JP3735593B2 - Seismic isolation device for buildings - Google Patents

Seismic isolation device for buildings Download PDF

Info

Publication number
JP3735593B2
JP3735593B2 JP2002180316A JP2002180316A JP3735593B2 JP 3735593 B2 JP3735593 B2 JP 3735593B2 JP 2002180316 A JP2002180316 A JP 2002180316A JP 2002180316 A JP2002180316 A JP 2002180316A JP 3735593 B2 JP3735593 B2 JP 3735593B2
Authority
JP
Japan
Prior art keywords
building
seismic isolation
foundation
adjuster
fixing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002180316A
Other languages
Japanese (ja)
Other versions
JP2004019409A (en
Inventor
富士男 板垣
淳 板垣
茹 張
Original Assignee
多摩エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 多摩エンジニアリング株式会社 filed Critical 多摩エンジニアリング株式会社
Priority to JP2002180316A priority Critical patent/JP3735593B2/en
Publication of JP2004019409A publication Critical patent/JP2004019409A/en
Application granted granted Critical
Publication of JP3735593B2 publication Critical patent/JP3735593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はビルや住宅等の建築物を基礎上に支持するための装置に関し、より詳しくは地震力による建築物への影響をより小ならしめる免震支持装置に関する。
【0002】
【従来の技術とその問題点】
地震による建築物への影響を抑制または制御して建築物の破損を防止する構造には、地震力が建築物に伝わらないようにする免震構造があり、この免震構造は、地盤側の構造物と建築物の本体構造との間に地震のエネルギーを絶縁するアイソレータと呼ばれる部材や機構を備えている。
【0003】
従来から広く採用されているアイソレータとしては、薄いゴムシートと鋼板を交互に積層して接着した積層ゴムアイソレータがあり、この積層ゴムアイソレータでは鉛直方向の荷重(建築物の荷重)に対しては、同荷重によるゴムの水平方向への広がりを鋼板が規制して鉛直方向の変形は抑制されるが、水平方向の力に対してはゴムの弾性により大きく変形することができ、したがって建築物の荷重を十分に支持でき、かつ建築物への地震による水平方向のエネルギーの伝達を確実に遮断することができる。
【0004】
しかし、上述した従来の免震構造では個々の建築物に応じ、また想定される地震の規模に応じて積層ゴムアイソレータの鉛直荷重に対する支持強度や水平応力に対する弾性変形率等の仕様を設計しなければならず、建築物の設計や施工コストが嵩むという問題がある。
【0005】
また、上述した従来の免震構造では直下型地震におけるいわゆる縦揺れによる鉛直方向の地震エネルギーを遮断することができないという問題もある。
【0006】
さらに、上述した従来の免震構造では、免震作用が積層されたゴムや鋼板の寸法や弾性によって決まるので、地震の揺れの大きさに対応させて免震作用を調節することができず、すなわち揺れの小さな地震に対して免震作用を働かせないようにすることはできず、揺れの小さな地震や風によって建築物が揺れると、免震作用によって建築物に緩やかな揺れが長く続くという問題がある。
【0007】
また、地震はその発生後に地盤の変動を伴うケースが非常に多く、この地盤の変動により建築物が不等沈下を生じて傾いてしまうことが往々にしてあるが、従来の免震構造には不等沈下が生じた場合に建築物の沈下修正を行なうことができるようにしたものはない。
【0008】
なお一般住宅用の免震構造として、上面が曲面状に陥凹する下部板と下面が曲面状に陥凹する上部板との間に、上部板と下部板との間が水平方向へ相対的に変位できるよう複数の鋼球を介装してなる免震装置を、コンクリート基礎と住宅の土台との間に配設し、地震の揺れに応じて上部板と下部板との間で鋼球が転動することによって住宅に掛かる地震のエネルギーを抑制するようにしたものがあるが、揺れが大であると鋼球が脱落したり、直下型地震の際における鉛直方向の揺れを抑制することができなかったりという問題があり、十分な免震作用を得ることは期待できない。
【0009】
【目的】
本発明の目的とするところは、地震の揺れの方向にかかわらず十分な免震作用を得ることができ、しかも所要の震度に達すると免震作用が働き始めるように設定することができ、また建築物に不等沈下が生じた場合には建築物の沈下修正を容易かつ正確に行なうことができる免震支持装置を提供することにある。
【0010】
【発明の構成】
上記目的を達成するために、本発明に係る装置は、基礎上に建築物を支承する免震支持装置であって、上部が開口する有底の筒状体内に、上下方向に伸縮可能な弾性を有する緩衝部材を備え、同緩衝部材上に、上面に複数の鋼球を個々に転動可能に支持する複数の凹部を有し、外周辺部には鋼球の脱落を防止する立ち上がり縁部が形成されたボール受け板を備える基礎側固定部材と、前記鋼球の前記凹部内における転動によって水平方向に変位できるよう鋼球上に設けられた建築物側固定部材たる支持プレートとを備え、前記基礎側固定部材と建築物の部材との間に、これら基礎側固定部材と建築物との間の水平方向の変位をばねの弾発力によって規制する複数のアジャスタをボールジョイントを介して設け、これらのアジャスタは、互いに摺動可能な内筒と外筒内に、圧縮方向と引張り方向のいずれの方向の荷重も受けることができるばねを備え、このアジャスタは自由長さが前記ばねの圧縮方向、引張り方向のいずれの方向にも調節可能であって、この自由長さを調節することによって免震作用が働き始める地震の揺れの大きさを設定できるようにした構成のものとしてある。
【0011】
また本発明に係る装置は、前記基礎側固定部材と基礎との間に、内周面に巻き方向が互い異なる雌ねじが形成された上下の雌ねじ筒と、これらの雌ねじ筒の各雌ねじに螺合する互いに巻き方向が異なる上下の雄ねじが外周面に形成された雄ねじ体とを備え、この雄ねじ体の外周面における前記上下の雄ねじ間に雄ねじ体を正逆回転させるための回転操作部を有し、この回転操作部を正逆回転させることによって上下の雌ねじ筒が離間または接近して上下方向に伸縮される上下調節機構を介設した構成のものとしてある。
【0012】
【実施例】
以下、本発明に係る免震支持装置の実施例を添付図面に示す具体例に基づいて説明する。
本実施例の装置は、地震による揺れを抑制するための免震機構1と、施工時および沈下修正時に建築物の鉛直方向の位置を調節するための上下調節機構2とを備えている。
【0013】
上記免震機構1は、上部が開口する有底の筒状体3内に緩衝部材たる圧縮コイルばね4と緩衝ゴム5を有し、緩衝部材上にボール受け板6を備えている。
上記緩衝ゴム5は、例えば円柱状に形成した合成ゴムの上面中央に陥凹部5aを設けたものとしてあり、この緩衝ゴム5の外周と筒状体3の内周との間の隙間に前記圧縮コイルばね4を設けてあって、この圧縮コイルばねの自由高さは緩衝ゴムの高さとほぼ同じものとする。
【0014】
また前記ボール受け板6は、図2に示されるように中央孔6aを有するリング状に形成した鋼板の上面に、複数(図2では4つ)の凹部6b、6bを有し、各凹部に鋼球7を転動可能に支持するものとしてあって、外周辺部には鋼球が脱落するのを防止するための立ち上がり縁部6cを設けてあり、ボール受け板6の外径は円筒体3の内径よりも若干小で円筒体の内周面に沿って上下に摺動できるようにしてある。
【0015】
上記ボール受け板6の中央孔6aと、前記緩衝ゴム5の陥凹部5aには、支持プレート8の中央部下面に垂設された円柱部8aが嵌入され、支持プレートは前記鋼球7、7上に支持されている。
なお、緩衝ゴムの陥凹部5aの内径は円柱部8aの外径とほぼ同じであるが、ボール受け板の中央孔6aの内径は円柱部8aの外径よりも十分に大なるものとする。
【0016】
したがって、支持プレート8は円柱部8aが緩衝ゴム5に嵌入してはいるが、緩衝ゴムの弾性力に抗して鋼球7の転動により水平方向に移動できるように設けられている。
【0017】
なお、支持プレート8の下面と筒状体3の上縁部との間は、支持プレート上に建築物からの荷重が掛かった状態で十分な隙間があくようにしてあって、この隙間は地震による鉛直方向の力が掛かった際に想定される前記緩衝部材の鉛直方向の収縮量よりも大とする。
