JP2006063771A - Slit plate spring and building earthquake-proof reinforcing system using the same - Google Patents

Slit plate spring and building earthquake-proof reinforcing system using the same Download PDF

Info

Publication number
JP2006063771A
JP2006063771A JP2004274177A JP2004274177A JP2006063771A JP 2006063771 A JP2006063771 A JP 2006063771A JP 2004274177 A JP2004274177 A JP 2004274177A JP 2004274177 A JP2004274177 A JP 2004274177A JP 2006063771 A JP2006063771 A JP 2006063771A
Authority
JP
Japan
Prior art keywords
building
slit
leaf spring
seismic
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004274177A
Other languages
Japanese (ja)
Other versions
JP4624048B2 (en
JP2006063771A5 (en
Inventor
Tsutomu Okawa
力 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domusu Sekkei Jimusho Kk
Original Assignee
Domusu Sekkei Jimusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Domusu Sekkei Jimusho Kk filed Critical Domusu Sekkei Jimusho Kk
Priority to JP2004274177A priority Critical patent/JP4624048B2/en
Publication of JP2006063771A publication Critical patent/JP2006063771A/en
Publication of JP2006063771A5 publication Critical patent/JP2006063771A5/ja
Application granted granted Critical
Publication of JP4624048B2 publication Critical patent/JP4624048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a durable slit plate spring for reducing earthquake vibration to actualize easy earthquake-proof reinforcement of a new or existing building, particularly, a low-rise building having one or two floors, and to provide an earthquake-proof reinforcing system using the same. <P>SOLUTION: The upper side face of a band plate is curved downward to form round faces at both ends, its front end is curved downward in the opposite direction to the round faces at both ends of the upper side face so that the round faces are continuously formed in a S-shape or an inverted S-shape, and then the front end extends in a horizontal direction to form a lower side face. This one-pitch procedure is repeated to form a plate spring in a bending structure. The slit plate spring has equal- or unequal-width slits formed parallel in the longitudinal direction in a range from starting points on the round faces of the lower side face through the upper side face to final points on the round faces in the opposite direction. The building earthquake-proof reinforcing system uses the same. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スリット板バネとこれを使用した建築物の耐震補強方式に関し、さらに詳しくは、大地震時に建築物に作用する衝撃振動を緩和するスリット板バネであるとともに、これを建築物に適用して、被害を軽減するための耐震補強方式に関する。  The present invention relates to a slit leaf spring and a seismic reinforcement method for a building using the slit leaf spring. More specifically, the present invention is a slit leaf spring that alleviates shock vibration acting on a building during a large earthquake, and applies this to a building. Then, it relates to a seismic reinforcement method for reducing damage.

建築物の耐震補強に関しては、従来より種々の方法が検討されてきている。これを大別すると、まず建築物の構造体そのものに剛性を付与するための補強に関するものと、建築物に免震体を着装して構造体に作用する衝撃振動を緩和、吸収するものがある。
前者は、建築物の架構の内外に単なる突っ張り、筋違あるいは添え柱や鋼製枠を取付けたり、架構の接合部(仕口)に補強金物や緩衝体を取付けるもので、比較的小規模で低廉であるが、補強効果が少なかったり耐久性に疑問があった。
後者は、地震時に建築物に作用する衝撃振動を緩和、吸収せしめる地震振動緩衝体を、建築物の下部(基礎、基礎スラブ)や上部(柱中間、屋上)に着装するものであり、補強効果は大きいが、大規模な工事を伴うため、高価でかつ設計、施工の難しさから専ら大型建築物の耐震工事に限られ、小規模建築物への適応が限定されている。以上のように高層大型建築物を除き1〜2階建て程度の低層建築物の耐震補強に関しては、まだ十分に効果が達成されていないのが現状である。
Various methods have been studied for seismic reinforcement of buildings. This can be broadly divided into those related to reinforcement to give rigidity to the structure of the building itself, and those that relieve and absorb shock vibrations acting on the structure by wearing a base isolation body on the building. .
The former is a relatively small scale that simply stretches inside or outside the building frame, attaches struts, or attaches pillars or steel frames, or attaches reinforcing hardware or shock absorbers to the joints (joints) of the frame. It was inexpensive, but there were few reinforcement effects and there were doubts about durability.
The latter is a seismic shock absorber that relaxes and absorbs shock vibrations acting on the building during an earthquake, and is attached to the lower part (foundation, foundation slab) and upper part (mid-column, rooftop) of the building. Although it is large, it involves large-scale construction, so it is expensive and difficult to design and construct, and is limited to seismic construction for large buildings, and is limited to small-scale buildings. As described above, the present situation is that the effect has not yet been achieved sufficiently for the seismic reinforcement of low-rise buildings of about 1 to 2 stories except for high-rise large buildings.

本発明者は、大地震災害の調査記録を検討したところ、特に被災損壊した建築物の多くが低層木造建築物であること、またその多くは1階に被害が集中しており、大地震発生の初動後の60秒程度で多くが倒壊し、大きな犠牲をもたらしている事実が分かった。
そして、この地震初動時の一瞬の倒壊までの時間を延ばすことによって、この間に被災者の多くが助け合って退避でき、犠牲者を最小限にとどめることができる、簡易で効果的な耐震補強方式の開発の必要性を痛感したのである。
The present inventor examined the investigation records of the large earthquake disaster, and in particular, many of the damaged buildings were low-rise wooden buildings, and many of them were concentrated on the first floor, and a large earthquake occurred. The fact that many collapsed in about 60 seconds after the initial movement, and caused great sacrifice.
And by extending the time until the momentary collapse of this earthquake, many of the victims can help and evacuate during this time, and a simple and effective seismic reinforcement method that can minimize the number of victims. I realized the need for development.

既設建築物にうち、1〜2階建て程度の低層建築物(以下、単に建築物と略称する場合がある)の倒壊を防ぐため、従来から採用されてきた方法の一つに、所謂つっかい棒を支う方法がある。これは建築物の1階屋外に頑丈な斜材や添え柱を設置して、ともかく倒壊を防止しようとする方法である。ところが、建築物の1階屋外につっかい棒を頑強に取付けた場合でも、地震初動時の上下振動には全く無力であって、その後に襲来する横揺れ振動に対しても、地震初動時にガタがきた1階の変形を急激に制限した場合のはずみ(慣性モーメント)で2階にかかる水平力がかえって大きくなり、2階が損壊して1階も倒壊する危険が生じる。  In order to prevent the collapse of low-rise buildings of about 1 to 2 floors (hereinafter sometimes simply referred to as buildings) among existing buildings, one of the methods that has been adopted in the past is so-called “smooth”. There is a way to support the stick. This is a method of trying to prevent collapse anyway by installing sturdy diagonal materials and supporting pillars on the first floor of the building. However, even if a strong stick is firmly attached to the first floor of the building, it is completely incapable of vertical vibration at the time of the initial motion of the earthquake. The horizontal force applied to the second floor is increased by the momentum (moment of inertia) when the deformation of the first floor is suddenly restricted, and there is a risk that the second floor will be damaged and the first floor will collapse.

本発明は、このような点に鑑みてなされたものであり、その目的とするところは、とくに新設および既設建築物、なかでも1〜2階程度の低層建築物の耐震補強を容易になし得る地震振動を緩和する、耐久力のあるスリット板バネと、これを使用した耐震補強方式を開発し提供することにある。  The present invention has been made in view of the above points, and the object of the present invention is to provide seismic reinforcement for new and existing buildings, particularly low-rise buildings of about 1 to 2 floors. The purpose is to develop and provide a durable slit leaf spring that mitigates seismic vibrations and a seismic reinforcement method using this.

本発明は、地震初動時の衝撃振動に際して、地震振動を緩和するため、新たに開発した3方向からの振動を緩衝しうるスリット板バネを使用し、新設建築物の場合にはこれを基礎あるいは基礎スラブと土台の間に介在、敷設して建築物の固有周期を延ばして地盤との共振による地震力の増幅を抑制し、既設建築物の場合には支柱の側面あるいは頂部にこれを装着した耐震支柱を該建築物の1階屋外の外壁廻りに取付け、地震初動時の上下振動を効果的に吸収して損壊をくいとめるとともに、その後に襲来する横揺れ振動による水平力を緩和し、1階の変形を柔らかく抑止、制限することにより、2階の変形の増大を抑制して瞬間的な倒壊を防止し、何れの場合にも少なくとも大地震初動時の建築物の全壊による被害を軽減しようとするものである。  The present invention uses a newly developed slit leaf spring that can buffer vibrations from three directions in order to mitigate earthquake vibrations at the time of impact vibration at the time of the initial earthquake. Interspersed and laid between the foundation slab and the foundation to extend the natural period of the building to suppress the amplification of seismic force due to resonance with the ground, and in the case of an existing building, it was attached to the side or top of the column A seismic support is installed around the outer wall of the building on the 1st floor to effectively absorb the vertical vibrations at the time of the earthquake's initial motion to suppress damage and to reduce the horizontal force caused by the rolling vibrations that come afterwards. By suppressing and restricting the deformation of the building softly, the increase in the deformation of the second floor is suppressed to prevent an instantaneous collapse, and in any case, at least to try to reduce the damage caused by the total destruction of the building at the time of the first earthquake. What to do That.

