JP2015232229A - Earthquake response analytical method for base isolation building and earthquake-proof safety evaluation method of base isolation device using the same - Google Patents

Earthquake response analytical method for base isolation building and earthquake-proof safety evaluation method of base isolation device using the same Download PDF

Info

Publication number
JP2015232229A
JP2015232229A JP2014119305A JP2014119305A JP2015232229A JP 2015232229 A JP2015232229 A JP 2015232229A JP 2014119305 A JP2014119305 A JP 2014119305A JP 2014119305 A JP2014119305 A JP 2014119305A JP 2015232229 A JP2015232229 A JP 2015232229A
Authority
JP
Japan
Prior art keywords
seismic
seismic isolation
pile
response analysis
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014119305A
Other languages
Japanese (ja)
Other versions
JP5698402B1 (en
Inventor
廣樹 川合
Hiroki Kawai
廣樹 川合
健司 石嶋
Kenji Ishijima
健司 石嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLOBAL LOGISTIC PROPERTIES Inc
Original Assignee
GLOBAL LOGISTIC PROPERTIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52837047&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015232229(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GLOBAL LOGISTIC PROPERTIES Inc filed Critical GLOBAL LOGISTIC PROPERTIES Inc
Priority to JP2014119305A priority Critical patent/JP5698402B1/en
Application granted granted Critical
Publication of JP5698402B1 publication Critical patent/JP5698402B1/en
Publication of JP2015232229A publication Critical patent/JP2015232229A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake response analytical method for a base isolation building in which the behavior of a base isolation device provided in the base isolation building is grasped in an earthquake with high accuracy and the safety can be evaluated reliably, and to provide an earthquake-proof safety evaluation method of the base isolation device using the earthquake response analytical method for the base isolation building.SOLUTION: An earthquake response analytical method for a base isolation building is configured by: integrating each member element of an upper structure 2 of the building, a base isolation layer 4 comprising a base isolation device, a joining slab 6 for connecting pile heads 10 of multiple foundation piles 8 with each other, and a lower structure 3 comprising a foundation pile 8 and a pile cap 7 with a seismic isolator installed therein and joining the pile head 10 with the joining slab 6 by including a model of the ground; constituting an earthquake response analysis model 1 for the base isolation building collecting the foundation pile 8 with high accuracy; triggering design ground motion to each part 11, 13 of the foundation pile 8 at the same time; and calculating a time history response result of each section of an integrated structural model from the upper structure 2 to the foundation pile 8 at the same time.

Description

本発明は、免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法に係り、特に、免震装置が設けられた免震建物の地震時における挙動を把握する地震応答解析手法、及びその免震建物用地震応答解析手法を用いて免震装置の地震時における安全性を評価する免震装置の耐震安全性評価手法に関する。   The present invention relates to a seismic response analysis method for a seismic isolation building and a seismic safety evaluation method for a seismic isolation device using a seismic response analysis method for a seismic isolation building, and more particularly, to a seismic isolation building provided with a seismic isolation device. The present invention relates to a seismic response analysis method for grasping behavior during an earthquake, and a seismic isolation safety evaluation method for a base isolation device that evaluates the safety of a base isolation device during an earthquake using the seismic response analysis method for base isolation buildings.

ここで、免震建物とは、免震効果を発揮する免震装置又は免震システムが建物の構造体に組み込まれた建築物をいう。また、免震装置には、例えば、天然ゴム系積層ゴム支承、鉛プラグ入り積層ゴム支承、弾性すべり支承、ダンパーなど、建物に対して免震効果を発揮する全ての免震装置又は免震システムが含まれる。   Here, the seismic isolation building refers to a building in which a seismic isolation device or a seismic isolation system that exhibits a seismic isolation effect is incorporated in the structure of the building. In addition, the seismic isolation device includes, for example, natural rubber-based laminated rubber bearings, laminated rubber bearings with lead plugs, elastic sliding bearings, dampers, etc. Is included.

従来の免震建物では、基礎梁を剛としてその基礎梁に免震装置を設置するという、いわゆる「基礎免震工法」が主流であった。図9に、基礎免震工法40の一つの実施例の概略構成を示す。基礎免震工法40は、建物の上部構造41、下部構造42、及び上部構造41と下部構造42との間であって免震装置53が設置される免震層43から構成される。ここで「免震層」とは、複数の免震装置が所定の層全体に設けられることで建物に免震効果を発揮する層をいう。上部構造41は、柱44、梁45、及び床スラブ46から構成される。また、下部構造42は、基礎梁47、コンクリートスラブ48、パイルキャップ49、及び地盤52に打ち込まれた基礎杭50から構成される。   In conventional seismic isolation buildings, the so-called “base seismic isolation method”, in which the base beam is rigid and a base isolation device is installed on the base beam, was the mainstream. In FIG. 9, the schematic structure of one Example of the basic seismic isolation method 40 is shown. The base seismic isolation method 40 includes an upper structure 41 of a building, a lower structure 42, and a seismic isolation layer 43 between the upper structure 41 and the lower structure 42 and in which a seismic isolation device 53 is installed. Here, the “base isolation layer” refers to a layer that exhibits a base isolation effect on a building by providing a plurality of base isolation devices over the entire predetermined layer. The upper structure 41 includes a column 44, a beam 45, and a floor slab 46. The lower structure 42 includes a foundation beam 47, a concrete slab 48, a pile cap 49, and a foundation pile 50 driven into the ground 52.

図9に、基礎免震工法40に用いられる免震装置53が地震時において想定される変形モードを示す。免震装置53が設置される免震層43の下部の基礎梁47は、曲げ剛性が大きいため、地震時において免震層43は上部構造41と同様にせん断変形が曲げ変形に対して卓越する。従って、免震装置53は、図9に示すように地震時には主としてスウェイという変形モードが発生する。また、基礎杭50の杭頭51と基礎梁47或いはパイルキャップ49との接合部は剛接合とし、基礎杭50の耐震設計においても杭頭51の境界条件は完全固定とするのが一般的である。   In FIG. 9, the deformation mode which the seismic isolation apparatus 53 used for the basic seismic isolation method 40 assumes at the time of an earthquake is shown. Since the foundation beam 47 below the seismic isolation layer 43 where the seismic isolation device 53 is installed has high bending rigidity, the shear isolation layer 43 is superior to the bending deformation in the seismic isolation layer 43 in the same manner as the upper structure 41 during an earthquake. . Therefore, as shown in FIG. 9, the seismic isolation device 53 mainly generates a deformation mode called sway during an earthquake. Also, the joint between the pile head 51 of the foundation pile 50 and the foundation beam 47 or the pile cap 49 is a rigid joint, and the boundary condition of the pile head 51 is generally fixed even in the seismic design of the foundation pile 50. is there.

図10に、この基礎免震工法40に対応する一つの地震応答解析モデルであるスウェイ・ロッキング(SR)モデル60を示す。このSRモデルは、建物における地盤の相互作用を考慮したモデルであり、上部構造の部材要素62、免震層のモデル64、及び下部構造の部材要素69から構成される。従来の地震応答解析手法では、上部構造41と杭基礎50の設計とを分けて行うのが一般的である。すなわち、上部構造41については、例えば、図9に示す建物の下部構造42の変形が無視できる場合に主に用いられる基礎固定モデル(図示せず)、又は、建物の下部構造42の変形が無視できない場合に主に用いられるスウェイ・ロッキング(SR)モデル60などによる時刻歴解析による応答値を用いて設計される。図10に示すスウェイ・ロッキング(SR)モデル60では、上部構造41の部材要素62は、質量(m)及び剛性(k)を有する多質点に置換される。また、免震層は、免震層せん断バネ68により評価される。さらに、下部構造42の部材要素69では、曲げ変形(θ)はロッキングバネ65により評価され、せん断変形(δ)はスウェイバネ63により評価される。また、基礎杭50の耐震設計については、時刻歴解析から基礎杭50に作用する慣性力を得て、この慣性力による応力と、付加曲げを含む地盤52の変形による応力を二乗和平方根などにより加算する手法が採用されている。ここで、「付加曲げ」とは、地震時などに建物に水平力が作用し、上部構造から軸力(P)を受ける免震装置に水平変位(δ)が生じた際に、免震装置に発生する偏心曲げモーメントをいう。また、本明細書では、この「付加曲げ」を「P−δ曲げモーメント」とも称し、このような曲げモーメントが発生する現象を「P−δ効果」と称する。これらの地震応答解析手法60は、簡便な手法であるものの、地震時の免震建物40の挙動を精度よく把握できる手法とは言い難い。特に、慣性力を用いた杭基礎50の耐震設計手法60は、地震時に実際に杭基礎50に発生する応力と比べても過剰な応力で設計することになる。しかし、従来の地震応答解析手法60では、免震装置53の変形に対する安全性確保の観点から、このような耐震設計手法60が便宜的に採用されていた。   FIG. 10 shows a sway rocking (SR) model 60 which is one seismic response analysis model corresponding to the basic seismic isolation method 40. This SR model is a model that takes into account the ground interaction in the building, and is composed of a superstructure member element 62, a seismic isolation layer model 64, and a substructure member element 69. In the conventional seismic response analysis method, the superstructure 41 and the pile foundation 50 are generally designed separately. That is, for the upper structure 41, for example, a foundation fixing model (not shown) mainly used when the deformation of the building lower structure 42 shown in FIG. 9 can be ignored, or the deformation of the building lower structure 42 is ignored. When it is not possible, it is designed using a response value obtained by time history analysis using a sway locking (SR) model 60 or the like mainly used. In the sway locking (SR) model 60 shown in FIG. 10, the member element 62 of the superstructure 41 is replaced with a mass point having mass (m) and rigidity (k). The base isolation layer is evaluated by a base isolation layer shear spring 68. Further, in the member element 69 of the lower structure 42, the bending deformation (θ) is evaluated by the rocking spring 65, and the shear deformation (δ) is evaluated by the sway spring 63. As for the seismic design of the foundation pile 50, the inertial force acting on the foundation pile 50 is obtained from the time history analysis, and the stress due to this inertial force and the stress due to the deformation of the ground 52 including additional bending are calculated by the square sum square root or the like. The method of adding is adopted. Here, “additional bending” means that when a horizontal force acts on a building during an earthquake or the like and a horizontal displacement (δ) occurs in the seismic isolation device that receives axial force (P) from the superstructure, the seismic isolation device The eccentric bending moment that occurs in Further, in the present specification, this “additional bending” is also referred to as “P-δ bending moment”, and a phenomenon in which such a bending moment is generated is referred to as “P-δ effect”. Although these seismic response analysis methods 60 are simple methods, it is difficult to say that they can accurately grasp the behavior of the base-isolated building 40 during an earthquake. In particular, the seismic design method 60 for the pile foundation 50 using inertial force is designed with excessive stress compared to the stress actually generated in the pile foundation 50 during an earthquake. However, in the conventional seismic response analysis method 60, from the viewpoint of ensuring safety against deformation of the seismic isolation device 53, the seismic design method 60 is adopted for convenience.