【0018】
前記筒状体3の上部外周には、この筒状体から水平方向に放射状に延びる複数のアジャスタ9、9を備えており、これらのアジャスタは地震の際に筒状体3と建築物との間の水平方向における相対的な移動量を規制するものとしてある。
【0019】
しかしてアジャスタ9は図3に示されるように、一端が開口し他端が閉ざされた円筒状の外筒10と内筒11を備え、外筒内にコイルばね12を収容し、かつ内筒の開口端から或る程度内側にばね受け板13を設け、このばね受け板と外筒の閉ざされた側の端部内面にそれぞれ前記コイルばねの端部を固定してある。
【0020】
なお、上記コイルばね12は圧縮方向と引張り方向のいずれの方向の荷重も受けることができるように各端部が上記ばね受け板13と外筒10に強固に固定され、どちらの方向の荷重に対してもばね定数が同程度であるものを使用する。
【0021】
また、アジャスタ9の両端にはそれぞれ先端にボールジョイント14、15を備えるロッド16、17の基部が取り付けられていて、外筒側のロッド16は基部が外筒の閉塞端部外面に直接固定されており、内筒側のロッド17は外周面に雄ねじ17aが形成されていて、この雄ねじが内筒の閉塞端部にあけた孔の外側に固定されたナット18に螺合して基部が内筒内に臨んでいる。
【0022】
上記ボールジョイントのうち一方のもの、例えば内筒側のロッド17先端のボールジョイント15は、基礎側固定部材たる前記筒状体3の外周面に溶接等によって固定してあり、他方のボールジョイント、例えば外筒側のロッド16先端のボールジョイント14は後述する建築物の土台26側に固定される。
【0023】
前記上下調節機構2は、内周面に雌ねじ部19a、20aをそれぞれ形成した上下の雌ねじ筒19、20と、上下の雄ねじ部21a、21b間に回転操作部22を有する筒体よりなる雄ねじ体21を備え、また、回転操作部22と上下の雌ねじ筒19、20間にロックナット23a、23bを設けてある。
【0024】
上下の雌ねじ筒19、20における各雌ねじ部19a、20aは互いにねじ条の巻き方向が逆向きになっており、かつ雄ねじ体における上下の雄ねじ部21a、21bも互いにねじ条の巻き方向が逆向きになっていて、回転操作部を正逆回転させることによって上下の雌ねじ筒が離間し、または接近して、上下調節機構2全体が伸縮できるようになっている。
【0025】
前記回転操作部22は外周面の横断面形状が六角形状を呈する形状としてあって、前記ロックナット23a、23bと同じ工具で回すことができるようにしてある。
また、前記各雌ねじ部、雄ねじ部、ロックナットの各ねじ条はいずれも耐荷重性の高い角ねじや台形ねじとするのが好適である。
なお、前記上側の雌ねじ筒19における上端部寄りの内側には十字状の補強リブ24を設けてある。
【0026】
上述した構成の上下調節機構2は、上側の雌ねじ筒19の上端が前記免震機構1の筒状体3の下面に溶接にて接続されていて、建築物からの荷重が大である場合には必要に応じて上側の雌ねじ筒19の外側面と筒状体3の下面との間にブラケットを設ける。
【0027】
しかして本実施例に係る装置は、地盤に打設された鋼管杭等の基礎杭25の上端に上下調節機構2における下側の雌ねじ筒20の下端を溶接して取り付け、免震機構1における建築物側固定部材たる支持プレート8の上面に建築物の土台26をボルト・ナット等の止め具27で固定し、また、アジャスタ9の遊端側のボールジョイント14をブラケット28を介して建築物側の部材たる土台26に固定して取り付ける。
なお、免震機構1における支持プレート8以外の構成および上下調節機構2は全て基礎側固定部材である。
【0028】
図1中において、符号29は土台28上に取り付けられた建築物の柱を示し、30は柱の下方における土台の補強材を示す。
【0029】
上述のように構成された本発明の装置は、基礎杭25上において土台26を支承し、より詳しくは土台26から支持プレート8に掛かる建築物の荷重が、鋼球7、7とボール受け板6および円柱部8aを介して圧縮コイルばね4と緩衝ゴム5を備える緩衝部材に掛かり、さらに筒状体3および上下調節機構2を介して基礎杭25に掛かる。
【0030】
上記支持プレート8は、鋼球7、7の転動と緩衝ゴム5の弾性変形によって筒状体3に対して水平方向に変位可能に支持されているが、この水平方向の変位は筒状体3と土台26との間に設けられているアジャスタ9、9により規制される。
【0031】
すなわち、地震によって地盤が水平方向に揺れると、基礎杭25に固定されている上下調節機構2、筒状体3、緩衝部材4、5、ボール受け板6および鋼球7、7は地盤とともに揺れるが、緩衝部材4、5、鋼球7、7およびアジャスタ9、9が揺れを絶縁するアイソレータとして作用し、建築物はその慣性力によって支持プレート8とともに地盤に対して相対的に水平方向に変位するが絶対位置はあまり変化せず、したがって、地盤の揺れは建築物に殆ど伝達されない。
【0032】
なお、アジャスタ9は図1の左右に対向して配設されている場合、一方のアジャスタが伸長すると、他方のアジャスタが収縮して振動を逃がし、またアジャスタは筒状体3とブラケット28に対してそれぞれボールジョイント14、15を介して接続してあるので、基礎杭に対するねじれ方向の揺れにも対応することができる。
【0033】
また、地震による地盤の鉛直方向の揺れは、緩衝部材4、5によって吸収され、建築物に対する衝撃が十分に緩和される。
【0034】
しかして本発明の装置においては、地震による水平方向の揺れの大きさに対し、免震作用を調節できるように構成してある。
すなわち、前記アジャスタ9は内筒側のロッド17を内筒11に対して回動させると、アジャスタ全体の自由長さを調節できるようになっており、このアジャスタの自由長さの設定によって免震作用を調節することができる。
【0035】
より詳しくは、アジャスタ9の自由長さが筒状体3と土台26側のブラケット28間の距離と同じとなるように設定した場合、免震作用は最も大となり、したがって地震による水平方向の揺れが微小であっても建築物は地盤に対して変位し、地震による水平方向の衝撃は建築物に伝達されないが、建築物は地震の揺れが収まっても弱い揺れが長く続く。
【0036】
一方、アジャスタの自由長さが筒状体3と土台26側のブラケット28間の距離に比して大または小となるように設定した場合、アジャスタ9が円筒体と土台とを引き付ける力または押し付ける力が大となり、したがって地震による揺れが所定の大きさを超えないと免震作用が働かず、地震による水平方向の揺れが微小である場合(例えば震度3未満の場合)には建築物は地盤とともに変位して地震による水平方向のエネルギーが建築物に伝達されるが、地震の揺れが収まれば建築物は速やかに揺れが止まり、地震による水平方向の揺れが所定の値(例えば震度3)を超えた場合には、建築物はアジャスタ9のばね力に抗して地盤に対する変位を生じ、地震による水平方向の衝撃が建築物に伝達されず、この地震の衝撃による建築物の損傷が防止される。
【0037】
上述したアジャスタ9の自由長さの調節は、建築物の施工時に建築物の規模や使用目的あるいは地盤の状態に対応して適宜行なうが、建築物の経年変化や地盤の変動に対応して施工後数年経過してから自由長さの設定をやり直すこともできる。
【0038】
なお、上述した構成のアジャスタ9では、地震の揺れが収まっても免震作用による建築物の微小な揺れが残り、この微小な揺れは摩擦によって完全に減衰するまで続くが、このような微小な揺れを迅速に減衰させることが要求される場合には、ダンパ機能を備えるアジャスタを使用し、その一具体例を図4に示す。
【0039】
ダンパ機能を備えるアジャスタ31は、外筒10内に仕切板32を有し、この仕切板32によって外筒内にダンパ室33が形成されていて、仕切板と内筒11のばね受け板13との間にコイルばね12を備え、ばね受け板13に一端が固定されたロッド34のダンパ室内に臨む他端に、ピストン板35が取り付けられ、このピストン板35に複数のオリフィス35aをあけたものとしてある。
【0040】
前記ダンパ室33内には、適宜の流体例えばオイルや窒素ガスあるいはオイルとガスの混合流体が封入され、アジャスタ31の軸方向にアジャスタを伸縮させようとする急激な応力が掛かっても、ピストン板35の移動はオリフィスを通過する流体の量に規制されてアジャスタの急激な伸縮が防止され、また、地震の揺れが収まった後において建築物に残る微小な揺れも、ダンパによって減衰される。
【0041】
ところで、地震は地盤の変動を伴う場合が多く、地震によって建築物に不等沈下が生じ、建築物が傾くというケースが少なくない。
このように建築物に不等沈下した場合、上述のように構成した本発明の装置では上下調節機構2によって容易に沈下修正を行なうことができる。
【0042】
具体的には、各基礎杭25の位置における沈下量を測量して各装置における修正高さを決定し、各装置においてロックナット23a、23bを緩め、回転操作部22を正逆回動させて上下の雌ねじ筒19、20を離間または接近させることにより上下調節機構の長さを所要の修正高さに対応して調節し、ロックナット23a、23bを締めるという簡単な作業で沈下修正を行なうことができ、建築物のジャッキアップ等の煩雑な作業が不要である。