本発明は、新設建築物のみならず、既設建築物においても適応可能な耐震補強方式であって、地震発生時に大きな被害の予想される特に1〜2階建て程度の既設低層建築物に適用するスリット板バネとスリット板バネを装着した耐震補強方式について以下に詳述する。
一般に建築物は水平力に対して耐力が弱いが、直下型地震の際に発生する大きな上下動に対しても脆く、低層建築物において顕著である。
本発明において、耐圧力があり、地震動のような3方向の振動に対して減衰効果のあるスリット板バネと、これを用いた耐震支柱および耐震補強方式として、新設建築物に対してはスリット板バネを建築物基礎あるいは基礎スラブ上に装着したのち、その上に建築物の基礎梁等を構築する実施形態および既設建築物に対してはスリット板バネを装着した耐震支柱を建築物の外壁廻りに建柱し、スリット板バネを建築物の柱材、敷桁等に接合する実施形態からなっている。
The present invention is a seismic reinforcement method that can be applied not only to a new building but also to an existing building, and is applied to an existing low-rise building of about 1 to 2 floors that is expected to be damaged greatly when an earthquake occurs. The seismic reinforcement method equipped with the slit leaf spring and the slit leaf spring will be described in detail below.
In general, buildings are weak in resistance to horizontal force, but they are also vulnerable to large vertical movements that occur during direct earthquakes, and are prominent in low-rise buildings.
In the present invention, there is a slit plate spring which has pressure resistance and has a damping effect on vibrations in three directions such as seismic motion, and as a seismic support and a seismic reinforcement method using this, a slit plate for a new building. After mounting the spring on the building foundation or foundation slab, build the foundation beam of the building on it, and for existing buildings, install seismic support columns equipped with slit leaf springs around the outer wall of the building In this embodiment, the slit plate spring is joined to a pillar material of a building, a siding girder, or the like.

(1−1)スリット板バネ
本発明者が以前に考案した板バネ(実公昭54−32110)は、重量機械の上下振動の吸収、減衰を主目的としていたため、上下方向(Z軸)と直交する長辺方向(X軸)および短辺方向(Y軸)の2軸方向の振動の吸収には配慮されていなかった。よって、本発明のスリット板バネは、その欠点を是正し、地震動のような3軸方向(X軸、Y軸およびZ軸)の地震振動を吸収、減衰できるように新たに開発された技術である。
図面により、本発明におけるスリット板バネの形態を具体的に説明する。
図1および図2において、スリット板バネAは金属製または合成樹脂製の薄帯状板1を水平にし、上辺面2の両端がR面となるように下方に湾曲させ、その両端を上辺面2の両端のR面とは逆方向に下方に湾曲させてR面が連続してS字状あるいは逆S字状になるように形成したのち、さらに両端を若干水平に延長して下辺面3を形成するごとくして1ピッチとし、これを順に繰返し折り曲げ構成してなる板バネの下辺面3のR面の起点から、上辺面を経て逆方向のR面の終点に至る連続した等幅または不等幅の並列スリット4を長さ方向に平行に設刻してなるもので、必要に応じて、図2、図3、図5のごとく、折り曲げ部の凹部の全部あるいは一部にゴム状弾性物質6を塗布または充填して用いることができる。
上記のスリット板バネAの下辺面3を長辺方向に平行に載置したとき、長辺方向をX軸方向、短辺方向をY軸方向、上下方向をZ軸方向とすると、前記した従来の板バネ(実公昭54−32110)は、主として鉛直荷重方向であるZ軸方向の振動を吸収することが主目的であったため、地震動の鉛直成分には適応するものの、水平方向であるX軸方向およびY軸方向の振動を吸収、減衰するためには剛性を小さくする必要があった。
このため、板バネの下辺面3のR面の起点dから、上辺面2を経て逆方向のR面の終点d’に至る平行なスリット4を設刻したスリット板バネAとすることによって、X軸方向およびY軸方向の剛性を減少させ、地震動のような3軸方向(X軸、Y軸およびZ軸)の振動が吸収できるようになった。また、折り曲げ部の凹部の全部あるいは一部にゴム状弾性物質6を塗布または充填した場合は、スリット板バネAが水平加力によって図11(b)、(c)のように変形したとき、ゴム状弾性物質6の緩衝作用によって、X軸方向およびY軸方向の変形をさらに柔らかく吸収し、変形復元性が向上するようになる。
(1-1) Slit leaf spring The leaf spring (Japanese Utility Model Publication No. Sho 54-32110) previously devised by the present inventor was mainly intended to absorb and dampen up and down vibrations of heavy machinery. Absorption of vibrations in the biaxial directions of the long side direction (X axis) and the short side direction (Y axis) perpendicular to each other was not considered. Therefore, the slit leaf spring of the present invention is a newly developed technology that corrects its drawbacks and absorbs and attenuates earthquake vibrations in three axial directions (X, Y, and Z axes) such as earthquake motion. is there.
The form of the slit leaf spring in the present invention will be specifically described with reference to the drawings.
In FIG. 1 and FIG. 2, the slit leaf spring A is made of a metal or synthetic resin ribbon 1 and is bent downward so that both ends of the upper side surface 2 are R surfaces. The R side is curved downward in the opposite direction to the R surface so that the R surface is continuously formed into an S shape or an inverted S shape, and then both ends are slightly extended horizontally to form the lower side surface 3. One pitch is formed as it is formed, and this is repeated repeatedly in order. From the starting point of the R surface of the lower side surface 3 of the leaf spring to the end point of the R surface in the reverse direction through the upper side surface, It is formed by engraving parallel slits 4 of equal width in parallel to the length direction, and if necessary, elastically elastically or partially on the concave part of the bent part as shown in FIGS. The substance 6 can be applied or filled.
When the lower side surface 3 of the slit leaf spring A is placed parallel to the long side direction, the long side direction is the X axis direction, the short side direction is the Y axis direction, and the vertical direction is the Z axis direction. The main purpose of the leaf spring (Act No. 54-32110) is mainly to absorb vibration in the Z-axis direction, which is the vertical load direction. In order to absorb and dampen vibration in the direction and the Y-axis direction, it was necessary to reduce the rigidity.
For this reason, by setting it as the slit leaf spring A which engraved the parallel slit 4 from the starting point d of the R surface of the lower side surface 3 of the leaf spring to the end point d ′ of the R surface in the reverse direction through the upper side surface 2. The rigidity in the X-axis direction and the Y-axis direction is reduced, and vibrations in three axis directions (X-axis, Y-axis, and Z-axis) such as earthquake motion can be absorbed. Further, when the rubber-like elastic material 6 is applied or filled in all or part of the concave portion of the bent portion, when the slit leaf spring A is deformed as shown in FIGS. 11B and 11C by horizontal force, Due to the buffering action of the rubber-like elastic material 6, the deformation in the X-axis direction and the Y-axis direction is absorbed more softly, and the deformation recovery property is improved.

スリット板バネAに設刻されたスリット4の形状寸法としては、図3(a)に示すような等幅、等間隔の細めのスリット4や図3(b)の太幅のスリット4あるいは図3(c)のような両者が混在するスリット4があり、スリット幅はいずれも1〜5mm程度で、スリット4の間隔は5〜50mm程度、また並列スリット4の設刻数はスリット4幅と間隔により2〜10本である。
スリット板バネAにとして使用される帯状板1の材質および寸法は、それが金属製の場合は、バネ鋼、ステンレスバネ鋼等が好適に用いられ、その厚さは0.2〜16mm、好ましくは0.6〜2.3mmであり、その幅は20〜200mm、好ましくは50〜150mmである。また、それが合成樹脂製の場合は、エンジニアリング樹脂、FRP等が好適に用いられ、その厚さおよび幅は前記金属製の場合と同等かやや厚めである。上記の材質および寸法によって構成されたスリット板バネ4の高さは、10〜100mm、好ましくは20〜50mmである。
スリット板バネAの製造に当たっては、帯状板1からなる板バネのスリット4を形成する部位に、図3(a)〜図3(c)に示される形状、寸法のスリット4を予め設刻しておき、これを折り曲げて構成する。
また、図4に示されるように、1ピッチのスリット板バネAの上辺面2同士を背中合わせに直交させて、重ね合せ部を接合してなる重合型のスリット板バネBは、使用部位が狭小であったり、より小さなバネ定数を必要とするときに有効である。
As the shape dimension of the slit 4 engraved on the slit leaf spring A, the slit 4 having the same width and the same interval as shown in FIG. 3A or the wide slit 4 shown in FIG. 3 (c), there is a slit 4 in which both are mixed, the slit width is about 1 to 5 mm, the interval between the slits 4 is about 5 to 50 mm, and the number of imprints of the parallel slit 4 is the width of the slit 4 2 to 10 depending on the interval.
As the material and dimensions of the strip-shaped plate 1 used as the slit plate spring A, when it is made of metal, spring steel, stainless spring steel or the like is preferably used, and its thickness is preferably 0.2 to 16 mm, preferably Is 0.6 to 2.3 mm, and its width is 20 to 200 mm, preferably 50 to 150 mm. Further, when it is made of a synthetic resin, an engineering resin, FRP or the like is preferably used, and its thickness and width are the same as or slightly thicker than those of the metal. The height of the slit leaf spring 4 constituted by the above materials and dimensions is 10 to 100 mm, preferably 20 to 50 mm.
In the manufacture of the slit leaf spring A, the slit 4 having the shape and size shown in FIGS. 3A to 3C is preliminarily engraved in the portion where the slit 4 of the leaf spring made of the strip plate 1 is formed. It is configured by bending it.
In addition, as shown in FIG. 4, the superposed slit leaf spring B in which the upper side surfaces 2 of the 1 pitch slit leaf spring A are orthogonal to each other back to back and the overlapping portions are joined to each other has a narrow use site. This is effective when a smaller spring constant is required.

