JP2021033822A - Device for selecting member of rigid-frame structure building with history type damper, and method - Google Patents

Device for selecting member of rigid-frame structure building with history type damper, and method Download PDF

Info

Publication number
JP2021033822A
JP2021033822A JP2019155499A JP2019155499A JP2021033822A JP 2021033822 A JP2021033822 A JP 2021033822A JP 2019155499 A JP2019155499 A JP 2019155499A JP 2019155499 A JP2019155499 A JP 2019155499A JP 2021033822 A JP2021033822 A JP 2021033822A
Authority
JP
Japan
Prior art keywords
layer
damper
damper system
main frame
selection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155499A
Other languages
Japanese (ja)
Other versions
JP7131511B2 (en
Inventor
陽介 金城
Yosuke Kaneshiro
陽介 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019155499A priority Critical patent/JP7131511B2/en
Publication of JP2021033822A publication Critical patent/JP2021033822A/en
Application granted granted Critical
Publication of JP7131511B2 publication Critical patent/JP7131511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide a device for selecting a member of a rigid-frame structure building of 60 m or less with a history type damper capable of selecting, for all layers at the same time, cross-sections of columns, beams, and dampers that have just enough seismic safety against huge ground motions that exceed the assumed ground motions stated in the notification, compliant with the Energy Law requiring no structural design skills.SOLUTION: A device 1 for selecting a member of a rigid frame structure building includes: design condition setting means 3; initial value setting means 5; multi-degree-of-freedom model acquisition means 7; member selection means 9 (beam selection means 11, column selection means 13, damper selection means 15); layer stiffness calculation means 17; recalculation means 19; determination means 21; initial value resetting means 23; and member determination means 25.SELECTED DRAWING: Figure 1

Description

本発明は、履歴型ダンパーを有するラーメン構造建物を構成する部材である柱、梁、履歴型ダンパーを合理的に選定する装置及び方法に関する。 The present invention relates to an apparatus and a method for rationally selecting columns, beams, and history type dampers which are members constituting a rigid frame structure building having a history type damper.

現在、中低層建物の主架構(柱と梁)に用いられる鋼種は降伏強度が235〜325N/mm2級の鋼種がほとんどである。
中低層建物に降伏強度325N/mm2を超える高強度鋼を適用すると、部材断面を縮小できる反面、剛性が低くなり、変形が増大するため、変形の制御が必要になる。
Currently, most of the steel grades used for the main frames (columns and beams) of medium- and low-rise buildings are grade 2 with a yield strength of 235 to 325 N / mm.
When high-strength steel with a yield strength of more than 325 N / mm 2 is applied to a medium-low-rise building, the cross section of the member can be reduced, but the rigidity is lowered and the deformation is increased, so that it is necessary to control the deformation.

代表的な変形制御工法としては、ダンパーを配置し、主架構の代わりに地震エネルギーを吸収させる制振構造が挙げられる。ダンパーは、主架構に対する剛性比が大きいほど、エネルギー吸収効率が高くなるため、主架構に高強度鋼を用いれば、効率的な制振構造の設計ができる。
また、高強度化による弾性限界増大によって、主架構の損傷が低減されるため、大地震後にダンパーを交換することで、建物の継続使用も可能になる。
As a typical deformation control method, there is a vibration damping structure in which a damper is arranged and seismic energy is absorbed instead of the main frame. The larger the rigidity ratio of the damper to the main frame, the higher the energy absorption efficiency. Therefore, if high-strength steel is used for the main frame, an efficient vibration damping structure can be designed.
In addition, since the damage to the main frame is reduced by increasing the elastic limit due to the increased strength, the building can be used continuously by replacing the damper after a large earthquake.

このように、高強度鋼はダンパーと組み合わせることで、そのメリットを生かせるが、建物を制振構造として設計するには、「保有水平耐力計算(建築基準法施行令第82条の3)」、「時刻歴応答解析」もしくは「エネルギーの釣合いに基づく耐震計算法(平成17年国土交通省告示第631号)」(以下、「エネルギー法」という)を採用しなければならない。 In this way, high-strength steel can take advantage of its advantages by combining it with dampers, but in order to design a building as a vibration-damping structure, "Calculation of horizontal strength possession (Article 82-3 of the Building Standards Act Enforcement Ordinance)", "Time history response analysis" or "seismic calculation method based on energy balance (2005 Ministry of Land, Infrastructure, Transport and Tourism Notification No. 631)" (hereinafter referred to as "energy method") must be adopted.

保有水平耐力計算では、履歴型ダンパーを筋かいとしての保有水平耐力の増加要素として扱うことしかできず、履歴型ダンパーの塑性変形による制振効果が期待できないため、合理的な制振設計を行うことができない。
時刻歴応答解析は地震加速度を建物に入力する動的解析法で、例えば特許文献1に開示されているが、手間がかかるうえに、大臣認定が必要であるため、規模の小さい中低層建物に対して採用されるケースは少ない。
In the calculation of the holding horizontal strength, the history type damper can only be treated as an increasing factor of the holding horizontal strength as a brace, and the vibration damping effect due to the plastic deformation of the history type damper cannot be expected. Therefore, a rational vibration damping design is performed. Can't.
Time history response analysis is a dynamic analysis method in which seismic acceleration is input to a building. For example, it is disclosed in Patent Document 1, but it is time-consuming and requires ministerial approval, so it can be used for small-scale medium- and low-rise buildings. On the other hand, there are few cases where it is adopted.

一方、エネルギー法は、建物に入力される地震エネルギーと建物が吸収できる保有エネルギーを大小比較して安全検証を行う静的解析法による設計法であり、大きく分けて以下に示す5つの手順によって設計を行う設計法である。ここで、右上添え字(i)は「i層」であることを表す(Nは建物の層数)。
[1]層せん断力‐層間変形関係の出力
骨組モデルに対して地震力を想定した静的外力を与えて、各層の層せん断力‐層間変形関係を出力する。
[2]質点モデルへの簡易化
[1]で得られた結果をもとに、骨組モデルを、主架構を表す完全弾塑性ばねとダンパーを表す完全弾塑性ばねから構成されるトリリニア型の復元力特性を持つ質点モデルに簡易化する。
[3]必要エネルギー吸収量の算出
建物の質量と固有周期、地盤特性から建物全体に入力される塑性ひずみエネルギー量ESを算定し、各層の質量と復元力特性に応じて必要エネルギー吸収量ES (i)を算定する。さらに、ES (i)を主架構の必要エネルギー吸収量ESF (i)とダンパーの必要エネルギー吸収量ESD (i)に分配する。
[4]保有エネルギー吸収量の算出
主架構およびダンパーの復元力特性と塑性変形能力から、各層ごとに主架構の保有エネルギー吸収量WF (i)とダンパーの保有エネルギー吸収量WD (i)を算定する。
[5]安全性の検証
全層で「ESF (i)≦WF (i)かつESD (i)≦WD (i)」を確認する。
以上のように、エネルギー法は、履歴型ダンパーのエネルギー吸収効果を反映させることができるため、合理的な制振設計を行うことが可能である。
On the other hand, the energy method is a design method based on a static analysis method that performs safety verification by comparing the magnitude of the seismic energy input to the building and the energy possessed by the building, and is roughly divided into the following five procedures. It is a design method to do. Here, the upper right subscript (i) indicates that it is the "i layer" (N is the number of layers of the building).
[1] Output of layer shear force-interlayer deformation relationship A static external force assuming seismic force is applied to the skeleton model, and the layer shear force-interlayer deformation relationship of each layer is output.
[2] Simplification to mass model
Based on the results obtained in [1], the skeleton model is simplified to a mass model with trilinear restoring force characteristics consisting of a completely elasto-plastic spring representing the main frame and a completely elasto-plastic spring representing the damper. To do.
[3] Calculation of required energy absorption amount Calculate the plastic strain energy amount E S input to the entire building from the building mass, natural period, and ground characteristics, and calculate the required energy absorption amount E according to the mass and restoring force characteristics of each layer. Calculate S (i). Furthermore, to distribute E S (i) to the main Frames of required energy absorption amount E SF (i) and damper required amount of energy absorption E SD (i).
[4] Calculation of the amount of energy absorbed by the main frame Based on the restoring force characteristics and plastic deformation capacity of the main frame and damper, the amount of energy absorbed by the main frame W F (i) and the amount of energy absorbed by the damper W D (i) for each layer. Is calculated.
[5] Safety verification Confirm "E SF (i) ≤ W F (i) and E SD (i) ≤ W D (i) " on all layers.
As described above, since the energy method can reflect the energy absorption effect of the historical damper, it is possible to carry out a rational vibration damping design.

特許第4981409号公報Japanese Patent No. 4981409

しかし、エネルギー法では、保有水平耐力計算に比べて設計手順が複雑で、また、地震によって各階に入力されるエネルギーおよび建物の各階の吸収可能エネルギーいずれも全ての階の部材に依存するため、部材断面の選定が難しく、合理的な設計を行うには、設計者の設計スキルが大きく要求されるという問題がある。
また、エネルギー法で設計された建物は、想定地震を上回る巨大地震動に対しては、その耐震安全性が確認されておらず、甚大な被害を受ける可能性がある。
However, in the energy method, the design procedure is more complicated than the calculation of the possessed horizontal strength, and both the energy input to each floor due to the earthquake and the absorbable energy of each floor of the building depend on the members of all floors. There is a problem that it is difficult to select a cross section and a large amount of designer's design skill is required to perform a rational design.
In addition, buildings designed by the Energy Law have not been confirmed to have seismic safety against large earthquakes that exceed the assumed earthquakes, and may suffer enormous damage.

本発明はかかる課題を解決するためになされたものであり、履歴型ダンパーを有する高さ60m以下のラーメン構造建物の設計において、エネルギー法に準拠し、さらに告示に記載されている想定地震動を上回る巨大な地震動に対しても過不足のない耐震安全性を持つ柱・梁・ダンパーの断面を、構造設計のスキルを要することなく、全層同時に選定できる履歴型ダンパーを有するラーメン構造建物の部材選定装置及び方法を提供することを目的とする。 The present invention has been made to solve this problem, and in the design of a rigid frame structure building with a history type damper and a height of 60 m or less, it complies with the Energy Law and exceeds the assumed seismic motion described in the notification. Selection of rigid frame structure building members with historical dampers that can simultaneously select the cross sections of columns, beams, and dampers that have sufficient seismic safety against huge ground motions without requiring structural design skills. It is an object to provide an apparatus and a method.

従来のエネルギー法の手法は、入力値(部材)から出力値(エネルギー吸収量)を算出する順問題であるが、発明者は、出力値から入力値を求める逆問題を利用することを考えた。すなわち、「安全率を見込んだ地震によって入力される必要エネルギー吸収量と建物の保有エネルギー吸収量が等しいという条件から、質点モデルの復元力特性を決定し、その復元力特性に適合するような部材を予め用意された部材リスト内から選定する」といった過程を辿る。
本発明は、このように逆問題を利用することにより、反復試行を行うことなく、合理的な部材の選定が可能になるという知見に基づくものであり、具体的には以下の構成を備えているものである。
The conventional energy method is a sequential problem of calculating the output value (energy absorption amount) from the input value (member), but the inventor considered using the inverse problem of obtaining the input value from the output value. .. That is, "a member that determines the restoring force characteristics of the mass model based on the condition that the required energy absorption amount input by the earthquake with the factor of safety is equal to the energy absorption amount of the building, and that matches the restoring force characteristics. Is selected from the list of materials prepared in advance. "
The present invention is based on the finding that rational selection of members is possible without repeating trials by utilizing the inverse problem in this way, and specifically, the present invention has the following configuration. It is something that is.

(1)本発明に係るラーメン構造建物の部材選定装置は、履歴型ダンパーを有するラーメン構造建物を構成する柱・梁・履歴型ダンパーの選定を支援する装置であって、
対象となるラーメン構造建物の設計に必要な設計条件を設定する設計条件設定手段と、
ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定する初期値設定手段と、
安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求める多質点系モデル取得手段と、
該多質点系モデル取得手段によって取得された多質点系モデルに基づいて、梁、柱及びダンパーの部材を選定する部材選定手段と、
選定した柱、梁、ダンパーから主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する層剛性計算手段と、
主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を再計算する再計算手段と、
再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定の誤差の範囲内かどうかを判定する判定手段と、
前記判定手段によって所定の誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定する初期値再設定手段と、
前記判定手段によって所定の誤差範囲であると判定されたときに、前記部材選定手段で選定された梁、柱及びダンパーを選定された部材として決定する部材決定手段とを備えたことを特徴とするものである。
(1) The member selection device for a rigid frame structure building according to the present invention is a device that supports the selection of columns, beams, and history type dampers constituting a rigid frame structure building having a history type damper.
Design condition setting means for setting the design conditions necessary for the design of the target rigid frame structure building, and
Initial value setting means for setting the initial values of the layer shear force sharing ratio β i of each layer of the damper system, the interlayer deformation angle R fi when the main frame yields, and the interlayer deformation angle R di when the damper system yields.
By setting αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the time of the safety limit, the horizontal bearing capacity Q fi possessed by each layer of the main frame And a multi-mass model acquisition means for obtaining a multi-mass model by determining the possessed horizontal strength Q di of each damper layer, the layer stiffness K fi of the main frame, and the layer stiffness k di of the damper system.
A member selection means for selecting members for beams, columns, and dampers based on the multi-mass model acquired by the multi-mass model acquisition means, and
A layer rigidity calculation means for calculating the layer rigidity K fi'of the main frame and the layer rigidity k di ' of the damper system from the selected columns, beams, and dampers.
Owned lateral strength Q fi main rack構各layer holding lateral strength Q di of the damper layers, the main rack layer stiffness K fi of structure Shear force share ratio of the damper system each layer from ', layer stiffness k di of the damper system' beta i ', and recalculating means for recalculating the main rack story drift R fi at structure breakdown ', story drift R di during damper system breakdown'
Recalculated main rack story drift R fi at structure breakdown ', story drift during damper system yield R di' and a determination means for determining whether within a predetermined error tolerance,
When it is determined by the determination means that the error range is exceeded, the layer shear force sharing ratio β i ′ of each layer of the damper system, the interlayer deformation angle R fi ′ during the yield of the main frame, and the interlayer during the yield of the damper system. Initial value resetting means to set the deformation angle R di'as the initial value, and
It is characterized by including a member determining means for determining a beam, a column, and a damper selected by the member selecting means as selected members when the determination means determines that the error range is within a predetermined error range. It is a thing.

(2)また、上記(1)に記載のものにおいて、前記部材選定手段は、主架構各層の保有水平耐力Qfiに適合する梁を選定する梁選定手段と、柱梁耐力比から柱を選定する柱選定手段と、ダンパー各層の保有水平耐力Qdiに適合するダンパーを選定するダンパー選定手段を備えていることを特徴とするものである。 (2) Further, in the above-mentioned (1), the member selection means selects a beam based on a beam selection means for selecting a beam suitable for the possessed horizontal strength Q fi of each layer of the main frame and a column-beam strength ratio. It is characterized by being provided with a means for selecting columns to be used and a means for selecting a damper that matches the horizontal strength Q di of each layer of the damper.

(3)本発明に係るラーメン構造建物の部材選定方法は、履歴型ダンパーを有するラーメン構造建物を構成する柱・梁・履歴型ダンパーを選定する方法であって、
対象となるラーメン構造建物の設計に必要な設計条件を設定する設計条件設定工程と、
ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定する初期値設定工程と、
安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求める多質点系モデル取得工程と、
該多質点系モデル取得工程によって取得された多質点系モデルに基づいて、梁、柱及びダンパーの部材を選定する部材選定工程と、
選定した柱、梁、ダンパーから主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する層剛性計算工程と、
主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を再計算する再計算工程と、
再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定の誤差の範囲内かどうかを判定する判定工程と、
判定工程によって所定の誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定し、多質点系モデル取得工程と、梁選定工程と、柱選定工程と、ダンパー選定工程と、層剛性計算工程と、再計算工程と、判定工程を、判定工程において判定結果が所定の誤差範囲と判定されるまで繰り返す繰り返し計算工程と、
判定手段によって所定の誤差範囲であると判定されたときに、前記梁選定手段、柱選定手段及びダンパー選定手段でそれぞれ選定された梁、柱及びダンパーを選定された部材として決定する部材決定工程とを備えたことを特徴とするものである。
(3) The method for selecting a member of a rigid frame structure building according to the present invention is a method for selecting columns, beams, and history type dampers constituting a rigid frame structure building having a history type damper.
The design condition setting process that sets the design conditions necessary for the design of the target rigid frame structure building, and
The initial value setting process for setting the initial values of the layer shear force sharing ratio β i of each layer of the damper system, the interlayer deformation angle R fi when the main frame yields, and the interlayer deformation angle R di when the damper system yields.
By setting αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the time of the safety limit, the horizontal bearing capacity Q fi possessed by each layer of the main frame And the multi-mass model acquisition process to obtain the multi-mass model by determining the possessed horizontal strength Q di of each damper layer and the layer stiffness K fi of the main frame and the layer stiffness k di of the damper system.
A member selection process for selecting members for beams, columns, and dampers based on the multi-mass model acquired by the multi-mass model acquisition process.
Selection was columns, beams, and the layer stiffness calculation step of calculating a main rack layer stiffness K fi of structure ', the layer stiffness k di damper system' from the damper,
Owned lateral strength Q fi main rack構各layer holding lateral strength Q di of the damper layers, the main rack layer stiffness K fi of structure Shear force share ratio of the damper system each layer from ', layer stiffness k di of the damper system' beta i ', a recalculation process for recalculating the main rack story drift R fi at structure breakdown ', story drift R di during damper system breakdown'
Recalculated main rack story drift R fi at structure breakdown ', story drift during damper system yield R di' and a determination step of determining whether within a predetermined error,
If it is determined to exceed the predetermined error range by the determination step, the layer shear force sharing rate of the damper based layers beta i ', the main rack story drift R fi at structure breakdown', interlayer deformation during damper system breakdown The angle R di'is set as the initial value, and the multi-point model acquisition process, beam selection process, column selection process, damper selection process, layer rigidity calculation process, recalculation process, and judgment process are determined. A repetitive calculation process that repeats until the judgment result is determined to be within a predetermined error range in the process,
When the determination means determines that the error range is within a predetermined error range, the member determination step of determining the beams, columns, and dampers selected by the beam selection means, column selection means, and damper selection means as selected members. It is characterized by having.

(4)また、上記(3)に記載のものにおいて、前記部材選定工程は、主架構各層の保有水平耐力Qfiに適合する梁を選定する梁選定工程と、柱梁耐力比から柱を選定する柱選定工程と、ダンパー各層の保有水平耐力Qdiに適合するダンパーを選定するダンパー選定工程とを備えていることを特徴とするものである。 (4) Further, in the above (3), in the member selection process, the beam selection process for selecting a beam suitable for the possessed horizontal strength Q fi of each layer of the main frame and the column selection based on the column-beam strength ratio. It is characterized by having a column selection process to be performed and a damper selection process to select a damper that matches the possessed horizontal strength Q di of each layer of the damper.

本発明によれば、エネルギー法に準拠し、さらに告示に記載されている想定地震動を上回る巨大な地震動に対しても過不足のない柱・梁・ダンパーの断面を全層同時に、高度な設計技術と試行錯誤を要することなく、自動的に選定することができ、高い耐震性と経済性を併せ持つ合理的な中低層建物の設計が可能となる。 According to the present invention, advanced design technology conforms to the Energy Law, and at the same time, all layers of columns, beams, and dampers are cross-sectioned in just proportion to a huge seismic motion that exceeds the assumed seismic motion described in the notification. It can be automatically selected without the need for trial and error, and it is possible to design rational low- and medium-rise buildings that have both high earthquake resistance and economic efficiency.

本発明の実施の形態に係るラーメン構造建物の部材選定装置の構成を説明するブロック図である。It is a block diagram explaining the structure of the member selection apparatus of the rigid frame structure building which concerns on embodiment of this invention. 本実施の形態における多質点系モデルのi層の保有水平耐力と層間変形角の関係を示す図である。It is a figure which shows the relationship between the possessed horizontal strength of the i layer of the multi-mass model of this embodiment, and the interlayer deformation angle. 本実施の形態に係る建物の基準階の伏図である。It is a plan of the reference floor of the building which concerns on this embodiment. 本実施の形態に係る建物の軸組図である。It is a frame diagram of the building which concerns on this embodiment. 本発明の実施の形態に係るラーメン構造建物の部材選定方法のフローチャートである。It is a flowchart of the member selection method of the rigid frame structure building which concerns on embodiment of this invention. 実施例で対象とした建物の基準階の伏図である。It is a plan of the reference floor of the building targeted in the Example. 実施例で対象とした建物のX方向(a)及びY方向(b)の軸組図である。It is a frame diagram of the X direction (a) and the Y direction (b) of the building targeted in the Example. 実施例で用いた設計用地震動の説明図である。It is explanatory drawing of the design seismic ground motion used in an Example. 実施例の効果を示すグラフである。It is a graph which shows the effect of an Example. 実施例の効果を示すグラフであって、X方向入力に対する各層の最大層間変形角を示すグラフである。It is a graph which shows the effect of an Example, and is the graph which shows the maximum interlayer deformation angle of each layer with respect to the X direction input. 実施例の効果を示すグラフであって、Y方向入力に対する各層の最大層間変形角を示すグラフである。It is a graph which shows the effect of an Example, and is the graph which shows the maximum interlayer deformation angle of each layer with respect to the input in the Y direction.

本実施の形態で対象とするラーメン構造建物は、梁33、柱35が格子状に配置され、全層で同一の平面を持つ鉄骨ラーメン構造建物を対象としている(図6、図7参照)。もっとも、本発明のラーメン構造建物は、鉄骨構造のものに限定されず、例えばCFT(コンクリート充填鋼管)構造等の他の種別の構造建物にも適用できる。
なお、以下の説明における添え字iはi層の値を表すものとする。
The rigid frame structure building targeted in the present embodiment is a steel frame rigid frame structure building in which beams 33 and columns 35 are arranged in a grid pattern and all layers have the same plane (see FIGS. 6 and 7). However, the rigid frame structure of the present invention is not limited to the steel structure, and can be applied to other types of structural buildings such as CFT (concrete-filled steel pipe) structures.
In the following description, the subscript i represents the value of the i layer.

本実施の形態に係るラーメン構造建物の部材選定装置1(以下、単に「部材選定装置1」という場合あり)は、コンピュータが所定のプログラムを実行することで、図1に示される設計条件設定手段3、初期値設定手段5、多質点系モデル取得手段7、部材選定手段9(梁選定手段11、柱選定手段13、ダンパー選定手段15)、層剛性計算手段17、再計算手段19、判定手段21、初期値再設定手段23、部材決定手段25を備えている。
以下、各構成を詳細に説明する。
The member selection device 1 of the rigid frame structure building according to the present embodiment (hereinafter, may be simply referred to as “member selection device 1”) is a design condition setting means shown in FIG. 1 when a computer executes a predetermined program. 3. Initial value setting means 5, multi-point model acquisition means 7, member selection means 9 (beam selection means 11, column selection means 13, damper selection means 15), layer rigidity calculation means 17, recalculation means 19, determination means. It includes 21, an initial value resetting means 23, and a member determining means 25.
Hereinafter, each configuration will be described in detail.

<設計条件設定手段>
設計条件設定手段3は、対象となるラーメン構造建物の設計に必要な設計条件を設定するものである。
設計条件としては、地域係数、地盤の特性、スパン・階高、床重量、許容最大層間変形角Rui等である。
このような設計条件の具体的な数値は、パーソナルコンピュータを操作する設計者がディスプレー等の表示手段27に示される所定の位置にキーボード等の入力手段29から入力してもよく、あるいは予めパーソナルコンピュータの記憶手段31に記憶されている数値を選択するようにしてもよい。
<Design condition setting means>
The design condition setting means 3 sets the design conditions necessary for designing the target rigid frame structure building.
Design conditions include regional coefficients, ground characteristics, span / floor height, floor weight, maximum allowable interlayer deformation angle R ui, etc.
Specific numerical values of such design conditions may be input by the designer who operates the personal computer from the input means 29 such as a keyboard at a predetermined position shown on the display means 27 such as a display, or the personal computer may be input in advance. The numerical value stored in the storage means 31 of the above may be selected.

<初期値設定手段>
初期値設定手段5は、ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定するものである。
例えば、βi(0<βi<1)の初期値は0.2〜0.8程度、Rfiの初期値は1/120〜1/80程度、Rdiの初期値は1/600〜1/400程度に設定する。
なお、収斂計算を行うため、これらの初期値は出力結果に大きく影響しない。
<Initial value setting means>
The initial value setting means 5 sets initial values of the layer shear force sharing ratio β i of each layer of the damper system, the interlayer deformation angle R fi at the time of yielding of the main frame, and the interlayer deformation angle R di at the time of yielding of the damper system.
For example, the initial value of β i (0 <β i <1) is about 0.2 to 0.8, the initial value of R fi is about 1/120 to 1/80, and the initial value of R di is about 1/600 to 1/400. Set to.
Since the convergence calculation is performed, these initial values do not significantly affect the output result.

<多質点系モデル取得手段>
多質点系モデル取得手段7は、安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求めるものである。
Esfiをα倍しているのは、より安全側の設計をするために、入力される塑性ひずみエネルギーを安全限界以上にするためである。
<Measure of acquiring multi-mass model>
The multi-mass model acquisition means 7 sets αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the safety limit. A multi-mass model is obtained by determining the horizontal strength Q fi of each layer of the main frame and the horizontal strength Q di of each layer of the damper, and the layer rigidity K fi of the main frame and the layer rigidity k di of the damper system.
The reason why E sfi is multiplied by α is to make the input plastic strain energy above the safety limit in order to design on the safer side.

Esfiは平成17年度国土交通省告示631号「エネルギーの釣合いに基づく耐震計算法」における各階の主架構の必要エネルギー吸収量と同様に計算する。ただし、安全限界時に地震により建築物に作用するエネルギーの速度換算値VSは、対象とする地震動のエネルギースペクトルを用いる。
一方、Wfiは最大層間変形に対する等価な繰返し回数nEを用いて、次式によって計算する。図2には、多質点系モデルのi層の保有水平耐力(縦軸)と層間変形角(横軸)の関係を示している。層間変形角は、水平変位をδi、階高をhiとしたときに、δi/hiで求まる。
E sfi is calculated in the same way as the required energy absorption amount of the main frame of each floor in the 2005 Ministry of Land, Infrastructure, Transport and Tourism Notification No. 631 "Seismic calculation method based on energy balance". However, the speed conversion value V S of the energy acting on the building by an earthquake during the safety margin, using the energy spectrum of the ground motion of interest.
On the other hand, W fi is calculated by the following equation using the equivalent number of repetitions n E for the maximum interlayer deformation. FIG. 2 shows the relationship between the retained horizontal strength (vertical axis) and the interlayer deformation angle (horizontal axis) of the i-layer of the multi-mass model. Story drift is the horizontal displacement [delta] i, the floor height is taken as h i, calculated at δ i / h i.

各層ごとにαEsfi=Wfi(α≧1)とすることで、Qfiが得られ、さらに、次式によって主架構の層剛性Kfi及びダンパー系の層剛性kdiが得られる。 By setting αE sfi = W fi (α ≧ 1) for each layer , Q fi can be obtained, and further, the layer rigidity K fi of the main frame and the layer rigidity k di of the damper system can be obtained by the following equation.

<部材選定手段>
部材選定手段9は、多質点系モデル取得手段7によって取得された多質点系モデルに基づいて、梁33、柱35及びダンパー37の部材を選定する。
部材選定手段9は、梁33を選定する梁選定手段11、柱35を選定する柱選定手段13、ダンパー37を選定するダンパー選定手段15を備えている。
これら、梁選定手段11、柱選定手段13及びダンパー選定手段15は種々の態様を取り得るものであり、梁33、柱35、ダンパー37の順で選定する態様でもよいし、柱35、梁33、ダンパー37の順で選定する態様でもよい。
本実施の形態では、梁33、柱35、ダンパー37の順で選定する態様として、主架構各層の保有水平耐力Qfiに適合する梁33を選定する梁選定手段11と、柱梁耐力比から柱35を選定する柱選定手段13と、ダンパー各層の保有水平耐力Qdiに適合するダンパー37を選定するダンパー選定手段15を例に挙げて説明する。
<Member selection means>
The member selection means 9 selects the members of the beam 33, the column 35, and the damper 37 based on the multi-mass model acquired by the multi-mass model acquisition means 7.
The member selection means 9 includes a beam selection means 11 for selecting a beam 33, a column selection means 13 for selecting a column 35, and a damper selection means 15 for selecting a damper 37.
The beam selection means 11, the column selection means 13, and the damper selection means 15 can take various modes, and the beam 33, the column 35, and the damper 37 may be selected in this order, or the column 35 and the beam 33 may be selected in this order. , And the damper 37 may be selected in this order.
In the present embodiment, as a mode in which the beam 33, the column 35, and the damper 37 are selected in this order, the beam selection means 11 for selecting the beam 33 that matches the possessed horizontal strength Q fi of each layer of the main frame and the column-beam strength ratio are used. The column selection means 13 for selecting the column 35 and the damper selection means 15 for selecting the damper 37 that matches the possessed horizontal proof stress Q di of each layer of the damper will be described as an example.

《梁選定手段11》
梁選定手段11は、主架構各層の保有水平耐力Qfiに適合する梁33を選定するものである。
具体的には、X方向の梁33に関しては、i層のYk通りXj〜Xj+1梁には、次式で計算される全塑性モーメントbMpX (I,j,k)を持つ梁を選定する(図3、図4参照)。なお、図3、図4において、Lは梁長さ、hは階高、θはダンパー37の取り付け角を示している。
<< Beam selection means 11 >>
The beam selection means 11 selects a beam 33 that matches the possessed horizontal strength Q fi of each layer of the main frame.
Specifically, for the beam 33 in the X direction, the total plastic moment b M pX (I, j, k) calculated by the following equation is applied to the Y k streets X j to X j + 1 beams of the i layer. Select the beam to have (see FIGS. 3 and 4). In FIGS. 3 and 4, L indicates the beam length, h indicates the floor height, and θ indicates the mounting angle of the damper 37.

Y方向の梁に関しては、X方向と同様であり、i層のXj通りYk〜Yk+1梁には、上記の(6)(7)式におけるXをYに、jをkに、xをyにそれぞれ入れ替えた式で計算される全塑性モーメントbMpY (I,j,k)を持つ梁を選定する(図3、図4参照)。 The beams in the Y direction are the same as in the X direction, and for the X j streets Y k to Y k + 1 beams in the i layer, X in the above equations (6) and (7) is set to Y and j is set to k. Select a beam with a total plastic moment b M pY (I, j, k) calculated by the equation in which x is replaced with y (see FIGS. 3 and 4).

《柱選定手段》
柱選定手段13は、柱梁耐力比から柱35を選定するものである。
具体的には、i層のXj通りとYk通りの交点に位置する柱35には、次式で計算される全塑性モーメントcMpX (I,j,k)を持つ柱35を選定する(図3、図4参照)。
<< Pillar selection means >>
The column selection means 13 selects the column 35 based on the column-beam proof stress ratio.
Specifically, for the column 35 located at the intersection of X j and Y k of the i layer, a column 35 having a total plastic moment c M pX (I, j, k) calculated by the following equation is selected. (See FIGS. 3 and 4).

ただし、最上層柱は層せん断力の比のみで決定する。 However, the uppermost column is determined only by the ratio of the layer shear force.

《ダンパー選定手段》
ダンパー選定手段15は、ダンパー各層の保有水平耐力Qdiに適合するダンパー37を選定する。
具体的には、次式で計算される降伏軸力を持つダンパー37を選定する(図3、図4参照)。
《Damper selection method》
The damper selection means 15 selects a damper 37 that matches the possessed horizontal strength Q di of each layer of the damper.
Specifically, a damper 37 having a yield axial force calculated by the following equation is selected (see FIGS. 3 and 4).

<層剛性計算手段>
層剛性計算手段17は、選定した柱35、梁33、ダンパー37から主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する。
具体的には、下記の剛性方程式を用いて、Ai分布に従う外力を受けたときの主架構の水平剛性Kfiおよびダンパー系の水平剛性kdiを計算し、この操作で得られたKfi及びkdiをそれぞれ、主架構の層剛性Kfi’およびダンパー系の層剛性kdi’とする。
<Layer stiffness calculation means>
Layer rigid calculating means 17, the selected pillars 35, the beam 33, the layer stiffness K fi main Frames from the damper 37 to calculate a ', layer stiffness k di of the damper system'.
Specifically, using the following stiffness equation, the horizontal stiffness K fi of the main frame and the horizontal stiffness k di of the damper system when an external force according to the Ai distribution is applied are calculated, and the K fi and K fi obtained by this operation and k di respectively, and 'layers stiffness k di of and damper system' layers stiffness K fi main Frames.

<再計算手段>
再計算手段19は、主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を下記に示す式によって再計算する。
<Recalculation means>
Recalculating unit 19, the main rack構各layer holdings lateral strength Q fi, possess lateral strength Q di of the damper layers, mainly Frames layers stiffness K fi story shear damper system each layer from ', layer stiffness k di of the damper system' share of beta i ', the main rack story drift R fi at structure breakdown', recalculates the story drift R di 'when damper system breakdown by a formula shown below.

<判定手段>
判定手段21は、再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定のの範囲内かどうかを判定する。
具体的には、(Rfi’/Rfi-1)の絶対値及び(Rdi’/Rdi-1)の絶対値が許容誤差ε(例えば、0.05)以下であるかどうかで判定する。
なお、判定手段21による判定方法は種々の態様を取り得るものであり、上記の判定方法に限定されるものではない。
<Judgment means>
Judging means 21, the recalculated main rack story drift R fi at structure breakdown ', story drift during damper system yield R di' determines whether a predetermined of range.
Specifically, it is determined whether the absolute value of (R fi '/ R fi -1) and the absolute value of (R di '/ R di -1) are equal to or less than the margin of error ε (for example, 0.05).
The determination method by the determination means 21 can take various aspects, and is not limited to the above determination method.

<初期値再設定手段>
初期値再設定手段23は、判定手段21によって所定の許容誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定する。
初期値再設定手段23によって、初期値が再設定された場合には、多質点系モデル取得手段7、部材選定手段9、層剛性計算手段17及び再計算手段19は、再設定された初期値に基づいて再計算を行う。
<Initial value resetting means>
Initial value resetting means 23, when the determining unit 21 is determined to exceed the predetermined allowable error range, the layer shear force sharing rate of the damper based layers beta i ', the main rack story drift R during configuration Yield fi sets a 'story drift R di during damper system breakdown' as an initial value.
When the initial value is reset by the initial value resetting means 23, the multi-mass model acquisition means 7, the member selection means 9, the layer rigidity calculation means 17, and the resetting means 19 are reset to the initial value. Recalculate based on.

<部材決定手段>
部材決定手段25は、判定手段21によって所定の誤差範囲であると判定されたときに、梁選定手段11、柱選定手段13及びダンパー選定手段15でそれぞれ選定された梁33、柱35及びダンパー37を選定された部材として決定する。
<Member determination means>
When the member determining means 25 determines that the error range is within a predetermined error range by the determining means 21, the beam 33, the pillar 35, and the damper 37 selected by the beam selecting means 11, the column selecting means 13, and the damper selecting means 15, respectively. Is determined as the selected member.

次に、上記のように構成された部材選定装置1によって、部材を選定する方法を説明する。
本実施の形態に係るラーメン構造建物の部材選定方法は、図5に示すように、設計条件設定工程(S1)と、初期値設定工程(S3)と、多質点系モデル取得工程(S5)と、部材選定工程(S6)[梁選定工程(S7)、柱選定工程(S9)、ダンパー選定工程(S11)]と、層剛性計算工程(S13)と、再計算工程(S15)と、判定工程(S17)、繰り返し計算工程(S5〜S15)と、部材決定工程(S19)とを備えている。
以下、各構成を詳細に説明する。
Next, a method of selecting a member by the member selection device 1 configured as described above will be described.
As shown in FIG. 5, the method for selecting members of the ramen structure building according to the present embodiment includes a design condition setting step (S1), an initial value setting step (S3), and a multi-point model acquisition step (S5). , Member selection process (S6) [Beam selection process (S7), Column selection process (S9), Damper selection process (S11)], Layer rigidity calculation process (S13), Recalculation process (S15), Judgment process (S17), a repetitive calculation step (S5 to S15), and a member determination step (S19) are provided.
Hereinafter, each configuration will be described in detail.

<設計条件設定工程>
設計条件設定工程(S1)は、対象となるラーメン構造建物の設計に必要な設計条件を入力又は選択して設定する工程である。
設計条件としては、上述したように、地域係数、地盤の特性、スパン・階高、床重量、許容最大層間変形角Rui等である。
このような設計条件の具体的な数値は、パーソナルコンピュータを操作する設計者が入力してもよく、あるいは予めパーソナルコンピュータの記憶手段31に記憶されている数値を選択するようにしてもよい。
<Design condition setting process>
The design condition setting step (S1) is a step of inputting or selecting and setting the design conditions necessary for the design of the target rigid frame structure building.
As described above, the design conditions include the regional coefficient, ground characteristics, span / floor height, floor weight, maximum allowable interlayer deformation angle R ui, and the like.
The specific numerical value of such a design condition may be input by the designer who operates the personal computer, or the numerical value stored in the storage means 31 of the personal computer in advance may be selected.

<初期値設定工程>
初期値設定工程(S3)は、上記の初期値設定手段5が行うものであり、その具体的な内容は上述したように、ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定するものである。
<Initial value setting process>
The initial value setting step (S3) is performed by the above-mentioned initial value setting means 5, and the specific contents thereof are, as described above, the layer shear force sharing ratio β i of each layer of the damper system and the yield of the main frame. The initial values of the interlayer deformation angle R fi and the interlayer deformation angle R di at the time of yielding of the damper system are set.

<多質点系モデル取得工程>
多質点系モデル取得工程(S5)は、安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求めるものである。
Esfi、Wfiの値や、Qfi及びQdi、Kfi及びkdiの決定方法は上述の通りである。
<Multi-mass model acquisition process>
In the multi-mass model acquisition process (S5), αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the safety limit. The multi-mass model is obtained by determining the horizontal strength Q fi of each layer of the main frame and the horizontal strength Q di of each layer of the damper, and the layer rigidity K fi of the main frame and the layer rigidity k di of the damper system. is there.
The values of E sfi and W fi and the method of determining Q fi and Q di , K fi and k di are as described above.

<部材選定工程>
部材選定工程(S6)は、多質点系モデル取得工程(S5)によって取得された多質点系モデルに基づいて、梁33、柱35及びダンパー37の部材を選定する工程である。
部材選定工程(S6)は、梁33を選定する梁選定工程(S7)、柱35を選定する柱選定工程(S9)、ダンパー37を選定するダンパー選定工程(S11)を備えており、これらは種々の態様を取り得るが、本実施の形態では、上述した梁選定手段11、柱選定手段13及びダンパー選定手段15によって行われる工程について説明する。
<Member selection process>
The member selection step (S6) is a step of selecting the members of the beam 33, the column 35, and the damper 37 based on the multi-mass model acquired by the multi-mass model acquisition step (S5).
The member selection step (S6) includes a beam selection step (S7) for selecting the beam 33, a column selection step (S9) for selecting the column 35, and a damper selection step (S11) for selecting the damper 37. Although various aspects can be taken, in the present embodiment, the steps performed by the beam selection means 11, the column selection means 13, and the damper selection means 15 described above will be described.

《梁選定工程》
梁選定工程(S7)は、主架構各層の保有水平耐力Qfiに適合する梁33を選定するものである。
具体的には、X方向の梁に関しては、i層のYk通りXj〜Xj+1梁には、上述した式(6)(7)で計算される全塑性モーメントbMpX (I,j,k)を持つ梁33を選定する。
Y方向の梁に関しては、X方向と同様であり、i層のXj通りYk〜Yk+1梁には、上記の(6)(7)式におけるXをYに、jをkに、xをyにそれぞれ入れ替えた式で計算される全塑性モーメントbMpY (I,j,k)を持つ梁を選定する(図3、図4参照)。
<< Beam selection process >>
In the beam selection step (S7), a beam 33 suitable for the possessed horizontal strength Q fi of each layer of the main frame is selected.
Specifically, for the beam in the X direction, the total plastic moment b M pX (I ) calculated by the above equations (6) and (7) is applied to the X j to X j + 1 beams according to Y k of the i layer. Select the beam 33 having , j, k).
The beams in the Y direction are the same as in the X direction, and for the X j streets Y k to Y k + 1 beams in the i layer, X in the above equations (6) and (7) is set to Y and j is set to k. Select a beam with a total plastic moment b M pY (I, j, k) calculated by the equation in which x is replaced with y (see FIGS. 3 and 4).

《柱選定工程》
柱選定工程(S9)は、柱梁耐力比から柱35を選定するものである。
具体的には、i層のXj通りとYk通りの交点に位置する柱35には、次式で計算される全塑性モーメントcMpX (I,j,k)を持つ柱35を選定する(図3、図4参照)。ただし、最上層柱は層せん断力の比のみで決定する。
<< Pillar selection process >>
In the column selection step (S9), the column 35 is selected based on the column-beam proof stress ratio.
Specifically, for the column 35 located at the intersection of X j and Y k of the i layer, a column 35 having a total plastic moment c M pX (I, j, k) calculated by the following equation is selected. (See FIGS. 3 and 4). However, the uppermost column is determined only by the ratio of the layer shear force.

《ダンパー選定工程》
ダンパー選定工程(S11)は、ダンパー各層の保有水平耐力Qdiに適合するダンパー37を選定する。
具体的には、次式で計算される降伏軸力を持つダンパー37を選定する(図3、図4参照)。
<< Damper selection process >>
In the damper selection step (S11), a damper 37 that matches the possessed horizontal strength Q di of each layer of the damper is selected.
Specifically, a damper 37 having a yield axial force calculated by the following equation is selected (see FIGS. 3 and 4).

<層剛性計算工程>
層剛性計算工程(S13)は、選定した柱35、梁33、ダンパー37から主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する。
具体的には、下記の剛性方程式を用いて、Ai分布に従う外力を受けたときの主架構の水平剛性Kfiおよびダンパー系の水平剛性kdiを計算し、この操作で得られたKfi及びkdiをそれぞれ、主架構の層剛性Kfi’およびダンパー系の層剛性kdi’とする。
<Layer stiffness calculation process>
Layer stiffness calculation step (S13) is selected by the column 35, the beam 33, the layer stiffness K fi main Frames from the damper 37 to calculate a ', layer stiffness k di of the damper system'.
Specifically, using the following stiffness equation, the horizontal stiffness K fi of the main frame and the horizontal stiffness k di of the damper system when an external force according to the Ai distribution is applied are calculated, and the K fi and K fi obtained by this operation and k di respectively, and 'layers stiffness k di of and damper system' layers stiffness K fi main Frames.

<再計算工程>
再計算工程(S15)は、主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を下記に示す式によって再計算する。
<Recalculation process>
Recalculating step (S15), the main rack構各layer holdings lateral strength Q fi, possess lateral strength Q di of the damper layers, the main rack layer stiffness K fi the structure layer of the damper system each layer from ', layer stiffness k di of the damper system' shear force share ratio beta i ', the main rack story drift R fi at structure breakdown', recalculates the story drift R di 'when damper system breakdown by a formula shown below.

<判定工程>
判定工程(S17)は、再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定の誤差の範囲内かどうかを判定する。具体的には、上記の判定手段21で説明した通りである。
<Judgment process>
Determination step (S17) is recalculated main rack story drift R fi at structure breakdown ', the damper system story drift R di at yield' determines whether within a predetermined range of error. Specifically, it is as described in the above-mentioned determination means 21.

<繰り返し計算工程>
繰り返し計算工程(S5〜S15)は、判定工程によって所定の誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定する。
初期値が再設定された場合には、多質点系モデル取得工程(S5)と、梁選定工程(S7)と、柱選定工程(S9)と、ダンパー選定工程(S11)と、層剛性計算工程(S13)と、再計算工程(S15)を、判定工程(S17)において判定結果が所定の許容誤差範囲と判定されるまで繰り返す。
<Repeat calculation process>
Iteration step (S5~S15), when it is determined to exceed the predetermined error range by the determination step, the layer shear force sharing rate of the damper based layers beta i ', the main rack story drift R during configuration Yield fi sets a 'story drift R di during damper system breakdown' as an initial value.
When the initial values are reset, the multi-mass model acquisition process (S5), beam selection process (S7), column selection process (S9), damper selection process (S11), and layer rigidity calculation process (S13) and the recalculation step (S15) are repeated until the determination result is determined to be within the predetermined allowable error range in the determination step (S17).

<部材決定工程>
部材決定工程(S19)は、判定工程(S17)によって所定の誤差範囲であると判定されたときに、梁選定工程(S7)、柱選定工程(S9)及びダンパー選定工程(S11)でそれぞれ選定された梁33、柱35及びダンパー37を選定された部材として決定する。
<Member determination process>
The member determination step (S19) is selected in the beam selection step (S7), the column selection step (S9), and the damper selection step (S11) when the determination step (S17) determines that the error range is within a predetermined range. The beam 33, the column 35, and the damper 37 are determined as the selected members.

以上説明した本実施の形態によれば、エネルギー法に準拠し、さらに告示に記載されている想定地震動を上回る巨大な地震動に対しても過不足のない耐震安全性を持つ柱35・梁33・ダンパー37の断面を全層同時に、高度な設計技術と試行錯誤を要することなく、自動的に選定することができる。 According to the present embodiment described above, the columns 35, beams 33, which comply with the Energy Law and have sufficient seismic safety against a huge seismic motion exceeding the assumed seismic motion described in the notification. The cross section of the damper 37 can be automatically selected for all layers at the same time without requiring advanced design technology and trial and error.

本発明の効果について、従来手法で設計された建物に対して、本発明に係る設計法を適用することで、合理的に再設計できることを検証したので、以下説明する。
検討対象建物は、「国土交通省国土技術政策総合研究所,建築研究所,日本建築行政会議,日本建築構造技術者協会,日本建築センター:エネルギーの釣合いに基づく耐震計算法の技術基準解説及び計算例とその解説,2005.10」の「計算例3ダンパー部分を有する鉄骨造12階建て事務所ビル」(塔屋は省略)とする(図6、図7参照)。この建物は、平面:30m×24m、階高4.0m(1層のみ4.5m)の地上12階建て48.5mの鉄骨造建物で、柱35には冷間成形角形鋼管、例えばBCP(登録商標)325(降伏応力σy:325N/mm2)、梁33にはSN490(降伏応力σy:325N/mm2)、ダンパー37には降伏応力σy:80N/mm2の低降伏点鋼(例えば,JFE-LY100,KLY100(神戸製鋼))が使われている。
As for the effect of the present invention, it has been verified that the building designed by the conventional method can be rationally redesigned by applying the design method according to the present invention, which will be described below.
The buildings to be examined are "Ministry of Land, Infrastructure, Transport and Tourism National Institute for Land and Infrastructure Management, Building Research Institute, Japan Building Administration Council, Japan Building Structure Engineers Association, Japan Building Center: Technical standard explanation and calculation of seismic calculation method based on energy balance. Example and its explanation, 2005.10 ”“ Calculation example 3 Steel-framed 12-story office building with damper part ”(Tower is omitted) (see Fig. 6 and Fig. 7). This building is a steel-framed building with a flat surface of 30m x 24m and a floor height of 4.0m (only one layer is 4.5m) and is 12 stories above the ground and 48.5m. 325 (yield stress σ y : 325N / mm 2 ), SN490 (yield stress σ y : 325N / mm 2 ) for beam 33, low yield point steel with yield stress σ y : 80N / mm 2 for damper 37 (for example) , JFE-LY100, KLY100 (Kobe Steel)) is used.

上記の従来手法で設計された建物を「モデルA」として、柱35・梁33に用いる鋼種は同じとし、本発明手法によって再設計した建物を「モデルB」とする。
表1に各モデルの概要を示す。
The building designed by the above conventional method is referred to as "model A", the steel types used for the columns 35 and beams 33 are the same, and the building redesigned by the method of the present invention is referred to as "model B".
Table 1 shows the outline of each model.

設計用地震動には、国立研究開発法人建築研究所と一般財団法人日本建築センターの共同研究により作成されたBCJ-L27)を用いる。BCJ-L2は、周期0.64秒以降の領域で速度応答スペクトルが100cm/s(減衰定数=5%)で一定となる地震動で、周波数依存性が小さく、標準的な設計用地震動である(図8参照)。
本検討では、レベル2地震動としてBCJ-L2の原波を入力する。
BCJ-L27) created by joint research between the National Research and Development Corporation Building Research Institute and the Building Center of Japan is used for the design seismic motion. BCJ-L2 is a standard design seismic motion with low frequency dependence, which is a seismic motion whose velocity response spectrum is constant at 100 cm / s (damping constant = 5%) in the region after a period of 0.64 seconds (Fig. 8). reference).
In this study, the original wave of BCJ-L2 is input as the level 2 ground motion.

図9に従来例と発明例の各モデルについて鋼材量の比較を示す。各モデルでダンパー量はほぼ同じであるが、実施の形態ではダンパー37が各層に効率的に配置されたことで、発明例であるモデルBでは、柱35・梁33の鋼材量が21%削減できていることが分かる。 FIG. 9 shows a comparison of the amount of steel material for each model of the conventional example and the invention example. The amount of damper is almost the same in each model, but in the embodiment, the damper 37 is efficiently arranged in each layer, so that in model B, which is an example of the invention, the amount of steel in the columns 35 and beams 33 is reduced by 21%. You can see that it is made.

次に、従来例のモデルAと発明例のモデルBに対して、骨組モデルの静的増分解析を実施し、順問題による安全検証を行った。
図10、図11に各モデルのX方向入力時およびY方向入力時の最大層間変形角分布を示す。図10、図11に示されるように、レベル2地震動に対しては、いずれのモデルで目標としたR≦100radを満足している。
しかし、モデルBはモデルAと比較して、各層ごとの応答のばらつきが小さく、平坦化されている。これは、必要エネルギー吸収量と保有エネルギー吸収量の比を全層で均等化できたことに起因する。
このことから、モデルBはモデルAよりもより安全であると言える。
Next, a static incremental analysis of the skeleton model was performed on the model A of the conventional example and the model B of the invention example, and safety verification was performed by a forward problem.
10 and 11 show the maximum interlayer deformation angle distribution of each model at the time of input in the X direction and at the time of input in the Y direction. As shown in FIGS. 10 and 11, the target R ≦ 100 rad is satisfied for the level 2 ground motion in any model.
However, as compared with model A, model B has less variation in response for each layer and is flattened. This is because the ratio of the required energy absorption amount to the retained energy absorption amount could be equalized in all layers.
From this, it can be said that model B is safer than model A.

以上の検証から、本発明によれば、耐震安全性を向上させつつも、鋼材量を20%以上削減可能であり、合理的な設計ができることを確認した。 From the above verification, it was confirmed that according to the present invention, the amount of steel material can be reduced by 20% or more while improving seismic safety, and a rational design can be performed.

1 部材選定装置
3 設計条件設定手段
5 初期値設定手段
7 多質点系モデル取得手段
9 部材選定手段
11 梁選定手段
13 柱選定手段
15 ダンパー選定手段
17 層剛性計算手段
19 再計算手段
21 判定手段
23 初期値再設定手段
25 部材決定手段
27 表示手段
29 入力手段
31 記憶手段
33 梁
35 柱
37 ダンパー
<式で使用した文字式一覧>
hi 階高
βi ダンパー系の層せん断力負担率
Rfi 主架構降伏時の層間変形角
Rdi ダンパー系降伏時の層間変形角
Rui 許容最大層間変形角
Qfi 主架構の保有水平耐力
Qdi ダンパー系の保有水平耐力
Kfi 主架構の層剛性
kdi ダンパー系の層剛性
Esfi 主架構の必要エネルギー吸収量
Wfi 主架構の保有エネルギー吸収量
Vs 安全限界時に地震により建築物に作用するエネルギーの速度換算値
nE 最大層間変形角に対する等価な繰返し回数
bMpX (i,j,k) i層のYk通りのXj通り〜Xj+1通りにおける梁の全塑性モーメント
cMp (i,j,k) i層のXj通りとYk通りの交点に位置する柱の全塑性モーメント
Ny (i) i層のダンパーの降伏軸力
θj (i) i層のダンパーの取り付け角
δi 水平変位
pi i端の材端力
pj j端の材端力
xi i端の変位
xj j端の変位
E ヤング率
I 断面二次モーメント
A 部材断面積
G せん断弾性係数
As せん断断面積
1 Member selection device 3 Design condition setting means 5 Initial value setting means 7 Multi-mass model acquisition means 9 Member selection means 11 Beam selection means 13 Column selection means 15 Damper selection means 17 Layer rigidity calculation means 19 Recalculation means 21 Judgment means 23 Initial value resetting means 25 Member determination means 27 Display means 29 Input means 31 Storage means 33 Beam 35 Pillar 37 Damper <List of character expressions used in the formula>
h i Floor height β i Damper system layer shear force burden rate
Interlayer deformation angle during surrender of R fi main frame
R di damper system Interlayer deformation angle during yield
R ui Maximum allowable interlayer deformation angle
Q fi Main frame possession horizontal bearing capacity
Q di Damper system possession horizontal strength
Layer rigidity of K fi main frame
k di Damper layer rigidity
E sfi Required energy absorption of the main frame
Energy absorption of W fi main frame
V s Speed conversion value of energy acting on a building due to an earthquake at the safety limit
n E Equivalent number of iterations for maximum interlayer deformation angle
b M pX (i, j, k) Total plastic moment of the beam in Y k streets from X j streets to X j + 1 streets of the i layer
c M p (i, j, k) The total plastic moment of the column located at the intersection of X j and Y k streets of the i layer.
N y (i) Yield axial force of i-layer damper θ j (i) Mounting angle of i-layer damper δ i Horizontal displacement
p i i end timber edge force
p j j end timber end force
x i i Displacement at the end
x j j Displacement at the end
E Young's modulus
I Second moment of inertia of area
A member cross-sectional area
G Shear modulus
A s shear cross-sectional area

《柱選定工程》
柱選定工程(S9)は、柱梁耐力比から柱35を選定するものである。
具体的には、i層のXj通りとYk通りの交点に位置する柱35には、前述の(8)式及び(9)式で計算される全塑性モーメントcMpX (I,j,k)を持つ柱35を選定する(図3、図4参照)。ただし、最上層柱は層せん断力の比のみで決定する。
<< Pillar selection process >>
In the column selection step (S9), the column 35 is selected based on the column-beam proof stress ratio.
Specifically, on the pillar 35 located at the intersection of X j and Y k streets of the i layer, the total plastic moment c M pX (I, j ) calculated by the above equations (8) and (9). , K) is selected (see FIGS. 3 and 4). However, the uppermost column is determined only by the ratio of the layer shear force.

《ダンパー選定工程》
ダンパー選定工程(S11)は、ダンパー各層の保有水平耐力Qdiに適合するダンパー37を選定する。
具体的には、前述の(10)式で計算される降伏軸力を持つダンパー37を選定する(図3、図4参照)。
<< Damper selection process >>
In the damper selection step (S11), a damper 37 that matches the possessed horizontal strength Q di of each layer of the damper is selected.
Specifically, a damper 37 having a yield axial force calculated by the above equation (10) is selected (see FIGS. 3 and 4).

<層剛性計算工程>
層剛性計算工程(S13)は、選定した柱35、梁33、ダンパー37から主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する。
具体的には、前述の剛性方程式((11)式〜(16)式)を用いて、Ai分布に従う外力を受けたときの主架構の水平剛性Kfiおよびダンパー系の水平剛性kdiを計算し、この操作で得られたKfi及びkdiをそれぞれ、主架構の層剛性Kfi’およびダンパー系の層剛性kdi’とする。
<Layer stiffness calculation process>
Layer stiffness calculation step (S13) is selected by the column 35, the beam 33, the layer stiffness K fi main Frames from the damper 37 to calculate a ', layer stiffness k di of the damper system'.
Specifically, the horizontal stiffness K fi of the main frame and the horizontal stiffness k di of the damper system when an external force according to the Ai distribution is applied are calculated using the above-mentioned stiffness equations (Equations (11) to (16)). and, the K fi and k di obtained in this operation respectively, and the main layer stiffness K fi of Frames 'and damper system layer stiffness k di of'.

<再計算工程>
再計算工程(S15)は、主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を前述の(17)式〜(19)式によって再計算する。
<Recalculation process>
Recalculating step (S15), the main rack構各layer holdings lateral strength Q fi, possess lateral strength Q di of the damper layers, the main rack layer stiffness K fi the structure layer of the damper system each layer from ', layer stiffness k di of the damper system' shear force share ratio beta i ', the main rack story drift R fi at structure breakdown', recalculates the story drift R di 'when damper system breakdown by the aforementioned (17) to (19).

次に、従来例のモデルAと発明例のモデルBに対して、骨組モデルの静的増分解析を実施し、順問題による安全検証を行った。
図10、図11に各モデルのX方向入力時およびY方向入力時の最大層間変形角分布を示す。図10、図11に示されるように、レベル2地震動に対しては、いずれのモデルで目標としたR≦1/100radを満足している。
しかし、モデルBはモデルAと比較して、各層ごとの応答のばらつきが小さく、平坦化されている。これは、必要エネルギー吸収量と保有エネルギー吸収量の比を全層で均等化できたことに起因する。
このことから、モデルBはモデルAよりもより安全であると言える。
Next, a static incremental analysis of the skeleton model was performed on the model A of the conventional example and the model B of the invention example, and safety verification was performed by a forward problem.
10 and 11 show the maximum interlayer deformation angle distribution of each model at the time of input in the X direction and at the time of input in the Y direction. 10, as shown in FIG. 11, for the level 2 earthquake motion, which satisfies the R ≦ 1/100 rad with the goal in either model.
However, as compared with model A, model B has less variation in response for each layer and is flattened. This is because the ratio of the required energy absorption amount to the retained energy absorption amount could be equalized in all layers.
From this, it can be said that model B is safer than model A.

Claims (4)

履歴型ダンパーを有するラーメン構造建物を構成する柱・梁・履歴型ダンパーの選定を支援する装置であって、
対象となるラーメン構造建物の設計に必要な設計条件を設定する設計条件設定手段と、
ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定する初期値設定手段と、
安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求める多質点系モデル取得手段と、
該多質点系モデル取得手段によって取得された多質点系モデルに基づいて、梁、柱及びダンパーの部材を選定する部材選定手段と、
選定した柱、梁、ダンパーから主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する層剛性計算手段と、
主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を再計算する再計算手段と、
再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定の誤差の範囲内かどうかを判定する判定手段と、
前記判定手段によって所定の誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定する初期値再設定手段と、
前記判定手段によって所定の誤差範囲であると判定されたときに、前記部材選定手段で選定された梁、柱及びダンパーを選定された部材として決定する部材決定手段とを備えたことを特徴とするラーメン構造建物の部材選定装置。
A device that supports the selection of columns, beams, and history-type dampers that make up a rigid frame structure building with history-type dampers.
Design condition setting means for setting the design conditions necessary for the design of the target rigid frame structure building, and
Initial value setting means for setting the initial values of the layer shear force sharing ratio β i of each layer of the damper system, the interlayer deformation angle R fi when the main frame yields, and the interlayer deformation angle R di when the damper system yields.
By setting αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the time of the safety limit, the horizontal bearing capacity Q fi possessed by each layer of the main frame And a multi-mass model acquisition means for obtaining a multi-mass model by determining the possessed horizontal strength Q di of each damper layer, the layer stiffness K fi of the main frame, and the layer stiffness k di of the damper system.
A member selection means for selecting members for beams, columns, and dampers based on the multi-mass model acquired by the multi-mass model acquisition means, and
A layer rigidity calculation means for calculating the layer rigidity K fi'of the main frame and the layer rigidity k di ' of the damper system from the selected columns, beams, and dampers.
Owned lateral strength Q fi main rack構各layer holding lateral strength Q di of the damper layers, the main rack layer stiffness K fi of structure Shear force share ratio of the damper system each layer from ', layer stiffness k di of the damper system' beta i ', and recalculating means for recalculating the main rack story drift R fi at structure breakdown ', story drift R di during damper system breakdown'
Recalculated main rack story drift R fi at structure breakdown ', story drift during damper system yield R di' and a determination means for determining whether within a predetermined error tolerance,
When it is determined by the determination means that the error range is exceeded, the layer shear force sharing ratio β i ′ of each layer of the damper system, the interlayer deformation angle R fi ′ during the yield of the main frame, and the interlayer during the yield of the damper system. Initial value resetting means to set the deformation angle R di'as the initial value, and
It is characterized by including a member determining means for determining a beam, a column, and a damper selected by the member selecting means as selected members when the determination means determines that the error range is within a predetermined error range. Rahmen structure A member selection device for buildings.
前記部材選定手段は、主架構各層の保有水平耐力Qfiに適合する梁を選定する梁選定手段と、柱梁耐力比から柱を選定する柱選定手段と、ダンパー各層の保有水平耐力Qdiに適合するダンパーを選定するダンパー選定手段を備えていることを特徴とする請求項1記載のラーメン構造建物の部材選定装置。 The member selection means include a beam selection means for selecting a beam that matches the possessed horizontal strength Q fi of each layer of the main frame, a column selecting means for selecting a column based on the column-beam strength ratio, and a possessed horizontal strength Q di for each layer of the damper. The member selection device for a rigid frame structure building according to claim 1, further comprising a damper selection means for selecting a suitable damper. 履歴型ダンパーを有するラーメン構造建物を構成する柱・梁・履歴型ダンパーを選定する方法であって、
対象となるラーメン構造建物の設計に必要な設計条件を設定する設計条件設定工程と、
ダンパー系各層の層せん断力分担率βi、主架構降伏時の層間変形角Rfi、ダンパー系降伏時の層間変形角Rdiの初期値を設定する初期値設定工程と、
安全限界時に主架構各層に入力される塑性ひずみエネルギーEsfiと主架構各層の保有エネルギーWfiについて、αEsfi=Wfi(α≧1)とすることで、主架構各層の保有水平耐力Qfi及びダンパー各層の保有水平耐力Qdiと、主架構の層剛性Kfi及びダンパー系の層剛性kdiを決定することで多質点系モデルを求める多質点系モデル取得工程と、
該多質点系モデル取得工程によって取得された多質点系モデルに基づいて、梁、柱及びダンパーの部材を選定する部材選定工程と、
選定した柱、梁、ダンパーから主架構の層剛性Kfi’、ダンパー系の層剛性kdi’を計算する層剛性計算工程と、
主架構各層の保有水平耐力Qfi、ダンパー各層の保有水平耐力Qdi、主架構の層剛性Kfi’、ダンパー系の層剛性kdi’からダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を再計算する再計算工程と、
再計算された主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’が所定の誤差の範囲内かどうかを判定する判定工程と、
判定工程によって所定の誤差範囲を超えていると判定されたときに、ダンパー系各層の層せん断力分担率βi’、主架構降伏時の層間変形角Rfi’、ダンパー系降伏時の層間変形角Rdi’を初期値として設定し、多質点系モデル取得工程と、梁選定工程と、柱選定工程と、ダンパー選定工程と、層剛性計算工程と、再計算工程と、判定工程を、判定工程において判定結果が所定の誤差範囲と判定されるまで繰り返す繰り返し計算工程と、
判定手段によって所定の誤差範囲であると判定されたときに、前記梁選定手段、柱選定手段及びダンパー選定手段でそれぞれ選定された梁、柱及びダンパーを選定された部材として決定する部材決定工程とを備えたことを特徴とするラーメン構造建物の部材選定方法。
It is a method of selecting columns, beams, and history type dampers that make up a rigid frame structure building with history type dampers.
The design condition setting process that sets the design conditions necessary for the design of the target rigid frame structure building, and
The initial value setting process for setting the initial values of the layer shear force sharing ratio β i of each layer of the damper system, the interlayer deformation angle R fi when the main frame yields, and the interlayer deformation angle R di when the damper system yields.
By setting αE sfi = W fi (α ≧ 1) for the plastic strain energy E sfi input to each layer of the main frame and the energy W fi possessed by each layer of the main frame at the time of the safety limit, the horizontal bearing capacity Q fi possessed by each layer of the main frame And the multi-mass model acquisition process to obtain the multi-mass model by determining the possessed horizontal strength Q di of each damper layer and the layer stiffness K fi of the main frame and the layer stiffness k di of the damper system.
A member selection process for selecting members for beams, columns, and dampers based on the multi-mass model acquired by the multi-mass model acquisition process.
Selection was columns, beams, and the layer stiffness calculation step of calculating a main rack layer stiffness K fi of structure ', the layer stiffness k di damper system' from the damper,
Owned lateral strength Q fi main rack構各layer holding lateral strength Q di of the damper layers, the main rack layer stiffness K fi of structure Shear force share ratio of the damper system each layer from ', layer stiffness k di of the damper system' beta i ', a recalculation process for recalculating the main rack story drift R fi at structure breakdown ', story drift R di during damper system breakdown'
Recalculated main rack story drift R fi at structure breakdown ', story drift during damper system yield R di' and a determination step of determining whether within a predetermined error,
If it is determined to exceed the predetermined error range by the determination step, the layer shear force sharing rate of the damper based layers beta i ', the main rack story drift R fi at structure breakdown', interlayer deformation during damper system breakdown The angle R di'is set as the initial value, and the multi-point model acquisition process, beam selection process, column selection process, damper selection process, layer rigidity calculation process, recalculation process, and judgment process are determined. A repetitive calculation process that repeats until the judgment result is determined to be within a predetermined error range in the process,
When the determination means determines that the error range is within a predetermined error range, the member determination step of determining the beams, columns, and dampers selected by the beam selection means, column selection means, and damper selection means as selected members. A method of selecting members for a rigid frame structure building, which is characterized by being equipped with.
前記部材選定工程は、主架構各層の保有水平耐力Qfiに適合する梁を選定する梁選定工程と、柱梁耐力比から柱を選定する柱選定工程と、ダンパー各層の保有水平耐力Qdiに適合するダンパーを選定するダンパー選定工程とを備えていることを特徴とする請求項3記載のラーメン構造建物の部材選定方法。 The member selection process includes a beam selection process that selects a beam that matches the possessed horizontal strength Q fi of each layer of the main frame, a column selection process that selects a column based on the column-beam strength ratio, and the possessed horizontal strength Q di of each damper layer. The method for selecting a member of a rigid frame structure building according to claim 3, further comprising a damper selection step for selecting a suitable damper.
JP2019155499A 2019-08-28 2019-08-28 MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER Active JP7131511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019155499A JP7131511B2 (en) 2019-08-28 2019-08-28 MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155499A JP7131511B2 (en) 2019-08-28 2019-08-28 MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER

Publications (2)

Publication Number Publication Date
JP2021033822A true JP2021033822A (en) 2021-03-01
JP7131511B2 JP7131511B2 (en) 2022-09-06

Family

ID=74676702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155499A Active JP7131511B2 (en) 2019-08-28 2019-08-28 MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER

Country Status (1)

Country Link
JP (1) JP7131511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158554B1 (en) * 2021-10-29 2022-10-21 日鉄エンジニアリング株式会社 LEARNING DATASET GENERATION SYSTEM, LEARNED MODEL CREATION METHOD, EARTHQUAKE RESPONSE PREDICTION DEVICE, LEARNING DATASET GENERATION METHOD AND PROGRAM
CN117251952A (en) * 2023-09-08 2023-12-19 海南大学 Optimal design method of damping structure based on multi-level graded yield damper
CN114861354B (en) * 2022-05-10 2024-06-25 东莞理工学院 Frame structure earthquake-resistant analysis method based on energy balance principle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863500A (en) * 1994-08-26 1996-03-08 Mitsubishi Heavy Ind Ltd Calculating device for section of member of steel frame with diagonal brace
JPH10325260A (en) * 1997-03-26 1998-12-08 Aoki Corp Earthquake resistant plane frame, earthquake resisting building, and earthquake resistance reinforcing method
KR20120058822A (en) * 2010-11-30 2012-06-08 단국대학교 산학협력단 Method for designing a damping device utilizing genetic algorism
JP2014122866A (en) * 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure
JP2015232229A (en) * 2014-06-10 2015-12-24 グローバル・ロジスティック・プロパティーズ株式会社 Earthquake response analytical method for base isolation building and earthquake-proof safety evaluation method of base isolation device using the same
CN109598043A (en) * 2018-11-22 2019-04-09 宁波职业技术学院 A kind of construction design method of brace type damper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863500A (en) * 1994-08-26 1996-03-08 Mitsubishi Heavy Ind Ltd Calculating device for section of member of steel frame with diagonal brace
JPH10325260A (en) * 1997-03-26 1998-12-08 Aoki Corp Earthquake resistant plane frame, earthquake resisting building, and earthquake resistance reinforcing method
KR20120058822A (en) * 2010-11-30 2012-06-08 단국대학교 산학협력단 Method for designing a damping device utilizing genetic algorism
JP2014122866A (en) * 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure
JP2015232229A (en) * 2014-06-10 2015-12-24 グローバル・ロジスティック・プロパティーズ株式会社 Earthquake response analytical method for base isolation building and earthquake-proof safety evaluation method of base isolation device using the same
CN109598043A (en) * 2018-11-22 2019-04-09 宁波职业技术学院 A kind of construction design method of brace type damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158554B1 (en) * 2021-10-29 2022-10-21 日鉄エンジニアリング株式会社 LEARNING DATASET GENERATION SYSTEM, LEARNED MODEL CREATION METHOD, EARTHQUAKE RESPONSE PREDICTION DEVICE, LEARNING DATASET GENERATION METHOD AND PROGRAM
CN114861354B (en) * 2022-05-10 2024-06-25 东莞理工学院 Frame structure earthquake-resistant analysis method based on energy balance principle
CN117251952A (en) * 2023-09-08 2023-12-19 海南大学 Optimal design method of damping structure based on multi-level graded yield damper

Also Published As

Publication number Publication date
JP7131511B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
Yang et al. Design and behavior of zipper-braced frames
Tso et al. Seismic response of asymmetrical buildings using pushover analysis
Feizi et al. Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames
JP2021033822A (en) Device for selecting member of rigid-frame structure building with history type damper, and method
Xiang et al. An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches
Nooranad Analytical investigation on the performance of tube-in-tube structures subjected to lateral loads
Angelucci et al. Evaluation of optimal lateral resisting systems for tall buildings subject to horizontal loads
Murray et al. Hybrid simulation for system-level structural response
Sukrawa Staged analysis of rc frame retrofitted with steel braces in low and medium-rise buildings
Thakur et al. Influence of rooftop telecommunication tower on set back-step back building resting on different ground slopes
KR20150114613A (en) Evaluation method for reliable seismic performance factor of Diagrid structural system using test data
Gerami et al. Computation of R factor for steel moment frames by using conventional and adaptive pushover methods
Abebe et al. Accounting for torsional response in direct displacement-based design of plan-asymmetric reinforced concrete frame buildings
Khatami et al. The effect of irregularity of lateral stiffness in estimating the separation gap of adjacent frames
Ky et al. Optimum design of steel structures in accordance with AISC 2010 specification using heuristic algorithm
Nagarajan et al. Smart Modal Analysis of Multistoried Building Considering the Effect of Infill Walls
Putra et al. Performance Analysis of Steel Portal Structures with Braces Designed Based on Allowable Interstory Drift Limits
Fakhraddini et al. A Target Displacement for Pushover Analysis to Estimate Seismic Demand of Eccentrically Braced Frames
Abebe et al. Extension of direct displacement-based design to include higher-mode effects in planar reinforced concrete frame buildings
Khademi et al. Comparison study of CBFs and EBFs bracing in steel structures with nonlinear time history analysis
Ahmed et al. Study of different tubular systems on the lateral load resistance
Wilkinson et al. A modal displacement based approach for the seismic design of one way asymmetric multi story buildings
Nouri et al. Nonlinear seismic analysis of irregular base isolated structures using a new modified lateral load pattern
Babaei et al. Selecting Optimal Dimensions of Internal Tube in Tube-in-Tube Structural Systems Based on Structural Parameters
Heidari et al. An investigation on bracing configuration effects on behavior of concentrically braced steel frames

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150