【0043】
上述のように構成した本発明の装置は、建築物の土台26が十字状に交差する部分に、アジャスタ9、9が各土台と平行となるよう筒状体3まわりに四方に設けるのが原則であるが、建築物の外周部においてはアジャスタを四方に設けることができない。したがって、建築物の外周部においては、図5に示されるようにアジャスタを筒状体3まわりに土台に沿って3方向に設ける場合もあるし、火打ち土台と呼ばれる直交する土台間の補強材36にアジャスタの一端を固定する場合もある。
【0044】
図6は本発明に係る装置の他の実施例を示し、上述した第1実施例のものと緩衝部材、支持プレートおよびボール受け板の構成が異なる。
すなわち、第1実施例のものは緩衝部材を圧縮コイルばね4と緩衝ゴム5とで構成しているが、本実施例のものでは圧縮コイルばね37だけでボール受け板38を支持している。この圧縮コイルばね37は同図6では断面円形のものを使用しているが、断面が左右に長い板状を呈するコイルばねを使用する場合もあり、このようなコイルばねを使用するとばね定数すなわち耐荷重を大ならしめることができる。
【0045】
また、第1実施例ではボール受け板6が筒状体3の内周面に沿って上下に摺動できるように構成してあるが、本実施例のものではボール受け板38に下向き外周縁部38aを設け、同周縁部の内周面が筒状体3の外周面に沿ってボール受け板が上下に摺動できるようにしてある。
【0046】
さらに、支持プレート39は下面に陥凹部39aを形成してあり、この陥凹部の曲面が鋼球7、7の上部に接触する構成としてあり、かくすると支持プレート39が水平方向に変位しても常に支持プレートが初期の位置に戻ろうとする復元力が生じ、したがって第1実施例のもののように支持プレートの下面に円柱部を設けて緩衝ゴムに嵌入せしめる必要がない。
【0047】
また、第1実施例のものではアジャスタ9、9の各一端を筒状体3の外周に取り付けてあるが、本実施例のものではボール受け板38の外周に固定してある。なお、アジャスタ9は第1実施例のものと同様に筒状体の外周にその一端を取り付ける場合もある。
【0048】
上述した第1および第2実施例の装置は基礎杭25上に建築物を支持するための構成であるが、本発明の装置はコンクリート基礎上に建築物が支持される例えば一般の戸立て住宅にも適用することができ、その具体例を図7に示す。
【0049】
本実施例の装置は、第1実施例および第2実施例の装置における上下調節機構を設けず、免震機構だけを備えている。
しかして、コンクリート基礎40の上部に、凹部40aを形成し、またこの凹部上における土台26の下部に切り欠き部26aを形成してあって、これら凹部と切り欠き部との間に本実施例の装置を設ける。
【0050】
具体的には、基礎40の凹部中央に防振ゴムシート等よりなる防振部材41を介してボール受け板42を固定してあって、このボール受け板42上の鋼球7、7上に支持プレート39を設けてあり、この支持プレート39を、補強板43を介して土台26に取り付けてある。
【0051】
また、アジャスタ9、9の一端をボール受け板42の外周面に固定してあって、各アジャスタの他端を土台側のブラケットに固定してある。
なお、上記鋼球7および支持プレートの構造は上述した第2実施例のものと同じである。
【0052】
ところで、本実施例の装置は同図7に示されるように土台26を、土台下面とコンクリート基礎40上面との間に適宜の隙間44があくように設けられ、この隙間は前記防振部材41の収縮代と建築物の下部への通風口として作用する。
なお、本実施例の装置では第1および第2実施例のもののように上下調節機構を設ける場合もある。
【0053】
【発明の効果】
本発明によれば、地震による揺れによる衝撃が免震機構によって建築物に殆ど伝達せず、地震の揺れによる建築物の損傷を防止することができる。
しかも、アジャスタの自由長さを適宜調節することにより、所定の地震の揺れの大きさ(震度)に対して上記免震作用が働き始めるように設定することができ、したがって微小な揺れの地震に対しては免震作用が働かないようにして、地震が収まった後に、建築物に微小な揺れが続くようなことが防止され、建築物に損傷を与えるような大きさの揺れの場合には地震のエネルギーを十分に減衰して建築物への損傷を防止することができる。
【0054】
また、緩衝部材によって鉛直方向の振動を吸収することができ、直下型地震の際の鉛直方向の揺れに対しても十分な免震作用を得ることができる。
【0055】
さらに、上下調節機構を備えるものでは地震に伴って生じるケースの多い建築物の不等沈下に対し、回転操作部を正逆回動せしめることによって装置の高さを正確に調節することができ、したがって容易かつ正確に沈下修正を行なうことができる。
【図面の簡単な説明】
【図1】本発明に係る装置の実施例を示す縦断面図。
【図2】ボール受け板の斜視図。
【図3】アジャスタの具体例を示す縦断面図。
【図4】アジャスタの他の例を示す縦断面図。
【図5】本発明に係る装置の施工例を建築物の土台底面から示す図。
【図6】本発明に係る装置の他の実施例を示す縦断面図。
【図7】本発明に係る装置のさらに他の実施例を示す縦断面図。
【符号の説明】
1 免震機構 2 上下調節機構
3 筒状体 4 圧縮コイルばね
5 緩衝ゴム 6 ボール受け板
7 鋼球 8 支持プレート
9 アジャスタ 10 外筒
11 内筒 12 コイルばね
13 ばね受け板 14、15 ボールジョイント
16、17 ロッド 18 ナット
19、20 雌ねじ筒 21 雄ねじ体
22 回転操作部 23a、23b ロックナット
24 補強リブ 25 基礎杭
26 土台 27 止め具
28 ブラケット 29 柱
30 補強材 31 アジャスタ
32 仕切板 33 ダンパ室
34 ロッド 35 ピストン板
36 補強材 37 圧縮コイルばね
38 ボール受け板 39 支持プレート
40 コンクリート基礎 41 防振部材
42 ボール受け板 43 補強板
44 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for supporting a building such as a building or a house on a foundation, and more particularly, to a seismic isolation support device that can further reduce the influence of a seismic force on a building.
[0002]
[Prior art and its problems]
Structures that suppress or control the effects of earthquakes on buildings and prevent damage to buildings include seismic isolation structures that prevent seismic forces from being transmitted to buildings. A member or a mechanism called an isolator is provided between the structure and the main body structure of the building to insulate the energy of the earthquake.
[0003]
Conventionally widely used isolators include laminated rubber isolators in which thin rubber sheets and steel plates are alternately laminated and bonded. With this laminated rubber isolator, for vertical loads (building loads), The steel plate regulates the spread of rubber in the horizontal direction due to the load, and the vertical deformation is suppressed, but it can be greatly deformed by the elasticity of the rubber against the horizontal force, so the load on the building Can be sufficiently supported, and the transmission of energy in the horizontal direction due to the earthquake to the building can be reliably interrupted.
[0004]