また、図5(a)、図5(b)に示すように、スリット板バネA、Bの全面または折り曲げ部凹部にゴム状弾性物質6を塗布あるいは充填しておくと、地震動の異常周期や地震時の水平加力の偏向によるスリット板バネA、Bの異常変形を防止するために有効である。
ゴム状弾性物質6としては、合成ゴム、天然ゴム、粘弾性樹脂等があり、これらに制振材として金属粉、マイカ粉、金属繊維等を混入することができる。またゴム状弾性物質6の硬度は30°〜75°が好適である。
Further, as shown in FIGS. 5A and 5B, if the rubber-like elastic material 6 is applied or filled over the entire surface of the slit leaf springs A and B or the concave portions of the bent portions, This is effective in preventing abnormal deformation of the slit leaf springs A and B due to the deflection of the horizontal force during an earthquake.
Examples of the rubber-like elastic substance 6 include synthetic rubber, natural rubber, viscoelastic resin, and the like, and metal powder, mica powder, metal fiber, and the like can be mixed therein as a vibration damping material. The rubbery elastic material 6 preferably has a hardness of 30 ° to 75 °.

(1−2)耐震支柱
耐震支柱は金属製支柱7の先端部に、スリット板バネAまたはBを装着して、これを補強対象の建築物外壁外側に柱脚を剛に建てこんで、地震初動時、建築物を弾性支保するものである。
既設建築物の耐震補強に用いられる耐震支柱は、鋼管、角型鋼管、H型鋼等の鋼材あるいはアルミ合金製型材で、サイズはいずれも100〜500mmの各種型材を使用する。
図6は、直立型の耐震支柱Cであって、補強対象とされる建築物の一階敷桁高さを有する支柱7の先端部側面に接続金物としてスペーサー9を接合し、これにスリット板バネAの上辺面2または下辺面3を装着したものである。スペーサー9は金属製型材または鋼板製で、図6に示されるような縦長のスペーサー9か図9に示されるような横長のスペーサー9を装着することが可能である。
図7は、直線状の腕木10を有する耐震支柱Dを示すもので、支柱7の柱頭部かその側面に腕木10を接合し、腕木10の建築物外壁側の側面かあるいは側面と上面にスリット板バネAを装着したものである。
耐震支柱Dを建築物の隅角部に取付ける場合は、L字状の腕木10を水平に支柱7の柱頭部に接合してなる耐震支柱Dを、建築物外壁の隅角部に建柱し、外壁外側にL字状腕木10が接するようにスリット板バネAの上辺面2または下辺面3を介して接合する。
図8は、支柱7を斜材として用い、その先端にスペーサー9を介してガセットプレートを接合し、これに重合型のスリット板バネBを装着した耐震支柱Eを示したものである。
また、建築物の布基礎フーチング幅が大きい場合、独立基礎12を建築物から離して独立させるため、耐震支柱C、D、Eの支柱7のみを図8のように斜材として立柱することも可能である。
上述したように、本発明における耐震支柱は、建築物の構造や取付け部位によって、腕木10の形状を変えたり、スリット板バネAのピッチ数や取付け方向を選定して装着うるものであり、また建築物の立地条件によって変わる独立基礎12の位置に合わせた構成を有するものを任意に用いることができる。
なお、スリット板バネAを耐震支柱C、D、Eに使用する場合、ゴム状弾性物質6を省くこともできる。
(1-2) Seismic struts The seismic struts are fitted with slit leaf springs A or B at the tip of the metal strut 7, and the column base is firmly built outside the building outer wall to be reinforced. At the initial movement, the building is elastically supported.
The earthquake-proof struts used for the seismic reinforcement of existing buildings are steel materials such as steel pipes, square steel pipes, H-shaped steels, or aluminum alloy molds, and various sizes of 100 to 500 mm are used.
FIG. 6 shows an upright type earthquake-proof column C, in which a spacer 9 is joined as a connection hardware to a side surface of a front end portion of a column 7 having a height of a first floor girder to be reinforced, and a slit plate The upper side surface 2 or the lower side surface 3 of the spring A is mounted. The spacer 9 is made of a metal mold or a steel plate, and it is possible to mount a vertically long spacer 9 as shown in FIG. 6 or a horizontally long spacer 9 as shown in FIG.
FIG. 7 shows a seismic support D having a straight arm 10, the arm 10 is joined to the column head of the support 7 or its side, and the arm 10 is slit on the side of the building outer wall or on the side and top. A leaf spring A is attached.
When the seismic support D is attached to the corner of the building, the seismic support D, in which the L-shaped arm 10 is horizontally joined to the column head of the support 7, is installed at the corner of the outer wall of the building. The slit plate spring A is joined via the upper side surface 2 or the lower side surface 3 so that the L-shaped arm 10 is in contact with the outside of the outer wall.
FIG. 8 shows an earthquake-proof column E in which a column 7 is used as an oblique member, a gusset plate is joined to the tip of the column 7 via a spacer 9, and a superposition type slit leaf spring B is attached thereto.
In addition, when the fabric foundation footing width of the building is large, in order to make the independent foundation 12 independent from the building, only the columns 7 of the earthquake-proof columns C, D, and E can stand upright as diagonal materials as shown in FIG. Is possible.
As described above, the earthquake-proof strut according to the present invention can be mounted by changing the shape of the arm 10 or selecting the number of pitches and the mounting direction of the slit leaf springs A according to the structure and mounting part of the building. What has the structure matched with the position of the independent foundation 12 which changes with the location conditions of a building can be used arbitrarily.
When the slit leaf spring A is used for the earthquake-proof struts C, D, and E, the rubber-like elastic material 6 can be omitted.

(1−3)耐震支柱による耐震補強
耐震支柱による耐震補強は、主として既設建築物に適用する。
前記した構成を有する耐震支柱C、D、Eは、補強の対象となる建築物の架構、構造や敷地内の立地条件あるいは地盤状況などによって、耐震補強上、最も適当な構成のものを選定できる。例えば、敷地が狭小で、建築物の周囲に余裕が少ない場合には、図6のような立柱式の耐震支柱Cが好適であり、建築物が老朽化して弱体である場合は、建築物の補強を兼ねて図7の腕木10を有する耐震支柱Dが望ましく、建築物の傍に障害物がある場合には、図8に示す支柱を斜材とした耐震支柱Eを使用する。
以上のようにして選定された耐震支柱C、D、Eを、既設建築物の外壁外側に、各立面に対してそれぞれ2本程度あるいは建築物規模や耐震補強目的によっては隅角部に各1本宛を建築物の柱材20ないしは敷桁21の位置に合わせて、平面的にバランス良く配設のうえ立柱する。
しかるのち、支柱7の頂部あるいは先端部の腕木10等に装着されたスリット板バネA、Bの上辺面2あるいは下辺面3を壁面19に密接し、ホールインアンカーボルト17または同効材で壁面19、敷桁21に固定し、建入りを直したのち、支柱7の柱脚を独立基礎12に剛接合する。
独立基礎は建築物に加わった地震振動が、耐震支柱C、D、Eと同調しないように、十分建築基礎より離して構築する。
(1-3) Seismic reinforcement with earthquake-proof struts Seismic reinforcement with earthquake-proof struts is mainly applied to existing buildings.
The seismic struts C, D, and E having the above-described configuration can be selected with the most appropriate configuration in terms of seismic reinforcement depending on the structure of the building to be reinforced, the structure, the location conditions in the site, or the ground condition. . For example, when the site is small and there is little room around the building, the vertical column type earthquake-proof column C as shown in FIG. 6 is suitable. When the building is old and weak, The seismic support D having the arm 10 of FIG. 7 is also desirable for reinforcement, and when there is an obstacle near the building, the seismic support E using the support shown in FIG. 8 as an oblique material is used.
The seismic struts C, D and E selected as described above are arranged on the outside of the outer wall of the existing building, about two on each vertical surface, or on the corners depending on the building scale and seismic reinforcement purpose. One is addressed to the position of the pillar 20 of the building or the girder 21 of the building.
After that, the upper side surface 2 or the lower side surface 3 of the slit leaf springs A and B mounted on the arm 10 at the top or the tip of the support column 7 is brought into close contact with the wall surface 19, and the wall surface with the hole-in anchor bolt 17 or the same effect material. 19. After fixing to the floor girder 21 and fixing the building, the column base of the column 7 is rigidly joined to the independent foundation 12.
The independent foundation is constructed sufficiently away from the building foundation so that the seismic vibration applied to the building does not synchronize with the seismic columns C, D, E.