一方、免震装置は、地震時に発生する高軸力と大きなせん断変形に耐え得る装置として開発され普及した。従って、スウェイに対しては高い追従性を有するが、2方向曲げ変形に対しては免震装置の性能が低下するという問題が指摘されている。例えば、非特許文献1には、「高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について」と題し、高減衰ゴム系積層ゴム支承が2方向曲げ変形を受けた場合の限界性能について報告されている。ここでは、積層ゴム支承の2方向曲げによる傾斜角が大きくなると積層ゴム支承として機能が低下する虞があることが報告されている。   On the other hand, seismic isolation devices have been developed and spread as devices that can withstand high axial forces and large shear deformations that occur during an earthquake. Therefore, although it has high followability with respect to sway, the problem that the performance of a seismic isolation device falls with respect to two-way bending deformation is pointed out. For example, Non-Patent Document 1 entitled “New knowledge about the limit performance of a high-damping rubber-based laminated rubber bearing when it is applied in two horizontal directions” and the high-damping rubber-based laminated rubber bearing is subjected to two-way bending deformation. The critical performance is reported. Here, it has been reported that when the inclination angle of the laminated rubber bearing by two-way bending increases, the function of the laminated rubber bearing may be lowered.

このように、例えば積層ゴム支承などの免震装置は、地震時において建物の上部構造に発生する層間変形に高い追従性を発揮することから、高い免震効果を発揮する装置として普及した。そして、この免震装置の機能を十分に発揮させるために、基礎梁を剛としてその基礎梁に免震装置を設置するという工法が一般的となり普及した。この免震装置の特徴及び免震装置を用いた免震建物の工法は、積層ゴム支承に限らず、例えば、鉛プラグ入り積層ゴム支承、或いは弾性すべり支承等においても同様である。   Thus, for example, a base-isolated device such as a laminated rubber bearing has been widely used as a device that exhibits a high seismic isolation effect because it exhibits high followability to interlayer deformation occurring in the superstructure of a building during an earthquake. And, in order to make the function of this seismic isolation device fully function, a construction method in which the base beam is rigid and the seismic isolation device is installed on the base beam has become common. The features of the seismic isolation device and the construction method of the seismic isolation building using the seismic isolation device are not limited to laminated rubber bearings, and are the same in, for example, laminated rubber bearings with lead plugs or elastic sliding bearings.

近年、基礎梁を軽減又は省略して合理化する新たな工法又は構法が提案され始めた。例えば、特許文献1には、狭義の「杭頭免震工法」の具体例が開示されている。ここでは、免震装置を鋼管杭の杭頭部上に固定し、この免震装置上に上部構造を固定したことで従来の基礎梁を省略して基礎構造を合理化することが可能となった。そして、鋼管杭の杭頭部同士を連結部材である基礎スラブで連結させた。これにより、地震による水平力を受けた場合でも、複数の鋼管杭に対してばらばらに水平変位することなく同一方向に変位させ、複数の鋼管杭全体で水平力に抵抗させている。本明細書では、免震装置を鋼管杭の杭頭部上に固定し、免震装置上に上部構造を固定したことで従来の基礎梁を省略する工法を狭義の「杭頭免震工法」と称す。   In recent years, new construction methods or construction methods have been proposed to rationalize by reducing or omitting foundation beams. For example, Patent Document 1 discloses a specific example of the “pile head seismic isolation method” in a narrow sense. Here, the seismic isolation device was fixed on the pile head of the steel pipe pile, and the upper structure was fixed on this seismic isolation device, so it became possible to rationalize the foundation structure by omitting the conventional foundation beam . And the pile heads of the steel pipe pile were connected with the foundation slab which is a connection member. Thereby, even when receiving a horizontal force due to an earthquake, the plurality of steel pipe piles are displaced in the same direction without being horizontally displaced, and the plurality of steel pipe piles as a whole resist the horizontal force. In this specification, the seismic isolation device is fixed on the pile head of a steel pipe pile, and the conventional method of omitting the foundation beam by fixing the superstructure on the seismic isolation device is the `` pile head isolation method '' in a narrow sense. Called.

一方、1995年に発生した兵庫県南部地震において、杭頭を剛接合した杭に多数の被害が発生し、杭頭部に応力が集中する、いわゆる「杭頭剛接合工法」の問題点が指摘され、非特許文献2に示されるように多様な形式の「杭頭半剛接合構法」が提案された。この杭頭半剛接合構法は、地震時における杭頭曲げモーメントを低減させるだけではなく、基礎杭や基礎梁の合理化をもたらすものであり、従来の基礎免震工法を改良する構法とも言える。本明細書では、この杭頭半剛接合構法のうち、免震装置を設けた建物に対して杭頭半剛接合を用いる工法を、広義の「杭頭免震工法」と称する。   On the other hand, in the 1995 Hyogoken-Nanbu Earthquake, a large number of damage occurred in piles with pile heads rigidly connected, and stress was concentrated on the pile heads. As shown in Non-Patent Document 2, various types of “pile head semi-rigid joint construction methods” have been proposed. This semi-rigid pile head construction method not only reduces the pile head bending moment during an earthquake, but also rationalizes foundation piles and foundation beams. In this specification, among the pile head semi-rigid joint construction methods, a construction method using pile head semi-rigid joints for a building provided with a seismic isolation device is referred to as a “pile head seismic isolation method” in a broad sense.

上述した広義の「杭頭免震工法」は、杭頭部に例えば{パイルキャップ}などの杭頭連結部を設け、基礎梁を例えば「つなぎスラブ」などの基礎構造とし、杭頭部の曲げ拘束効果を低減し、従来の基礎梁を低減して合理化する工法である。特に、階数に比して床面積の大きな倉庫、物流センターなどでは、全体工事費のなかで基礎梁の工事費の占める割合が、高層建築物に比して高く工事費削減の効果が大きいため、有効な工法として期待されている。しかし、基礎梁を低減して合理化したことにより、従来、基礎梁を剛とした場合に問題にはならなかった地震時における免震装置の有害な回転量(θ)の発生が問題となった。この問題に対して、以下に示す対策が提案された。   The above-mentioned “pile head seismic isolation method” in the broad sense described above is that pile head connection parts such as {pile caps} are provided on the pile head, the foundation beam is a foundation structure such as “tethering slab” and the pile head is bent. This is a construction method that reduces the constraint effect and rationalizes the conventional foundation beam. Especially in warehouses and distribution centers that have a large floor area compared to the number of floors, the ratio of the construction cost of the foundation beam in the total construction cost is higher than that of high-rise buildings, and the effect of reducing the construction cost is large. It is expected as an effective construction method. However, since the foundation beam was reduced and rationalized, generation of harmful rotation amount (θ) of the seismic isolation device at the time of earthquake, which was not a problem when the foundation beam was rigid, has become a problem. . The following countermeasures have been proposed for this problem.

特許文献2には、地震時に鋼管杭の杭頭部に発生する曲げモーメントを抑制して免震装置の回転を制御し、免震装置に有害な回転を発生させない回転制御バネ機構付き免震装置が開示されている。ここでは、積層ゴム免震装置と、鋼管杭相互を連結する扁平基礎梁と、扁平基礎梁と接続し、積層ゴム免震装置を支持する免震装置支持ブロックと、免震装置支持ブロックを一組の定着筋により鋼管杭の杭頭部に定着する支持ブロック定着部と、から構成されるパイルキャップとを備え、パイルキャップは、接合される鋼管杭との調節された固定度により地震動により発生する杭頭曲げモーメントを低減し、低減された杭頭曲げモーメントに対して回転バネとして抵抗し、地震時の積層ゴム免震装置の回転量を許容回転量以内に制御することが記載されている。   Patent Document 2 discloses a seismic isolation device with a rotation control spring mechanism that controls the rotation of the seismic isolation device by suppressing the bending moment generated in the pile head of the steel pipe pile during an earthquake and does not cause harmful rotation to the seismic isolation device. Is disclosed. Here, a laminated rubber seismic isolation device, a flat foundation beam that connects steel pipe piles, a seismic isolation device support block that supports the laminated rubber seismic isolation device, and a seismic isolation device support block. A pile cap composed of a support block anchoring portion fixed to the pile head of the steel pipe pile by a set of reinforcing bars, and the pile cap is generated by the earthquake motion due to the adjusted fixing degree with the steel pipe pile to be joined It is described that the pile head bending moment to be reduced, resisting as a rotating spring against the reduced pile head bending moment, and controlling the rotation amount of the laminated rubber seismic isolation device within the allowable rotation amount at the time of earthquake .

また、特許文献3には、地震時に発生する杭頭曲げモーメントに対して杭頭接合部の回転剛性を制御し、免震装置に有害な回転を発生させない簡易で信頼性の高い免震装置回転制御機構が開示されている。ここでは、パイルキャップとパイルキャップ定着部とは接合鉄筋により接合され、接合鉄筋はパイルキャップ内のコンクリートに定着する第1接合鉄筋部と、基礎杭内のコンクリートに定着する第2接合鉄筋部と、杭頭接合部に設けられ、杭頭曲げモーメントにより接合鉄筋に発生する引張力が所定の値を越えた場合に内部に引張降伏によるヒンジを形成させる回転量制御部とを備え、回転量制御部内部のヒンジにより杭頭接合部の回転剛性を所定の値に低減させ、地震時の免震装置の回転量を許容回転量以内に制御することが記載されている。すなわち、引張降伏によるヒンジの発生により、接合鉄筋などに伸びが生じ、パイルキャップの回転バネの性能が低下する。この回転バネの性能低下によりパイルキャップの回転力が減少し、地震時の積層ゴム免震装置の有害な変形が回避される。   Patent Document 3 also discloses a simple and reliable seismic isolation device that controls the rotational stiffness of the pile head joint against the pile head bending moment that occurs during an earthquake and does not cause harmful rotation to the seismic isolation device. A control mechanism is disclosed. Here, the pile cap and the pile cap fixing part are joined by a joining reinforcing bar, and the joining reinforcing bar is fixed to the concrete in the pile cap, and the second joining reinforcing part to be fixed to the concrete in the foundation pile. A rotation amount control unit provided in the pile head joint, and when the tensile force generated in the joint rebar by the pile head bending moment exceeds a predetermined value, a rotation amount control unit is formed to form a hinge due to tensile yield inside. It is described that the rotational rigidity of the pile head joint is reduced to a predetermined value by the hinge inside the part, and the rotation amount of the seismic isolation device at the time of an earthquake is controlled within an allowable rotation amount. That is, due to the occurrence of hinges due to tensile yielding, the joint reinforcing bars and the like are elongated, and the performance of the rotary spring of the pile cap is lowered. The rotational force of the pile cap is reduced due to the reduced performance of the rotary spring, and harmful deformation of the laminated rubber seismic isolation device during an earthquake is avoided.

上述した、特許文献2の回転制御バネ機構、及び特許文献3の免震装置回転制御機構は、地震時に免震装置の回転を制御し、免震装置に有害な回転を発生させないための機構である。このように、基礎梁を低減して合理化し、或いは基礎杭の杭頭の接合を半剛接合とする広義の杭頭免震工法の有する問題は、免震装置にこのような機構を設けることで解消された。   The above-described rotation control spring mechanism of Patent Literature 2 and the seismic isolation device rotation control mechanism of Patent Literature 3 are mechanisms for controlling the rotation of the seismic isolation device in the event of an earthquake and not causing harmful rotation in the seismic isolation device. is there. In this way, the problem with the broad-sense pile head seismic isolation method that reduces the foundation beam and rationalizes it, or makes the foundation pile pile head joint semi-rigid, is to install such a mechanism in the seismic isolation device. It was solved with.

特許第3899354号Japanese Patent No. 3899354 特許第5082085号Japanese Patent No. 5082085 特許第5082085号Japanese Patent No. 5082085

高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について 技術委員会免震部材部会他 MENSHIN No.87 2010.2New knowledge about critical performance of high damping rubber-based laminated rubber bearings when applied in two horizontal directions. Technical Committee Seismic Isolation Member Group, etc. 87 2012.2 新技術調査「杭頭半剛接接合工法」の調査報告 (財)建設コスト管理システム研究会 新技術調査検討会 建設コスト研究 2008WINTERResearch Report on New Technology Survey “Pile Head Semi-Rigid Bonding Method” Construction Cost Management System Study Group New Technology Study Study Group Construction Cost Study 2008 WINTER

上述したように、地震時に免震建物に設けられた免震装置に発生する回転量を制御し、免震装置に有害な回転を発生させないための機構が提案されている。しかし、地震時において免震建物全体がどのように挙動し、その免震建物に設けられた免震装置が受ける回転量、及びせん断変形量などが高い精度で把握できればこのような機構をより有効に生かすことが可能となる。なぜならば、地震時において、免震建物に設けられた免震装置の挙動は、柱梁等の構造体の挙動に対して精密機器に近いより緻密な挙動であり、その精密な制御が可能だからである。   As described above, a mechanism for controlling the amount of rotation generated in a base isolation device provided in a base isolation building during an earthquake and preventing harmful rotation in the base isolation device has been proposed. However, if the seismic isolation building as a whole behaves during an earthquake and the amount of rotation and shear deformation received by the seismic isolation device installed in the base isolation building can be grasped with high accuracy, such a mechanism is more effective. It is possible to make use of it. This is because the behavior of seismic isolation devices installed in seismic isolation buildings during earthquakes is closer to that of precision instruments than the behavior of structures such as columns and beams, and its precise control is possible. It is.

従来の免震建物用地震応答解析手法は、この免震装置に発生する回転量等を厳密に把握できないため、免震装置にとって安全側の設計となるように基礎梁を剛としてその基礎梁に免震装置を設けていた。しかし、地震時において建物内に設けられた免震装置が受ける曲げ変形、及びせん断変形などを精度よく算定し、その安全性を確実に評価できる免震建物用地震応答解析手法が提案されれば、上述した安全側の設計は不要となり、より次元の高い免震建物の耐震設計が可能となる。   The conventional seismic response analysis method for base-isolated buildings cannot accurately grasp the amount of rotation generated in the base-isolated device, so the base beam is made rigid so that the design is on the safe side for the base-isolated device. A seismic isolation device was installed. However, if a seismic response analysis method for seismic isolation buildings is proposed that can accurately calculate the bending deformation and shear deformation that the seismic isolation device installed in the building will receive in the event of an earthquake and reliably evaluate its safety. Thus, the above-described safety design is not required, and the seismic design of a higher dimension seismic isolation building is possible.

例えば、従来の基礎梁を低減、或いは省略して合理化する工法は、より精度の高い免震建物用地震応答解析手法により、地震時における免震建物の挙動を精度よく把握できることで、より合理的な設計が可能となる。また、杭頭を剛接合した杭に多数の被害が発生し、杭頭部に応力が集中する、いわゆる「杭頭剛接合工法」に対して「杭頭半剛接合構法」を採用する場合においても、より精度の高い免震建物用地震応答解析手法により、地震時における半剛接とされた杭頭の挙動を高い精度で把握できることで、より合理的な設計が可能となる。   For example, the conventional method of rationalizing by reducing or omitting the foundation beams is more rational because the behavior of the base-isolated building at the time of the earthquake can be accurately grasped by the more accurate seismic response analysis method for base-isolated buildings. Design becomes possible. In addition, when the pile head semi-rigid joint construction method is adopted in contrast to the so-called “pile head rigid joint construction method” where a lot of damage occurs in the pile with the pile head rigidly joined and stress concentrates on the pile head. However, more accurate design is possible because the more accurate seismic response analysis method for base-isolated buildings can grasp the behavior of a semi-rigid pile head during an earthquake with high accuracy.

また、上述した広義の杭頭免震工法は、当初は比較的良好な地盤での杭基礎を対象としていたが、特殊な地盤条件を有する敷地に建つ免震建物に採用されつつある。特に、軟弱地盤においては地震時における免震建物の挙動をより精度よく把握しなければならない。そこで、地盤の性状の特殊性をより的確に建物の設計に反映でき、免震装置の耐震安全性を十分に評価できる免震建物用地震応答解析手法が必須となる。   Moreover, the above-mentioned broad-headed pile head seismic isolation method was originally intended for pile foundations with relatively good ground, but is being adopted for base-isolated buildings built on sites with special ground conditions. In particular, in soft ground, the behavior of base-isolated buildings during an earthquake must be grasped more accurately. Therefore, the seismic response analysis method for base-isolated buildings that can reflect the special characteristics of the ground properties more accurately in the design of the building and sufficiently evaluate the seismic safety of the base-isolated device is essential.

本願の目的は、かかる課題を解決し、地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供することである。   The purpose of this application is to solve such problems, grasp the behavior of the seismic isolation device installed in the base isolation building at the time of the earthquake with high accuracy, and reliably evaluate its safety. And providing a seismic safety evaluation method for seismic isolation devices using seismic response analysis methods for seismic isolation buildings.

上記目的を達成するため、本発明に係る免震建物用地震応答解析手法は、建物の上部構造と下部構造との間に免震装置を備える免震建物に用いられる地震応答解析手法において、建物の上部構造と、免震装置が設けられる免震層と、基礎杭、複数の基礎杭の杭頭部同士を連結する基礎構造、及び免震装置を支持して基礎構造と基礎杭の杭頭部とを接合する杭頭連結部、からなる下部構造と、を地盤を含めて一体化し、基礎杭を一本の縦方向に連続する部材要素に集約した免震建物用地震応答解析モデルを構成し、設計用地震動を基礎杭の各部に同時刻に作用させ、上部構造から基礎杭に至る一体化された構造モデルの各部の時刻歴応答結果を同時刻に算出することを特徴とする。   In order to achieve the above object, the seismic response analysis method for a seismic isolation building according to the present invention is a seismic response analysis method used for a seismic isolation building having a seismic isolation device between an upper structure and a lower structure of a building. Superstructure, seismic isolation layer where seismic isolation devices are installed, foundation pile, foundation structure connecting pile heads of multiple foundation piles, and pile head of foundation structure and foundation pile supporting seismic isolation device The seismic response analysis model for base-isolated buildings is constructed by integrating the lower structure consisting of the pile head connection part that joins the part with the ground, including the ground, and consolidating the foundation piles into a single longitudinally continuous member element The design earthquake motion is applied to each part of the foundation pile at the same time, and the time history response result of each part of the integrated structural model from the superstructure to the foundation pile is calculated at the same time.

上記構成により、本免震建物用地震応答解析手法は、建物の上部構造、免震層、基礎構造、杭頭連結部、基礎杭、及び地盤を一体化した構造モデルとし、その中に免震装置をモデル化して組み込んだ免震層を設けた。これにより、地震時の構造体全体の挙動のなかでの免震装置が受ける応力や変形を精度よく算定することが可能となり、構造体全体について建物内に設けられた免震装置の影響を精度よく反映させることが可能となった。すなわち、従来の地震応答解析手法では便宜的に分離して解析されていた上部構造、及び、基礎構造、杭頭連結部、及び基礎杭からなる下部構造を一体化して解析し、さらに、免震装置という高度な解析精度が要求される装置に対して免震層を設定することで安全性が確実に評価できる地震応答解析手法とした。   With this configuration, the seismic response analysis method for base-isolated buildings is a structural model in which the superstructure of the building, base isolation layer, foundation structure, pile head connection, foundation pile, and ground are integrated. A seismic isolation layer with a modeled device was installed. This makes it possible to accurately calculate the stress and deformation experienced by the seismic isolation device in the behavior of the entire structure during an earthquake, and accurately affect the influence of the seismic isolation device installed in the building for the entire structure. It became possible to reflect well. In other words, the upper structure, which was separated for the sake of convenience in the conventional seismic response analysis method, and the lower structure consisting of the foundation structure, the pile head connection part, and the foundation pile were integrated and analyzed, and further the seismic isolation The seismic response analysis method can be used to reliably evaluate safety by setting a seismic isolation layer for a device that requires a high level of analysis accuracy.

また、免震建物用地震応答解析手法は、設計用地震動を基礎杭の各部に同時刻に作用させた。これにより、上部構造から基礎杭に至る一体化された構造体の各時刻歴応答結果を同時刻に算出することが可能となった。従来の解析手法では、杭の設計については、時刻歴解析から杭に作用する慣性力を得て、この慣性力による応力と、付加曲げを含む地盤の変形による応力を二乗和平方根により加算する手法が採用されていた。本免震建物用地震応答解析手法では、上部構造から基礎杭に至る一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い地震応答解析結果を得ることができる。   The seismic response analysis method for base-isolated buildings applied design seismic motion to each part of the foundation pile at the same time. Thereby, it became possible to calculate each time history response result of the integrated structure from the superstructure to the foundation pile at the same time. In the conventional analysis method, for the pile design, the inertial force acting on the pile is obtained from the time history analysis, and the stress due to this inertial force and the stress due to ground deformation including additional bending are added by the square sum of squares. Was adopted. In this seismic response analysis method for base-isolated buildings, each time history response result of the integrated structure from the superstructure to the foundation pile can be calculated at the same time, and more accurate seismic response analysis results can be obtained .

また、免震建物用地震応答解析手法は、地震応答解析モデルの免震層には、免震装置の回転変形量を時刻歴にて算出する曲げバネが設けられることが好ましい。これにより、曲げバネの回転量を時刻歴にて把握することができ、本免震建物用地震応答解析手法により、免震装置の回転変形に関する耐震安全性評価が評価可能な情報を提供することができる。   In addition, in the seismic response analysis method for seismic isolation buildings, it is preferable that the seismic isolation layer of the seismic response analysis model is provided with a bending spring that calculates the amount of rotational deformation of the seismic isolation device based on the time history. As a result, the amount of rotation of the bending spring can be ascertained from the time history, and the seismic response analysis method for seismic isolation buildings can provide information that can be used to evaluate seismic safety evaluations related to rotational deformation of seismic isolation devices. Can do.

また、免震建物用地震応答解析手法は、地震応答解析モデルの免震層には、免震装置の水平変位量を時刻歴にて算出するせん断バネが設けられることが好ましい。これにより、せん断バネの変位量を時刻歴にて把握することができ、本免震建物用地震応答解析手法により、免震装置の水平変位に関する耐震安全性評価が可能な情報を提供することができる。   Further, in the seismic response analysis method for seismic isolation buildings, it is preferable that a shear spring for calculating the horizontal displacement of the seismic isolation device according to the time history is provided in the seismic isolation layer of the seismic response analysis model. As a result, the amount of displacement of the shear spring can be ascertained from the time history, and the seismic response analysis method for seismic isolation buildings can provide information that enables seismic safety evaluation regarding the horizontal displacement of the seismic isolation device. it can.

また、免震建物用地震応答解析手法は、地震応答解析モデルには、基礎杭の下端部に設けられた節点に設計用地震動として加速度波形が入力され、基礎杭の縦方向の節点には設計用地震動として地震時変位波形が水平地盤バネを介して入力されることが好ましい。これにより、設計用地震動を基礎杭の各部に同時刻に作用させ、より精度の高い解析結果を得ることができる。   In addition, in the seismic response analysis method for base-isolated buildings, in the seismic response analysis model, an acceleration waveform is input as a design seismic motion to the node provided at the lower end of the foundation pile, and the design is applied to the longitudinal node of the foundation pile. It is preferable that an earthquake displacement waveform is input as a seismic motion through a horizontal ground spring. Thereby, the seismic motion for design is made to act on each part of a foundation pile at the same time, and a more accurate analysis result can be obtained.

また、免震建物用地震応答解析手法は、地震応答解析モデルの免震層には、地震時における免震装置の水平変位により生じる偏心曲げモーメントが付加曲げとして時刻歴により作用されることが好ましい。これにより、地震時における建物の挙動をより精度よく反映する応答解析モデルとすることができる。   In addition, in the seismic response analysis method for base-isolated buildings, it is preferable that an eccentric bending moment generated by horizontal displacement of the base isolation device during the earthquake is applied to the base isolation layer of the seismic response analysis model according to the time history as an additional bend. . Thereby, it can be set as the response analysis model which reflects the behavior of the building at the time of an earthquake more accurately.

また、免震建物用地震応答解析手法は、地震応答解析モデルには、群杭を1本の杭に集約したモデル、又は群杭を多数本の杭とするモデル、のいずれかが用いられることが好ましい。これにより、群杭の効果を解析モデルに反映させることができ、群杭の耐震設計において設計条件などからより簡易な応答解析モデルと、より緻密な応答解析モデルとのいずれかを選択できる。   In addition, in the seismic response analysis method for base-isolated buildings, the seismic response analysis model must be either a model in which group piles are aggregated into one pile or a model in which group piles are multiple piles. Is preferred. As a result, the effect of the group pile can be reflected in the analysis model, and either a simpler response analysis model or a more precise response analysis model can be selected from the design conditions or the like in the seismic design of the group pile.

さらに、免震建物用地震応答解析手法は、地震応答解析モデルの基礎杭には、建物直下や近傍の地盤質量が付加質量として作用され、建物直下や近傍の地盤のせん断剛性が付加地盤バネとして作用されることが好ましい。これにより、地震時において基礎杭に対する地盤の影響をより精度よく反映する応答解析モデルとすることができる。   Furthermore, the seismic response analysis method for base-isolated buildings is based on the fact that the ground mass directly under and near the building acts as an additional mass on the foundation pile of the seismic response analysis model, and the shear stiffness of the ground directly under and near the building acts as an additional ground spring. It is preferable to act. Thereby, it can be set as the response analysis model which reflects the influence of the ground with respect to a foundation pile more accurately at the time of an earthquake.

また、前記免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法は、曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から地震時における免震装置の回転変形性能に対する安全性を評価することが好ましい。これにより、前記地震応答解析手法により一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い解析結果が得られると同時に、地震時における免震装置の回転変形に関する耐震安全性を確実に評価することができる。   In addition, the seismic isolation safety evaluation method of the seismic isolation device using the seismic response analysis method for seismic isolation building was set with the amount of rotation of the seismic isolation device calculated from the time history response result regarding the deformation amount of the bending spring. It is preferable to evaluate the safety against the rotational deformation performance of the seismic isolation device during an earthquake from the relationship with the allowable rotation amount of the seismic isolation device. Thereby, each time history response result of the structure integrated by the earthquake response analysis method can be calculated at the same time, and a more accurate analysis result can be obtained, and at the same time, the rotational deformation of the seismic isolation device at the time of the earthquake Seismic safety can be reliably evaluated.

さらに、前記免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法は、せん断バネの挙動から算出された免震装置の水平変位量と設定された前記免震装置の許容水平変位量との関係から地震時における免震装置の水平変位性能に対する安全性を評価することが好ましい。これにより、前記地震応答解析手法により一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い解析結果が得られると同時に、地震時における免震装置の水平移動に関する耐震安全性を確実に評価することができる。   Further, the seismic isolation safety evaluation method of the seismic isolation device using the seismic response analysis method for seismic isolation buildings includes the horizontal displacement of the seismic isolation device calculated from the behavior of the shear spring and the set seismic isolation device tolerance. It is preferable to evaluate the safety against the horizontal displacement performance of the seismic isolation device during an earthquake from the relationship with the horizontal displacement. As a result, each time history response result of the structure integrated by the earthquake response analysis method can be calculated at the same time, and a more accurate analysis result can be obtained, and at the same time, the horizontal movement of the seismic isolation device during an earthquake can be obtained. Seismic safety can be reliably evaluated.

以上のように、本発明に係る基礎免震建物の耐震安全評価手法によれば、地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供することができる。   As described above, according to the seismic safety evaluation method for basic seismic isolation buildings according to the present invention, the behavior of the seismic isolation device provided in the seismic isolation building at the time of the earthquake can be grasped with high accuracy, and the safety can be ensured. It is possible to provide seismic response analysis methods for seismic isolation buildings that can be evaluated and seismic safety evaluation methods for seismic isolation devices using seismic response analysis methods for base isolation buildings.

本発明に係る免震建物用地震応答解析手法が用いられる免震建物の一つの実施例を示す断面図である。It is sectional drawing which shows one Example of the base isolation building in which the seismic response analysis method for base isolation buildings based on this invention is used. 免震建物に設けられた免震層の構成についての一つの実施例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of one Example about the structure of the base isolation layer provided in the base isolation building. 図2に示す免震装置回りの地震時における変形モードを示す断面図である。It is sectional drawing which shows the deformation | transformation mode at the time of the earthquake around the seismic isolation apparatus shown in FIG. 免震建物用地震応答解析手法に用いられる一つの基本解析モデルの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of one basic analysis model used for the seismic response analysis method for seismic isolation buildings. 図4の基本解析モデルの免震層に付加曲げモーメントを入力し、下部構造に付加地盤の部材要素を追加した連成解析モデルの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the coupled analysis model which added the additional bending moment to the seismic isolation layer of the basic analysis model of FIG. 4, and added the member element of the additional ground to the lower structure. 上部構造、下部構造、及び免震層を一体化し、基礎杭の全体をモデル化した一体型・杭全体モデルを示す断面図である。It is sectional drawing which shows the integrated and the whole pile model which united the upper structure, the lower structure, and the seismic isolation layer, and modeled the whole foundation pile. 免震建物に設けられた免震装置の地震時における回転変形量を制御する回転制御機構の一つの実施例を示す説明図である。It is explanatory drawing which shows one Example of the rotation control mechanism which controls the amount of rotation deformation at the time of the earthquake of the seismic isolation apparatus provided in the base isolation building. 免震装置の耐震安全性評価手法のステップを示すフロー図である。It is a flowchart which shows the step of the seismic safety evaluation method of a seismic isolation apparatus. 基礎免震工法の一つの実施例の概略構成、及び基礎免震工法に用いられる免震装置が地震時において想定される変形モードを示す断面図である。It is sectional drawing which shows the deformation | transformation mode with which the schematic structure of one Example of a basic seismic isolation method and the seismic isolation apparatus used for a basic seismic isolation method are assumed at the time of an earthquake. 基礎免震工法に対応する一つの地震応答解析モデルである上部構造のスウェイ・ロッキング(SR)モデルを示す説明図である。It is explanatory drawing which shows the sway rocking (SR) model of the superstructure which is one seismic response analysis model corresponding to a basic seismic isolation method.

(免震建物)
以下に、図面を用いて本発明に係る免震建物用耐震安全評価手法の実施形態につき、詳細に説明する。図1に、本免震建物用耐震安全評価手法が用いられる免震建物20の一つの実施例を断面図で示す。免震建物用耐震安全評価手法は、柱24、梁25、及び床スラブ26からなる建物の上部構造21と、地盤32に打設されて建物を支持する基礎杭30などからなる下部構造22と、上部構造21及び下部構造22の間であって免震装置33が設けられる免震層23と、からなる免震建物20に用いられる。ここで、本明細書では、免震建物20において免震層23より上部の構造体を上部構造21とし、免震層23より上部の構造体を下部構造22と称し、上部構造21及び下部構造22が免震層23により連結されるという構成とするが、この構成に限らない。
(Seismic isolation building)
Hereinafter, embodiments of the seismic safety evaluation method for seismic isolation buildings according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing one embodiment of a base-isolated building 20 in which the seismic safety evaluation method for base-isolated buildings is used. The seismic safety evaluation method for a base-isolated building includes an upper structure 21 of a building composed of columns 24, beams 25, and a floor slab 26, and a lower structure 22 composed of a foundation pile 30 that is placed on the ground 32 and supports the building. The seismic isolation layer 23 between the upper structure 21 and the lower structure 22 and provided with the seismic isolation device 33 is used for the seismic isolation building 20. Here, in this specification, the structure above the seismic isolation layer 23 in the seismic isolation building 20 is referred to as the upper structure 21, and the structure above the seismic isolation layer 23 is referred to as the lower structure 22. Although it is set as the structure that 22 is connected by the seismic isolation layer 23, it is not restricted to this structure.

本実施形態では、下部構造22には免震装置33が設置される杭頭連結部であるパイルキャップ29、及び基礎構造であるつなぎスラブ27が設けられるが、免震建物20の構造要素はこれらの構成には限らない。例えば、つなぎスラブ29は扁平梁等の梁材でも良い。また、例えば、パイルキャップ29が省略されて免震装置33が直接基礎杭30に設置される「杭頭免震工法」であっても良い。また、上部構造21は、例えば、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造などのあらゆる構造形式であって良い。さらに、地盤32に設けられる基礎杭30は、例えば、鋼管杭、コンクリート場所打杭、PC杭などのあらゆる杭形式であって良い。   In the present embodiment, the lower structure 22 is provided with a pile cap 29 that is a pile head connecting portion on which the seismic isolation device 33 is installed, and a connecting slab 27 that is a foundation structure. The configuration is not limited to this. For example, the connecting slab 29 may be a beam material such as a flat beam. Further, for example, a “pile head seismic isolation method” in which the pile cap 29 is omitted and the seismic isolation device 33 is installed directly on the foundation pile 30 may be used. Further, the upper structure 21 may be of any structural form such as a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, or the like. Furthermore, the foundation pile 30 provided in the ground 32 may be of any pile type such as, for example, a steel pipe pile, a concrete cast-in-place pile, or a PC pile.

(免震層の構成)
図2に、本免震建物用地震応答解析手法が用いられる免震建物20に設けられた免震層23の構成についての一つの実施例の概略構成を示す。また、図3に、図2に示す免震層23の地震時における変形モードを示す。上部構造21は、柱24、曲げ剛性の高い梁25及び床スラブ26から構成される。一方、免震装置33と基礎杭の杭頭部39とを接続するパイルキャップ29は、比較的曲げ剛性の低いつなぎスラブ27により相互に連結される。このつなぎスラブ27は、地震による水平力を受けた場合に、複数の基礎杭30をばらばらに水平変位することなくほぼ同一方向に変位させ、複数の基礎杭30全体で水平力に抵抗させる。
(Structure of seismic isolation layer)
In FIG. 2, the schematic structure of one Example about the structure of the base isolation layer 23 provided in the base isolation building 20 in which this seismic response analysis method for base isolation buildings is used is shown. FIG. 3 shows a deformation mode of the seismic isolation layer 23 shown in FIG. 2 during an earthquake. The upper structure 21 includes a column 24, a beam 25 having high bending rigidity, and a floor slab 26. On the other hand, the pile cap 29 which connects the seismic isolation apparatus 33 and the pile head 39 of a foundation pile is mutually connected by the connecting slab 27 with comparatively low bending rigidity. When receiving a horizontal force due to an earthquake, the connecting slab 27 displaces the plurality of foundation piles 30 in substantially the same direction without being horizontally displaced so that the plurality of foundation piles 30 as a whole resist the horizontal force.

図9に示す従来の免震建物40では、基礎梁47を剛とし、その基礎梁47に免震装置53を設置するという、いわゆる「基礎免震工法」が採用されていた。この基礎免震工法では、地震時において免震層43では曲げ変形よりもせん断変形が卓越する。従って、免震装置53は、横方向に大きくスウェイ(δ)するものの、免震装置53の回転量(Θ)については無視できる量であった。本免震建物20では、従来の曲げ剛性の高い基礎梁47を比較的曲げ剛性の低いつなぎスラブ27とすることで梁要素を合理化する構法が用いられる。これにより、図3に示すように、地震時において免震装置33にはより大きな回転量(Θ)が発生する。すなわち、曲げ剛性の高い大梁45が接続する免震装置の上フランジ34aに対し、曲げ剛性が比較的低いつなぎスラブ27が接続する免震装置の下フランジ34bとの間に回転量(Θ)が発生する。この回転量(Θ)は、2方向曲げMx及びMyそれぞれに対応して2方向回転量Θx、Θyが生じ、最大の回転量(Θmax)は、(Θx+Θy)1/2となり、この回転量(Θmax)により免震装置33の機能が低下する虞が生じる。 In the conventional seismic isolation building 40 shown in FIG. 9, a so-called “base seismic isolation method” in which the base beam 47 is rigid and the base isolation device 53 is installed on the base beam 47 has been adopted. In this basic seismic isolation method, shear deformation is superior to bending deformation in the seismic isolation layer 43 during an earthquake. Therefore, although the seismic isolation device 53 swayed greatly (δ) in the lateral direction, the amount of rotation (Θ) of the seismic isolation device 53 was negligible. In the seismic isolated building 20, a construction method is used in which the beam elements are rationalized by using a conventional foundation beam 47 having a high bending rigidity as a connecting slab 27 having a relatively low bending rigidity. As a result, as shown in FIG. 3, a greater amount of rotation (Θ) is generated in the seismic isolation device 33 during an earthquake. That is, the amount of rotation (Θ) is between the upper flange 34a of the seismic isolation device connected to the large beam 45 having high bending rigidity and the lower flange 34b of the seismic isolation device connected to the connecting slab 27 having relatively low bending rigidity. Occur. This rotation amount (Θ) has two-direction rotation amounts Θx and Θy corresponding to the two-way bending Mx and My, respectively, and the maximum rotation amount (Θ max ) is (Θx + Θy) 1/2 , and this rotation amount There is a possibility that the function of the seismic isolation device 33 is lowered due to (Θ max ).

(免震建物用地震応答解析手法)
図4及び図5に、本発明に係る免震建物用地震応答解析手法に用いられる免震建物用地震応答解析モデル1を示す。まず図4に、免震建物用地震応答解析モデル1の一つである基本解析モデル1aの概要を示す。基本解析モデル1aは、建物の上部構造2、免震装置33が設けられる免震層4、基礎構造の一つの実施例であるつなぎスラブ6、杭頭連結部の一つの実施例であるパイルキャップ7、基礎杭8及び地盤を一体化した。さらに基礎杭8を縦方向に連続するモデルに集約した「一体型・杭集約モデル」である。なお、この基本解析モデル1aにおいて、大きな黒丸は「質量(m)」を示し、小さな黒丸は「節点」を示し、棒線は「部材要素」を示す。
(Seismic response analysis method for base-isolated buildings)
4 and 5 show a seismic response analysis model 1 for a seismic isolation building used in the seismic response analysis method for a seismic isolation building according to the present invention. First, FIG. 4 shows an outline of a basic analysis model 1a which is one of the seismic response analysis models 1 for base-isolated buildings. The basic analysis model 1a includes a superstructure 2 of a building, a seismic isolation layer 4 provided with a seismic isolation device 33, a tether slab 6 which is one embodiment of the foundation structure, and a pile cap which is one embodiment of a pile head connecting portion. 7. The foundation pile 8 and the ground were integrated. Furthermore, it is an “integrated / pile consolidation model” in which the foundation piles 8 are consolidated into a model that is continuous in the vertical direction. In this basic analysis model 1a, a large black circle indicates “mass (m)”, a small black circle indicates “node”, and a bar indicates a “member element”.

(基本解析モデルの構成)
上部構造2の基本解析モデル1aは、建物の各層の質量(m)が質点17aに置換され、建物の各層のせん断剛性(k)がせん断バネ16aに置換された多質点せん断型の解析モデルである。また、免震装置33が設けられる免震層4の上部の大梁の部材要素5は、両端部がローラー支持に置換され、大梁回りの質量は質点17bに集約される。さらに、免震層4の下部のつなぎスラブ27の部材要素6は、両端部がローラー支持に置換され、つなぎスラブ等の質量は質点17cに集約される。また、基礎杭は縦方向の部材要素8に分割され、各部材要素8の質量は質点17dに置換される。また、地盤のせん断剛性はせん断バネ16cに置換される。そして、基礎杭の部材要素8の杭頭部10とパイルキャップの部材要素7との接合部の固定度は、半剛接接合となるため杭頭曲げバネ15bにより評価される。
(Configuration of basic analysis model)
The basic analysis model 1a of the superstructure 2 is a multi-mass point analysis model in which the mass (m) of each layer of the building is replaced with a mass point 17a, and the shear stiffness (k) of each layer of the building is replaced with a shear spring 16a. is there. In addition, the large beam member element 5 on the upper part of the seismic isolation layer 4 provided with the seismic isolation device 33 is replaced with roller support at both ends, and the mass around the large beam is concentrated at the mass point 17b. Further, both end portions of the member element 6 of the connecting slab 27 at the lower part of the seismic isolation layer 4 are replaced with roller supports, and the mass of the connecting slab and the like is concentrated at the mass point 17c. Further, the foundation pile is divided into longitudinal member elements 8, and the mass of each member element 8 is replaced with a mass point 17d. Further, the shear rigidity of the ground is replaced by the shear spring 16c. And the fixed degree of the junction part of the pile head part 10 of the member element 8 of a foundation pile and the member element 7 of a pile cap becomes semi-rigid joining, and is evaluated by the pile head bending spring 15b.

(免震階のモデル化)
免震層4には、免震装置33の回転変形量を時刻歴にて算出する免震層曲げバネ15aが設けられる。また、免震層4には、免震装置33の水平変位量を時刻歴にて算出する免震層せん断バネ16bが設けられる。これらの免震層曲げバネ15a及び免震層せん断バネ16bにより、免震層4において地震時に免震装置33が受ける曲げ変形及びせん断変形が評価できる。このように、上部構造2と下部構造3との間に免震装置33が設けられる免震層4を設け、免震層曲げバネ15a及び免震層せん断バネ16bによるモデル化することで地震時に免震装置33が受ける変形量が明確に把握できる。
(Modeling of seismic isolation floor)
The seismic isolation layer 4 is provided with a seismic isolation layer bending spring 15 a that calculates the amount of rotational deformation of the seismic isolation device 33 based on the time history. The seismic isolation layer 4 is provided with a seismic isolation layer shear spring 16b that calculates the horizontal displacement of the seismic isolation device 33 based on the time history. With the seismic isolation layer bending spring 15a and the seismic isolation layer shear spring 16b, the bending deformation and the shear deformation that the seismic isolation device 33 receives in the seismic isolation layer 4 during an earthquake can be evaluated. In this way, the seismic isolation layer 4 provided with the seismic isolation device 33 is provided between the upper structure 2 and the lower structure 3, and modeling is performed by the seismic isolation layer bending spring 15a and the seismic isolation layer shear spring 16b. The amount of deformation that the seismic isolation device 33 receives can be clearly understood.

(連成解析モデルの構成)
図5に、図4の基本解析モデル1aの免震層4に付加曲げモーメント12を入力し、下部構造3に付加地盤の部材要素9を追加した連成解析モデル1bの概要を示す。この連成解析モデル1bも基本解析モデル1aと同様に、建物の上部構造2、免震装置33が設けられる免震層4、基礎構造の一つの実施例であるつなぎスラブ6、杭頭連結部の一つの実施例であるパイルキャップ7、基礎杭8、及び地盤を一体化した。さらに基礎杭8を縦方向に連続するモデルに集約した「一体型・杭集約モデル」である。なお、この連成解析モデル1bにおいても、大きな黒丸は「質量(m)」を示し、小さな黒丸は「節点」を示し、棒線は「部材要素」を示す。
(Configuration of coupled analysis model)
FIG. 5 shows an outline of the coupled analysis model 1b in which the additional bending moment 12 is input to the seismic isolation layer 4 of the basic analysis model 1a of FIG. 4 and the additional ground member element 9 is added to the lower structure 3. As with the basic analysis model 1a, this coupled analysis model 1b is also the superstructure 2 of the building, the seismic isolation layer 4 provided with the seismic isolation device 33, the connecting slab 6 as an example of the foundation structure, the pile head connection part The pile cap 7, the foundation pile 8, and the ground which are one Example of were integrated. Furthermore, it is an “integrated / pile consolidation model” in which the foundation piles 8 are consolidated into a model that is continuous in the vertical direction. Also in this coupled analysis model 1b, a large black circle indicates “mass (m)”, a small black circle indicates “node”, and a bar indicates “member element”.

そして、図4の基本解析モデル1aに対して免震層4の変位(δ)により生じる偏心曲げモーメント12を時刻歴で免震層4に加えることで、免震層4のP−δ効果を考慮したより精度の高い地震時の挙動が反映できる。また、基礎杭の部材要素8には、建物直下や近傍の地盤の質量が付加地盤の質量として質点17eに作用される。また、建物直下や近傍の地盤の剛性が付加地盤バネ16dとして作用される。これにより、建物直下や近傍の地盤の影響を地震応答解析に加味することが可能となり、特に、軟弱地盤の杭挙動に対する影響が地震応答解析に反映できる。   Then, the eccentric bending moment 12 generated by the displacement (δ) of the base isolation layer 4 in the basic analysis model 1a of FIG. 4 is added to the base isolation layer 4 with time history, so that the P-δ effect of the base isolation layer 4 is obtained. More accurate earthquake behavior can be reflected. Further, the mass of the ground immediately below or near the building acts on the mass 17e as the mass of the additional ground on the member element 8 of the foundation pile. Further, the rigidity of the ground immediately below or near the building acts as the additional ground spring 16d. As a result, it is possible to add the influence of the ground directly under the building or in the vicinity to the seismic response analysis. In particular, the influence of the soft ground on the pile behavior can be reflected in the seismic response analysis.

(基礎杭のモデル化)
図6に、上部構造2,下部構造3,及び免震層4を一体化し、基礎杭8の全体をモデル化した一体型・杭全体モデルを示す。図6(a)は、免震建物20の平面図を示す。この平面図では、断面で示される柱24が梁25により接続され、床面には小梁19が設けられている。この平面図を一点鎖線で示される構面18で縦方向に切断した構造体を図6(b)でモデル化する。上述した基本解析モデル1a及び連成解析モデル1bは、基礎杭30全体を1本の基礎杭の部材要素8に集約したモデルとしている。このモデル化では、基礎杭30を含む構造体全体の地震応答を把握することができるが、個々の免震装置33や基礎杭30の挙動を把握することは困難である。一方、図6の杭全体モデルは、免震建物20の一つの構面を取り出し、上部構造21を構面内で集約し、図2に示す、免震装置33が設けられた免震層23、つなぎスラブ27、パイルキャップ29、基礎杭30、及び地盤32を個々にモデル化した全体モデルに群杭を多数本の基礎杭30で評価したモデルとしている。そして、免震層4は、図4及び図5の基本解析モデル1aと同様に、免震層曲げバネ15a及び免震層せん断バネ16bが免震装置33ごとに設けられる。このモデル化により付加曲げモーメント12が免震装置33ごとに入力できる。これにより、個々の免震装置及び基礎杭の挙動をより精度よく地震応答解析に反映させることができる。
(Modeling of foundation pile)
FIG. 6 shows an integrated / pile overall model in which the upper structure 2, the lower structure 3, and the seismic isolation layer 4 are integrated to model the entire foundation pile 8. FIG. 6A shows a plan view of the seismic isolation building 20. In this plan view, pillars 24 shown in cross section are connected by beams 25, and small beams 19 are provided on the floor surface. A structure obtained by cutting the plan view in the vertical direction along the composition plane 18 indicated by a one-dot chain line is modeled in FIG. The basic analysis model 1a and the coupled analysis model 1b described above are models in which the entire foundation pile 30 is integrated into the member element 8 of one foundation pile. In this modeling, the seismic response of the entire structure including the foundation pile 30 can be grasped, but it is difficult to grasp the behavior of each seismic isolation device 33 and the foundation pile 30. On the other hand, the pile overall model of FIG. 6 takes out one structural surface of the base-isolated building 20, aggregates the upper structure 21 in the surface, and the base-isolated layer 23 provided with the base-isolating device 33 shown in FIG. As a whole model in which the tether slab 27, the pile cap 29, the foundation pile 30, and the ground 32 are individually modeled, the group pile is a model in which a large number of foundation piles 30 are evaluated. And the seismic isolation layer 4 is provided with the seismic isolation layer bending spring 15a and the seismic isolation layer shear spring 16b for every seismic isolation device 33 similarly to the basic analysis model 1a of FIG. 4 and FIG. With this modeling, the additional bending moment 12 can be input for each seismic isolation device 33. Thereby, the behavior of each seismic isolation device and foundation pile can be more accurately reflected in the seismic response analysis.

(地震動の入力方法)
図4及び図5に示すように、免震建物用地震応答解析モデル1には、基礎杭の部材要素8の杭下端部11に地震動入力節点14が設けられ、設計用地震動として加速度波形が入力される。また、基礎杭の部材要素8の縦方向の所定のピッチに地震動入力節点13が設けられ、設計用地震動として地震時変位波形が地盤軸方向バネ16cを介して入力される。すなわち、本免震建物用地震応答解析手法は、設計用地震動を基礎杭の部材要素8の各部に同時刻に作用させ、上部構造2から免震層4、下部構造3に至る一体化された構造モデルの各部の時刻歴応答結果を同時刻に算出する。
(How to input earthquake motion)
As shown in FIGS. 4 and 5, the seismic response analysis model 1 for a base-isolated building is provided with a ground motion input node 14 at a pile lower end portion 11 of a member element 8 of a foundation pile, and an acceleration waveform is input as a design ground motion. Is done. Moreover, the seismic motion input node 13 is provided at a predetermined vertical pitch of the member element 8 of the foundation pile, and an earthquake displacement waveform is input via the ground axial spring 16c as a design seismic motion. In other words, this seismic response analysis method for base-isolated buildings was designed to apply design seismic motion to each part of the base pile member element 8 at the same time, and integrated from the upper structure 2 to the base isolation layer 4 and the lower structure 3. The time history response result of each part of the structural model is calculated at the same time.

(免震装置の回転制御機構)
図7に、免震建物20に設けられた免震装置33の地震時における回転変形量を制御する回転制御機構の一つの実施例を示す。本免震建物用地震応答解析結果に基づき免震装置33に有害な回転を発生させないように、後述するように構造設計上の対策が検討される。特許文献2及び特許文献3には、その対策の一つの実施形態として、免震装置33の回転制御機構が提案されている。免震装置33の下部のパイルキャップ29及び基礎杭30には、接合鉄筋36が設けられ、上部アンカー35a及び下部アンカー35bにより定着され、つなぎスラブ27、パイルキャップ29及び基礎杭30が一体化されている。接合鉄筋36は、円形の基礎杭30の断面に合わせて複数の接合鉄筋36が円形に配置されている。この接合鉄筋は間隔(d)だけ離れている。また、接合鉄筋36には、パイルキャップ29と基礎杭30との境界を挟んでカップラー37が設けられる。また、パイルキャップ29と基礎杭30との境界には回転剛性調整シート38が設けられている。
(Rotation control mechanism of seismic isolation device)
FIG. 7 shows an embodiment of a rotation control mechanism that controls the amount of rotational deformation of the seismic isolation device 33 provided in the base isolation building 20 during an earthquake. Based on the seismic response analysis result for the base-isolated building, measures for structural design are examined as described later so as not to cause harmful rotation in the base-isolated device 33. Patent Document 2 and Patent Document 3 propose a rotation control mechanism of the seismic isolation device 33 as one embodiment of the countermeasure. The pile cap 29 and the foundation pile 30 at the lower part of the seismic isolation device 33 are provided with joint reinforcing bars 36 and fixed by the upper anchor 35a and the lower anchor 35b, and the connecting slab 27, the pile cap 29 and the foundation pile 30 are integrated. ing. The joining rebar 36 has a plurality of joining rebars 36 arranged in a circle in accordance with the cross section of the circular foundation pile 30. The joint reinforcing bars are separated by a distance (d). Further, a coupler 37 is provided on the joining rebar 36 with a boundary between the pile cap 29 and the foundation pile 30 interposed therebetween. A rotational stiffness adjusting sheet 38 is provided at the boundary between the pile cap 29 and the foundation pile 30.

特許文献2及び特許文献3に記載されているように、上述した各構成要素は、免震装置33の回転制御機構として機能する。すなわち、パイルキャップ29と基礎杭の杭頭部39とは完全固定ではなく半剛接になる。この半剛接接合の固定度(φ)を完全固定の場合φ=1とし、ピン接合の場合をφ=0とすると、0〜1の中間の値となる。この固定度(φ)を変化させることで免震装置33が地震時に受ける回転量が調整できる。例えば、接合鉄筋の間隔(d)を広げると接合部の曲げ剛性(EI)が高くなり、固定度が1に近くなる。一方、接合鉄筋の間隔(d)を狭めると接合部の曲げ剛性(EI)が低くなり、固定度が0に近くなる。また、カップラー37に調整された降伏強度又は断面積を有する材料を使用し、地震時に引張降伏させてヒンジを発生させてパイルキャップ29の回転性能を低下させることができる。さらに、基礎杭の杭頭部39に設けられた回転剛性調整シート38の圧縮力を負担するコンクリート断面の範囲を制限して接合鉄筋36に発生する引張力を制御することができる。これらに免震装置33の地震時における回転変形量を調整する方法は、上記方法に限らず、例えば、鉄筋やコンクリートの強度を調整したり、断面積を調整したりする仕様変更によっても可能となり、その他の方法も可能である。   As described in Patent Document 2 and Patent Document 3, each component described above functions as a rotation control mechanism of the seismic isolation device 33. That is, the pile cap 29 and the pile head 39 of the foundation pile are not completely fixed but are semi-rigid. When the fixing degree (φ) of the semi-rigid junction is completely fixed, φ = 1, and when the pin junction is φ = 0, an intermediate value between 0 and 1 is obtained. The amount of rotation that the seismic isolation device 33 receives during an earthquake can be adjusted by changing the degree of fixation (φ). For example, when the interval (d) between the joining reinforcing bars is increased, the bending rigidity (EI) of the joining portion is increased and the fixing degree is close to 1. On the other hand, when the interval (d) of the joining reinforcing bars is reduced, the bending rigidity (EI) of the joining portion is lowered and the fixing degree is close to zero. Moreover, the material which has the yield strength or cross-sectional area adjusted to the coupler 37 is used, it is made to yield at the time of an earthquake, a hinge is generated, and the rotational performance of the pile cap 29 can be reduced. Furthermore, the tensile force generated in the joint rebar 36 can be controlled by limiting the range of the concrete cross section that bears the compressive force of the rotational stiffness adjusting sheet 38 provided on the pile head 39 of the foundation pile. The method for adjusting the amount of rotational deformation at the time of earthquake of the seismic isolation device 33 is not limited to the above method, and for example, it is also possible by changing the specifications such as adjusting the strength of reinforcing bars and concrete or adjusting the cross-sectional area. Other methods are possible.

(免震装置の耐震安全性評価手法)
免震建物用地震応答解析における曲げバネ15aの変形量に関する時刻歴応答結果から算定された免震装置33の曲げ回転量(θ)と、設定された免震装置33の許容回転量(Θ)との関係から地震時における免震装置33の回転変形性能に対する安全性を評価する。すなわち、曲げバネ15aの挙動から算出された免震装置33の曲げ回転量(θ)が許容曲げ回転量(Θ)以内に収まるように、例えば、つなぎスラブ27、基礎杭30、パイルキャップ29などの曲げ剛性(EI)を調整する。免震装置33回りの曲げ剛性(EI)は、パイルキャップ29と基礎杭の杭頭部39との固定度(φ)により調整できる。また、地震時に接合鉄筋36のカップラー37を引張降伏させてヒンジを発生させてパイルキャップ29の回転性能を低下させることで調整できる。さらに、剛性調整シート38により調整できる。
(Seismic safety evaluation method for seismic isolation devices)
The bending rotation amount (θ) of the seismic isolation device 33 calculated from the time history response result regarding the deformation amount of the bending spring 15a in the seismic response analysis for the seismic isolation building, and the set allowable rotation amount (Θ 0 ) of the seismic isolation device 33 ) To evaluate the safety against the rotational deformation performance of the seismic isolation device 33 during an earthquake. That is, for example, the connecting slab 27, the foundation pile 30, and the pile cap 29 so that the bending rotation amount (θ) of the seismic isolation device 33 calculated from the behavior of the bending spring 15a falls within the allowable bending rotation amount (Θ 0 ). Adjust the bending stiffness (EI). The bending rigidity (EI) around the seismic isolation device 33 can be adjusted by the fixing degree (φ) between the pile cap 29 and the pile head 39 of the foundation pile. Further, it can be adjusted by lowering the rotational performance of the pile cap 29 by pulling and yielding the coupler 37 of the joining rebar 36 in the event of an earthquake to generate a hinge. Furthermore, it can be adjusted by the rigidity adjustment sheet 38.

また、建物の一般的な耐震設計では、上部構造2の上部構造せん断バネ16aの挙動から算出された各階の水平変位量(δ)が許容水平変位量(Δ)以内に収まるように上部構造2の各階のせん断剛性(GA)が調整される。本発明ではこれらの耐震設計に加え、免震装置33の耐震安全性評価の一環として免震層せん断バネ16bの挙動から算出された免震装置33の水平変位量(δ)が許容水平変位量(Δ)以内に収まるように免震層23のせん断剛性(GA)が調整される。例えば、免震層23は地震力に対してせん断変形が曲げ変形に対して卓越しているため、免震層23におけるせん断剛性(GA)とを調整してせん断変形量を抑える、などの対策を行うことができる。 In a general seismic design of buildings, upper as horizontal displacement of the floor, which is calculated from the behavior of the upper structure 2 of the superstructure shear spring 16a ([delta]) falls within the allowable horizontal displacement (delta 0) within the structure The shear rigidity (GA) of each floor of 2 is adjusted. In the present invention, in addition to these seismic design, the horizontal displacement (δ) of the seismic isolation device 33 calculated from the behavior of the seismic isolation layer shear spring 16b as part of the seismic safety evaluation of the seismic isolation device 33 is the allowable horizontal displacement. The shear stiffness (GA) of the seismic isolation layer 23 is adjusted so as to be within (Δ 0 ). For example, since the seismic isolation layer 23 has superior shear deformation with respect to the seismic force, the measures such as adjusting the shear rigidity (GA) in the seismic isolation layer 23 to suppress the shear deformation amount, etc. It can be performed.

図8に、免震装置33の耐震安全性評価手法のステップをフロー図で示す。各ステップは符号S1から符号S6により示す。まず、積層ゴム支承である免震装置33の地震時における許容曲げ回転量(Θ)及び許容水平変位量(Δ)を設定する(S1)。次に、鉄筋、コンクリート等の仕様を決めて免震層4における曲げ剛性(EI)、及びせん断剛性(GA)を算出する(S2)。また、パイルキャップ29に接合される基礎杭30の杭頭の固定度(φ)を算出する(S3)。そして、免震建物用地震応答解析プログラムに曲げ剛性(EI)、せん断剛性(GA)、及び固定度(φ)を入力する(S4)。そして、地震応答解析結果から、最大曲げ回転量(θmax)が許容曲げ回転量(Θ)より小さいか否かの検討を行い(S5)、小さければ次のステップへ進み、大きければS2又はS3に戻る。また、地震応答解析結果から、最大水平変位量(δmax)が許容水平変位量(Δ)より小さいか否かの検討を行い(S6)、小さければ終了し、大きければS2又はS3に戻る。 In FIG. 8, the step of the seismic safety evaluation method of the seismic isolation apparatus 33 is shown with a flowchart. Each step is indicated by reference numerals S1 to S6. First, an allowable bending rotation amount (Θ 0 ) and an allowable horizontal displacement amount (Δ 0 ) during an earthquake of the seismic isolation device 33 that is a laminated rubber bearing are set (S 1). Next, specifications such as reinforcing bars and concrete are determined, and bending stiffness (EI) and shear stiffness (GA) in the seismic isolation layer 4 are calculated (S2). Moreover, the fixed degree (phi) of the pile head of the foundation pile 30 joined to the pile cap 29 is calculated (S3). Then, the bending stiffness (EI), shear stiffness (GA), and fixing degree (φ) are input to the seismic response analysis program for seismic isolation buildings (S4). Then, from the seismic response analysis result, it is examined whether or not the maximum bending rotation amount (θ max ) is smaller than the allowable bending rotation amount (Θ 0 ) (S5). Return to S3. Further, from the seismic response analysis result, it is examined whether or not the maximum horizontal displacement amount (δ max ) is smaller than the allowable horizontal displacement amount (Δ 0 ) (S6). If it is smaller, the process ends. If larger, the process returns to S2 or S3. .

1 免震建物用地震応答解析モデル,1a 基本解析モデル,1b 連成解析モデル、2,62 上部構造のモデル,3,69 下部構造のモデル、4,64 免震層のモデル、5 大梁の部材要素、6 つなぎスラブ又は基礎構造の部材要素、7 パイルキャップ又は杭頭連結部の部材要素、8 基礎杭の部材要素、9 付加地盤の部材要素、10 杭頭部、11 杭下端部、12 付加曲げモーメント(P−δ曲げモーメント)、13 地震動(時刻歴変位)入力節点、14 地震動(時刻歴加速度)入力節点、15 曲げバネ,15a 免震層曲げバネ,15b 杭頭曲げバネ、16,66 せん断バネ,16a 上部構造せん断バネ,16b,68 免震層せん断バネ,16c 地盤軸方向バネ,16d 付加地盤せん断バネ、16e 杭先端地盤軸方向バネ、17,67 質点,17a 質点(上部構造),17b 質点(大梁接合部),17c 質点(パイルキャップ、つなぎスラブ等),17d 質点(基礎杭),17e 質点(付加地盤)、18 構面、
19 小梁、20 (免震建物用地震応答解析手法が用いられる)免震建物、40 基礎免震工法による免震建物、21,41 上部構造、22,42 下部構造、23,43 免震層、24,44 柱、25,45 梁、26,46 床スラブ、27 つなぎスラブ、28,48 コンクリートスラブ、29,49 パイルキャップ(杭頭連結部)、30,50 基礎杭、32,52 地盤、33,53 免震装置、34a 免震装置の上フランジ,34b 免震装置の下フランジ、35 アンカー,35a 上部アンカー,35b 下部アンカー、36 接合鉄筋、37 カップラー、38 回転剛性調整シート、39,51 基礎杭の杭頭部、47 基礎梁、60 スウェイ・ロッキング(SR)モデル、61 固定点、63 スウェイバネ、65 ロッキングバネ、m 質量、k 剛性。
1 Seismic response analysis model for base-isolated buildings, 1a Basic analysis model, 1b Coupling analysis model, 2,62 Superstructure model, 3,69 Substructure model, 4,64 Base-isolation layer model, 5 Large beam member Element, 6 Connecting slab or foundation structural member element, 7 Pile cap or pile head connection element, 8 Foundation pile member element, 9 Additional ground member element, 10 Pile head, 11 Pile lower end, 12 Addition Bending moment (P-δ bending moment), 13 Ground motion (time history displacement) input node, 14 Ground motion (time history acceleration) input node, 15 bending spring, 15a Seismic isolation layer bending spring, 15b Pile head bending spring, 16, 66 Shear spring, 16a Superstructure shear spring, 16b, 68 Seismic isolation layer shear spring, 16c Ground axial spring, 16d Additional ground shear spring, 16e Pile tip ground axial spring, 17, 6 Mass, 17a mass (superstructure), 17b mass (girders joints), 17c mass (pile cap, connecting slabs, etc.), 17d mass (foundation piles), 17e mass (additional ground), 18 Plane,
19 Small beam, 20 Base-isolated building (uses seismic response analysis method for base-isolated buildings), 40 Base-isolated building based on base-isolation method, 21,41 Superstructure, 22,42 Substructure, 23,43 Base-isolated layer 24,44 Pillar, 25,45 Beam, 26,46 Floor slab, 27 Connecting slab, 28,48 Concrete slab, 29,49 Pile cap (Pile head connection part), 30,50 Foundation pile, 32,52 Ground, 33,53 Seismic isolation device, 34a Upper flange of seismic isolation device, 34b Lower flange of seismic isolation device, 35 anchor, 35a Upper anchor, 35b Lower anchor, 36 Joint rebar, 37 coupler, 38 Rotation stiffness adjustment sheet, 39, 51 Pile head of foundation pile, 47 foundation beam, 60 sway rocking (SR) model, 61 fixed point, 63 sway spring, 65 rocking spring, m mass, Rigidity.

特許第3899354号Japanese Patent No. 3899354 特許第4934769号Japanese Patent No. 4934769 特許第5082085号Japanese Patent No. 5082085

上記目的を達成するため、本発明に係る免震建物用地震応答解析手法は、免震建物の上部構造、基礎杭及びパイルキャップを含む下部構造、及び上部の大梁と下部のつなぎスラブとの間に設けられる免震層に関する地震応答解析モデルを用いた免震建物用地震応答解析手法において、上部構造は、建物の各層が質点及びせん断バネに置換され、免震層の上部大梁は一つの質点及び両端部をローラー支持とした部材要素に置換され、免震層は、免震装置の回転変形量を時刻歴にて算出する曲げバネと、免震装置の水平変位量を時刻歴にて算出するせん断バネと、により免震装置が置換され、下部構造は、免震層の下部のつなぎスラブは一つの質点及び両端部をローラー支持とした部材要素に置換され、基礎杭は縦方向に分割された複数の部材要素及び複数の質点に置換され、地盤のせん断剛性が前記複数の質点に連結された複数のせん断バネに置換され、基礎杭の柱頭部とパイルキャップとの半剛接接合の固定度は柱頭に設けられた曲げバネにより評価され、設計用地震動が基礎杭の各質点に同時刻に作用され、地震時における免震装置の水平変位により生じる偏心曲げモーメントが付加曲げとして時刻歴により曲げバネに作用され、その結果、上部構造から基礎杭に至る一体化された地震応答解析モデルの各部の時刻歴応答結果が同時刻に算出され、一体化された上部構造及び下部構造における地震時の挙動の影響を受けた曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から、地震時における免震装置の回転変形性能に対する安全性が評価されることを特徴とする。 In order to achieve the above object, the seismic response analysis method for a base-isolated building according to the present invention includes an upper structure of the base-isolated building, a lower structure including a foundation pile and a pile cap, and a space between the upper beam and the lower connecting slab. In the seismic response analysis method for base-isolated buildings using the seismic response analysis model for base-isolated layers, each layer of the building is replaced with a mass point and a shear spring, and the upper beam of the base-isolated layer is one mass point The base isolation layer is replaced with a roller-supported member element, and the seismic isolation layer calculates the amount of rotational deformation of the base isolation device based on the time history and the horizontal displacement of the base isolation device based on the time history. The seismic isolation device is replaced by a shearing spring, and the substructure is replaced by a member element with one mass point and roller support at both ends, and the foundation pile is divided in the vertical direction. Multiple parts required And a plurality of mass points, the shear stiffness of the ground is replaced by a plurality of shear springs connected to the plurality of mass points, and the degree of fixation of the semi-rigid connection between the column head of the foundation pile and the pile cap is provided at the column head The design ground motion is applied to each mass point of the foundation pile at the same time, and the eccentric bending moment generated by the horizontal displacement of the seismic isolation device during the earthquake is applied to the bending spring according to the time history as an additional bending. As a result, the time history response results of each part of the integrated seismic response analysis model from the superstructure to the foundation pile are calculated at the same time, and the influence of the earthquake behavior in the integrated superstructure and substructure is analyzed. Based on the relationship between the amount of rotation of the seismic isolation device calculated from the time history response result regarding the deformation amount of the received bending spring and the set allowable rotational amount of the seismic isolation device, Security against rotation deformation performance is characterized in that it is evaluated.

また、免震建物用地震応答解析手法は、地震応答解析モデルには、基礎杭の下端部に設けられた一つの節点に設計用地震動として加速度波形が入力され、基礎杭の縦方向の複数の質点には設計用地震動として地震時変位波形が地盤軸方向バネを介して入力されることが好ましい。これにより、設計用地震動を基礎杭の各部に同時刻に作用させ、より精度の高い解析結果を得ることができる。 In addition, in the seismic response analysis method for seismic isolation buildings, in the seismic response analysis model, an acceleration waveform is input as a design seismic motion at one node provided at the lower end of the foundation pile, and multiple vertical vibrations of the foundation pile are obtained. the quality point preferably seismic displacement waveform is input through the soil axial spring as a design ground motion. Thereby, the seismic motion for design is made to act on each part of a foundation pile at the same time, and a more accurate analysis result can be obtained.

以上のように、本発明に係る免震建物の免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法によれば、地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供することができる。 As described above, according to the seismic response analysis method for base-isolated buildings of the base-isolated building according to the present invention and the seismic safety evaluation method for base-isolated devices using the seismic response analysis method for base-isolated buildings , Seismic response analysis method for seismic isolation building and seismic response analysis method for seismic isolation building that can grasp the behavior of the seismic isolation device installed in the base isolation building with high accuracy and reliably evaluate its safety. A method for evaluating seismic safety of seismic devices can be provided.

Claims (9)

建物の上部構造と下部構造との間に免震装置を備える免震建物に用いられる地震応答解析手法において、
建物の上部構造と、
免震装置が設けられる免震層と、
基礎杭、複数の基礎杭の杭頭部同士を連結する基礎構造、及び免震装置を支持して基礎構造と基礎杭の杭頭部とを接合する杭頭連結部、からなる下部構造と、を地盤を含めて一体化し、基礎杭を縦方向に連続する部材要素に集約した免震建物用地震応答解析モデルを構成し、
設計用地震動を基礎杭の各部に同時刻に作用させ、
上部構造から基礎杭に至る一体化された構造モデルの各部の時刻歴応答結果を同時刻に算出することを特徴とする免震建物用地震応答解析手法。
In the seismic response analysis method used for seismically isolated buildings with seismic isolation devices between the superstructure and substructure of the building,
The superstructure of the building,
A seismic isolation layer with seismic isolation devices;
A lower structure comprising a foundation pile, a foundation structure that connects the pile heads of a plurality of foundation piles, and a pile head connection part that supports the seismic isolation device and joins the foundation structure and the pile head of the foundation pile; And seismic response analysis model for base-isolated buildings, in which foundation piles are integrated into a continuous element in the vertical direction.
The design seismic motion is applied to each part of the foundation pile at the same time,
A seismic response analysis method for base-isolated buildings that calculates the time history response results of each part of the integrated structural model from the superstructure to the foundation pile at the same time.
請求項1に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルの免震層には、免震装置の回転変形量を時刻歴にて算出する曲げバネが設けられることを特徴とする免震建物用地震応答解析手法。   2. The seismic response analysis method for a seismic isolation building according to claim 1, wherein a seismic isolation layer of the seismic response analysis model is provided with a bending spring for calculating the amount of rotational deformation of the seismic isolation device with time history. Seismic response analysis method for base-isolated buildings. 請求項1又は2に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルの免震層には、免震装置の水平変位量を時刻歴にて算出するせん断バネが設けられることを特徴とする免震建物用地震応答解析手法。   3. The seismic response analysis method for a seismic isolation building according to claim 1 or 2, wherein a shear spring is provided in the seismic isolation layer of the seismic response analysis model to calculate the horizontal displacement of the seismic isolation device according to time history. A seismic response analysis method for base-isolated buildings. 請求項1乃至3のいずれか1項に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルには、基礎杭の下端部に設けられた節点に設計用地震動として加速度波形が入力され、基礎杭の縦方向の節点には設計用地震動として地震時変位波形が水平地盤バネを介して入力されることを特徴とする免震建物用地震応答解析手法。   The seismic response analysis method for a seismic isolation building according to any one of claims 1 to 3, wherein the seismic response analysis model includes an acceleration waveform as a design seismic motion at a node provided at a lower end portion of a foundation pile. A seismic response analysis method for base-isolated buildings, in which the displacement waveform at the time of earthquake is input to the vertical nodes of the foundation pile as a seismic motion for design via a horizontal ground spring. 請求項1乃至4のいずれか1項に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルの免震層には、地震時における免震装置の水平変位により生じる偏心曲げモーメントが付加曲げとして時刻歴により作用されることを特徴とする免震建物用地震応答解析手法。   The seismic response analysis method for base-isolated buildings according to any one of claims 1 to 4, wherein the seismic base layer of the seismic response analysis model includes an eccentric bending caused by a horizontal displacement of the base isolation device during an earthquake. Seismic response analysis method for base-isolated buildings, characterized in that moments are acted upon by time history as additional bending. 請求項1乃至5のいずれか1項に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルには、群杭を1本の杭に集約したモデル、又は群杭を多数本の杭とするモデル、のいずれかが用いられることを特徴とする免震建物用地震応答解析手法。   The seismic response analysis method for base-isolated buildings according to any one of claims 1 to 5, wherein the seismic response analysis model includes a model in which group piles are aggregated into one pile, or a large number of group piles. A seismic response analysis method for base-isolated buildings, characterized in that one of the pile models is used. 請求項1乃至6のいずれか1項に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルの基礎杭には、建物直下や近傍の地盤質量が付加質量として作用され、建物直下や近傍の地盤のせん断剛性が付加地盤バネとして作用されることを特徴とする免震建物用地震応答解析手法。   The seismic response analysis method for a seismic isolation building according to any one of claims 1 to 6, wherein a ground mass immediately below or near the building acts as an additional mass on the foundation pile of the seismic response analysis model, A seismic response analysis method for base-isolated buildings, in which the shear stiffness of the ground directly under or near the building acts as an additional ground spring. 請求項1乃至7のいずれか1項に記載の免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法であって、曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から地震時における免震装置の回転変形性能に対する安全性を評価することを特徴とする免震装置の耐震安全性評価手法。   A seismic safety evaluation method for a seismic isolation device using the seismic response analysis method for a seismic isolation building according to any one of claims 1 to 7, wherein the seismic safety evaluation method is calculated from a time history response result regarding a deformation amount of a bending spring. The seismic isolation device is characterized by evaluating the safety against the rotational deformation performance of the seismic isolation device during an earthquake from the relationship between the rotation amount of the seismic isolation device and the set allowable rotation amount of the seismic isolation device. Safety assessment method. 請求項8に記載の免震装置の耐震安全性評価手法であって、せん断バネの挙動から算出された免震装置の水平変位量と設定された前記免震装置の許容水平変位量との関係から地震時における免震装置の水平変位性能に対する安全性を評価することを特徴とする免震装置の耐震安全性評価手法。
The seismic isolation safety evaluation method for a seismic isolation device according to claim 8, wherein the horizontal displacement of the seismic isolation device calculated from the behavior of a shear spring and the set allowable horizontal displacement of the seismic isolation device Seismic safety evaluation method for seismic isolation devices, characterized by evaluating the safety against seismic isolation device horizontal displacement performance during earthquakes.
JP2014119305A 2014-06-10 2014-06-10 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings Active JP5698402B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119305A JP5698402B1 (en) 2014-06-10 2014-06-10 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119305A JP5698402B1 (en) 2014-06-10 2014-06-10 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings

Publications (2)

Publication Number Publication Date
JP5698402B1 JP5698402B1 (en) 2015-04-08
JP2015232229A true JP2015232229A (en) 2015-12-24

Family

ID=52837047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119305A Active JP5698402B1 (en) 2014-06-10 2014-06-10 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings

Country Status (1)

Country Link
JP (1) JP5698402B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421482A (en) * 2015-12-30 2016-03-23 北京健安诚岩土工程有限公司 Method for replacing high-strength screw for prestressed pipe pile foundation and prestressed pipe pile foundation adopting method
JP2018003441A (en) * 2016-07-01 2018-01-11 清水建設株式会社 Base-isolated structure
JP2021033822A (en) * 2019-08-28 2021-03-01 Jfeスチール株式会社 Device for selecting member of rigid-frame structure building with history type damper, and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522594B (en) * 2018-10-15 2023-04-18 南昌大学 Method for analyzing concrete stress of beam body single-side jacking modulus type expansion joint anchoring area
CN113609641B (en) * 2021-07-01 2023-08-08 昆明理工大学 Method for obtaining rotational kinetic energy of foundation vibration isolation structure
CN115270274B (en) * 2022-08-16 2024-01-23 上海路博减振科技股份有限公司 Anti-swing vertical vibration isolation design method and structure of subway upper cover building

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606651B2 (en) * 1995-10-20 2005-01-05 オイレス工業株式会社 Seismic response analysis method and analyzer for seismic isolation structure
JPH1062314A (en) * 1996-08-23 1998-03-06 Yoshihiko Akao Method for analyzing structure of nonlinear element
JP3614024B2 (en) * 1999-03-16 2005-01-26 株式会社大林組 Bending / shear separation type building analysis model and analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421482A (en) * 2015-12-30 2016-03-23 北京健安诚岩土工程有限公司 Method for replacing high-strength screw for prestressed pipe pile foundation and prestressed pipe pile foundation adopting method
JP2018003441A (en) * 2016-07-01 2018-01-11 清水建設株式会社 Base-isolated structure
JP2021033822A (en) * 2019-08-28 2021-03-01 Jfeスチール株式会社 Device for selecting member of rigid-frame structure building with history type damper, and method
JP7131511B2 (en) 2019-08-28 2022-09-06 Jfeスチール株式会社 MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER

Also Published As

Publication number Publication date
JP5698402B1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5698402B1 (en) Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings
Brunesi et al. Experimental investigation of the cyclic response of reinforced precast concrete framed structures
Chou et al. Column restraint in post‐tensioned self‐centering moment frames
Cardone et al. RiNTC-e project: The seismic risk of existing italian rc buildings retrofitted with seismic isolation
Hassan et al. Seismic performance of steel-reinforced concrete composite columns in existing and modern construction
JP4934769B1 (en) Seismic isolation device with rotation control spring mechanism and method of controlling rotation amount of seismic isolation device
Ghorbanzadeh et al. Lateral soil pile structure interaction assessment for semi active tuned mass damper buildings
Ates et al. Example of application of response history analysis for seismically isolated curved bridges on drilled shaft with springs representing soil
Krolo et al. The extended N2 method in seismic design of steel frames considering semi-rigid joints
Calvi Recent experience and innovative approaches in design and assessment of bridges
Roy et al. Dynamic behavior of the multi span continuous girder bridge with isolation bearings
Mitoulis et al. Uplift of elastomeric bearings in isolated bridges-A possible mechanism: Effects and remediation
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
Harn Displacement design of marine structures on batter piles
Tehranizadeh et al. Simplified methods for seismic assessment of existing buildings
EP2935702A1 (en) Earthquake proof building system
Murshed Seismic performance of soft storey structures retrofitted with FRP wraps
Booth et al. Basic seismic design principles for buildings
Boonyapinyo et al. Seismic capacity evaluation of post-tensioned concrete slab-column frame buildings by pushover analysis
Uroš et al. Seismic performance assessment of existing stone masonry school building in Croatia using nonlinear static procedure
Piras et al. Numerical modelling approaches for predicting the seismic response of monopole-supported dissipative controlled rocking bridge piers
Rasouli et al. Comparison between seismic behavior of continuous multiple span skewed bridges with concrete and steel columns
Pokharel et al. Displacement-based seismic assessment of moment resisting frames with blind bolted connections
Schmidt et al. Experimental verification of HYDE System
Raheem et al. Innovative control strategy for seismic pounding mitigation of bridge structures

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5698402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350