However, in the conventional seismic isolation structure described above, specifications such as support strength against vertical load and elastic deformation rate against horizontal stress of the laminated rubber isolator must be designed according to the individual building and the scale of the assumed earthquake. In other words, there is a problem that the design and construction cost of the building increases.
[0005]
In addition, the conventional seismic isolation structure described above also has a problem that it is impossible to block the vertical seismic energy due to so-called pitching in a direct earthquake.
[0006]
Furthermore, in the conventional seismic isolation structure described above, the seismic isolation action is determined by the dimensions and elasticity of the laminated rubber and steel plates, so the seismic isolation action cannot be adjusted according to the magnitude of the earthquake shake, In other words, it is impossible to prevent the seismic isolation action from acting on small earthquakes, and if a building is shaken by a small earthquake or wind, the building will continue to be gently shaken for a long time due to the seismic isolation action. There is.
[0007]
In addition, there are very many cases in which earthquakes are accompanied by ground changes after the occurrence of such earthquakes, and it is often the case that buildings are tilted due to unequal subsidence due to ground changes. There is no one that makes it possible to correct the settlement of buildings when unequal settlement occurs.
[0008]
In addition, as a seismic isolation structure for general housing, the upper plate and the lower plate are relatively horizontally aligned between the lower plate whose upper surface is curved and the upper plate whose lower surface is curved. A seismic isolation device with a plurality of steel balls is installed between the concrete foundation and the base of the house so that the steel balls can be moved between the upper and lower plates in response to the earthquake. There are things that suppress the energy of the earthquake that hits the house by rolling, but if the shake is large, the steel ball will fall off or suppress the vertical shake during the direct earthquake It is not possible to obtain sufficient seismic isolation.
[0009]
【the purpose】
The object of the present invention is to obtain sufficient seismic isolation action regardless of the direction of the earthquake, and can be set so that the seismic isolation action starts to work when the required seismic intensity is reached. An object of the present invention is to provide a seismic isolation support device that can easily and accurately correct the settlement of a building when unequal settlement occurs in the building.
[0010]
[Structure of the invention]
In order to achieve the above object, an apparatus according to the present invention is a seismic isolation support device that supports a building on a foundation, and is elastic that can be expanded and contracted vertically in a bottomed cylindrical body having an open top. A rising edge that has a plurality of recesses on the upper surface to support a plurality of steel balls so as to be able to roll individually, and prevents the steel balls from dropping off. And a support plate that is a building-side fixing member provided on the steel ball so as to be horizontally displaceable by rolling the steel ball in the recess. A plurality of adjusters for regulating horizontal displacement between the foundation-side fixing member and the building by the spring force between the foundation-side fixing member and the building via a ball joint; provided, these adjuster, each other A rotatably inner tube and the outer tube of the load in either direction between the compression direction tensile direction comprises a spring which can be subjected, the adjuster free length compression direction of the spring, any direction tensile direction It is possible to set the magnitude of the seismic oscillation that the seismic isolation action begins to work by adjusting the free length.
[0011]
The apparatus according to the present invention includes an upper and lower female screw cylinder in which female threads having different winding directions are formed on the inner peripheral surface between the foundation-side fixing member and the foundation, and screwed into each female screw of these female screw cylinders. And a male screw body formed on the outer peripheral surface of the upper and lower male screws having different winding directions, and a rotation operation unit for rotating the male screw body forward and backward between the upper and lower male screws on the outer peripheral surface of the male screw body. The upper and lower female screw cylinders are separated or approached by rotating the rotating operation part forward and backward so that a vertical adjustment mechanism is provided to expand and contract in the vertical direction.
[0012]
【Example】
Embodiments of the seismic isolation support device according to the present invention will be described below based on specific examples shown in the accompanying drawings.
The apparatus of the present embodiment includes a seismic isolation mechanism 1 for suppressing shaking due to an earthquake and an up-and-down adjustment mechanism 2 for adjusting the vertical position of the building during construction and subsidence correction.
[0013]
The seismic isolation mechanism 1 has a compression coil spring 4 and a buffer rubber 5 serving as a buffer member in a bottomed cylindrical body 3 whose upper portion is open, and a ball receiving plate 6 is provided on the buffer member.
The buffer rubber 5 is provided with a recessed portion 5a in the center of the upper surface of a synthetic rubber formed in a columnar shape, for example, and the compression rubber 5 is compressed in the gap between the outer periphery of the buffer rubber 5 and the inner periphery of the cylindrical body 3. A coil spring 4 is provided, and the free height of the compression coil spring is substantially the same as the height of the buffer rubber.
[0014]
The ball receiving plate 6 has a plurality of (four in FIG. 2) recesses 6b, 6b on the upper surface of a steel plate formed in a ring shape having a central hole 6a as shown in FIG. The steel ball 7 is supported so as to be able to roll, and an outer peripheral portion is provided with a rising edge portion 6c for preventing the steel ball from dropping off. The outer diameter of the ball receiving plate 6 is a cylindrical body. 3 is slightly smaller than the inner diameter of 3, and can slide up and down along the inner peripheral surface of the cylindrical body.
[0015]
A cylindrical portion 8 a that is suspended from the lower surface of the central portion of the support plate 8 is fitted into the central hole 6 a of the ball receiving plate 6 and the recessed portion 5 a of the buffer rubber 5, and the support plate is the steel balls 7, 7. Supported on top.
The inner diameter of the recess 5a of the buffer rubber is substantially the same as the outer diameter of the cylindrical portion 8a, but the inner diameter of the central hole 6a of the ball receiving plate is sufficiently larger than the outer diameter of the cylindrical portion 8a.
[0016]
Accordingly, the support plate 8 is provided so that the columnar portion 8a is fitted in the buffer rubber 5, but can be moved in the horizontal direction by rolling of the steel ball 7 against the elastic force of the buffer rubber.
[0017]
Note that there is a sufficient gap between the lower surface of the support plate 8 and the upper edge of the cylindrical body 3 in a state where a load from the building is applied on the support plate. The amount of contraction in the vertical direction of the cushioning member assumed when a vertical force is applied is set to be larger.
[0018]
A plurality of adjusters 9, 9 extending radially from the cylindrical body are provided on the outer periphery of the upper part of the cylindrical body 3, and these adjusters are arranged between the cylindrical body 3 and the building in the event of an earthquake. The relative movement amount in the horizontal direction is regulated.
[0019]
As shown in FIG. 3, the adjuster 9 includes a cylindrical outer cylinder 10 and an inner cylinder 11 that are open at one end and closed at the other end, accommodate a coil spring 12 in the outer cylinder, and A spring receiving plate 13 is provided on the inner side to some extent from the opening end, and the end portions of the coil springs are fixed to the inner surfaces of the end portions of the spring receiving plate and the outer cylinder on the closed side.
[0020]
Each end of the coil spring 12 is firmly fixed to the spring receiving plate 13 and the outer cylinder 10 so that it can receive a load in either the compression direction or the tension direction. In contrast, the spring constant is about the same.
[0021]
Further, bases of rods 16 and 17 each having ball joints 14 and 15 are attached to both ends of the adjuster 9, and the base of the rod 16 on the outer cylinder side is directly fixed to the outer surface of the closed end of the outer cylinder. The rod 17 on the inner cylinder side has a male thread 17a formed on the outer peripheral surface, and this male thread is screwed into a nut 18 fixed to the outside of the hole formed in the closed end of the inner cylinder so that the base part is inside. It faces the cylinder.
[0022]
One of the ball joints, for example, the ball joint 15 at the tip of the inner cylinder side rod 17 is fixed to the outer peripheral surface of the cylindrical body 3 as a base side fixing member by welding or the like, and the other ball joint, For example, the ball joint 14 at the tip of the rod 16 on the outer cylinder side is fixed to the base 26 side of a building to be described later.
[0023]
The vertical adjustment mechanism 2 has a male screw body composed of upper and lower female screw cylinders 19 and 20 having female screw parts 19a and 20a formed on the inner peripheral surface thereof, and a cylinder having a rotation operation part 22 between the upper and lower male screw parts 21a and 21b. 21, and lock nuts 23 a and 23 b are provided between the rotation operation unit 22 and the upper and lower female screw cylinders 19 and 20.
[0024]
The female thread portions 19a and 20a in the upper and lower female screw cylinders 19 and 20 have the screw winding directions opposite to each other, and the upper and lower male screw portions 21a and 21b in the male screw body have the screw winding directions opposite to each other. Thus, by rotating the rotation operation part forward and backward, the upper and lower female screw cylinders are separated or approached so that the entire vertical adjustment mechanism 2 can be expanded and contracted.
[0025]
The rotation operation unit 22 has a hexagonal cross section on the outer peripheral surface, and can be rotated with the same tool as the lock nuts 23a and 23b.
Further, it is preferable that each of the female thread portion, the male screw portion, and the lock nut is a square screw or a trapezoidal screw having high load resistance.
A cross-shaped reinforcing rib 24 is provided on the inner side near the upper end of the upper female screw cylinder 19.
[0026]
The vertical adjustment mechanism 2 having the above-described configuration is used when the upper end of the upper female screw cylinder 19 is connected to the lower surface of the tubular body 3 of the seismic isolation mechanism 1 by welding and the load from the building is large. If necessary, a bracket is provided between the outer surface of the upper female screw cylinder 19 and the lower surface of the cylindrical body 3.
[0027]
Therefore, the apparatus according to the present embodiment is attached to the upper end of a foundation pile 25 such as a steel pipe pile placed on the ground by welding the lower end of the lower female screw cylinder 20 in the vertical adjustment mechanism 2. A building base 26 is fixed to the upper surface of the support plate 8 which is a building-side fixing member with a stopper 27 such as a bolt and a nut, and the ball joint 14 on the free end side of the adjuster 9 is connected to the building via a bracket 28. It is fixedly attached to the base 26 which is a member on the side.
The structure other than the support plate 8 and the vertical adjustment mechanism 2 in the seismic isolation mechanism 1 are all foundation-side fixing members.
[0028]
In FIG. 1, the code | symbol 29 shows the pillar of the building attached on the foundation 28, 30 shows the reinforcement material of the foundation in the downward direction of a pillar.
[0029]
The apparatus of the present invention configured as described above supports the base 26 on the foundation pile 25, and more specifically, the building load applied from the base 26 to the support plate 8 includes the steel balls 7 and 7 and the ball receiving plate. 6 and the cylindrical part 8a, it is applied to the buffer member provided with the compression coil spring 4 and the buffer rubber 5, and is further applied to the foundation pile 25 via the cylindrical body 3 and the vertical adjustment mechanism 2.
[0030]
The support plate 8 is supported so as to be displaceable in the horizontal direction with respect to the tubular body 3 by rolling of the steel balls 7 and 7 and elastic deformation of the buffer rubber 5. 3 and an adjuster 9 provided between the base 26 and the base 26.
[0031]
That is, when the ground shakes in the horizontal direction due to an earthquake, the vertical adjustment mechanism 2, the cylindrical body 3, the buffer members 4 and 5, the ball receiving plate 6, and the steel balls 7 and 7 fixed to the foundation pile 25 shake with the ground. However, the buffer members 4 and 5, the steel balls 7 and 7 and the adjusters 9 and 9 function as an isolator that insulates the vibration, and the building is displaced in the horizontal direction relative to the ground together with the support plate 8 by its inertial force. However, the absolute position does not change so much, so the ground shaking is hardly transmitted to the building.
[0032]
When the adjuster 9 is disposed opposite to the left and right in FIG. 1, when one adjuster is extended, the other adjuster is contracted to release the vibration, and the adjuster is in contact with the cylindrical body 3 and the bracket 28. Since these are connected via the ball joints 14 and 15, respectively, it is possible to cope with the shaking in the twisting direction with respect to the foundation pile.
[0033]
Moreover, the vertical shaking of the ground due to the earthquake is absorbed by the buffer members 4 and 5, and the impact on the building is sufficiently mitigated.
[0034]
Therefore, the apparatus of the present invention is configured so that the seismic isolation action can be adjusted with respect to the magnitude of horizontal shaking caused by an earthquake.
That is, the adjuster 9 can adjust the free length of the adjuster as a whole by rotating the rod 17 on the inner cylinder side with respect to the inner cylinder 11, and the seismic isolation is set by setting the free length of the adjuster. The action can be adjusted.
[0035]
More specifically, when the adjuster 9 is set so that the free length of the adjuster 9 is the same as the distance between the cylindrical body 3 and the bracket 28 on the base 26 side, the seismic isolation action is the largest, and therefore the horizontal vibration due to the earthquake is large. Even if is small, the building is displaced with respect to the ground, and the horizontal impact due to the earthquake is not transmitted to the building, but the building continues to weakly shake even if the earthquake shakes.
[0036]
On the other hand, when the adjuster 9 is set so that the free length of the adjuster is larger or smaller than the distance between the cylindrical body 3 and the bracket 28 on the base 26 side, the adjuster 9 exerts a force or pressure to attract the cylindrical body and the base. If the force is large and the seismic isolation does not exceed the specified magnitude, the seismic isolation action will not work, and if the horizontal motion due to the earthquake is very small (for example, if the seismic intensity is less than 3), the building will be ground. The horizontal energy due to the earthquake is transferred to the building, but if the shaking of the earthquake stops, the building stops quickly and the horizontal shaking due to the earthquake has a predetermined value (for example, seismic intensity 3). If exceeded, the building will be displaced against the ground against the spring force of the adjuster 9, and the horizontal impact due to the earthquake will not be transmitted to the building, and damage to the building due to this earthquake impact will not occur. It is locked.
[0037]
The above-mentioned adjustment of the free length of the adjuster 9 is appropriately performed according to the scale of the building, the purpose of use or the ground condition at the time of construction of the building. The free length can be set again after several years.
[0038]
In the adjuster 9 having the above-described configuration, even if the shaking of the earthquake is settled, the minute shaking of the building due to the seismic isolation action remains, and this minute shaking continues until it is completely attenuated by friction. When it is required to quickly attenuate the vibration, an adjuster having a damper function is used, and one specific example is shown in FIG.
[0039]
The adjuster 31 having a damper function includes a partition plate 32 in the outer cylinder 10, and a damper chamber 33 is formed in the outer cylinder by the partition plate 32, and the partition plate and the spring receiving plate 13 of the inner cylinder 11 A piston plate 35 is attached to the other end of the rod 34 having one end fixed to the spring receiving plate 13 and facing the damper chamber, and a plurality of orifices 35a are opened in the piston plate 35. It is as.
[0040]
An appropriate fluid such as oil, nitrogen gas, or a mixed fluid of oil and gas is sealed in the damper chamber 33, and the piston plate is not affected even when a sudden stress is applied to the adjuster 31 in the axial direction. The movement of 35 is regulated by the amount of fluid passing through the orifice to prevent the adjuster from suddenly expanding and contracting, and minute vibrations remaining in the building after the earthquake vibrations are attenuated are also attenuated by the damper.
[0041]
By the way, earthquakes are often accompanied by ground changes, and there are many cases in which buildings are tilted due to unequal settlement caused by earthquakes.
In this way, in the case of uneven settlement in a building, the vertical adjustment mechanism 2 can easily correct the settlement in the apparatus of the present invention configured as described above.
[0042]
Specifically, the amount of settlement at the position of each foundation pile 25 is measured to determine the correction height in each device, the lock nuts 23a and 23b are loosened in each device, and the rotation operation unit 22 is rotated forward and backward. By adjusting the length of the vertical adjustment mechanism according to the required correction height by separating or approaching the upper and lower female screw cylinders 19 and 20, and correcting the settlement by a simple operation of tightening the lock nuts 23a and 23b. This eliminates the need for complicated work such as jacking up buildings.
[0043]
In principle, the apparatus of the present invention constructed as described above is provided around the cylindrical body 3 in the part where the base 26 of the building intersects in a cross shape so that the adjusters 9 and 9 are parallel to each base. However, adjusters cannot be provided in all directions on the outer periphery of the building. Therefore, in the outer peripheral part of the building, as shown in FIG. 5, there are cases where adjusters are provided in three directions along the base around the cylindrical body 3, or a reinforcing material 36 between orthogonal bases called a fired base. In some cases, one end of the adjuster is fixed.
[0044]
FIG. 6 shows another embodiment of the apparatus according to the present invention, which is different from the first embodiment described above in the configuration of the buffer member, the support plate and the ball receiving plate.
That is, in the first embodiment, the buffer member is constituted by the compression coil spring 4 and the buffer rubber 5, but in the present embodiment, the ball receiving plate 38 is supported only by the compression coil spring 37. In FIG. 6, the compression coil spring 37 has a circular cross section. However, a coil spring having a plate shape with a long cross section may be used. When such a coil spring is used, a spring constant, that is, The load capacity can be increased.
[0045]
Further, in the first embodiment, the ball receiving plate 6 is configured to slide up and down along the inner peripheral surface of the cylindrical body 3, but in the present embodiment, the ball receiving plate 38 has a downward outer peripheral edge. A portion 38 a is provided so that the inner peripheral surface of the peripheral edge portion can slide up and down along the outer peripheral surface of the cylindrical body 3.
[0046]
Further, the support plate 39 is formed with a recess 39a on the lower surface, and the curved surface of the recess contacts the upper part of the steel balls 7 and 7, so that the support plate 39 can be displaced in the horizontal direction. There is always a restoring force for the support plate to return to the initial position. Therefore, unlike the first embodiment, it is not necessary to provide a cylindrical portion on the lower surface of the support plate and fit it into the buffer rubber.
[0047]
Further, in the first embodiment, each end of the adjusters 9 is attached to the outer periphery of the cylindrical body 3, but in the present embodiment, it is fixed to the outer periphery of the ball receiving plate 38. The adjuster 9 may have one end attached to the outer periphery of the cylindrical body as in the first embodiment.
[0048]
Although the apparatus of the 1st and 2nd Example mentioned above is a structure for supporting a building on the foundation pile 25, the apparatus of this invention is a general stand-alone house where a building is supported on a concrete foundation. FIG. 7 shows a specific example thereof.
[0049]
The apparatus of the present embodiment is provided with only the seismic isolation mechanism without providing the vertical adjustment mechanism in the apparatus of the first embodiment and the second embodiment.
Thus, a recess 40a is formed in the upper part of the concrete foundation 40, and a notch 26a is formed in the lower part of the base 26 on the recess, and this embodiment is provided between the recess and the notch. A device is provided.
[0050]
Specifically, a ball receiving plate 42 is fixed to the center of the concave portion of the foundation 40 via a vibration isolating member 41 made of a vibration isolating rubber sheet or the like, and on the steel balls 7 and 7 on the ball receiving plate 42. A support plate 39 is provided, and this support plate 39 is attached to the base 26 via a reinforcing plate 43.
[0051]
Further, one end of each of the adjusters 9, 9 is fixed to the outer peripheral surface of the ball receiving plate 42, and the other end of each adjuster is fixed to the base bracket.
The structure of the steel ball 7 and the support plate is the same as that of the second embodiment described above.
[0052]
By the way, as shown in FIG. 7, the apparatus of the present embodiment is provided with the base 26 so that an appropriate gap 44 is provided between the lower surface of the base and the upper surface of the concrete foundation 40. It acts as a vent for the contraction allowance and the lower part of the building.
In the apparatus of this embodiment, there is a case where a vertical adjustment mechanism is provided as in the first and second embodiments.
[0053]
【The invention's effect】
According to the present invention, the shock caused by the shaking caused by the earthquake is hardly transmitted to the building by the seismic isolation mechanism, and the building can be prevented from being damaged due to the shaking of the earthquake.
Moreover, by adjusting the adjuster's free length appropriately, it can be set so that the above seismic isolation action starts to work for a given earthquake magnitude (seismic intensity). On the other hand, in the case of a shake that is large enough to prevent the building from being shaken slightly after the earthquake has stopped, by preventing the seismic isolation function from acting, Earthquake energy can be sufficiently attenuated to prevent damage to buildings.
[0054]
Moreover, the vibration in the vertical direction can be absorbed by the buffer member, and a sufficient seismic isolation effect can be obtained even in the case of the vertical vibration in the case of a direct earthquake.
[0055]
Furthermore, with the vertical adjustment mechanism, the height of the device can be accurately adjusted by rotating the rotation operation part forward and backward against unequal settlement of buildings with many cases caused by earthquakes, Accordingly, the settlement can be corrected easily and accurately.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an apparatus according to the present invention.
FIG. 2 is a perspective view of a ball receiving plate.
FIG. 3 is a longitudinal sectional view showing a specific example of an adjuster.
FIG. 4 is a longitudinal sectional view showing another example of an adjuster.
FIG. 5 is a view showing a construction example of the apparatus according to the present invention from the bottom surface of the building.
FIG. 6 is a longitudinal sectional view showing another embodiment of the apparatus according to the present invention.
FIG. 7 is a longitudinal sectional view showing still another embodiment of the apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seismic isolation mechanism 2 Vertical adjustment mechanism 3 Cylindrical body 4 Compression coil spring 5 Buffer rubber 6 Ball receiving plate 7 Steel ball 8 Support plate 9 Adjuster 10 Outer cylinder 11 Inner cylinder 12 Coil spring 13 Spring receiving plate 14, 15 Ball joint 16 , 17 Rod 18 Nut 19, 20 Female thread cylinder 21 Male thread body 22 Rotating operation part 23a, 23b Lock nut 24 Reinforcement rib 25 Foundation pile 26 Base 27 Stopper 28 Bracket 29 Pillar 30 Reinforcement material 31 Adjuster 32 Partition plate 33 Damper chamber 34 Rod 35 Piston plate 36 Reinforcing material 37 Compression coil spring 38 Ball receiving plate 39 Support plate 40 Concrete foundation 41 Anti-vibration member 42 Ball receiving plate 43 Reinforcing plate 44 Gap

Claims (2)

基礎上に建築物を支承する免震支持装置であって、上部が開口する有底の筒状体内に、上下方向に伸縮可能な弾性を有する緩衝部材を備え、同緩衝部材上に、上面に複数の鋼球を個々に転動可能に支持する複数の凹部を有し、外周辺部には鋼球の脱落を防止する立ち上がり縁部が形成されたボール受け板を備える基礎側固定部材と、前記鋼球の前記凹部内における転動によって水平方向に変位できるよう鋼球上に設けられた建築物側固定部材たる支持プレートとを備え、前記基礎側固定部材と建築物の部材との間に、これら基礎側固定部材と建築物との間の水平方向の変位をばねの弾発力によって規制する複数のアジャスタをボールジョイントを介して設け、これらのアジャスタは、互いに摺動可能な内筒と外筒内に、圧縮方向と引張り方向のいずれの方向の荷重も受けることができるばねを備え、このアジャスタは自由長さが前記ばねの圧縮方向、引張り方向のいずれの方向にも調節可能であって、この自由長さを調節することによって免震作用が働き始める地震の揺れの大きさを設定できるようにした建築物の免震支持装置。A seismic isolation support device for supporting a building on a foundation, comprising a shock-absorbing member having elasticity that can be expanded and contracted in a vertical direction in a bottomed cylindrical body having an opening at the top. A base-side fixing member having a plurality of recesses for supporting a plurality of steel balls so as to be capable of rolling individually, and having a ball receiving plate formed with rising edges to prevent the steel balls from dropping off at the outer peripheral portion; A support plate which is a building-side fixing member provided on the steel ball so that it can be displaced in the horizontal direction by rolling in the recess of the steel ball, and between the base-side fixing member and the building member A plurality of adjusters for regulating horizontal displacement between the foundation-side fixing member and the building by the elastic force of the springs are provided via ball joints , and these adjusters include an inner cylinder slidable with respect to each other. In the outer cylinder, compression direction and tension direction A spring which can receive also the load in either direction, the adjuster compression direction of the free length of the spring, be adjustable in any direction tensile direction, by adjusting the free length A seismic isolation support device for buildings that allows you to set the magnitude of earthquake vibrations where seismic isolation begins to work. 前記基礎側固定部材と基礎との間に、内周面に巻き方向が互い異なる雌ねじが形成された上下の雌ねじ筒と、これらの雌ねじ筒の各雌ねじに螺合する互いに巻き方向が異なる上下の雄ねじが外周面に形成された雄ねじ体とを備え、この雄ねじ体の外周面における前記上下の雄ねじ間に雄ねじ体を正逆回転させるための回転操作部を有し、この回転操作部を正逆回転させることによって上下の雌ねじ筒が離間または接近して上下方向に伸縮される上下調節機構を介設してなる請求項1に記載の建築物の免震支持装置。  Upper and lower female screw cylinders in which female threads with different winding directions are formed on the inner peripheral surface between the foundation-side fixing member and the foundation, and upper and lower female screws with different winding directions are engaged with the female screws of these female screw cylinders. A male screw body formed on the outer peripheral surface of the male screw body, and having a rotation operation unit for rotating the male screw body between the upper and lower male screws on the outer peripheral surface of the male screw body. The seismic isolation support device for a building according to claim 1, wherein a vertical adjustment mechanism is provided in which the upper and lower female screw cylinders are separated or approached by rotating to expand and contract in the vertical direction.
JP2002180316A 2002-06-20 2002-06-20 Seismic isolation device for buildings Expired - Fee Related JP3735593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180316A JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180316A JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Publications (2)

Publication Number Publication Date
JP2004019409A JP2004019409A (en) 2004-01-22
JP3735593B2 true JP3735593B2 (en) 2006-01-18

Family

ID=31177485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180316A Expired - Fee Related JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Country Status (1)

Country Link
JP (1) JP3735593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680704A (en) * 2019-01-14 2019-04-26 芜湖市轩逸建筑工程有限公司 A kind of construction anti-seismic building stake

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178769B2 (en) * 2010-04-12 2013-04-10 株式会社 アビコ技術研究所 Polishing equipment
JP6191098B2 (en) * 2012-07-11 2017-09-06 株式会社大林組 Structure support structure and method
US11002031B2 (en) 2017-02-16 2021-05-11 Koroneho Limited Base isolation system
CN109137722A (en) * 2018-09-27 2019-01-04 佛山科学技术学院 Half roller spring shock-proof support
CN109457830A (en) * 2018-11-21 2019-03-12 大连大学 The comprehensive shock isolating pedestal of annular shape memory alloy spring
CN111173128B (en) * 2020-02-25 2020-09-04 江苏丰阳建设工程有限公司 Concrete structure applied to segmental casting method
CN112431316B (en) * 2020-11-19 2022-03-22 东莞理工学院 Universal anti-pulling laminated rubber support
CN112709481B (en) * 2020-12-25 2021-09-24 天津轨道交通城市发展有限公司 House earthquake-resistant structure
CN114277932A (en) * 2022-01-08 2022-04-05 博华工程技术有限公司 Building frame who possesses shockproof structure
CN114991332B (en) * 2022-06-02 2022-11-15 北京市科学技术研究院城市安全与环境科学研究所 Vibration and shock double-control three-dimensional vibration isolation combined supporting member with negative Poisson ratio effect
CN115262791B (en) * 2022-07-12 2023-08-18 广州地铁设计研究院股份有限公司 Vibration damper for building
CN115594053B (en) * 2022-11-30 2023-04-07 杭州静之源噪声控制技术有限公司 Self-adaptive vibration absorber for traction machine
CN116427452B (en) * 2023-06-13 2023-08-11 吉林建筑大学 Adjustable overhead building base for building construction
CN116657954B (en) * 2023-07-28 2023-11-03 福建省昊立建设工程有限公司 Stone ancient building reinforcing device with anti-seismic structure and use method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237860Y2 (en) * 1985-03-29 1990-10-12
JPS6286265A (en) * 1985-10-09 1987-04-20 株式会社竹中工務店 Earthquake-proof floor construction method and floor earthquake-proof apparatus
JP2867154B2 (en) * 1989-11-29 1999-03-08 株式会社ムラオ Floor support bracket
JPH10231642A (en) * 1997-02-18 1998-09-02 Sugiyama Kensetsu Kk Vibration-isolation structure
JP3178390B2 (en) * 1997-10-14 2001-06-18 鹿島建設株式会社 Building seismic isolation foundation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680704A (en) * 2019-01-14 2019-04-26 芜湖市轩逸建筑工程有限公司 A kind of construction anti-seismic building stake
CN109680704B (en) * 2019-01-14 2021-02-02 上海通核建筑科技有限公司 Anti-seismic building pile for building construction

Also Published As

Publication number Publication date
JP2004019409A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3735593B2 (en) Seismic isolation device for buildings
US5310157A (en) Vibration isolation system
JP3614755B2 (en) Omnidirectional vibration isolation system
US5014474A (en) System and apparatus for limiting the effect of vibrations between a structure and its foundation
JP2010007859A (en) Isolation platform
US5386671A (en) Stiffness decoupler for base isolation of structures
JP3319726B2 (en) Seismic isolation device
JP2006063771A (en) Slit plate spring and building earthquake-proof reinforcing system using the same
KR102305479B1 (en) Jack support impact reduction apparatus and jack support installation structure using the same
JP2020029925A (en) Compound type vibration control device
US20080072508A1 (en) Vibration and force absorbing assembly incorporated into a building foundation for dampening the effects of environmentally induced events
US11421435B2 (en) Kinematic seismic isolation device
JP2001295499A (en) Base isolation mechanism for structure
JP5014292B2 (en) Dynamic vibration absorber
US7090207B2 (en) Single-end-mount seismic isolator
US9062735B2 (en) Support construction, fixing element and method
RU2427693C1 (en) Support of quakeproof structure
JP2007321874A (en) Base isolating device
JP7451449B2 (en) How to restore a viscous vibration damping device
JP5713514B1 (en) Isolation device
JP4440746B2 (en) Seismic device for structure
JPH08277653A (en) Lead damper with axial shift adjusting mechanism
JP2000291737A (en) Base isolation supporter device for structural body
JP4316404B2 (en) Seismic isolation device
JP2005232724A (en) Foundation structure of building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees