that the working portion 40 is divided into a short piece 61 and a long piece 62 in the axial direction (longitudinal direction). This is because the gap 63 is secured between the two.
The short piece 61 remains at the working end 41 and the diameter remains substantially the same as 30 mm, but the length is shortened to, for example, 15 mm.
The long piece 62 moves rearward (downward in the figure), and the large-diameter end protrudes from the solenoid coil 50 at the non-working end 42. For example, the long piece 62 has a large diameter of 50 mm and a small diameter of 40 mm, and the long piece 62 has a length of 100 mm.
The gap 63 is, for example, 10 mm.
[0034]
In the magnetic flux irradiating apparatus provided with such an action portion 40, the cross-sectional area of the short piece 61 (magnetic core 60) at the action end 41 does not change, so that the magnetic flux density emitted from the action end 41 to the outside. Is still the same at about 300 mT. On the other hand, since the highest magnetic flux density portion appears in the gap 63 formed by dividing and separating the magnetic core 60, the same temperature rise suppression effect as in the case of FIG.
The form of FIG. 3C is useful as a form that can optimize the magnetic impedance matching while setting the total inductance of the action part 40 to be large, for example, due to the circumstances of engagement with the drive part 30.
[0035]
3D is different from that shown in FIG. 3C in that the inner channel 72 is formed through the central axis of the long piece 62. is there. Thereby, in this action part 40, in addition to the outer flow path 71 on the outer surface of the long piece 62, an inner flow path 72 extending in the longitudinal direction is also formed in the long piece 62. The cooling means 70 attached thereto is connected to the non-working end 42 so as to feed the refrigerant into the inner flow path 72 and return the outer flow path 71. Note that the gap 63 is slightly shortened, and the protrusion of the long piece 62 rearward from the non-working end 42 is reduced.
[0036]
In this case, the forced cooling effect similar to that of FIG. 1 and FIG. 2 is added to that of FIG. Even if it comes in, the suppression of temperature rise is greatly improved. In addition, since the short piece 61 having the smallest cross-sectional area in the magnetic core 60 is solid, there is no inconvenience associated with the reduction of the cross-sectional area unlike those in FIGS. That is, there is no inconvenience that the margin regarding the saturation magnetic flux density of the magnetic core 60 is reduced by the increase of the magnetic flux density accompanying the reduction of the cross-sectional area. The overheated portion of the short piece 61 is accurately cooled by the refrigerant flowing through the gap 63 that connects the outer flow path 71 and the inner flow path 72. Thus, in this case, although the high-density magnetic flux emission, the specifications of the drive unit 30, the method of using the apparatus, and the like may be the same as before, the utilization rate of the apparatus capability is remarkably improved.
[0037]
4 (a) to 4 (d), each of the working portions 40 whose longitudinal end views are taken into consideration is considered to be easy to manufacture when the non-working end 42 side of the magnetic core 60 is thicker than the working end 41 side. The magnetic core 60 is divided into a thin short piece 61 and a thick long piece 62.
The short piece 61 is solid and has the same diameter as that of FIG. 1 described above and FIG. 7C described above, but has a length as short as 15 mm, and has an outward end surface (upper end surface in the drawing). It arrange | positions in the state matched with the action end 41. FIG. The long piece 62 has a diameter of 50 mm and is thicker than the short piece 61 and is arranged on the non-working end 42 side, but the arrangement position is slightly different in each example. The solenoid coil 50 has a length of 100 mm without change, but the thickness is as thick as 60 mm corresponding to the diameter expansion of the long piece 62. Such a solenoid coil 50, the short piece 61, and the long piece 62 are formed in the same cylindrical body / columnar body in any cross section and are easy to manufacture.
[0038]
Among them, the action part 40 whose longitudinal end view is shown in FIG. 4A is a series of the short piece 61 and the long piece 62 that are in contact with each other, and the total length thereof matches the length of the solenoid coil 50. Thus, the length of the long piece 62 is determined.
In this case, substantially the same effect as that of FIG. 3A described above can be obtained, and there is an advantage that manufacture is easy.
[0039]
4 (b) is a sectional view of the working portion 40 in which the short piece 61 and the long piece 62 are separated from each other to secure the gap 63. It is getting shorter. In this case, even if the working end 41 side of the solenoid coil 50 is not made thin, the presence of the short piece 61 can provide substantially the same effect as that of FIG. In addition, the advantage of easy manufacturing can also be enjoyed. In this case, it is also possible to compensate for inductance reduction due to the formation of the gap 63 by making the long piece 62 thicker.
[0040]
In FIG. 4C, the action section 40 whose longitudinal end view is shown does not shorten the long piece 62 to form the gap 63, but shifts the long piece 62 rearward (downward in the drawing) to partially inactivate it. By projecting from the end 42, the gap 63 is secured. In this case, substantially the same effect as the above-described FIG.
The action part 40 whose longitudinal end view is shown in FIG. 4D is one in which the inner flow path 72 is formed through the central axis of the long piece 62 in the same manner as in FIG. 3D described above. The attachment of the cooling means 70 and the shortening of the gap 63 are performed in the same manner, and the same temperature rise suppression effect can be obtained. In addition, since a cylindrical body or a columnar body is adopted for each member, there is an advantage that manufacturing is easy.
[0041]
The action part 40 whose longitudinal end view is shown in FIG. 5 (a) is obtained by adding an additional winding part 51 to that shown in FIG. 3 (c), and the action whose longitudinal end view is shown in FIG. 5 (b). The part 40 is obtained by adding an additional winding part 51 to that shown in FIG.
The additional winding portion 51 is wound in a bowl shape or in an annular shape, and is attached thereto in a state in which the diameter of the working end 41 portion of the solenoid coil 50 is increased. The solenoid coil 50 and the additional winding part 51 may be connected in series or in parallel.
[0042]
In the magnetic flux irradiating apparatus provided with such an action part 40, in addition to the effect of suppressing the temperature rise of the basic apparatus, the high density magnetic flux 43 is further reached by the additional winding part 51. You can also enjoy the advantages.
Note that the number of turns and the outer diameter of the additional winding portion 51 are set as appropriate according to the purpose of use and required specifications, and therefore specific numerical examples are omitted. Moreover, since the magnetic flux focusing function is enhanced by providing the additional winding part 51 with flexibility, for example, by bending the additional winding part 51 and adapting it to the subject 10 during use, the subject 10 It is possible and easy to make a high-density magnetic flux hit the inner magneto-sensitive heating element.
[0043]
【Example】
For comparison, the action part 40 is composed of the conventional structure shown in FIG. 6A, the heat radiation enhancing structure shown in FIG. 1, the heat generation density suppressing structure shown in FIG. 3A, and the fused structure shown in FIG. Prototype. The number of windings and length of the solenoid coil 50 and the material of the magnetic core 60 and the diameter at the working end 41 are the same in all structures, but the other dimensions are different values based on the respective structures. Specifically, the above-described typical value was adopted. Ferrite core TDK H-7C4 was selected as the material for the magnetic core 60. For the drive unit 30, the same high frequency power supply device as that shown in FIG. 6B is employed, and various magnetic flux irradiation devices are configured.
[0044]
Then, the one-turn coil was placed near the action end 41, and the magnetic flux irradiation device was operated while measuring the magnetic flux density emitted from the action part 40. In the initial state, the output of the drive unit 30 is adjusted to start operation with a magnetic flux density of 300 mT, and then the saturation magnetic flux density decreases and the coil current increases accordingly, and the power supply of the drive unit is overcurrent. The time Tb until stopping was measured.
As a result, the Tb is about 2 minutes in the conventional structure of FIG. 6A, but is about 10 minutes in the heat radiation strengthening structure in FIG. 1, and about 60 minutes in the heat generation density suppressing structure in FIG. Thus, in the fusion structure of FIG. 4D, the power supply did not stop even after 6 hours, and it was considered possible to operate continuously.
[0045]
[Others]
In each of the above examples, the inner flow path 72 is the forward path and the outer flow path 71 is the return path, but the refrigerant flow may be reversed.
Moreover, the material and dimension of the action part 40 structural member mentioned above are only an example. The material and dimensions of each member are not limited thereto, and can be appropriately changed according to the application purpose.
Further, in the case of water cooling, it is desirable to use pure water or distilled water from the viewpoint of electrical insulation, but the refrigerant is not unusable even with tap water. When water cooling is inconvenient, another liquid may be used, and a gas such as air or nitrogen gas may be used.
The use of the magnetic flux irradiation device of the present invention is not limited to the case where the subject 10 is a living body. For example, the subject 10 may be a metal or the like, and is useful for local overheating. is there.
[0046]
【The invention's effect】
As is clear from the above description, in the magnetic flux irradiation device of the present invention, since the refrigerant is directly sent to the superheated portion having a particularly high heat generation density in the magnetic core, the heat radiation is enhanced. Even if the magnetic flux density is high, overheating of the magnetic core does not occur or a magnetic flux irradiating device can be realized.
In addition, by increasing the thickness of the magnetic core at the part where the magnetic flux density is maximized and lowering the magnetic flux density at this part and thus the heat generation density, the magnetic flux density at the working end is maintained at the current level and the temperature rises in the superheated part. The temperature is suppressed from both aspects of the heating rate and the reached temperature.
Further, the magnetic core is divided into a plurality of pieces having different thicknesses, thereby facilitating manufacturing.
[0047]
Further, by separating the magnetic core and securing the air gap, the magnetic impedance imbalance in the action portion is eliminated and the cooling effect is further increased, and the temperature rise in the overheated portion is suppressed.
Moreover, the remarkable temperature rise suppression effect is exhibited by unifying the suppression of the heat generation density and the direct forced cooling to the superheated portion without any difficulty.
In addition, since the focusing state of the magnetic flux on the working end side extends far away by the magnetic field of the additional winding portion, the high-density magnetic flux reaches far away.
[Brief description of the drawings]
FIG. 1A is a longitudinal end view of an action part, and FIG. 1B is a transverse end view of the action part of an embodiment of the magnetic flux irradiation apparatus of the present invention.
FIGS. 2A to 2C are cross-sectional end views of an action part, and show various modifications that are partially different.
FIG. 3A is a longitudinal end view of an action part of another embodiment of the magnetic flux irradiation apparatus of the present invention. Although (b)-(d) are also longitudinal end views of the action part, they all show modified examples.
FIG. 4A is a longitudinal end view of an action part of another embodiment of the magnetic flux irradiation apparatus of the present invention. Although (b)-(d) are also longitudinal end views of the action part, they all show modified examples.
FIG. 5A is a longitudinal end view of an action part in a further embodiment of the magnetic flux irradiation apparatus of the present invention. (B) is also a longitudinal end view of the action part, which shows a modification.
6A is a longitudinal end view of an action part, and FIG. 6B is a schematic circuit diagram and an electrical connection diagram of a drive part in a conventional magnetic flux irradiation device.
7A and 7B are views for explaining a problem, in which FIG. 7A is a longitudinal end view of a magnetic core, and FIGS. 7B to 7D are longitudinal end views of an action portion.
[Explanation of symbols]
10 ... Subject, 20 ... Power supply,
30 ... Drive unit, 31 ... Capacitor,
40 ... Working part, 41 ... Working end, 42 ... Non-working end, 43 ... Magnetic flux
50 ... Solenoid coil, 51 ... Additional winding part,
60 ... magnetic core, 61 ... short piece, 62 ... long piece, 63 ... gap,
70: Cooling means, 71: Outer channel, 72: Inner channel

Claims (5)

ソレノイドコイル及びこれに挿入された磁心を有する作用部と、前記ソレノイドコイルに電流を流して磁束を生じさせる駆動部とを備え、前記作用部の一端を外部へ向けて磁束を出射する作用端とし他端を非作用端とするために前記作用部が棒切れ状に形成されるとともに前記磁心前記非作用端側が前記作用端側より太く形成されている磁束照射装置において、前記磁心が前記作用端側の短片と前記非作用端側の太い長片とを具えたものであり、前記短片と前記長片とが離隔配置されており、その間隙に最高磁束密度部位が出ている、ことを特徴とする磁束照射装置。A working unit having a solenoid coil and a magnetic core inserted in the solenoid coil, and a driving unit that generates a magnetic flux by causing a current to flow through the solenoid coil. in the working unit flux irradiating apparatus in which the non-working end of Rutotomoni the core is formed in a stick shape is formed rather thick than the working end to the other end and a non-working end, said magnetic core the action It is provided with a short piece on the end side and a thick long piece on the non-working end side, the short piece and the long piece are spaced apart , and the highest magnetic flux density part is in the gap. Magnetic flux irradiation device characterized. 前記短片と前記長片と前記ソレノイドコイルが何れも横断面の何処でも同一の円筒状または円柱状に形成されている、ことを特徴とする請求項1記載の磁束照射装置。 2. The magnetic flux irradiation device according to claim 1, wherein the short piece, the long piece, and the solenoid coil are formed in the same cylindrical shape or columnar shape everywhere in the cross section . 前記磁心の外面に、加えて前記磁心の中にも又は間にも、長手方向に延びた流路が形成され、前記流路へ冷媒を送給する冷却手段が付設されている、ことを特徴とする請求項1又は2記載の磁束照射装置。In addition to the outer surface of the magnetic core, a flow path extending in the longitudinal direction is formed in or between the magnetic cores, and cooling means for supplying the refrigerant to the flow path is provided. The magnetic flux irradiation apparatus according to claim 1 or 2 . 前記長片の外面に、加えて前記長片の中にも又は間にも、長手方向に延びた流路が形成され、この流路へ冷媒を送給する冷却手段が付設されている、ことを特徴とする請求項1乃至3の何れか1項記載の磁束照射装置。In addition to the outer surface of the long piece, a flow path extending in the longitudinal direction is formed in or between the long pieces, and cooling means for supplying the refrigerant to the flow path is provided. The magnetic flux irradiation apparatus according to any one of claims 1 to 3 . 前記作用端側で前記ソレノイドコイルの周囲に巻成された追加巻線部が付設されていることを特徴とする請求項1乃至の何れか1項記載の磁束照射装置。Flux irradiating apparatus according to any one of claims 1 to 4, characterized in that the additional winding portion made wound is attached to the periphery of the solenoid coil in the working end.
JP2003013397A 2003-01-22 2003-01-22 Magnetic flux irradiation device Expired - Lifetime JP3767820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013397A JP3767820B2 (en) 2003-01-22 2003-01-22 Magnetic flux irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013397A JP3767820B2 (en) 2003-01-22 2003-01-22 Magnetic flux irradiation device

Publications (2)

Publication Number Publication Date
JP2004228289A JP2004228289A (en) 2004-08-12
JP3767820B2 true JP3767820B2 (en) 2006-04-19

Family

ID=32901737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013397A Expired - Lifetime JP3767820B2 (en) 2003-01-22 2003-01-22 Magnetic flux irradiation device

Country Status (1)

Country Link
JP (1) JP3767820B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005016A (en) * 2003-07-01 2005-01-13 윤장호 vibration kneader
JP2006216650A (en) 2005-02-02 2006-08-17 Sumida Corporation Magnetic element and method for manufacturing the same
US8214053B2 (en) * 2006-08-29 2012-07-03 Nanotherapy Co., Ltd. Body heating device
JP5250820B2 (en) * 2006-12-26 2013-07-31 株式会社アドメテック Magnetic field generation applicator and magnetic field generation apparatus
JP4761483B2 (en) * 2009-03-10 2011-08-31 株式会社東栄科学産業 Electromagnet, magnetic field application device, and magnetic field application system
US9177708B2 (en) * 2013-06-14 2015-11-03 Varian Semiconductor Equipment Associates, Inc. Annular cooling fluid passage for magnets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy

Also Published As

Publication number Publication date
JP2004228289A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US5313037A (en) High power induction work coil for small strip susceptors
RU2670766C2 (en) Device for evaporation volatile liquid
JP2558584B2 (en) Instruments for cutting, coagulating and removing body tissue
JP3767820B2 (en) Magnetic flux irradiation device
US8062204B2 (en) Coil device and magnetic field generating device
TWI264239B (en) Method and apparatus for temperature control of an object
CA2544647C (en) Temperature self-regulating soldering iron with removable tip
JP3737054B2 (en) Magnetic flux irradiation device
TWI541045B (en) Deep magnetic field generating apparatus
CN100512573C (en) Boosting transformer for driving magnetron
JPH05275038A (en) X-ray tube equipped with filament transformer with ferrite core
US11224756B2 (en) Magnetic field generating-apparatus for biostimulation
US7449663B2 (en) Inductive heating apparatus and method
JP4255466B2 (en) Magnetic flux irradiation device for internal living body heating
JP2005123299A (en) Leakage transformer
AU2015271644A1 (en) Magnetic circuit for producing a concentrated magnetic field
JP4097580B2 (en) Magnetic flux irradiation device
JPH04255690A (en) High frequency induction heating coil
JP2019129192A (en) Output transformer for induction heating
TWI462758B (en) Deep magnetic field generating module and electromagnetic thermotherapy apparatus
JP3123073U (en) Electromagnetic induction heating radiator with U-shaped magnetic core
JP3069979U (en) Step-up transformer for magnetron drive
JPH05245217A (en) High frequency hyperthermia device
CN101325119A (en) Boosting transformer for driving magnetron
CN115031219A (en) Steam generation mechanism of steam ablation device and pistol

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3767820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term