(1−4)スリット板バネによる土台、基礎梁の耐震補強
スリット板バネAを基礎または基礎スラブ22と土台または基礎梁16の間に介在させた耐震補強は、主として新設建築物に適用可能である。この耐震補強方式は、図10に示すように建築物を地盤から浮かせて、地震動との共振を避ける方式であって、新設建築物の基礎スラブ22上の土台または基礎梁16下に幅広の薄ステンレス板または樹脂塗装鋼板製の摺動板8を敷設、固定したのち、スリット板バネAを基礎梁16のε方向あるいはγ方向の長さ方向に沿って、この上に水平に敷設したのち、この上に建築物の土台または基礎梁16を通り芯を合わせて設置する。その他の建築施工手順は従来工法どおりでよい。
(1-4) Seismic reinforcement of foundations and foundation beams with slit leaf springs Seismic reinforcement with slit leaf springs A interposed between foundations or foundation slabs 22 and foundations or foundation beams 16 is mainly applicable to new buildings. is there. As shown in FIG. 10, this seismic reinforcement method is a method of floating a building from the ground and avoiding resonance with seismic motion, and is a wide thin film under a foundation or foundation beam 16 on a foundation slab 22 of a new building. After laying and fixing the sliding plate 8 made of a stainless steel plate or a resin-coated steel plate, the slit plate spring A is laid horizontally on the base beam 16 along the length direction in the ε direction or γ direction, On top of this, a building base or foundation beam 16 is placed and aligned. Other construction procedures may be the same as the conventional construction method.

このようにして、建築物と基礎スラブ22は、スリット板バネAによって振動絶縁状態を保ち、建築物自重と基礎スラブ22上のスリット板バネAとの摩擦力によって、水平加力時も建築物は基礎スラブ22上に安定している。地震力の水平成分が、この摩擦力を超えると、土台または基礎梁16とスリット板バネAは摺動板8上を摺動して、地震力が土台または基礎梁16を通じて建築物に波及するのを緩和する。風圧力が建築物に作用した場合もこれと同様である。
スリット板バネA上の建築架構は、木造、鋼構造およびプレキャストコンクリート造などを任意に選定し得るが、構造的に剛性を保持するように構成し、水平力がバランスよく基礎スラブ22に伝達、負荷されるようにする。建築物は摺動板8上にスリット板バネAを介在させて静止している。
地震力あるいは風圧力による水平成分が建築物の重力による摩擦力以内の場合においては、建築物は静止し、スリット板バネAが効果的に作用して水平成分を減衰させる。
このとき、スリット板バネA上に構成された建築物の固有周期(建築物固有の揺れ一往復の秒数)は2〜4秒程度が好適である。強固な建築地盤の固有周期は1秒以下であるので、本耐震補強方式による建築物と地震動との共振は生ぜず、地震力の増幅を避けることができる。
仮に予想を上回る長周期の地震動が作用した場合、建築物は摺動板8上を地震による水平力を逃がすように摺動するが、摺動板8上の摺動による建築物の過剰な異常変異を拘束するために、基礎梁16の下部に取付けられた拘束チャンネル11と、横架ダンパーGとして、鋼製アングルの立上りウエブの内側にスリット板バネAを装着したものを、図10および図13に示すようにピット立上り13の要所に取付けて、安全性を高めるように構成してある。
In this way, the building and the foundation slab 22 are kept in a vibration-insulated state by the slit leaf spring A, and the building is also subjected to a horizontal force by the frictional force between the building weight and the slit leaf spring A on the foundation slab 22. Is stable on the foundation slab 22. When the horizontal component of the seismic force exceeds this frictional force, the base or foundation beam 16 and the slit leaf spring A slide on the sliding plate 8, and the seismic force is transmitted to the building through the base or foundation beam 16. To alleviate. The same applies when wind pressure acts on the building.
The building frame on the slit leaf spring A can be arbitrarily selected from a wooden structure, a steel structure, a precast concrete structure, etc., but is constructed so as to maintain structural rigidity, and the horizontal force is transmitted to the foundation slab 22 in a balanced manner. To be loaded. The building is stationary on the sliding plate 8 with the slit leaf spring A interposed.
When the horizontal component due to seismic force or wind pressure is within the frictional force due to the gravity of the building, the building is stationary and the slit leaf spring A effectively acts to attenuate the horizontal component.
At this time, the natural period of the building constructed on the slit leaf spring A (the number of seconds of one reciprocal swing unique to the building) is preferably about 2 to 4 seconds. Since the natural period of a strong building ground is 1 second or less, resonance between the building and the ground motion by this seismic reinforcement method does not occur, and amplification of seismic force can be avoided.
If an earthquake motion with a longer period than expected is applied, the building slides on the sliding plate 8 so as to release the horizontal force due to the earthquake, but the building is excessively abnormal due to the sliding on the sliding plate 8. In order to restrain the variation, the restraint channel 11 attached to the lower part of the foundation beam 16 and the horizontal damper G with the slit leaf spring A mounted inside the rising web of the steel angle are shown in FIGS. As shown in FIG. 13, it is attached to a key point of the pit rise 13 to increase safety.

(2−1)スリット板バネAの耐震作用
スリット板バネAを建築物と地盤の間に介在させた耐震補強方式を例に説明すると、いま机上に蒟蒻が敷かれており、その上に石塊が乗っているとすると、机を揺すると石塊はその質量と蒟蒻の柔らかさに応じてゆっくりと揺れる。
この時、石塊が十分剛性をもった建築物とすれば、机は一定の卓越周期を有する強固な地盤であり、蒟蒻は固有のバネ常数をもったスリット板バネAと置き換えて考えることができる。
いま、スリット板バネAを基礎または基礎スラブ22上に水平に載置した場合、地震時、スリット板バネAにはX軸方向、Y軸方向、およびZ軸方向の3方向からの振動が作用する。
図11(a)は、スリット板バネAに対してZ軸方向の地震振動が上下に作用した場合、スリット板バネAが上下に弾性変形する状態を点線で示している。図10(b)は、スリット板バネAに対してX軸方向の振動が長辺方向に作用した場合の弾性変形する状態を示したもので、また図11(c)は、スリット板バネAに対してY軸方向の振動が短辺方向に作用した場合の弾性変形する状態を示している。
図10は、スリット板バネAを新設建築物の基礎スラブ22上に敷設した場合の耐震方式を示した斜視図である。スリット板バネAは、基礎スラブ22上の摺動板8上に、それぞれ水平方向にε方向あるいはγ方向に敷設されている。
いま、ここに地震による水平力が建築物と基礎スラブ22との摩擦力以内の場合、スリット板バネAが水平力を吸収するべく作用する。ここで、スリット板バネAにスリット4が設刻されていない場合、Z軸方向の上下振動は吸収し得るものの、X軸方向およびY軸方向の振動に対しては、その剛性のため弾性変形が妨げられて、振動を有効に吸収、減衰されない。
これに対して板バネにスリット4が設刻されている場合には、摩擦力の限界内で水平加力に対してバネ常数が小となり、3方向の振動に対して有効に弾性変形するので、X軸方向およびY軸方向の振動を有効に吸収、減衰し得る。
万一地震による水平力が建築物と基礎スラブ22との摩擦力を超えた場合、ε方向およびγ方向に敷設されたスリット板バネAは摺動板8上を地盤の振れの振幅だけ摺動して、地盤の変位を吸収し建築物にかかる水平力の影響は少ない。
(2-1) Seismic action of slit leaf spring A An example of the seismic reinforcement method in which the slit leaf spring A is interposed between the building and the ground will be explained. Assuming that a lump is on the rock, rocking the desk slowly rocks the stone lump according to its mass and the softness of the heel.
At this time, if the stone block is a sufficiently rigid building, the desk is a strong ground with a certain period of predominance, and the heel is considered to be replaced with a slit leaf spring A having a unique spring constant. it can.
Now, when the slit leaf spring A is horizontally placed on the foundation or the foundation slab 22, vibrations from three directions of the X axis direction, the Y axis direction, and the Z axis direction act on the slit leaf spring A during an earthquake. To do.
FIG. 11A shows the state in which the slit leaf spring A is elastically deformed up and down when the seismic vibration in the Z-axis direction acts on the slit leaf spring A up and down. FIG. 10B shows a state in which the slit plate spring A is elastically deformed when vibration in the X-axis direction is applied in the long side direction. FIG. 11C shows the slit plate spring A. On the other hand, a state in which elastic deformation occurs when vibration in the Y-axis direction acts in the short side direction is shown.
FIG. 10 is a perspective view showing an earthquake resistance method when the slit leaf spring A is laid on the foundation slab 22 of the new building. The slit leaf spring A is laid in the ε direction or γ direction in the horizontal direction on the sliding plate 8 on the basic slab 22.
Here, when the horizontal force due to the earthquake is within the friction force between the building and the foundation slab 22, the slit leaf spring A acts to absorb the horizontal force. Here, when the slit 4 is not engraved on the slit leaf spring A, the vertical vibration in the Z-axis direction can be absorbed, but the vibration in the X-axis direction and the Y-axis direction is elastically deformed due to its rigidity. This prevents the vibration from being effectively absorbed and damped.
On the other hand, when the slit 4 is engraved on the leaf spring, the spring constant is small with respect to the horizontal force within the limit of the frictional force, and the elastic deformation is effectively performed against the vibration in three directions. The vibration in the X-axis direction and the Y-axis direction can be effectively absorbed and damped.
If the horizontal force due to the earthquake exceeds the friction force between the building and the foundation slab 22, the slit leaf spring A laid in the ε and γ directions slides on the sliding plate 8 by the amplitude of the ground vibration. And, the influence of the horizontal force on the building that absorbs the displacement of the ground is small.

(2−2)耐震支柱の耐震作用
既設建築物の1階外壁外側の敷桁高さに取付けられた耐震支柱C、D、Eには、直下型の大地震時、比較的短時間内の大きな上下振動が軸方向に作用し、その後、これと相前後して大きな横揺れ振動による水平力が作用する。
建築物に耐震支柱による補強が施されていない場合、上下振動によって建築物の架構には瞬間的に過大な鉛直力が作用し、建築物の柱材の多くが挫屈破壊などによってガタを来たし、その後に襲う横揺れ振動によって半壊あるいは倒壊に至る事例が多い。
これに対して、上記の耐震支柱C、D、Eが施された建築物は、敷桁あるいは通し柱、管柱に接合された耐震支柱に装着されたスリット板バネAまたはBが鉛直応力を緩衝しつつ、その一部を支柱7に伝達し、建築物の架構に作用する軸方向および曲げモーメントの成分を減少させ、大地震初動時の損壊を防ぎ、その後の横揺れによる水平応力も耐震支柱に装着されたスリット板バネAまたはBが柔らかく変形を拘束するため、建築物の損壊の進行をくい止め、少なくとも倒壊に至るまでの時間を引き延ばすことができる。
(2-2) Seismic action of seismic struts The seismic struts C, D, and E attached to the floor girder height on the outside of the first floor of existing buildings have a relatively short time during a direct earthquake. A large vertical vibration acts in the axial direction, and then a horizontal force due to a large roll vibration acts on the axis.
If the building is not reinforced with seismic support columns, vertical vibrations cause momentary excessive vertical forces on the frame of the building, and many of the building pillars have rattled due to buckling failure. In many cases, the rolling vibrations that hit afterwards result in partial destruction or collapse.
On the other hand, in the building provided with the above-mentioned seismic struts C, D and E, the slit leaf springs A or B mounted on the seismic struts joined to the spar girders or through columns and pipe columns buffer the vertical stress. However, a part of it is transmitted to the column 7 to reduce the components of the axial direction and bending moment acting on the structure of the building, prevent damage at the time of the first earthquake, and the horizontal stress due to the subsequent roll is also resistant to the earthquake. Since the slit leaf spring A or B attached to is soft and restrains deformation, it is possible to prevent the progress of damage to the building, and at least to extend the time until collapse.

図12は水平力としてP1およびP2が架構R1、R2に作用したときの架構の変形状態を示したものである。図12(a)の耐震支柱が施されていない場合の架構R1、R2の変形角は、δ1、δ2である。
図12(b)は、従来行われていたつっかい棒による1階架構R1の耐震補強によって、水平力(P1+P2)による1階架構R1の変形は著しく減少するが、そのはずみで2階架構R2に水平力P2と慣性モーメントが働き、2階架構R2の変形がかえって大きくなる状況を示したものである。このとき1階架構R1の変形角δ3を近似的に0とし、2階架構R2の変形角はδ4である。
図12(c)は、本発明における耐震支柱C、D、Eを施した場合の架構R1、R2の変形を示すもので、1階架構R1を補強するスリット板バネA、Bを装着した耐震支柱によって、1階架構R1に作用する水平力(P1+P2)を緩衝し、架構R1に発生する変形を柔らかく拘束するので、2階架構R2に作用する水平力P2と慣性モーメントによる負荷を最小にとどめ得る。1階架構R1の変形角はδ5、2階架構R2の変形角はδ6である。
ここにおいて変形角の定性的関係は、0≒δ3<δ5<δ6<δ2<δ1<δ4となり、本発明の耐震支柱を取付けた場合の変形角が上下階のトータルで最も小さい。
以上のように、本発明における耐震支柱C、D、Eによる耐震補強は、スリット板バネA、Bの緩衝作用によって、大地震初動時の建築物の架構R1、R2の変形発生をバランスよく抑制させつつ建築物をサポートするので、地震初動時の瞬間的な大破、倒壊までの時間を引き延ばせることは勿論、大きな損壊を防止し得るのである。
FIG. 12 shows a deformed state of the frame when P1 and P2 act on the frames R1 and R2 as a horizontal force. The deformation angles of the frames R1 and R2 when the seismic support column in FIG. 12 (a) is not provided are δ1 and δ2.
FIG. 12 (b) shows that the deformation of the first floor frame R1 due to the horizontal force (P1 + P2) is significantly reduced by the seismic reinforcement of the first floor frame R1 with a stick that has been conventionally performed. This shows a situation where the horizontal force P2 and the moment of inertia act, and the deformation of the two-story frame R2 increases. At this time, the deformation angle δ3 of the first floor frame R1 is approximately 0, and the deformation angle of the second floor frame R2 is δ4.
FIG. 12 (c) shows the deformation of the frames R1 and R2 when the earthquake-proof columns C, D and E according to the present invention are applied, and the earthquake resistance with the slit leaf springs A and B which reinforce the first-floor frame R1. Since the horizontal force (P1 + P2) acting on the first floor frame R1 is buffered by the support and the deformation generated in the frame R1 is softly restrained, the load caused by the horizontal force P2 acting on the second floor frame R2 and the moment of inertia is minimized. obtain. The deformation angle of the first floor frame R1 is δ5, and the deformation angle of the second floor frame R2 is δ6.
Here, the qualitative relationship between the deformation angles is 0≈δ3 <δ5 <δ6 <δ2 <δ1 <δ4, and the deformation angles when the seismic support column of the present invention is attached are the smallest in total in the upper and lower floors.
As described above, the seismic reinforcement by the seismic struts C, D, and E in the present invention suppresses the occurrence of deformation of the frames R1 and R2 of the building at the time of the first earthquake by the buffer action of the slit leaf springs A and B in a balanced manner. As the building is supported while being supported, the time until the moment of the earthquake's initial wreck and collapse can be extended, as well as major damage can be prevented.

(3−1)スリット板バネAの弾性変形による効果
スリット板バネAが弾性変形することによって、地震動による3方向からの振動を減衰することができるので、図11のように実験による3方向の変形状態を示す点線に表される弾性変形によって、スリット板バネAが3方向の地震振動に対応し得る。
(3−2)耐震支柱にスリット板バネAを装着した効果
耐震支柱にスリット板バネAを装着した場合は、装着しなかった場合に較べて1階柱頭部の水平変位はやや増加するが、2階柱頭部の水平変位はほぼ半減する傾向を示し、本発明による耐震支柱の耐震補強方式が優れていることが明らかである。
(3−3)建築物を長固有周期化する効果
建築物に剛性をもたせるようにし、柱脚固定時、建築物自体の固有周期が0.1〜0.2秒程度、スリット板バネA上に構築された建築物の固有周期が2〜4秒程度になるようにすれば、大規模地震の大部分を占める地盤の卓越周期が1秒以内の地震動に建築物が共振することなく地震力の増幅を防止することができる。
以下図面を参照しつつ本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
(3-1) Effect due to elastic deformation of slit leaf spring A Since the slit leaf spring A is elastically deformed, vibrations from three directions due to earthquake motion can be attenuated. By the elastic deformation represented by the dotted line indicating the deformation state, the slit leaf spring A can cope with earthquake vibrations in three directions.
(3-2) Effect of mounting the slit leaf spring A on the earthquake-proof column When the slit plate spring A is mounted on the earthquake-proof column, the horizontal displacement of the first floor column head is slightly increased compared to the case where it is not mounted. The horizontal displacement of the head of the second floor shows a tendency to be almost halved, and it is clear that the seismic reinforcement method of the seismic strut according to the present invention is excellent.
(3-3) Effect of making the building have a long natural period When the structure is given rigidity and the column base is fixed, the natural period of the building itself is about 0.1 to 0.2 seconds, on the slit leaf spring A If the natural period of the building constructed in 2 is about 2 to 4 seconds, the seismic force will not cause the building to resonate with the ground motion that dominates the ground that occupies the majority of large-scale earthquakes within 1 second. Amplification can be prevented.
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

厚さ1mm、幅100mmのステンレスバネ鋼からなる帯状板1を8ピッチ分の長さに切断し、上辺面2を水平に67mm延長し、その両端を半径9mmに湾曲させ、図2に示すようにR面の突出先端aから底辺に垂線sをおろし、下辺面3との交点をC点とすると、そのC点より内側に次のR面が来るごとく、上辺面2とは逆方向に半径9mmのR面を形成するように折り曲げたうえ、その先端をC点から25mm水平に延長させて下辺面3を形成し、これを1ピッチのスリット板バネAとする。
スリット板バネAの帯状板1には、下辺面3のR面の起点dから上辺面2を経て逆方向のR面の終点d’に至る連続した幅5mmのスリット4が3本設刻してあり、かつ図2に示すように、ゴム状弾性体として硬度50°のネオプレンゴムをゴム状弾性物質6として、帯状板1の折り曲げ部凹部に1ピッチおきに充填し、長辺方向(X軸)と短辺方向(Y軸)のバネ定数を小さくコントロールすることができた。
このように構成された1ピッチ分のスリット板バネAを、8ピッチ分連続して総長1mのスリット板バネAを形成し、これを使用目的に応じて、耐震支柱に装着して耐震補強方式に使用し、あるいは建築物と基礎スラブ22上に装着した建築物の耐震補強方式に使用することができる。
上記のように、スリット板バネAは、スリット4を設刻することによって、板バネの長辺方向(X軸)のバネ定数を小とし、また短辺方向(Y軸)の剛性を柔らげて、水平加力時の変形を促進するように構成したもので、帯状板1の折り曲げ部凹部に充填したゴム状弾性物質6によって、さらにスムーズに変形を抑制でき、また復元性もよい。
スリット板バネAが弾性変形することによって、地震動による3方向からの振動を減衰することができるので、図11のように実験による3方向の変形状態を示す点線に表される弾性変形によって、スリット板バネAが3方向の地震振動に対応し得たことが確認できた。
A strip 1 made of stainless spring steel having a thickness of 1 mm and a width of 100 mm is cut to a length of 8 pitches, the upper side surface 2 is horizontally extended by 67 mm, and both ends thereof are curved to a radius of 9 mm, as shown in FIG. When a perpendicular line s is taken down from the protruding tip a of the R surface to the bottom and the intersection with the lower side surface 3 is a C point, the radius is opposite to the upper side surface 2 as the next R surface comes inward from the C point. After bending so as to form a 9 mm round surface, the lower end surface 3 is formed by extending its tip horizontally by 25 mm from the point C, and this is referred to as a 1-pitch slit leaf spring A.
In the strip plate 1 of the slit leaf spring A, three continuous slits 4 having a width of 5 mm from the starting point d of the R surface of the lower side surface 3 through the upper side surface 2 to the end point d 'of the R surface in the reverse direction are engraved. As shown in FIG. 2, neoprene rubber having a hardness of 50 ° as a rubber-like elastic body is filled as a rubber-like elastic material 6 in the bent portion recesses of the belt-like plate 1 every other pitch, and the long side direction (X Axis) and the spring constant in the short side direction (Y-axis) could be controlled small.
The 1-pitch slit leaf spring A constructed in this way is continuously formed for 8 pitches to form a slit plate spring A having a total length of 1 m, and this is attached to a seismic support column according to the purpose of use. It can be used for the seismic reinforcement method of the building mounted on the building and the foundation slab 22.
As described above, the slit leaf spring A has a small spring constant in the long side direction (X axis) and softens the rigidity in the short side direction (Y axis) by forming the slit 4. Therefore, the rubber-like elastic material 6 filled in the bent portion concave portion of the belt-like plate 1 can suppress the deformation more smoothly and has good resilience.
Since the slit leaf spring A is elastically deformed, vibrations from three directions due to earthquake motion can be damped. Therefore, the elastic deformation represented by the dotted lines indicating the three-direction deformation state by experiment as shown in FIG. It was confirmed that the leaf spring A was able to cope with earthquake vibrations in three directions.

図9のように、建築物の外壁廻りの各立面に耐震支柱Dを各2本ずつ、建築物の柱材20の位置に合わせてそれぞれ立柱する。図7において耐震支柱Dは腕木10共亜鉛鍍金の角型鋼管150×150×6mm製で、支柱長さは腕木10の天端まで1階敷桁21高さまでの3.5mと独立基礎12内の値入れ500mm部分を含めて合計4mである。
腕木10の長さは1.2mで、支柱7から左右振り分けてある。腕木10の建築物の外壁側の側面には8ピッチ、長さ1mのスリット板バネAの上辺面2が長さ方向に装着され、ボルト止めされている。
耐震支柱Dの柱脚部は図9に示すように独立基礎12として、Φ400×6mmで長さ1.5mの鋼管18が地中に打設され、支柱7をその中に500mm程度根入れして耐震支柱Dを建て込み、該建築物の外壁19にスリット板バネAの下辺面2を密接させ、敷桁21に先止めしたホールインアンカーボルト17で固定し、支柱7の建入れを調整したのち、鋼管18内にコンクリートを充填、剛接続されている。
このように構築された耐震支柱Dは、地震初動時の建築物に作用する鉛直応力および水平応力を負たんして、水平加力時の建築物の変位を確実に減ずることができた。
As shown in FIG. 9, two seismic support columns D are provided on each elevation surface around the outer wall of the building, respectively, according to the position of the column material 20 of the building. In FIG. 7, the seismic support D is made of 150 × 150 × 6 mm square steel pipe made of galvanized arm 10 and the length of the support is 3.5 m from the top of the arm 10 up to the height of the first floor girder 21 and within the independent foundation 12. The total value is 4 m including the 500 mm portion.
The length of the arm 10 is 1.2 m, and it is distributed from the support column 7 to the left and right. The upper side surface 2 of the slit leaf spring A having a pitch of 1 m and a length of 1 m is mounted in the length direction on the side surface of the building of the arm 10 on the outer wall side, and is bolted.
As shown in FIG. 9, the column base of the seismic support D is an independent foundation 12, and a steel pipe 18 having a diameter of Φ400 × 6 mm and a length of 1.5 m is placed in the ground. The seismic support D is installed, the lower side 2 of the slit leaf spring A is brought into close contact with the outer wall 19 of the building, and fixed with the hole-in anchor bolt 17 that is fixed to the spar 21 to adjust the installation of the support 7 After that, the steel pipe 18 is filled with concrete and rigidly connected.
The seismic support D constructed in this way was able to bear the vertical stress and horizontal stress acting on the building at the time of the initial motion of the earthquake, and reliably reduce the displacement of the building when the horizontal force was applied.

なお、耐震支柱による耐震補強方式の効果について調べるため、解体予定の老朽2階建木造建築物を利用し、耐震支柱Dを上記のとおり構築したのち、これに水平衝撃を与えた場合のスリット板バネAの有無による水平変位の大きさを計測した。
水平衝撃として、セメント袋2袋を下げ振りで、対象建築物の桁行中央部付近の1階通し柱柱頭部の敷桁付近に衝突させた場合、柱頭部の水平変位は下表のとおりであった。

Figure 2006063771
以上のとおり、耐震支柱7にスリット板バネAを装着した場合は、装着しなかった場合に較べて1階柱頭部の水平変位はやや増加するが、2階柱頭部の水平変位はほぼ半減する傾向を示し、本発明による耐震支柱の耐震補強方式が優れていることが明らかである。In addition, in order to investigate the effect of the seismic reinforcement method using the seismic strut, the slit plate when the seismic strut D is constructed as described above using the aged two-story wooden building to be demolished and then subjected to a horizontal impact. The magnitude of the horizontal displacement with and without the spring A was measured.
As a horizontal impact, when the two cement bags were swung down and collided with the vicinity of the first column through the column head of the column near the center of the target building, the horizontal displacement of the column head was as shown in the table below. .
Figure 2006063771
As described above, when the slit leaf spring A is attached to the seismic support column 7, the horizontal displacement of the first-floor column head is slightly increased compared to the case where it is not attached, but the horizontal displacement of the second-floor column head is almost halved. It is clear that the seismic reinforcement method of the seismic strut according to the present invention is excellent.

図10において、対象の鉄骨造建築物の基礎スラブ22上の基礎梁16を敷設する位置に、摺動板8として厚さ1.2mmのステンレス板がアンカー14で固定されている。地盤の変位は現在までの最大で200mmが観測されているところから、摺動板8の幅は600mmとしている。基礎梁16は、この摺動板8上に敷設されたスリット板バネA上に、中心線を合わせてε方向およびγ方向に敷設し、仮止めビス15で固定する。建築物の荷重が小さい場合、スリット板バネAは基礎梁16の柱材20の下部付近に限定しうる。建築面積75mの2階建ての建築物の自重および法定積載加重の合計を50トンとすると、摩擦力は20トン前後であり、風圧力および地震力は最大時を見積もっても、摩擦力以下であって、この範囲ではスリット板バネAは摺動せず、建築物とスリット板バネAの振動系の限界内で、地盤の揺れを吸収する。万一、水平力が摩擦力を超えた場合には、スリット板バネAは摺動板8上をε方向あるいはγ方向に摺動し、地盤の変位を吸収する。最近の国内における地震時の最大変位は200mm程度であり、これを超える場合はピット立上り13に調整ボルト5で装着された横架ダンパーGと拘束チャンネル11が、建築物の異常変位を拘束する。図13に横架ダンパーGの取付けの一例を示す。建築物が小規模な場合には摺動板8を省略し、基礎スラブ22の表面仕上げを入念に平滑度を高めておく。その後の建築施工手順は従来どおりである。In FIG. 10, a stainless steel plate having a thickness of 1.2 mm is fixed as the sliding plate 8 with an anchor 14 at a position where the foundation beam 16 is laid on the foundation slab 22 of the target steel building. Since the maximum displacement of the ground up to now is 200 mm, the width of the sliding plate 8 is 600 mm. The foundation beam 16 is laid on the slit plate spring A laid on the sliding plate 8 in the ε direction and the γ direction with the center line aligned, and fixed with the temporary fixing screw 15. When the load of the building is small, the slit leaf spring A can be limited to the vicinity of the lower part of the column member 20 of the foundation beam 16. When the weight and the total of legal loading weights of the two-story building of the building area of 75m 2 to 50 tons, and the friction force is 20 tons, also wind pressure and the seismic force is to estimate the maximum at the time, following friction force In this range, the slit leaf spring A does not slide, and the ground vibration is absorbed within the limits of the vibration system of the building and the slit leaf spring A. If the horizontal force exceeds the frictional force, the slit leaf spring A slides on the sliding plate 8 in the ε direction or γ direction, and absorbs the displacement of the ground. The maximum displacement at the time of recent earthquakes in Japan is about 200 mm. When the maximum displacement is exceeded, the horizontal damper G mounted on the pit rise 13 with the adjusting bolt 5 and the restraint channel 11 restrain the abnormal displacement of the building. FIG. 13 shows an example of attachment of the horizontal damper G. When the building is small-scale, the sliding plate 8 is omitted, and the smoothness of the foundation slab 22 is carefully increased in surface finish. The subsequent construction procedure is the same as before.

スリット板バネを基礎または基礎スラブ22上に装着した建築物の耐震補強方式の効果は次のとおりである。在来構法による木造あるいは鉄骨造低層建築物の固有周期は0.1〜0.2秒程度で、地震時の建物の応答加速度が大きく、建築物に作用する地震力も大きいのが特長であるが、固有周期が2〜4秒程度に長くなると、これが小さくなる傾向が最近の地震観測で把握されている。
本発明のスリット板バネAを基礎または基礎スラブ22上に介在、装着した基礎梁16は、建築物と基礎スラブ22の間に、緩衝作用があり、耐圧力の大きい適当なバネ常数のスリット板バネAを介在させることによって、建築物を地盤から浮かして建築物の固有周期を2〜4秒程度に延ばし得るため、硬質地盤の卓越短周期成分(0.1〜1.0秒程度)から建築物全体の固有周期を離すことができ、地震力と建築物の共振を避け、地震力を低減することができるとともに、地震以外の地盤の振動例えば交通機関による地盤振動を軽減し得る。
なお、建築物が重量構造物である場合には、柱脚部に十分剛性の高い幅広の基礎梁を構築し、これと基礎または基礎スラブ22の間にスリット板バネAを長辺方向に2列以上装着して建築物を支えるように構成すれば、前記の耐震補強効果を得ることができる。
The effect of the seismic reinforcement method for a building in which a slit leaf spring is mounted on the foundation or foundation slab 22 is as follows. The natural period of a wooden or steel-framed low-rise building by the conventional construction method is about 0.1 to 0.2 seconds, the response acceleration of the building during an earthquake is large, and the seismic force acting on the building is also a feature. It has been recognized in recent earthquake observations that the natural period tends to decrease as the natural period increases to about 2 to 4 seconds.
The foundation beam 16 in which the slit plate spring A of the present invention is interposed and mounted on the foundation or the foundation slab 22 has a buffering action between the building and the foundation slab 22 and has a suitable spring constant and a large spring constant. By interposing the spring A, the building can be lifted from the ground and the natural period of the building can be extended to about 2 to 4 seconds. Therefore, from the dominant short period component (about 0.1 to 1.0 seconds) of the hard ground The natural period of the entire building can be separated, the resonance between the seismic force and the building can be avoided, the seismic force can be reduced, and the vibration of the ground other than the earthquake, for example, the ground vibration due to transportation can be reduced.
When the building is a heavy structure, a wide foundation beam having a sufficiently high rigidity is constructed on the column base, and a slit leaf spring A is inserted between the foundation and the foundation slab 22 in the long side direction. The above-mentioned seismic reinforcement effect can be obtained if it is constructed so as to support the building by mounting more than one row.

スリット板バネAの斜視図  Perspective view of slit leaf spring A スリット板バネAの縦断面図  Vertical sectional view of slit leaf spring A スリット板バネAのX−X’断面図  X-X 'sectional view of slit leaf spring A スリット板バネBの斜視図  Perspective view of slit leaf spring B ダンパー材6充填部縦断面図  Damper material 6 filling section longitudinal section 耐震支柱Cの斜視図  Perspective view of earthquake-proof column C 耐震支柱Dの斜視図  Perspective view of seismic support D 耐震支柱Eの斜視図  Perspective view of seismic support E 耐震支柱取付部矩形図  Anti-seismic column mounting rectangle スリット板バネAによる耐震補強方式斜視図  Seismic reinforcement type perspective view with slit leaf spring A スリット板バネA変形図  Slit leaf spring A deformation diagram 架構変位図  Frame displacement map 横架ダンパーG取付部およびY−Y’断面図  Horizontal damper G mounting part and Y-Y 'cross section

符号の説明Explanation of symbols

A スリット板バネ
B スリット板バネ
C 耐震支柱
D 耐震支柱
E 耐震支柱
G 横架ダンパー
R1 1階架構
R2 2階架構
δ1〜δ6 変位角
a 折曲部
c 垂線sの交点
d スリット起点
d’ スリット終点
ε 布基礎座標
γ 布基礎座標
1 薄帯状板
2 上辺面
3 下辺面
4 スリット
5 調整ボルト
6 ゴム状弾性物質
7 支柱
8 摺動板
9 スペーサー
10 腕木
11 拘束チャンネル
12 独立基礎
13 ピット立上り
14 アンカー
15 仮止めビス
16 土台または基礎梁
17 ホールインアンカーボルト
18 鋼管
19 壁面
20 柱材
21 敷桁
22 基礎または基礎スラブ
A Slit leaf spring B Slit leaf spring C Seismic strut D Seismic strut E Seismic strut G Horizontal mount damper R1 First floor frame R2 Second floor frame δ1 to δ6 Displacement angle a Bending point c Intersection of perpendicular line s Slit origin d 'Slit end point ε Fabric foundation coordinates γ Fabric foundation coordinates 1 Strip-like plate 2 Upper side surface 3 Lower side surface 4 Slit 5 Adjustment bolt 6 Rubber-like elastic material 7 Strut 8 Slide plate 9 Spacer 10 Arm 11 Restraining channel 12 Independent foundation 13 Pit rise 14 Anchor 15 Temporary fixing screw 16 Base or foundation beam 17 Hole-in anchor bolt 18 Steel pipe 19 Wall surface 20 Column material 21 Girder 22 Foundation or foundation slab

Claims (6)

帯状板の上辺面の両端がR面となるように下方に湾曲させ、その先端を上辺面の両端のR面とは逆方向に下方に湾曲させてR面が連続してS字状あるいは逆S字状になるように形成したのち、さらに先端を水平に延長して下辺面を形成したものを1ピッチとし、これを順に繰返し折り曲げ構成してなる板バネの下辺面のR面の起点から、上辺面を経て逆方向のR面の終点に至る連続した等幅または不等幅のスリットを長さ方向に平行に設刻してなるスリット板バネ。  Curved downward so that both ends of the upper side surface of the belt-shaped plate become R surfaces, and the tips are curved downward in the opposite direction to the R surfaces at both ends of the upper side surface, and the R surface is continuously S-shaped or reversed. From the starting point of the R surface of the lower side surface of the leaf spring, which is formed to be S-shaped, and further formed by extending the tip horizontally and forming the lower side surface as one pitch, and repeatedly bending this. A slit leaf spring in which continuous slits of equal width or unequal width extending from the upper side surface to the end point of the R surface in the reverse direction are formed in parallel in the length direction. 請求項1に記載のスリット板バネの1ピッチを、その上辺面が互いに背中合わせになるように直交して重ね合わせ、その重ね合わせ部を接合してなるスリット板バネ。  A slit leaf spring formed by superimposing one pitch of the slit leaf springs according to claim 1 so that the upper side surfaces thereof are back to back, and joining the overlapping portions. 支柱の先端部側面に、請求項1〜3のいずれかに記載のスリット板バネの上辺面または下辺面を装着してなる耐震支柱。  The earthquake-proof support | pillar formed by mounting | wearing the front-end | tip part side surface of a support | pillar with the upper side surface or lower side surface of the slit leaf | plate spring in any one of Claims 1-3. 支柱の柱頭部に直線状またはL字状の腕木を水平に接合し、その側面もしくは側面と上面に請求項1〜3のいずれかに記載のスリット板バネの上辺面または下辺面を装着してなる耐震支柱。  A straight or L-shaped arm is horizontally joined to the column head of the column, and the upper side surface or the lower side surface of the slit leaf spring according to any one of claims 1 to 3 is attached to the side surface or the side surface and the upper surface. Seismic support. 建築物の外壁外側の所定位置に請求項4〜5のいずれかに記載の耐震支柱を配設し、これに装着された請求項1〜3のいずれかに記載のスリット板バネを介在させて建築物の外壁面から柱材および/または敷桁に接合したのち、柱脚部を独立基礎に固定してなる建築物の耐震補強方式。  The seismic support column according to any one of claims 4 to 5 is disposed at a predetermined position outside the outer wall of the building, and the slit leaf spring according to any one of claims 1 to 3 attached thereto is interposed. A seismic reinforcement method for buildings, in which the column base is fixed to an independent foundation after joining the outer wall surface of the building to the pillar and / or spar. 建築物の基礎または基礎スラブ上に、請求項1〜3のいずれかに記載のスリット板バネの上辺面または下辺面を装着したのち、その上に土台、建築物等を構築してなる建築物の耐震補強方式。  A building formed by building a foundation, a building, etc. on the top or bottom side of the slit leaf spring according to any one of claims 1 to 3 on a building foundation or a foundation slab. Seismic reinforcement method.
JP2004274177A 2004-08-25 2004-08-25 Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings Expired - Fee Related JP4624048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274177A JP4624048B2 (en) 2004-08-25 2004-08-25 Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274177A JP4624048B2 (en) 2004-08-25 2004-08-25 Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings

Publications (3)

Publication Number Publication Date
JP2006063771A true JP2006063771A (en) 2006-03-09
JP2006063771A5 JP2006063771A5 (en) 2007-10-04
JP4624048B2 JP4624048B2 (en) 2011-02-02

Family

ID=36110484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274177A Expired - Fee Related JP4624048B2 (en) 2004-08-25 2004-08-25 Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings

Country Status (1)

Country Link
JP (1) JP4624048B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332575A (en) * 2006-06-13 2007-12-27 Satou:Kk Vibration control locking device
JP2008308971A (en) * 2007-06-18 2008-12-25 Tomooki Kametani Apartment building construction seismic wave circular polished steel plate thrust buffering method
JP2010500493A (en) * 2006-08-07 2010-01-07 プレストレスト ティンバー リミテッド Engineered wood building system for high performance structures.
JP2010112158A (en) * 2008-10-06 2010-05-20 Hoshino Kikaku:Kk Elastic packing for underfloor space air ventilation
JP2013002041A (en) * 2011-06-13 2013-01-07 Satou:Kk Face plate mounting member and interior finishing structure
KR101305033B1 (en) 2012-07-23 2013-09-11 손종범 Clamp for fixing lights
JP2014214513A (en) * 2013-04-26 2014-11-17 寺泊産業株式会社 Outdoor installation type building aseismatic device and construction method thereof
JP2016519231A (en) * 2013-03-21 2016-06-30 ポセイドン ジーティー エス.アール.エル. Vibration damping device for prefabricated warehouses and similar buildings
KR101701810B1 (en) * 2015-10-14 2017-02-02 삼종건설 주식회사 Seismic equipment
US9567763B2 (en) 2014-12-26 2017-02-14 Kenji Miyazawa Vibration damping wall structure and a method of connecting vibration damping devices
WO2019041699A1 (en) * 2017-08-30 2019-03-07 珠海格力节能环保制冷技术研究中心有限公司 Vibration reduction fixing frame, power assembly, and water purifier
JP2020204565A (en) * 2019-06-18 2020-12-24 アズビル株式会社 Moment sensor
JP2020204562A (en) * 2019-06-18 2020-12-24 アズビル株式会社 Moment sensor
CN113322782A (en) * 2021-05-31 2021-08-31 哈尔滨工业大学 Welding-free shape memory alloy double-tube shearing energy dissipation device filled with rubber
KR102313504B1 (en) * 2020-05-27 2021-10-15 (주)플라스건축엔지니어링건축사사무소 Aseismatic Reinforcement Structure using Steel Pipe and Prestressed Bar

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110145155B (en) * 2019-05-17 2020-12-04 重庆化工职业学院 Civil engineering anti-seismic mechanism and production method thereof
KR102133043B1 (en) * 2020-05-21 2020-07-10 (주)성건엔지니어링 Aseismatic Reinforcement Structure using Damping Device
KR102292823B1 (en) * 2020-05-27 2021-08-25 (주)플라스건축엔지니어링건축사사무소 Aseismatic Reinforcement Structure using Damping Device
KR102164350B1 (en) * 2020-06-11 2020-10-12 (주)성건엔지니어링 Tension Adjustable Damper and Aseismatic Reinforcement Structure
KR102164349B1 (en) * 2020-06-11 2020-10-12 (주)성건엔지니어링 Aseismatic Reinforcement Structure using Spring Damper

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138461U (en) * 1974-05-01 1975-11-14
JPS5432110Y2 (en) * 1975-08-05 1979-10-05
JPS56131042U (en) * 1980-03-07 1981-10-05
JPH0356730A (en) * 1989-07-24 1991-03-12 Mazda Motor Corp Suspension arm structure made of frp
JPH0544773A (en) * 1991-08-09 1993-02-23 Oiles Ind Co Ltd Dynamic vibration absorber
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building
JPH11256876A (en) * 1998-03-12 1999-09-21 Kumagai Gumi Co Ltd Vibration control device for building
JP2000320185A (en) * 1999-05-11 2000-11-21 Toshinori Yamaguchi Base isolation structure by elastic body
JP2000345718A (en) * 1999-06-07 2000-12-12 Shiiku Kenkyusho:Kk External reinforcing construction method of wooden building

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138461U (en) * 1974-05-01 1975-11-14
JPS5432110Y2 (en) * 1975-08-05 1979-10-05
JPS56131042U (en) * 1980-03-07 1981-10-05
JPH0356730A (en) * 1989-07-24 1991-03-12 Mazda Motor Corp Suspension arm structure made of frp
JPH0544773A (en) * 1991-08-09 1993-02-23 Oiles Ind Co Ltd Dynamic vibration absorber
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building
JPH11256876A (en) * 1998-03-12 1999-09-21 Kumagai Gumi Co Ltd Vibration control device for building
JP2000320185A (en) * 1999-05-11 2000-11-21 Toshinori Yamaguchi Base isolation structure by elastic body
JP2000345718A (en) * 1999-06-07 2000-12-12 Shiiku Kenkyusho:Kk External reinforcing construction method of wooden building

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332575A (en) * 2006-06-13 2007-12-27 Satou:Kk Vibration control locking device
US8935892B2 (en) 2006-08-07 2015-01-20 Prestressed Timber Limited Engineered wood construction system for high performance structures
JP2010500493A (en) * 2006-08-07 2010-01-07 プレストレスト ティンバー リミテッド Engineered wood building system for high performance structures.
JP2008308971A (en) * 2007-06-18 2008-12-25 Tomooki Kametani Apartment building construction seismic wave circular polished steel plate thrust buffering method
JP2010112158A (en) * 2008-10-06 2010-05-20 Hoshino Kikaku:Kk Elastic packing for underfloor space air ventilation
JP2013002041A (en) * 2011-06-13 2013-01-07 Satou:Kk Face plate mounting member and interior finishing structure
KR101305033B1 (en) 2012-07-23 2013-09-11 손종범 Clamp for fixing lights
JP2016519231A (en) * 2013-03-21 2016-06-30 ポセイドン ジーティー エス.アール.エル. Vibration damping device for prefabricated warehouses and similar buildings
JP2014214513A (en) * 2013-04-26 2014-11-17 寺泊産業株式会社 Outdoor installation type building aseismatic device and construction method thereof
US9567763B2 (en) 2014-12-26 2017-02-14 Kenji Miyazawa Vibration damping wall structure and a method of connecting vibration damping devices
KR101701810B1 (en) * 2015-10-14 2017-02-02 삼종건설 주식회사 Seismic equipment
WO2019041699A1 (en) * 2017-08-30 2019-03-07 珠海格力节能环保制冷技术研究中心有限公司 Vibration reduction fixing frame, power assembly, and water purifier
JP2020204565A (en) * 2019-06-18 2020-12-24 アズビル株式会社 Moment sensor
JP2020204562A (en) * 2019-06-18 2020-12-24 アズビル株式会社 Moment sensor
KR102313504B1 (en) * 2020-05-27 2021-10-15 (주)플라스건축엔지니어링건축사사무소 Aseismatic Reinforcement Structure using Steel Pipe and Prestressed Bar
CN113322782A (en) * 2021-05-31 2021-08-31 哈尔滨工业大学 Welding-free shape memory alloy double-tube shearing energy dissipation device filled with rubber
CN113322782B (en) * 2021-05-31 2022-10-04 哈尔滨工业大学 Welding-free shape memory alloy double-tube shearing energy dissipation device filled with rubber

Also Published As

Publication number Publication date
JP4624048B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4624048B2 (en) Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP5570605B2 (en) Method and structure for dampening motion in a building
JP6001755B2 (en) Elastic-plastic hysteretic damper
JP5007380B2 (en) Seismic isolation / damping mechanism
CN103328736A (en) Coupling member for damping vibrations in building structures
US10352058B2 (en) Rigid sub structure damping system and method for protecting structures subjected to dynamic forces
JP2015232229A (en) Earthquake response analytical method for base isolation building and earthquake-proof safety evaluation method of base isolation device using the same
JP5234432B2 (en) Vibration control structure
JP2008214973A (en) Seismic-control bridge pier structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP7081745B2 (en) Seismic isolation structure
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
KR20080057517A (en) Slab earthquake resistant construction
JP5971539B2 (en) Suppression structure of spherical tank
JP6534628B2 (en) Fallout prevention structure
KR102209624B1 (en) Seismic reinforcing structure
JP2009281074A (en) Connecting vibration control structure of building
Wada et al. Passive controlled slender structures having special devises at column connections
JP5946165B2 (en) Seismic reinforcement structure
JP3138457U (en) Seismic reduction device for small buildings
JP2022085459A (en) Base isolation building
JP2012233374A5 (en)
JP2018145626A (en) Damping structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees