JP2014122866A - Residual earthquake proof performance evaluation program, method, and marker of multilayer structure - Google Patents
Residual earthquake proof performance evaluation program, method, and marker of multilayer structure Download PDFInfo
- Publication number
- JP2014122866A JP2014122866A JP2012280369A JP2012280369A JP2014122866A JP 2014122866 A JP2014122866 A JP 2014122866A JP 2012280369 A JP2012280369 A JP 2012280369A JP 2012280369 A JP2012280369 A JP 2012280369A JP 2014122866 A JP2014122866 A JP 2014122866A
- Authority
- JP
- Japan
- Prior art keywords
- seismic performance
- residual
- marker
- earthquake
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本発明は多層構造物の残存耐震性能評価プログラム及び方法並びにマーカーに関し,とくに多層構造物の保有耐震性能のうち地震被災後に残存する耐震性能を評価するプログラム及び方法,並びに評価するためのマーカーに関する。 The present invention relates to a residual earthquake resistance performance evaluation program and method for a multilayer structure, and a marker, and more particularly to a program and method for evaluating the earthquake resistance performance remaining after an earthquake disaster among the earthquake resistance performance of a multilayer structure, and a marker for evaluation.
地震に被災した建物その他の多層構造物のなかには,本震時の損傷ゆえに余震によって更に損傷が拡大して居住者(利用者)に二次被害を生じるものがある一方で,逆に余震に対して十分な耐震性能を残しているにもかかわらず居住者(利用者)が恐怖心から避難するものがある。余震による二次被害と避難民を共に減らすためには,被災した構造物の残存耐震性能(構造物の保有耐震性能のうち地震被災後に残存する耐震性能。残余耐震性能ということもある。以下同じ)を迅速に評価することが必要である。従来は,専門技術者が目視によって構造物の骨組部材の損傷度を判定し,その判定結果に基づき残存耐震性能を評価する方法が一般的である。しかし,この方法は,判定すべき項目(例えば,鉄骨構造(S造)では鋼材の皺や破断状況等,鉄筋コンクリート構造(RC造)ではひび割れ状況等)は挙げられているものの,耐火被覆や仕上げ材によって骨組部材の損傷を簡単に目視できないことも多いため,残存耐震性能の評価に時間がかかる問題点がある。また,判定者によって評価結果にバラツキが生じる問題点もある。 Some buildings and other multi-layer structures affected by the earthquake may be further damaged by the aftershock due to damage during the mainshock, causing secondary damage to residents (users). Some residents (users) evacuate from fear despite having sufficient seismic performance. In order to reduce both secondary damage caused by aftershocks and displaced persons, the remaining seismic performance of the damaged structure (of the seismic performance of the structure, the seismic performance remaining after the earthquake disaster, sometimes referred to as residual seismic performance. ) Must be evaluated quickly. Conventionally, a method in which a specialist engineer visually determines the degree of damage of a structural frame member and evaluates the residual seismic performance based on the determination result is generally used. However, although this method includes items to be judged (for example, steel structure (S structure), steel flaws and fractures, reinforced concrete structure (RC structure) cracks, etc.), fireproof coating and finishing Since there are many cases in which the damage of the frame members cannot be easily seen with the materials, there is a problem that it takes time to evaluate the residual seismic performance. In addition, there is a problem in that the evaluation results vary depending on the judge.
これに対し,従来の目視判定による方法に代えて,地震に被災した構造物の残存耐震性能を迅速に評価する技術が提案されている(非特許文献1〜2,特許文献1〜3参照)。例えば非特許文献1は,被災した部材のひび割れ幅に基づく損傷度(耐震性能の低下係数)と残存耐震性能との関係を予め定量化しておき,地震直後に部材の損傷度から建物上部構造の被災度(地震時に消費された耐震性能)及び残存耐震性能を迅速に評価する方法を提案している。また特許文献1及び2は,建物の少なくとも基礎部と上層階とに設置した各加速度センサにより計測した加速度計測値を積分することにより建物上の計測点での絶対変位を算出し,建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し,これらの値から建物の応答変形量及び応答加速度を計算して性能曲線を算出し,他方で基礎部での加速度計測値を入力地震動として加速度応答スペクトル及び変位応答スペクトルを計算して建物の要求曲線を算出し,性能曲線と要求曲線との比較によって建物の残存耐震性能を迅速に評価する方法を提案している。 On the other hand, instead of the conventional method based on visual judgment, techniques for quickly evaluating the residual seismic performance of a structure damaged by an earthquake have been proposed (see Non-Patent Documents 1 and 2, and Patent Documents 1 to 3). . For example, Non-Patent Document 1 quantifies in advance the relationship between the degree of damage based on the crack width of a damaged member (decreasing coefficient of seismic performance) and the residual seismic performance. We have proposed a method for quickly evaluating the degree of damage (seismic performance consumed during an earthquake) and the remaining seismic performance. Patent Documents 1 and 2 calculate the absolute displacement at the measurement point on the building by integrating the acceleration measurement values measured by the respective acceleration sensors installed at least on the foundation and upper floors of the building, and the vibration of the building. Assuming a mode shape, the relative displacement and absolute acceleration of each floor of the building are calculated. From these values, the response deformation amount and response acceleration of the building are calculated to calculate the performance curve. On the other hand, the acceleration measurement value at the foundation is calculated. We have proposed a method to calculate the required curve of a building by calculating acceleration response spectrum and displacement response spectrum as input seismic motion, and to quickly evaluate the residual seismic performance of the building by comparing the performance curve with the required curve.
非特許文献1の評価方法は,部材の損傷度から評価した建物上部構造の被災度と従来の目視判定による建物全体の被災度との間に線形関係があることを前提としている。ただし,建物全体の被災度を直接求めるものではなく,部材毎にバラツキのある損傷度から建物全体の被災度(残存耐震性能)を推定・評価しているので,評価結果のバラツキを避けることは困難である。これに対し,特許文献1及び2の評価方法は,建物の性能曲線と要求曲線とから建物全体の残存耐震性能を直接求めているので,部材毎の損傷度のバラツキに影響されることなく地震に被災した構造物自体の残存耐震性能を客観的・定量的に評価することができる。 The evaluation method of Non-Patent Document 1 is based on the premise that there is a linear relationship between the damage level of the building superstructure evaluated from the damage level of the member and the damage level of the entire building by conventional visual determination. However, the damage level of the entire building is not directly determined, but the damage level (residual seismic performance) of the entire building is estimated and evaluated from the degree of damage that varies from member to member. Have difficulty. On the other hand, the evaluation methods of Patent Documents 1 and 2 directly determine the residual seismic performance of the entire building from the building performance curve and the required curve, so that the earthquake is not affected by the variation in the degree of damage for each member. It is possible to objectively and quantitatively evaluate the residual seismic performance of the structure itself damaged by the earthquake.
しかし,特許文献1及び2の方法は,主に地震時に生じる建物の最大変形に着目して残存耐震性能を評価するものであり,変形の繰り返しが建物の耐震性能に与える影響を適切に評価することができない問題点がある。例えば鉄骨構造(S造)の建物では,地震時に受ける振動の最大振幅が同じであっても,その振動の繰り返しが10回である梁は破断しないのに対し,振動の繰り返しが20回にも及ぶ梁は破断することが経験されている。地震に被災した構造物の残存耐震性能の評価精度及び評価の信頼度を高めるためには,構造物が受ける最大変形(振幅)の影響だけでなく,地震時に加わる変形の繰り返し回数の影響をも考慮して残存耐震性能を評価することが重要である。 However, the methods of Patent Documents 1 and 2 evaluate the residual seismic performance mainly focusing on the maximum deformation of the building that occurs during an earthquake, and appropriately evaluate the effect of repeated deformation on the seismic performance of the building. There is a problem that can not be. For example, in a steel structure (S-structure) building, even if the maximum amplitude of vibration received during an earthquake is the same, a beam that repeats the vibration 10 times does not break, whereas the vibration repeats as many as 20 times. Covering beams have been experienced to break. In order to increase the evaluation accuracy and reliability of the residual seismic performance of a structure damaged by an earthquake, not only the effect of the maximum deformation (amplitude) on the structure but also the effect of the number of repetitions of deformation applied during an earthquake It is important to evaluate the remaining seismic performance in consideration.
そこで本発明の目的は,地震時に加わる変形の繰り返しの影響も考慮して地震被災後の多層構造物の残存耐震性能を評価できるプログラム及び方法並びにマーカーを提供することにある。 Accordingly, an object of the present invention is to provide a program, a method, and a marker that can evaluate the residual seismic performance of a multi-layered structure after an earthquake, taking into consideration the repeated effects of deformation applied during an earthquake.
本発明者は,地震時の構造物に入力されるエネルギーの釣り合いに注目した。地震時の構造物の揺れ方を把握するためには構造物の運動方程式を解かなければならないが,運動方程式の両辺を地震継続時間で積分してエネルギーの釣合式((1)式参照)を作成し,エネルギー授受の観点から地震時の構造物の挙動(壊れ方)を把握する手法(エネルギー法)が開発されている(非特許文献3参照)。(1)式に示すように,構造物に入力される地震の総エネルギーEは,構造物の弾性振動エネルギーWe,累積塑性ひずみエネルギーWp,及び減衰によるエネルギー吸収量Whの総和と釣り合っている。このうち,地震時の弾性変形は地震収束後に解放されて無ひずみ状態に復帰するが,塑性変形は解放されずに破壊状態に至るまで蓄積されることから,地震時に構造物が受けた被災度は(1)式における累積塑性ひずみエネルギーWpと対応している。
E=We+Wp+Wh ……………………………………………………………(1)
The inventor paid attention to the balance of energy input to the structure at the time of the earthquake. In order to understand how the structure swings during an earthquake, the equation of motion of the structure must be solved. The energy balance equation (see Equation (1)) is obtained by integrating both sides of the equation of motion with the earthquake duration. A method (energy method) has been developed (see Non-Patent Document 3) to grasp the behavior (how to break) of a structure during an earthquake from the viewpoint of energy transfer. As shown in the equation (1), the total earthquake energy E input to the structure is balanced with the sum of the elastic vibration energy We, the accumulated plastic strain energy Wp, and the energy absorption amount Wh due to the damping. Of these, the elastic deformation at the time of earthquake is released after the earthquake converges and returns to the unstrained state, but the plastic deformation accumulates until it breaks without being released, so the degree of damage that the structure suffered during the earthquake Corresponds to the accumulated plastic strain energy Wp in equation (1).
E = We + Wp + Wh …………………………………………………………… (1)
すなわち,地震時に構造物に蓄積された累積塑性ひずみエネルギーWpを求めれば,地震時の変形の大きさ及び繰り返し回数の両者の影響によって消費された構造物の耐震性能(消費耐震性能)を定量的に評価することができる。また,地震前に構造物に蓄積され得る累積塑性ひずみエネルギーWsを求めれば,その構造物が予め保有する耐震性能(保有耐震性能)を定量化することができ,その保有耐震性能と消費耐震性能とから地震後の構造物の残存耐震性能を定量的に評価することができる。本発明は,この着想に基づく研究開発により完成に至ったものである。 That is, if the accumulated plastic strain energy Wp accumulated in the structure at the time of the earthquake is obtained, the seismic performance (consumed seismic performance) of the structure consumed by both the magnitude of deformation and the number of repetitions during the earthquake is quantitative. Can be evaluated. In addition, if the accumulated plastic strain energy Ws that can be accumulated in the structure before the earthquake is obtained, the earthquake resistance performance (the existing earthquake resistance performance) possessed by the structure can be quantified. Therefore, the residual seismic performance of the structure after the earthquake can be evaluated quantitatively. The present invention has been completed by research and development based on this idea.
一般に,多層構造物の特定階層に一方向の水平力が入力されたときの荷重−層間変形の関係は図5(A)のように表すことができる。同図において,Qyは降伏耐力,δyは降伏耐力Qyに対応する降伏変形(弾性層間変形)を示す。また,この階層の塑性化の進展度合は塑性変形(δp−δy)として定義され,その塑性変形(δp−δy)と降伏変形δyとの比である(2)式の塑性変形倍率μにより計測することができ,この階層に蓄積される塑性ひずみエネルギーWpは塑性変形倍率μを用いて(3)式のように表すことができる。
δp=(1+μ)・δy …………………………………………………………(2)
Wp=Qy・(δp−δy)=μ・Qy・δy ………………………………(3)
In general, the relationship between load and interlayer deformation when a horizontal force in one direction is input to a specific layer of a multilayer structure can be expressed as shown in FIG. In the figure, Qy represents the yield strength, and δy represents the yield deformation (elastic interlayer deformation) corresponding to the yield strength Qy. The degree of progress of plasticization in this layer is defined as plastic deformation (δp−δy), and is measured by the plastic deformation magnification μ in equation (2), which is the ratio between the plastic deformation (δp−δy) and the yield deformation δy. The plastic strain energy Wp accumulated in this hierarchy can be expressed as in equation (3) using the plastic deformation magnification μ.
δp = (1 + μ) ・ δy ………………………………………………………… (2)
Wp = Qy · (δp−δy) = μ · Qy · δy (3)
他方,多層構造物の特定階層に地震動が入力されたときの荷重−層間変形の関係(復元力特性)は図5(B)のように表すことができる(非特許文献3〜5参照)。同図においても,Qyは降伏耐力,δyは降伏耐力Qyに対応する降伏変形(弾性層間変形)を示す。また,この場合の塑性化の進展度合は,荷重−層間変形の各ステップにおける塑性変形Δδp1,Δδp2,Δδp3,Δδp4を加算した(4)式の累積塑性変形δpとして定義され,累積塑性変形δpと降伏変形δyとの比である(5)式の累積塑性変形倍率ηpにより計測することができる(非特許文献3〜5参照)。従って,この階層に地震時に蓄積される塑性ひずみエネルギーWpは,累積塑性変形倍率ηpを用いて(6)式のように表すことができる。すなわち,上述した構造物の累積塑性ひずみエネルギーWp,Wsに対応する消費耐震性能及び保有耐震性能は,それぞれ入力地震動に対する構造物の累積塑性変形倍率ηp(=Wp/Qy・δy),ηs(=Ws/Qy・δy)を指標として求めることができる((6)式及び(7)式参照)。
δp=(Δδp1+Δδp3)+(Δδp2+Δδp4) …………………(4)
=ηp・δy …………………………………………………………………(5)
Wp=Qy・δp=ηp・Qy・δy …………………………………………(6)
Ws=Qy・δs=ηs・Qy・δy …………………………………………(7)
On the other hand, the relationship between load and interlayer deformation (restoring force characteristics) when earthquake motion is input to a specific layer of a multilayer structure can be expressed as shown in FIG. 5B (see Non-Patent Documents 3 to 5). Also in this figure, Qy represents the yield strength, and δy represents the yield deformation (elastic interlayer deformation) corresponding to the yield strength Qy. In this case, the degree of progress of plasticization is defined as cumulative plastic deformation δp in the equation (4) obtained by adding plastic deformation Δδp1, Δδp2, Δδp3, Δδp4 in each step of load-interlayer deformation. It can be measured by the cumulative plastic deformation magnification ηp of equation (5), which is the ratio to the yield deformation δy (see Non-Patent Documents 3 to 5). Therefore, the plastic strain energy Wp accumulated in this hierarchy at the time of an earthquake can be expressed as in equation (6) using the cumulative plastic deformation magnification ηp. That is, the consumed seismic performance and the possessed seismic performance corresponding to the cumulative plastic strain energy Wp and Ws of the structure described above are the cumulative plastic deformation magnification ηp (= Wp / Qy · δy) and ηs (= Ws / Qy · δy) can be obtained as an index (see formulas (6) and (7)).
δp = (Δδp1 + Δδp3) + (Δδp2 + Δδp4) (4)
= Ηp · δy ………………………………………………………………… (5)
Wp = Qy · δp = ηp · Qy · δy ………………………………………… (6)
Ws = Qy · δs = ηs · Qy · δy ………………………………………… (7)
一側面において本発明は,図1のブロック図及び図3の流れ図に示すように,地震被災後の多層構造物20(図2(A)参照)の残存耐震性能を評価するためコンピュータ1を,構造物20の弾塑性応答解析モデルCを記憶する記憶手段7,解析モデルCに強さの異なる想定地震動Vsを入力して階層Fi毎の荷重−層間変形履歴(図6参照)を求めるサイクルを安全限界に達する階層Fk(例えば3階)が検出されるまで繰り返し且つその検出階層Fkの累積塑性変形倍率ηsとして構造物20の保有耐震性能を算出する算出手段11(図3のステップS103〜S107),及び解析モデルCに被災時の計測地震動Vpを入力して検出階層Fkの累積塑性変形倍率ηpとして構造物20の消費耐震性能を算出し且つその消費耐震性能ηpと保有耐震性能ηsとから構造物20の残存耐震性能ηr(=ηs−ηp)を判定する判定手段12(図3のステップS108〜S110)として機能させる多層構造物の残存耐震性能評価プログラムを提供するものである。 In one aspect, the present invention provides a computer 1 for evaluating the residual seismic performance of a multilayer structure 20 (see FIG. 2A) after an earthquake, as shown in the block diagram of FIG. 1 and the flowchart of FIG. The storage means 7 for storing the elastoplastic response analysis model C of the structure 20 and a cycle for obtaining the load-interlayer deformation history (see FIG. 6) for each layer Fi by inputting the assumed earthquake motion Vs having different strengths into the analysis model C. The calculation means 11 (steps S103 to S107 in FIG. 3) is repeated until a floor Fk (for example, the third floor) reaching the safety limit is detected and the seismic performance of the structure 20 is calculated as the cumulative plastic deformation magnification ηs of the detected floor Fk. ), And the measured earthquake motion Vp at the time of the disaster is input to the analysis model C, and the consumed seismic performance of the structure 20 is calculated as the cumulative plastic deformation magnification ηp of the detection layer Fk, and the consumed seismic performance ηp Provided is a program for evaluating the residual seismic performance of a multilayer structure that functions as determination means 12 (steps S108 to S110 in FIG. 3) for determining the residual seismic performance ηr (= ηs−ηp) of the structure 20 from the seismic performance ηs. Is.
好ましくは,構造物20の弾塑性応答解析モデルCを各骨組部材の位置と形状と弾塑性応答特性とを含む立体解析モデルとし,地震動Vs,Vpを入力して各階層Fiの部材毎の荷重−層間変形履歴を求めるサイクルを安全限界に達する階層Fk(例えば3階)が検出されるまで繰り返す。望ましい実施例では,算出手段11及び判定手段12により,構造物20の保有耐震性能ηs及び消費耐震性能ηpを,前記検出階層Fkに代えて,構造物20の振動モードの振幅が最大となる階層又は構造物20の指定された階層の累積塑性変形倍率として算出する。 Preferably, the elasto-plastic response analysis model C of the structure 20 is a three-dimensional analysis model including the position, shape, and elasto-plastic response characteristics of each frame member, and the seismic motions Vs and Vp are input and the load for each member of each hierarchy Fi -The cycle for obtaining the interlayer deformation history is repeated until the level Fk (for example, the third floor) reaching the safety limit is detected. In a preferred embodiment, the calculation means 11 and the determination means 12 replace the possessed seismic performance ηs and the consumed seismic performance ηp of the structure 20 with the detection hierarchy Fk, so that the amplitude of the vibration mode of the structure 20 is maximized. Alternatively, it is calculated as the cumulative plastic deformation magnification of the designated hierarchy of the structure 20.
また,他の側面において本発明は,図2の実施例及び図4の流れ図に示すように,多層構造物20の弾塑性応答解析モデルCに強さの異なる想定地震動Vsを入力して階層Fi毎の荷重−層間変形履歴(図6参照)を求めるサイクルを安全限界に達する階層Fk(例えば3階)が検出されるまで繰り返し且つその検出階層Fkの累積塑性変形倍率ηsとして構造物20の保有耐震性能を算出し(図4のステップS203〜S207),その保有耐震性能ηs以下の所定累積塑性変形倍率η1(例えば保有耐震性能ηs×50%)に相当するエネルギーを吸収した時点で破断,発熱又は発色するマーカー25(図2(C)及び図2(D)参照)を作成して構造物20の検出階層Fkに取り付け(図4のステップS208),地震被災後にマーカー25の破断,発熱又は発色状況により構造物20の残存耐震性能ηrを判定する(図4のステップS209)多層構造物の残存耐震性能評価方法を提供するものである。 In another aspect, as shown in the embodiment of FIG. 2 and the flowchart of FIG. 4, the present invention inputs a hypothetical ground motion Vs having different strengths to the elastic-plastic response analysis model C of the multilayer structure 20 to generate a hierarchical Fi The cycle for obtaining each load-interlayer deformation history (see FIG. 6) is repeated until a layer Fk (for example, the third floor) reaching the safety limit is detected, and the structure 20 is held as the cumulative plastic deformation magnification ηs of the detected layer Fk. When the seismic performance is calculated (steps S203 to S207 in FIG. 4) and the energy corresponding to a predetermined cumulative plastic deformation magnification η1 (for example, the seismic performance ηs × 50%) less than the retained seismic performance ηs is absorbed, heat is broken. Alternatively, a marker 25 that develops color (see FIGS. 2C and 2D) is created and attached to the detection layer Fk of the structure 20 (step S208 in FIG. 4). The residual seismic performance ηr of the structure 20 is determined based on the breakage, heat generation, or coloration status of No. 5 (step S209 in FIG. 4).
更に他の側面において本発明は,図2(C)及び図2(D)に示すように,多層構造物20の弾塑性応答解析モデルCに強さの異なる想定地震動Vsを入力して階層Fi毎の荷重−層間変形履歴(図6参照)を求めるサイクルを安全限界に達する階層Fk(例えば3階)が検出されるまで繰り返し且つその検出階層Fkの累積塑性変形倍率ηsとして算出された構造物20の保有耐震性能以下の所定累積塑性変形倍率η1(例えば保有耐震性能ηs×50%)に相当するエネルギーを吸収した時点で破断,発熱又は発色するように作成され,前記検出階層Fkに取り付けて地震被災後の破断,発熱又は発色状況により構造物20の残存耐震性能ηrを判定可能とする多層構造物の残存耐震性能評価マーカー25を提供するものである。 In still another aspect, as shown in FIGS. 2 (C) and 2 (D), the present invention inputs a hypothetical ground motion Vs having different strengths into an elasto-plastic response analysis model C of the multilayer structure 20 to generate a hierarchical Fi. A structure in which the cycle for obtaining the load-interlayer deformation history (see FIG. 6) for each load is repeated until a layer Fk (for example, the third floor) reaching the safety limit is detected and calculated as the cumulative plastic deformation magnification ηs of the detected layer Fk Created to break, generate heat, or develop color when absorbing energy corresponding to a predetermined cumulative plastic deformation ratio η1 (for example, possessed seismic performance ηs × 50%) less than 20 seismic performance, and attach to the detection layer Fk. A residual seismic performance evaluation marker 25 for a multi-layered structure that can determine the residual seismic performance ηr of the structure 20 based on the fracture, heat generation, or color development after an earthquake is provided.
望ましい実施例では,構造物20の保有耐震性能ηsを,前記検出階層Fkに代えて,構造物20の振動モードの振幅が最大となる階層又は構造物20の指定された階層の累積塑性変形倍率として算出し,その算出した階層に取り付けて構造物20の残存耐震性能ηrを判定可能とする。また,好ましい実施例では,図2(C)及び図2(D)に示すように,マーカー25に,多層構造物20の保有耐震性能ηs以下の複数の異なる所定累積塑性変形倍率η1,η2,η3(図1の設計手段13参照)に相当するエネルギーを吸収した時点で順次に破断,発熱又は発色する複数の順番付き部材26a,26b,26c,……を含め,地震被災後に破断,発熱又は発色した部材26a,26b,26c,……の順番により多層構造物20の残存耐震性能ηrを判定可能とする。 In a preferred embodiment, the seismic performance ηs of the structure 20 is replaced with the detection layer Fk, and the cumulative plastic deformation ratio of the layer having the maximum vibration mode amplitude of the structure 20 or the designated layer of the structure 20 is used. And the residual seismic performance ηr of the structure 20 can be determined by attaching to the calculated hierarchy. Further, in a preferred embodiment, as shown in FIGS. 2C and 2D, the marker 25 is provided with a plurality of different predetermined cumulative plastic deformation magnifications η1, η2, less than the seismic performance ηs of the multilayer structure 20. including a plurality of ordered members 26a, 26b, 26c,... that sequentially break, generate heat, or develop color when energy corresponding to η3 (see design means 13 in FIG. 1) is absorbed. The residual seismic performance ηr of the multilayer structure 20 can be determined by the order of the colored members 26a, 26b, 26c,.
例えば,図2(C)に示すように,順番付き部材26a,26b,26c……をそれぞれ,複数の異なる所定累積塑性変形倍率に相当するエネルギーを吸収した時点で順次に破断する鋼材ダンパーとすることができる。或いは,図2(D)に示すように,順番付き部材26a,26b,26c……をそれぞれ,複数の異なる所定累積塑性変形倍率に相当するエネルギーを吸収した時点で所要温度に発熱し且つその発熱により変色又は融解する組成物28d,28e,28f……が表面に塗布された摩擦ダンパー又は鋼材ダンパーとすることもできる。 For example, as shown in FIG. 2C, each of the ordered members 26a, 26b, 26c... Is a steel damper that sequentially breaks when absorbing energy corresponding to a plurality of different predetermined cumulative plastic deformation ratios. be able to. Alternatively, as shown in FIG. 2D, each of the ordered members 26a, 26b, 26c,... Generates heat at a required temperature when it absorbs energy corresponding to a plurality of different predetermined cumulative plastic deformation ratios, and the heat generation. It is also possible to use a friction damper or a steel damper in which the composition 28d, 28e, 28f.
本発明による多層構造物の残存耐震性能評価プログラム及び方法並びにマーカーは,多層構造物20の弾塑性応答解析モデルCに強さの異なる想定地震動Vsを入力して安全限界に達する階層Fkを検出し,その検出階層Fkに蓄積された累積塑性ひずみエネルギーWs(累積塑性変形倍率ηs)に基づいて構造物20の保有耐震性能ηsを求め又は視覚化し,地震被災時に検出階層Fkに蓄積された累積塑性ひずみエネルギーWp(累積塑性変形倍率ηp)に基づいて構造物20の消費耐震性能ηpを求め又は視覚化し,構造物20の消費耐震性能ηpと保有耐震性能ηsとを比較することにより被災後の構造物20の残存耐震性能ηr(=ηs−ηp)を判定するので,次の有利な効果を奏する。 The residual seismic performance evaluation program and method and marker of a multilayer structure according to the present invention detects a layer Fk reaching a safety limit by inputting an assumed earthquake motion Vs having different strengths into an elastic-plastic response analysis model C of the multilayer structure 20. Based on the accumulated plastic strain energy Ws (cumulative plastic deformation magnification ηs) accumulated in the detection hierarchy Fk, the seismic performance ηs of the structure 20 is obtained or visualized, and the accumulated plasticity accumulated in the detection hierarchy Fk at the time of earthquake damage Based on the strain energy Wp (cumulative plastic deformation ratio ηp), the consumed earthquake resistance ηp of the structure 20 is obtained or visualized, and the structure 20 after the disaster is compared by comparing the consumed earthquake resistance ηp of the structure 20 with the possessed earthquake resistance ηs. Since the remaining seismic performance ηr (= ηs−ηp) of the object 20 is determined, the following advantageous effects are obtained.
(イ)構造物20に蓄積された累積塑性ひずみエネルギーWpに基づいて保有耐震性能及び消費耐震性能を求めることにより,地震時の最大変形だけでなく変形の繰り返し回数の影響も考慮して構造物20の残存耐震性能を評価することができる。
(ロ)地震計(加速度計,変位計等)の計測地震動Vpを利用して被災後の残存耐震性能を算出することもできるが,所定の累積塑性ひずみエネルギーを吸収した時点で破断,発熱又は発色するマーカー25によって構造物20の保有耐震性能を予め視覚化しておくことにより,たとえ被災時に計測地震動Vpが利用できないときでも,地震被災後にマーカー25を観察するだけで構造物20の残存耐震性能を容易に評価することが可能となる。
(B) By determining the possessed seismic performance and the consumed seismic performance based on the accumulated plastic strain energy Wp accumulated in the structure 20, the structure takes into account not only the maximum deformation during the earthquake but also the effect of the number of deformations. 20 residual seismic performance can be evaluated.
(B) Although the seismic motion Vp can be used to calculate the residual seismic performance after the disaster using a seismometer (accelerometer, displacement meter, etc.), it will break or generate heat when it absorbs the predetermined cumulative plastic strain energy. By visualizing the seismic performance of the structure 20 with the colored marker 25 in advance, even if the measured seismic motion Vp is not available at the time of the disaster, the remaining seismic performance of the structure 20 can be obtained simply by observing the marker 25 after the earthquake. Can be easily evaluated.
(ハ)マーカー25は,専門知識を持たない構造物の居住者(利用者)が自ら地震直後に観察して残存耐震性能を簡単に評価することができ,避難すべきか否かについて迅速で直感的な判断を援助することができる。
(ニ)また,マーカー25は電力その他の外部エネルギーの供給を要としないものとすることができるので,インフラが使用できないような大地震直後においてもマーカー25を確実に動作させて構造物20の残存耐震性能を評価することが可能となる。
(ホ)さらに,マーカー25は構造物20の竣工時に取り付けておけばメンテナンスその他の維持コストを必要としないので,地震計(加速度計,変位計等)を利用する場合よりも経済的に残存耐震性能を評価することが可能である。
(C) The marker 25 allows a resident (user) of a structure having no specialized knowledge to observe immediately after the earthquake and easily evaluate the remaining seismic performance. Can help to make better decisions.
(D) Further, since the marker 25 does not require the supply of electric power or other external energy, the marker 25 can be reliably operated even after a large earthquake where the infrastructure cannot be used. It is possible to evaluate the residual seismic performance.
(E) Furthermore, if the marker 25 is attached when the structure 20 is completed, maintenance and other maintenance costs are not required. Therefore, the residual earthquake resistance is more economical than using a seismometer (accelerometer, displacement meter, etc.). It is possible to evaluate the performance.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,本発明のプログラムを内蔵したコンピュータ1のブロック図の一例を示す。図示例のコンピュータ1は,キーボード・マウス等の入力装置2とディスプレイ・プリンタ等の出力装置3と加速度計・変位計等の地震計9とが接続され,多層構造物20の弾塑性応答解析モデルC等を記憶する記憶手段7を有している。記憶手段7に記憶するデータは,入力装置2から入力手段5を介して入力することができる。また図示例のコンピュータ1は,内蔵プログラムとして,算出手段11と判定手段12と,入力手段5及び出力手段6とを有している。出力手段6は,判定手段12による評価結果(残存耐震性能)を出力装置3に出力するプログラムである。なお,図示例のコンピュータ1は内蔵プログラムとして,算出手段11の算出した構造物20の保有耐震性能に基づいて後述する残存耐震性能評価マーカー25(図2(C)及び図2(D)参照)を設計するマーカー設計手段13を有している。ただし,マーカー25の使用は本発明に必須のものではなく,使用しない場合はマーカー設計手段13も省略できる。 FIG. 1 shows an example of a block diagram of a computer 1 incorporating a program of the present invention. An illustrated computer 1 includes an input device 2 such as a keyboard / mouse, an output device 3 such as a display / printer, and a seismometer 9 such as an accelerometer / displacement meter, and an elastic-plastic response analysis model of a multilayer structure 20. It has storage means 7 for storing C and the like. Data stored in the storage unit 7 can be input from the input device 2 via the input unit 5. In addition, the computer 1 in the illustrated example includes a calculation unit 11, a determination unit 12, an input unit 5, and an output unit 6 as built-in programs. The output unit 6 is a program for outputting the evaluation result (residual seismic performance) by the determination unit 12 to the output device 3. Note that the computer 1 in the illustrated example is a residual seismic performance evaluation marker 25 (see FIG. 2 (C) and FIG. 2 (D)) described later based on the seismic performance of the structure 20 calculated by the calculation means 11 as a built-in program. Marker design means 13 for designing However, the use of the marker 25 is not essential to the present invention, and the marker design means 13 can be omitted when not used.
図3は,図1のコンピュータ1によって,図2に示すような多層構造物20の地震被災後の残存耐震性能を評価する方法の流れ図を示す。図2の多層構造物20は,コンクリート充填鋼管構造(CFT造)の柱とH形鋼の梁とを骨組部材とした23階建ての鉄骨構造(S造)である。以下,図3の流れ図を参照して図1の各プログラムの機能を説明するが,本発明は鉄骨構造(S造)への適用に限定されるものではなく,鉄筋コンクリート構造(RC造),鉄骨鉄筋コンクリート構造(SRC造)等の残存耐震性能を評価する場合にも適用可能である。 FIG. 3 shows a flowchart of a method for evaluating the residual seismic performance after the earthquake damage of the multilayer structure 20 as shown in FIG. 2 by the computer 1 of FIG. The multilayer structure 20 in FIG. 2 is a 23-story steel structure (S structure) in which a pillar of a concrete-filled steel pipe structure (CFT structure) and an H-shaped steel beam are used as frame members. The function of each program of FIG. 1 will be described below with reference to the flowchart of FIG. 3, but the present invention is not limited to application to a steel structure (S structure), but a reinforced concrete structure (RC structure), a steel frame. It can also be applied to the evaluation of residual seismic performance such as reinforced concrete structures (SRC construction).
先ずステップS101において,多層構造物20の弾塑性応答解析モデルCを構築して記憶手段7に記憶する。解析モデルCは,後述するように想定地震動Vs又は計測地震動Vpを入力して各階層Fiの荷重−層間変形履歴(図6参照)を算出するためのものである。例えば,構造物20の弾塑性応答解析モデルCを,層全体を1つのバネとして各階層Fiの質点を直列につないだ平面モデル(質点モデル)とし,各階層Fiの復元力特性を適切にモデル化して荷重−層間変形履歴を算出する。好ましくは,構造物20の弾塑性応答解析モデルCを各骨組部材の位置と形状と弾塑性応答特性(復元力特性等)とを含む立体解析モデルとし,地震動Vs,Vpの入力に応じて各階層Fiの荷重−層間変形履歴と共に各骨組部材の荷重−層間変形履歴を算出する。立体解析モデルを用いることにより,簡易な平面モデル(質点モデル)を用いた場合に比して,後述する構造物20の保有耐震性能ηsの算出精度を高めることが期待できる。 First, in step S101, an elastic-plastic response analysis model C of the multilayer structure 20 is constructed and stored in the storage means 7. The analysis model C is for calculating the load-interlayer deformation history (see FIG. 6) of each layer Fi by inputting the assumed ground motion Vs or the measured ground motion Vp as described later. For example, the elasto-plastic response analysis model C of the structure 20 is a plane model (mass point model) in which the masses of each layer Fi are connected in series with the entire layer as one spring, and the restoring force characteristics of each layer Fi are appropriately modeled. To calculate the load-interlayer deformation history. Preferably, the elastic-plastic response analysis model C of the structure 20 is a three-dimensional analysis model including the position and shape of each frame member and elastic-plastic response characteristics (restoring force characteristics, etc.). The load-interlayer deformation history of each frame member is calculated together with the load-interlayer deformation history of the layer Fi. By using the three-dimensional analysis model, it can be expected that the calculation accuracy of the seismic performance ηs of the structure 20 to be described later is improved as compared with the case of using a simple plane model (mass point model).
次いでステップS102において,想定地震動データVsを記憶手段7に記憶する。例えば,過去の適当な地震記録を選択して想定地震動データVsとすることができる。好ましくは,評価対象の多層構造物20の設置位置において発生が予測される周辺の震源位置・震源規模(マグニチュード)等を選択し,その震源距離と震源規模と距離減衰式とから経験的手法により,実際に発生する可能性の高い地震動データVsを予想して記憶手段7に記憶する。更に好ましくは,構造物20の設置位置における地盤特性データ(増幅特性)Uを記憶手段7に記憶し,構造物20の設置地盤による増幅を考慮して地震動データVsを予想する。後述するように,想定地震動データVsの入力に応じて各階層Fiの荷重−層間変形履歴を算出し,その荷重−層間変形履歴に基づいて構造物20の保有耐震性能を算出するので,実際に発生する可能性の高い想定地震動データVsを用いる(更に構造物20周辺の地盤による増幅を考慮する)ことにより,構造物20の保有耐震性能ηsの算出精度を高めることが期待できる。 Next, in step S102, the assumed earthquake motion data Vs is stored in the storage means 7. For example, an appropriate past earthquake record can be selected and used as the assumed earthquake motion data Vs. Preferably, the location of the surrounding epicenter, the magnitude of the seismic source (magnitude), etc. that are predicted to occur at the installation location of the multilayer structure 20 to be evaluated are selected, and the empirical method is used to determine the seismic source distance, epicenter size, and distance attenuation formula. The earthquake motion data Vs that is likely to actually be generated is predicted and stored in the storage means 7. More preferably, the ground characteristic data (amplification characteristic) U at the installation position of the structure 20 is stored in the storage means 7, and the seismic motion data Vs is predicted in consideration of amplification due to the installation ground of the structure 20. As will be described later, the load-interlayer deformation history of each layer Fi is calculated according to the input of the assumed earthquake motion data Vs, and the seismic performance of the structure 20 is calculated based on the load-interlayer deformation history. It is expected that the accuracy of calculation of the seismic performance ηs of the structure 20 can be improved by using the assumed ground motion data Vs that is highly likely to be generated (further considering amplification by the ground around the structure 20).
ステップS103〜S107は,図1のコンピュータ1の算出手段11によって構造物20の保有耐震性能を算出する処理を示す。算出手段11は,ステップS103において記憶手段7から想定地震動Vsを読み出して初期強度(×1.0)に設定したうえで構造物20の弾塑性応答解析モデルCに入力し,ステップS104において解析モデルCの各階層Fiの荷重−層間変形履歴を算出する。図6(A)は,ステップS104で算出された階層Fi別の荷重−層間変形履歴の一例を示す(図示例は3階F3)。図5(B)を参照して上述したように,図示例のような荷重−層間変形履歴の各ステップにおける塑性変形Δδp1,Δδp2,Δδp3,Δδp4から,各階層Fi及び各骨組部材の累積塑性変形δp((4)式)及び累積塑性変形倍率ηs((6)式)を算出することができる(図7(B)参照)。また,各ステップにおける降伏変形δy及び塑性変形Δδp1,Δδp2,Δδp3,Δδp4の大きさから,各階層Fi及び各骨組部材の最大層間変形(例えば最大層間変形角等)を算出することができる(図7(A)参照)。 Steps S103 to S107 show processing for calculating the seismic performance of the structure 20 by the calculation means 11 of the computer 1 of FIG. The calculation means 11 reads the assumed earthquake motion Vs from the storage means 7 in step S103, sets it to the initial strength (× 1.0), and inputs it to the elastic-plastic response analysis model C of the structure 20, and in step S104, the analysis model The load-interlayer deformation history of each layer Fi of C is calculated. FIG. 6A shows an example of the load-interlayer deformation history for each layer Fi calculated in step S104 (the illustrated example is the third floor F3). As described above with reference to FIG. 5B, from the plastic deformation Δδp1, Δδp2, Δδp3, Δδp4 in each step of the load-interlayer deformation history as shown in the example, the cumulative plastic deformation of each layer Fi and each frame member. δp (formula (4)) and cumulative plastic deformation magnification ηs (formula (6)) can be calculated (see FIG. 7B). Further, the maximum interlayer deformation (for example, the maximum interlayer deformation angle) of each layer Fi and each frame member can be calculated from the magnitudes of the yield deformation δy and the plastic deformations Δδp1, Δδp2, Δδp3, Δδp4 in each step (FIG. 7 (A)).
また算出手段11は,ステップS105において安全限界に達する階層Fkが検出されたか否かを判断し,検出されない場合はステップS106に進んで想定地震動Vsの強さを1段階増大させたうえでステップS103へ戻り,安全限界に達する階層Fkが検出されるまで上述したステップS103〜S106のサイクルを繰り返す。例えば,初期強度(×1.0)の想定地震動Vsの入力では安全限界に達する階層Fkが検出されない場合に,ステップS106において想定地震動Vsの入力倍率を×1.2,×1.4,×1.6,×1.8,×2.0に増大させながらステップS103〜S106のサイクルを繰り返す(図7参照)。図6(B)は,想定地震動Vsの入力倍率を増大したときにステップS104で算出された階層Fi別の荷重−層間変形履歴を示す(図示例は3階F3)。 Further, the calculation means 11 determines whether or not the hierarchy Fk reaching the safety limit is detected in step S105, and if not, the calculation means 11 proceeds to step S106 and increases the strength of the assumed seismic motion Vs by one step and then step S103. Returning to step S103, the cycle of steps S103 to S106 is repeated until the level Fk reaching the safety limit is detected. For example, if the level Fk reaching the safety limit is not detected by the input of the assumed ground motion Vs having the initial strength (× 1.0), the input magnification of the assumed ground motion Vs is set to × 1.2, × 1.4, × in step S106. The cycle of steps S103 to S106 is repeated while increasing to 1.6, x1.8, and x2.0 (see FIG. 7). FIG. 6B shows the load-interlayer deformation history for each layer Fi calculated in step S104 when the input magnification of the assumed ground motion Vs is increased (in the illustrated example, the third floor F3).
多層構造物20の特定の階層Fkが安全限界に達したか否かは,例えば各骨組部材に累積疲労損傷則を適用し,その階層Fkの何れかの骨組部材が破断(疲労破壊)を起こすか否かにより判断することができる(図8参照)。例えば,予め骨組部材(例えば梁部材)に発生する応力振幅σ1,σ2,……,σiがそれぞれ破断に至るまでの繰り返し回数N1,N2,……,Niを求めて記憶手段7に記録しておき,ステップS104において各階層Fiの荷重−層間変形履歴から各骨組部材に発生する応力振幅σ1,σ2,……,σiの繰り返し回数n1,n2,……,niを計測し,(11)式のように各応力振幅σ1,σ2,……,σiの損傷度の総和によって各骨組部材の破断に対する損傷度Dを算出する。ステップS105において,各階層Fiにおいて何れかの骨組部材の損傷度Dが1以上となるか否かを検出し,損傷度Dが1以上の骨組部材の発生した階層Fkを安全限界に達したと判断する。
D(破断に対する損傷度)=Σ(ni/Ni) ………………………………(11)
Whether or not a specific level Fk of the multilayer structure 20 has reached the safety limit is determined by applying a cumulative fatigue damage law to each frame member, for example, and any frame member in the level Fk breaks (fatigue failure). It can be determined by whether or not (see FIG. 8). For example, the number of repetitions N1, N2,..., Ni until the stress amplitudes σ1, σ2,. In step S104, the number of repetitions n1, n2,..., Ni of the stress amplitudes σ1, σ2,..., Σi generated in each frame member is measured from the load-interlayer deformation history of each layer Fi. As described above, the damage degree D with respect to the fracture of each frame member is calculated by the sum of the damage degrees of the stress amplitudes σ1, σ2,. In step S105, it is detected whether or not the damage degree D of any of the frame members is 1 or more in each hierarchy Fi, and the hierarchy Fk in which the frame member having the damage degree D of 1 or more has reached the safety limit. to decide.
D (Damage to break) = Σ (ni / Ni) (11)
図8は,想定地震動Vsの入力倍率が×1.4以下であれば骨組部材の損傷度Dが1以上となる階層Fkは検出されないが,入力倍率が×1.6のときは3階F3において損傷度Dが1以上となり,入力倍率が×1.8のときは3階F3だけでなく2階F2においても損傷度Dが1以上となり,入力倍率が×2.0になると2〜5階において損傷度Dが1以上となることを示している。ただし,ステップS105の安全限界の判断は,骨組部材の損傷度Dを用いた方法に限定されず,従来技術に属する他の方法によって判断することも可能である。例えば,図7(B)に示す骨組部材毎の更累積塑性変形倍率ηから破断の危険性を判断して各階層Fiが安全限界に達したか否かを判断してもよい。 FIG. 8 shows that if the input magnification of the assumed ground motion Vs is x1.4 or less, the layer Fk with the damage degree D of the frame member being 1 or more is not detected, but if the input magnification is x1.6, the third floor F3 is detected. When the damage degree D is 1 or more and the input magnification is x1.8, the damage degree D is 1 or more not only at the third floor F3 but also at the second floor F2, and when the input magnification is x2.0, 2 to 5 It shows that the damage degree D is 1 or more in the floor. However, the determination of the safety limit in step S105 is not limited to the method using the damage degree D of the frame member, and can also be determined by another method belonging to the prior art. For example, the risk of fracture may be determined from the further cumulative plastic deformation magnification η for each frame member shown in FIG. 7B to determine whether each level Fi has reached the safety limit.
ステップS105において安全限界に達する階層Fkが検出されたときはステップS107に進み,安全限界到達が検出された階層Fk(図示例では3階F3)を評価対象階層Fkとして選定すると共に,その想定地震動Vsの入力倍率における評価対象階層Fkの累積塑性変形倍率ηsとして構造物20の保有耐震性能ηsを算出する。図9は,想定地震動Vsの入力倍率の変化に応じて各階層Fiの累積塑性変形倍率ηsを算出した結果を表しており,上述したように入力倍率が×1.6のときの3階F3を評価対象階層とする場合は,この構造物20の保有耐震性能ηsが14であることを示している。算出した構造物20の保有耐震性能ηsは記憶手段7に記憶し,後述する判定処理(ステップS110)で利用する(図1も参照)。 When the hierarchy Fk reaching the safety limit is detected in step S105, the process proceeds to step S107, and the hierarchy Fk (third floor F3 in the illustrated example) where the safety limit is detected is selected as the evaluation target hierarchy Fk, and the assumed earthquake motion The seismic performance ηs of the structure 20 is calculated as the cumulative plastic deformation magnification ηs of the evaluation target hierarchy Fk at the input magnification of Vs. FIG. 9 shows the result of calculating the cumulative plastic deformation magnification ηs of each layer Fi in accordance with the change in the input magnification of the assumed ground motion Vs. As described above, the third floor F3 when the input magnification is × 1.6. Indicates that the seismic performance ηs of the structure 20 is 14. The calculated seismic performance ηs of the structure 20 is stored in the storage means 7 and used in the determination process (step S110) described later (see also FIG. 1).
なお,構造物20の保有耐震性能ηsを算出するべき評価対象階層Fkは,必ずしも安全限界到達が検出された階層を選定しなくてもよく,例えば図7(A)において入力倍率が×1.6のときに最大層間変形(最大層間変形角)が最も大きい値となる4階F4を評価対象階層Fkとして選定し,ステップS107において安全限界到達が検出された3階F3と異なる4階F4の累積塑性変形倍率ηsを構造物20の保有耐震性能ηsとすることができる。この場合は,ステップS105において評価対象階層Fk(4階F4)の安定限界到達が検出されるまで上述したステップS103〜S106のサイクルを繰り返し,ステップS107において安全限界到達が検出された評価対象階層Fk(4階F4)の累積塑性変形倍率ηsとして構造物20の保有耐震性能ηsを算出する。 Note that the evaluation target hierarchy Fk from which the seismic performance ηs of the structure 20 should be calculated does not necessarily have to select a hierarchy in which the safety limit has been detected. For example, in FIG. The fourth floor F4 having the largest value of maximum interlayer deformation (maximum interlayer deformation angle) at 6 is selected as the evaluation target hierarchy Fk, and the fourth floor F4 different from the third floor F3 from which the safety limit has been reached in step S107 is selected. The accumulated plastic deformation magnification ηs can be set as the possessed seismic performance ηs of the structure 20. In this case, the above-described cycle of steps S103 to S106 is repeated until the stability limit of the evaluation target hierarchy Fk (fourth floor F4) is detected in step S105, and the evaluation target hierarchy Fk in which the safety limit has been detected in step S107. The retained seismic performance ηs of the structure 20 is calculated as the cumulative plastic deformation magnification ηs of (F4).
また,例えば図示例の多層構造物20内の重要な設備等がおかれた指定階層(例えば5階F5)を評価対象階層Fkとして選定し,そのような指定階層(例えば5階F5)の安全限界到達が検出されるまでステップS103〜S106のサイクルを繰り返し,ステップS107において指定階層(例えば5階F5)の安全限界到達時の累積塑性変形倍率ηsとして構造物20の保有耐震性能ηsを算出してもよい。更に,別途の固有振動モード解析等によって1〜3次モードまでの振幅(変位モード)が最大となる階層Fkが検出されているときは,その振幅が最大となる階層Fkを評価対象階層Fkとして選定し,その評価対象階層Fkの安全限界到達時の累積塑性変形倍率ηsとして構造物20の保有耐震性能ηsを算出することも可能である。 Further, for example, a designated hierarchy (for example, the fifth floor F5) in which important facilities or the like in the illustrated multilayer structure 20 is placed is selected as the evaluation target hierarchy Fk, and the safety of such designated hierarchy (for example, the fifth floor F5) is selected. The cycle of steps S103 to S106 is repeated until the limit is detected, and in step S107, the seismic performance ηs of the structure 20 is calculated as the cumulative plastic deformation magnification ηs when the safety limit of the designated hierarchy (for example, the fifth floor F5) is reached. May be. Furthermore, when a layer Fk having the maximum amplitude (displacement mode) from the first to third modes is detected by separate natural vibration mode analysis or the like, the layer Fk having the maximum amplitude is set as the evaluation target layer Fk. It is possible to select and calculate the seismic performance ηs of the structure 20 as the cumulative plastic deformation magnification ηs when the safety limit of the evaluation target hierarchy Fk is reached.
図3のステップS108〜S110は,地震が発生した場合に,図1のコンピュータ1の判定手段12によって被災時の構造物20の消費耐震性能を算出し,その消費耐震性能ηpとステップS107で算出した保有耐震性能ηsとから構造物20の残存耐震性能ηrを判定する処理を示す。判定手段12は,ステップS108において地震計9による被災時の計測地震動Vpを構造物20の弾塑性応答解析モデルCに入力し,ステップS109において解析モデルCの各階層Fiの荷重−層間変形履歴を算出する。荷重−層間変形履歴の算出方法は,入力地震動が相違する点を除いて上述したステップS104と同様である。また判定手段12は,ステップS109において,計測地震動Vpにおける評価対象階層Fkの累積塑性変形倍率ηsを構造物20の消費耐震性能ηpとして算出する。この消費耐震性能ηpの算出方法も,入力地震動が相違する点を除いて上述したステップS107における保有耐震性能ηsの算出方法と同様である。 In steps S108 to S110 in FIG. 3, when an earthquake occurs, the determination means 12 of the computer 1 in FIG. 1 calculates the earthquake resistance performance of the structure 20 at the time of the disaster, and the calculated earthquake resistance performance ηp and the calculation in step S107. A process of determining the remaining seismic performance ηr of the structure 20 from the stored seismic performance ηs is shown. In step S108, the determination means 12 inputs the measured ground motion Vp at the time of the damage by the seismometer 9 to the elastic-plastic response analysis model C of the structure 20, and in step S109, the load-interlayer deformation history of each layer Fi of the analysis model C is obtained. calculate. The method for calculating the load-interlayer deformation history is the same as that in step S104 described above except that the input ground motion is different. In step S109, the determination unit 12 calculates the cumulative plastic deformation magnification ηs of the evaluation target hierarchy Fk in the measured seismic motion Vp as the consumed earthquake resistance ηp of the structure 20. The calculation method of the consumed seismic performance ηp is the same as the calculation method of the stored seismic performance ηs in step S107 described above except that the input seismic motion is different.
更に判定手段12は,ステップS110において,構造物20の消費耐震性能ηpと保有耐震性能ηsとを比較することにより,被災後の構造物20の残存耐震性能ηr(=ηs−ηp)を判定する。上述したように図示例の多層構造物20は保有耐震性能ηs=14であるから,例えば消費耐震性能ηp=6程度であれば残存耐震性能ηr=8(=14−6)であると判定し,保有耐震性能ηsの約57%(=8/14)が残っているので余震によっても構造物20は倒壊するおそれがないと判定することができる。また,例えば消費耐震性能ηp=12程度であれば残存耐震性能ηr=2(=14−12)であると判定し,保有耐震性能ηsの約14%(=2/14)しか残っていないので構造物20が余震により倒壊するおそれがあると判定することができる。 Further, in step S110, the determination unit 12 determines the residual earthquake resistance ηr (= ηs−ηp) of the structure 20 after the disaster by comparing the consumed earthquake resistance ηp of the structure 20 and the possessed earthquake resistance ηs. . As described above, since the multilayer structure 20 in the illustrated example has the seismic performance ηs = 14, for example, if the seismic performance ηp = 6, it is determined that the residual seismic performance ηr = 8 (= 14−6). Since about 57% (= 8/14) of the retained seismic performance ηs remains, it can be determined that there is no risk of the structure 20 collapsing due to an aftershock. Further, for example, if the consumed seismic performance ηp = 12, it is determined that the remaining seismic performance ηr = 2 (= 14-12), and only about 14% (= 2/14) of the retained seismic performance ηs remains. It can be determined that the structure 20 may collapse due to an aftershock.
図3の流れ図のステップS111〜S112は,残存耐震性能ηrに基づいて構造物20の倒壊のおそれを判断し,必要に応じて構造物20を補修・改築する処理を示す。また,ステップ113において残存耐震性能ηrの評価を継続するか否かを判断し,継続する場合はステップS108に戻って例えば余震の発生を待ち合わせ,余震が発生したときはその計測地震動Vpを判定手段12に入力して余震による消費耐震性能ηp´を算出し,本震後の構造物20の残存耐震性能ηrと比較することにより余震後の残存耐震性能ηr´(=ηr−ηp´)を判定する。ステップS108〜S113を繰り返すことにより,余震が繰り返し発生する場合にも構造物20の倒壊のおそれを適切に判定することが可能となる。 Steps S111 to S112 in the flowchart of FIG. 3 indicate processing for determining the possibility of collapse of the structure 20 based on the remaining seismic performance ηr and repairing / reconstructing the structure 20 as necessary. In step 113, it is determined whether or not the evaluation of the remaining seismic performance ηr is to be continued. If so, the process returns to step S108 to wait for the occurrence of an aftershock, for example. 12 is calculated, and the residual seismic performance ηr ′ (= ηr−ηp ′) after the aftershock is determined by calculating the consumed seismic performance ηp ′ of the aftershock and comparing it with the residual seismic performance ηr of the structure 20 after the main shock. . By repeating steps S108 to S113, it is possible to appropriately determine the possibility of collapse of the structure 20 even when aftershocks repeatedly occur.
図3の流れ図によれば,多層構造物20の保有耐震性能及び消費耐震性能を評価対象階層Fkの累積塑性変形倍率ηsとして,すなわち評価対象階層Fkに蓄積された累積塑性ひずみエネルギーWpに基づいて算出するので,地震時の最大変形だけでなく変形の繰り返し回数の影響も考慮して構造物20の残存耐震性能を評価することができる。また,被災時の計測地震動Vpを入力するだけで構造物20の残存耐震性能を迅速に且つ定量的に評価することができ,余震に対する安全性の判断を援助することができる。更に,余震が繰り返されるような場合でも,累積塑性ひずみエネルギーWpに基づき耐震性能の段階的な低下(消費)を把握して構造物20の倒壊のおそれを適切に判定することができる。 According to the flowchart of FIG. 3, the seismic performance and consumption seismic performance of the multi-layered structure 20 are based on the cumulative plastic deformation rate ηs of the evaluation target hierarchy Fk, that is, based on the accumulated plastic strain energy Wp accumulated in the evaluation target hierarchy Fk. Since the calculation is performed, it is possible to evaluate the residual seismic performance of the structure 20 in consideration of not only the maximum deformation at the time of the earthquake but also the influence of the number of repetitions of deformation. Moreover, the residual seismic performance of the structure 20 can be evaluated quickly and quantitatively only by inputting the measured ground motion Vp at the time of the disaster, and the judgment of the safety against the aftershock can be assisted. Further, even when aftershocks are repeated, it is possible to appropriately determine the possibility of collapse of the structure 20 by grasping the stepwise decrease (consumption) of the seismic performance based on the accumulated plastic strain energy Wp.
こうして本発明の目的である「地震時に加わる変形の繰り返しの影響も考慮して地震被災後の多層構造物の残存耐震性能を評価できるプログラム」の提供を達成することができる。 Thus, the provision of “a program that can evaluate the residual seismic performance of the multi-layered structure after the earthquake considering the effects of repeated deformation applied during an earthquake”, which is the object of the present invention, can be achieved.
上述した図3の流れ図では,地震計9の計測地震動Vpを利用して地震被災後の多層構造物20の残存耐震性能を算出しているが,残存耐震性能を評価すべき構造物20にそれぞれ地震計9を設けることは合理的・経済的ではなく,被災直後に地震計9の計測地震動Vpを利用できない場合もある。図4の流れ図は,地震計9の計測地震動Vpの利用に代えて,残存耐震性能評価マーカー25(図2(C)及び図2(D)参照)を利用して地震被災後の構造物20の残存耐震性能を評価する本発明の評価方法の流れ図を示す。また,図1のコンピュータ1は,残存耐震性能評価マーカー25を設計するマーカー設計手段13を有している。以下,図4の流れ図を参照して,マーカー25を利用した残存耐震性能評価方法及び図1のマーカー設計手段13の機能を説明する。 In the flow chart of FIG. 3 described above, the residual seismic performance of the multi-layered structure 20 after the earthquake is calculated using the seismic motion Vp measured by the seismometer 9, but the remaining seismic performance is evaluated for each structure 20 to be evaluated. Providing the seismometer 9 is not rational and economical, and the measured seismic motion Vp of the seismometer 9 may not be available immediately after the disaster. The flow chart of FIG. 4 shows the structure 20 after the earthquake damage using the residual seismic performance evaluation marker 25 (see FIGS. 2C and 2D) instead of using the measured ground motion Vp of the seismometer 9. The flowchart of the evaluation method of this invention which evaluates the residual seismic performance of is shown. Further, the computer 1 of FIG. 1 has marker design means 13 for designing the residual seismic performance evaluation marker 25. Hereinafter, the residual seismic performance evaluation method using the marker 25 and the function of the marker design means 13 of FIG. 1 will be described with reference to the flowchart of FIG.
図4のステップS201〜207は,上述した図3のステップS101〜S107と同様に,コンピュータ1の算出手段11によって多層構造物20の保有耐震性能ηsを算出する処理を示す。ステップS208において,算出手段11の算出した構造物20の保有耐震性能ηsをマーカー設計手段13に入力し,先ず保有耐震性能ηs以下の所定累積塑性変形倍率η1を設定する。図1のマーカー設計手段13は,例えば保有耐震性能ηsに対して50%,70%,90%の3つの累積塑性変形倍率η1,η2,η3を設定しているが,設定数及び設定割合は任意に選択することができ,少なくとも1個の所定累積塑性変形倍率η1(例えば保有耐震性能ηs×50%)を設定すれば足りる。次いでマーカー設計手段13は,設定した所定累積塑性変形倍率η1に相当するエネルギーを吸収した時点で破断,発熱又は発色する残存耐震性能評価マーカー25を設計して製造する。 Steps S201 to S207 in FIG. 4 indicate a process of calculating the seismic performance ηs of the multilayer structure 20 by the calculation unit 11 of the computer 1 in the same manner as Steps S101 to S107 in FIG. In step S208, the seismic performance ηs of the structure 20 calculated by the calculation unit 11 is input to the marker design unit 13, and a predetermined cumulative plastic deformation magnification η1 equal to or less than the seismic performance ηs is first set. The marker design means 13 in FIG. 1 sets three cumulative plastic deformation magnifications η1, η2, and η3 of 50%, 70%, and 90%, for example, with respect to the seismic resistance performance ηs. It can be arbitrarily selected, and it is sufficient to set at least one predetermined cumulative plastic deformation magnification η1 (for example, possessed seismic performance ηs × 50%). Next, the marker design means 13 designs and manufactures a residual seismic performance evaluation marker 25 that breaks, generates heat, or develops color when energy corresponding to the set predetermined cumulative plastic deformation magnification η1 is absorbed.
例えば,力学的エネルギーを吸収して弾性変形領域ないし塑性変形領域で発光する応力発光物質が開発されており(特許文献4,非特許文献6参照),その発光の繰り返し回数,発光時間,発光量等から吸収したエネルギーを推定することができる。このことから,所定累積塑性変形倍率η1に相当するエネルギー(塑性ひずみエネルギー)を吸収した段階で所定の発光繰り返し回数,発光時間,又は発光量を示すような発光物質を設計・製造して残存耐震性能評価マーカー25とすることができる。 For example, stress luminescent materials that absorb mechanical energy and emit light in an elastic deformation region or plastic deformation region have been developed (see Patent Document 4 and Non-Patent Document 6), and the number of repetitions of light emission, light emission time, light emission amount. The energy absorbed can be estimated from the above. Based on this, a luminescent material that exhibits a predetermined number of repetitions of light emission, light emission time, or light emission amount at the stage of absorbing energy (plastic strain energy) corresponding to a predetermined cumulative plastic deformation magnification η1 is designed and manufactured, and residual earthquake resistance The performance evaluation marker 25 can be used.
図2(A)及び図2(B)に示すように,そのように設計・製造したマーカー25を,多層構造物20の評価対象階層Fkの層間部材(例えば壁,間柱,犠牲部材等)に塗布又は充填することにより取り付け,地震被災後にマーカー25の発色状況(発光の繰り返し回数,発光時間,発光量等)を観察することにより,構造物20の蓄積された塑性ひずみエネルギー(累積塑性ひずみエネルギーWp)が所定累積塑性変形倍率η1(例えば保有耐震性能ηs×50%)を超えたか否か,すなわち構造物20の残存耐震性能を判定することができる(後述のステップS209参照)。マーカー25には,必要に応じて,発光の繰り返し回数,発光時間,発光量等を記録する受光手段及びメモリ等を含めることができる。 As shown in FIGS. 2 (A) and 2 (B), the marker 25 designed and manufactured as described above is applied to an interlayer member (for example, a wall, a stud, a sacrificial member, etc.) of the evaluation target hierarchy Fk of the multilayer structure 20. It is attached by coating or filling, and the accumulated plastic strain energy (cumulative plastic strain energy) of the structure 20 is observed by observing the color development state (number of repetitions of light emission, light emission time, light emission amount, etc.) of the marker 25 after earthquake damage. It is possible to determine whether or not (Wp) exceeds a predetermined cumulative plastic deformation magnification η1 (for example, possessed seismic performance ηs × 50%), that is, the remaining seismic performance of the structure 20 (see step S209 described later). The marker 25 can include a light receiving means, a memory, and the like for recording the number of repetitions of light emission, the light emission time, the light emission amount, and the like as necessary.
好ましくは,図2(C)及び図2(D)に示すように,多層構造物20の保有耐震性能ηs以下の複数の異なる所定累積塑性変形倍率η1,η2,η3(例えば保有耐震性能ηsの50%,70%,90%)に相当するエネルギーを吸収した時点で順次に破断,発熱又は発色するような複数の順番付き部材26a,26b,26c,……を残存耐震性能評価マーカー25に含める。そのような複数の順番付き部材26a,26b,26c,……を用いることにより,地震被災後に破断,発熱又は発色した部材26a,26b,26c,……の順番から,構造物20の残存耐震性能ηrをより詳細に判定することができる。 Preferably, as shown in FIGS. 2C and 2D, a plurality of different predetermined cumulative plastic deformation ratios η1, η2, and η3 (for example, of the seismic performance ηs held) are equal to or less than the seismic performance ηs of the multilayer structure 20. The remaining seismic performance evaluation marker 25 includes a plurality of ordered members 26a, 26b, 26c,... That sequentially break, generate heat, or develop color when energy corresponding to 50%, 70%, 90%) is absorbed. . By using such a plurality of ordered members 26a, 26b, 26c,..., The remaining seismic performance of the structure 20 from the order of the members 26a, 26b, 26c,. ηr can be determined in more detail.
順番付き部材26a,26b,26c……は,例えば図2(C)に示すように,複数の異なる累積塑性変形倍率η1,η2,η3……に相当するエネルギーを吸収した時点で順次に破断する鋼材ダンパーとすることができる。図示例の鋼材ダンパー26は,地震の揺れ(塑性変形エネルギー)を吸収して破断するように蜂の巣状のハニカム孔27を設けた鋼材(例えば鹿島建設株式会社製のハニカム・ダンパー,特許文献5参照)であり,鋼材の材質とハニカム孔27の形状とから設計手段13によって破断を起こす累積塑性変形倍率ηを設計することができる。例えば構造物20の保有耐震性能ηsに応じて3つの鋼材ダンパー26a,26b,26cを備えた残存耐震性能評価マーカー25を設計・製造し,図2(A)及び図2(B)に示すように,それを構造物20の評価対象階層Fkの層間(例えば壁等)に配置して取り付ける。好ましくは,構造物20の評価対象階層Fkの水平2方向の壁面にそれぞれマーカー25を設置するが,設置位置・設置数は図示例に限定されない。 The ordered members 26a, 26b, 26c... Are sequentially broken at the time when energy corresponding to a plurality of different cumulative plastic deformation magnifications η1, η2, η3... Is absorbed, as shown in FIG. It can be a steel damper. The steel damper 26 in the illustrated example is a steel material provided with honeycomb-shaped honeycomb holes 27 so as to absorb and smash earthquake vibration (plastic deformation energy) (for example, honeycomb damper manufactured by Kashima Construction Co., Ltd., see Patent Document 5). From the steel material and the shape of the honeycomb holes 27, it is possible to design the cumulative plastic deformation ratio η causing the fracture by the design means 13. For example, a residual seismic performance evaluation marker 25 having three steel dampers 26a, 26b, and 26c is designed and manufactured according to the seismic performance ηs of the structure 20, as shown in FIGS. 2 (A) and 2 (B). In addition, it is arranged and attached between the layers (for example, walls) of the evaluation target hierarchy Fk of the structure 20. Preferably, the markers 25 are respectively installed on the two horizontal wall surfaces of the evaluation target hierarchy Fk of the structure 20, but the installation positions and the number of installations are not limited to the illustrated example.
また,図2(D)に示すように,順番付き部材26d,26e,26f……を,複数の異なる累積塑性変形倍率η1,η2,η3……に相当するエネルギーを吸収した時点で所要温度に発熱し,その発熱によって変色又は融解する組成物28d,28e,28f……が表面に塗布された摩擦ダンパー又は鋼材ダンパーとすることも可能である。図示例の摩擦ダンパー26は,所要摩擦係数の滑り材を滑り面に所要圧縮力で押し付け,滑り材と滑り面との摩擦力によって地震の揺れ(塑性変形エネルギー)を吸収するものであり,滑り材の摩擦係数と圧縮力とから設計手段13によって塑性変形エネルギーの吸収に応じた発熱量を設計することができる(非特許文献7参照)。また,例えば上述したハニカム・ダンパーその他の鋼材ダンパー26も,破断する前は塑性変形エネルギーの吸収に応じて発熱するので,その発熱量を破断設計手段13により設計することが可能である。 Further, as shown in FIG. 2D, the ordered members 26d, 26e, 26f... Are brought to the required temperature when energy corresponding to a plurality of different cumulative plastic deformation magnifications η1, η2, η3. It is also possible to use a friction damper or a steel damper in which the composition 28d, 28e, 28f,... In the illustrated example, the friction damper 26 presses a sliding material having a required coefficient of friction against a sliding surface with a required compression force, and absorbs an earthquake vibration (plastic deformation energy) by the frictional force between the sliding material and the sliding surface. From the friction coefficient and compressive force of the material, the design means 13 can design the amount of heat generated according to the absorption of the plastic deformation energy (see Non-Patent Document 7). Further, for example, the above-described honeycomb damper and other steel dampers 26 also generate heat according to the absorption of the plastic deformation energy before breaking, so that the amount of generated heat can be designed by the fracture design means 13.
図2(D)において,摩擦ダンパー又は鋼材ダンパー26の表面に塗布する組成物28は,例えば所定温度になると色調変化を起こし且つ色調変化後は温度が低下しても色調が元に戻らない化学物質(感温組成物)とすることができる。不可逆的に変質する感温組成物28を用いることで,地震収束後にダンパー26が冷却した後に吸収した塑性変形エネルギーを検出することができる。例えば異なる塑性変形エネルギーη1,η2,η3を吸収した時点で同じ所定温度に発熱する3つのダンパー26d,26e,26fの表面にそれぞれ所定温度で変質する感温組成物28を塗布した残存耐震性能評価マーカー25を設計・製造し,構造物20の評価対象階層Fkの層間に(柱又は壁等に)取り付ける。同じ構造のダンパー26d,26e,26fの表面に,異なる発熱温度で変質する感温組成物28を塗布してマーカー25とすることも可能である。或いは,組成物28を所定温度になると溶解する接着剤等の化学物質(感温接着剤)とし,所定温度になるとダンパー26の表面に貼り付けた目印が不可逆的に剥離するように構成してもよい。 In FIG. 2 (D), the composition 28 applied to the surface of the friction damper or the steel damper 26 causes a change in color tone when the temperature reaches a predetermined temperature, for example. It can be a substance (temperature-sensitive composition). By using the temperature-sensitive composition 28 that is irreversibly altered, it is possible to detect the plastic deformation energy absorbed after the damper 26 has cooled after the earthquake has converged. For example, the residual seismic performance evaluation in which the temperature-sensitive composition 28 is applied to the surfaces of three dampers 26d, 26e, and 26f that generate heat at the same predetermined temperature when different plastic deformation energies η1, η2, and η3 are absorbed. The marker 25 is designed / manufactured and attached between the layers to be evaluated Fk of the structure 20 (on a column or wall). It is also possible to apply the temperature-sensitive composition 28 that changes in quality at different heat generation temperatures to the surfaces of the dampers 26d, 26e, and 26f having the same structure to form the marker 25. Alternatively, the composition 28 may be a chemical substance (temperature sensitive adhesive) such as an adhesive that dissolves at a predetermined temperature, and the mark attached to the surface of the damper 26 is irreversibly peeled off at the predetermined temperature. Also good.
図4のステップS209は,地震が発生した場合に,地震被災後の残存耐震性能評価マーカー25を観察して破断又は発熱した部材26の順番により構造物20の残存耐震性能を判定する処理を示す。例えば,保有耐震性能ηsの50%,70%,90%の塑性変形エネルギーη1,η2,η3を視覚化した3つの順序付き部材26を備えたマーカー25において,変形エネルギーη1の部材26aは破断又は発熱しているが変形エネルギーη2の部材26bは破断又は発熱していない場合は,保有耐震性能ηsの30%以上が残っていると判断することができる。また,変形エネルギーη1,η2,η3の部材26a,26b,26cが全て破断又は発熱している場合は,保有耐震性能ηsの10%未満しか残っていないので構造物20が余震により倒壊するおそれがあると判定することができる。図4のステップS210〜S212は,図3のステップS111〜S113と同様に,必要に応じて構造物20を補修・改築し,更に余震後の残存耐震性能ηr´を判定する処理を示す。 Step S209 in FIG. 4 shows a process of determining the residual seismic performance of the structure 20 by observing the residual seismic performance evaluation marker 25 after the earthquake and determining the fractured or heated member 26 when an earthquake occurs. . For example, in the marker 25 having three ordered members 26 visualizing the plastic deformation energies η1, η2, and η3 of 50%, 70%, and 90% of the possessed seismic performance ηs, the member 26a having the deformation energy η1 breaks or If the member 26b having the heat generation but the deformation energy η2 is not broken or does not generate heat, it can be determined that 30% or more of the possessed seismic performance ηs remains. In addition, when all of the members 26a, 26b, and 26c having the deformation energy η1, η2, and η3 are broken or heated, there is a possibility that the structure 20 collapses due to aftershock because less than 10% of the possessed seismic performance ηs remains. It can be determined that there is. Steps S210 to S212 in FIG. 4 show processing for repairing / reconstructing the structure 20 as necessary and determining the remaining seismic performance ηr ′ after the aftershock, as in steps S111 to S113 in FIG.
残存耐震性能評価マーカー25を利用する図4の流れ図によれば,構造物20の保有耐震性能を予め視覚化しておくことができ,たとえ被災時に計測地震動Vpが利用できないときでも,地震被災後にマーカー25を観察するだけで構造物20の残存耐震性能を容易に評価することができる。また,マーカー25の観察による残存耐震性能の評価は,専門知識を持たない構造物20の居住者(利用者)が自ら地震直後に行うことができるので,避難すべきか否かについて居住者(利用者)による迅速で直感的な判断を助けることができきる。更に,マーカー25は電力その他の外部エネルギーの供給を必要としないので,インフラが使用できないような大地震直後においても構造物20の残存耐震性能を評価することができる。 According to the flowchart of FIG. 4 using the residual seismic performance evaluation marker 25, the seismic performance possessed by the structure 20 can be visualized in advance, and even if the measured seismic motion Vp is not available at the time of the disaster, The remaining seismic performance of the structure 20 can be easily evaluated simply by observing 25. Moreover, since the resident (user) of the structure 20 who does not have specialized knowledge can evaluate the residual seismic performance by observing the marker 25 immediately after the earthquake, the resident (use Can help to make quick and intuitive decisions. Furthermore, since the marker 25 does not require the supply of electric power or other external energy, it is possible to evaluate the residual seismic performance of the structure 20 even immediately after a large earthquake where the infrastructure cannot be used.
1…コンピュータ 2…入力装置
3…出力装置 5…入力手段
6…出力手段 7…記憶手段
9…地震計(加速度計,変位計等)
11…算出手段 12…判定手段
13…マーカー設計手段
20…多層構造物 21…柱
22…梁
25…残存耐震性能評価マーカー 26…ダンパー
26a,26b,26c…鋼材ダンパー
26d,26e,26f…滑りダンパー
27a,27b,27c…ハニカム孔
28d,28e,28f…変色又は溶融物質
C…応答解析モデル G…地盤
Fi…階層 Fk…検出階層
U…地盤特性データ(地盤モデル)
Vs…想定地震動 Vp…計測地震動
Q…荷重 δ…層間変形
μ…塑性変形倍率
ηs…保有耐震性能(安全限界到達時の累積塑性変形倍率)
ηp…消費耐震性能(地震被災時の累積塑性変形倍率)
ηr…残存耐震性能
η1,η2,η3…所定累積塑性変形倍率に相当するエネルギー
E…地震時の総エネルギー入力
We…地震時の構造物の弾性振動エネルギー
Wp…地震時の構造物の累積塑性ひずみエネルギー
Wh…地震時の構造物の減衰によるエネルギー吸収量
DESCRIPTION OF SYMBOLS 1 ... Computer 2 ... Input device 3 ... Output device 5 ... Input means 6 ... Output means 7 ... Storage means 9 ... Seismometer (accelerometer, displacement meter, etc.)
DESCRIPTION OF SYMBOLS 11 ... Calculation means 12 ... Determination means 13 ... Marker design means 20 ... Multi-layered structure 21 ... Column 22 ... Beam 25 ... Residual seismic performance evaluation marker 26 ... Damper 26a, 26b, 26c ... Steel dampers 26d, 26e, 26f ... Sliding damper 27a, 27b, 27c ... honeycomb holes 28d, 28e, 28f ... discoloration or molten material C ... response analysis model G ... ground Fi ... layer Fk ... detection layer U ... ground property data (ground model)
Vs ... Estimated ground motion Vp ... Measured ground motion Q ... Load δ ... Interlayer deformation μ ... Plastic deformation magnification ηs ... Own earthquake resistance (cumulative plastic deformation magnification when safety limit is reached)
ηp ... Consumption seismic performance (cumulative plastic deformation ratio during earthquake damage)
ηr: Residual seismic performance η1, η2, η3: Energy corresponding to the predetermined cumulative plastic deformation ratio E: Total energy input We at the time of earthquake: Elastic vibration energy Wp of the structure at the time of earthquake ... Cumulative plastic strain of the structure at the time of earthquake Energy Wh ... Amount of energy absorbed by the structure during earthquake
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012280369A JP6120559B2 (en) | 2012-12-22 | 2012-12-22 | Evaluation method for residual seismic performance of multi-layer structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012280369A JP6120559B2 (en) | 2012-12-22 | 2012-12-22 | Evaluation method for residual seismic performance of multi-layer structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014122866A true JP2014122866A (en) | 2014-07-03 |
JP6120559B2 JP6120559B2 (en) | 2017-04-26 |
Family
ID=51403466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012280369A Active JP6120559B2 (en) | 2012-12-22 | 2012-12-22 | Evaluation method for residual seismic performance of multi-layer structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6120559B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016114411A (en) * | 2014-12-12 | 2016-06-23 | 株式会社大林組 | Portion affection degree estimation method, disaster degree evaluation method and portion affection degree estimation device |
JP2016197014A (en) * | 2015-04-02 | 2016-11-24 | アズビル株式会社 | Building damage intensity estimating system, and method |
JP2017009417A (en) * | 2015-06-22 | 2017-01-12 | 清水建設株式会社 | Response estimation method of building |
JP2017106878A (en) * | 2015-12-12 | 2017-06-15 | 鹿島建設株式会社 | Structural damage detection method and system |
JP2019143433A (en) * | 2018-02-23 | 2019-08-29 | 公益財団法人鉄道総合技術研究所 | Safety factor calculation method and device for structure |
JP2019164007A (en) * | 2018-03-19 | 2019-09-26 | 株式会社Nttファシリティーズ | Building soundness evaluation system, building soundness evaluation method, and program |
JP2020125911A (en) * | 2019-02-01 | 2020-08-20 | 株式会社益田建設 | Evaluation method of earthquake-proof property of house |
JP2020134488A (en) * | 2019-02-26 | 2020-08-31 | 清水建設株式会社 | Ceiling soundness evaluation mechanism and ceiling structure |
JP2020148671A (en) * | 2019-03-14 | 2020-09-17 | 株式会社東芝 | Concussion resistance evaluation system and concussion resistance evaluation method |
JP2021033822A (en) * | 2019-08-28 | 2021-03-01 | Jfeスチール株式会社 | Device for selecting member of rigid-frame structure building with history type damper, and method |
CN113533505A (en) * | 2021-06-17 | 2021-10-22 | 北京工业大学 | Seismic damage structure damage quantification method based on Kalman filtering and elastic-plastic energy consumption difference |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10177085A (en) * | 1996-12-19 | 1998-06-30 | Hitachi Ltd | Load hysteresis and cumulative damage monitoring system |
JP2012002754A (en) * | 2010-06-18 | 2012-01-05 | Toyota Home Kk | Load-bearing element deterioration diagnosis unit, load-bearing element deterioration diagnosis system, building, and load-bearing element deterioration diagnosis method |
JP2012102590A (en) * | 2010-11-12 | 2012-05-31 | Toyota Home Kk | House having seismic control system |
JP2012168008A (en) * | 2011-02-14 | 2012-09-06 | Ohbayashi Corp | Earthquake damage determination system, structure with the same and earthquake damage determination program |
-
2012
- 2012-12-22 JP JP2012280369A patent/JP6120559B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10177085A (en) * | 1996-12-19 | 1998-06-30 | Hitachi Ltd | Load hysteresis and cumulative damage monitoring system |
JP2012002754A (en) * | 2010-06-18 | 2012-01-05 | Toyota Home Kk | Load-bearing element deterioration diagnosis unit, load-bearing element deterioration diagnosis system, building, and load-bearing element deterioration diagnosis method |
JP2012102590A (en) * | 2010-11-12 | 2012-05-31 | Toyota Home Kk | House having seismic control system |
JP2012168008A (en) * | 2011-02-14 | 2012-09-06 | Ohbayashi Corp | Earthquake damage determination system, structure with the same and earthquake damage determination program |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016114411A (en) * | 2014-12-12 | 2016-06-23 | 株式会社大林組 | Portion affection degree estimation method, disaster degree evaluation method and portion affection degree estimation device |
JP2016197014A (en) * | 2015-04-02 | 2016-11-24 | アズビル株式会社 | Building damage intensity estimating system, and method |
JP2017009417A (en) * | 2015-06-22 | 2017-01-12 | 清水建設株式会社 | Response estimation method of building |
JP2017106878A (en) * | 2015-12-12 | 2017-06-15 | 鹿島建設株式会社 | Structural damage detection method and system |
JP2019143433A (en) * | 2018-02-23 | 2019-08-29 | 公益財団法人鉄道総合技術研究所 | Safety factor calculation method and device for structure |
JP7080080B2 (en) | 2018-03-19 | 2022-06-03 | 株式会社Nttファシリティーズ | Building soundness evaluation system, building soundness evaluation method and program |
JP2019164007A (en) * | 2018-03-19 | 2019-09-26 | 株式会社Nttファシリティーズ | Building soundness evaluation system, building soundness evaluation method, and program |
JP2020125911A (en) * | 2019-02-01 | 2020-08-20 | 株式会社益田建設 | Evaluation method of earthquake-proof property of house |
JP7253231B2 (en) | 2019-02-01 | 2023-04-06 | 株式会社益田建設 | Earthquake resistance evaluation system for houses |
JP2020134488A (en) * | 2019-02-26 | 2020-08-31 | 清水建設株式会社 | Ceiling soundness evaluation mechanism and ceiling structure |
JP7208058B2 (en) | 2019-02-26 | 2023-01-18 | 清水建設株式会社 | Ceiling soundness evaluation mechanism and ceiling structure. |
JP2020148671A (en) * | 2019-03-14 | 2020-09-17 | 株式会社東芝 | Concussion resistance evaluation system and concussion resistance evaluation method |
JP7068217B2 (en) | 2019-03-14 | 2022-05-16 | 株式会社東芝 | Seismic resistance evaluation system and seismic resistance evaluation method |
JP2021033822A (en) * | 2019-08-28 | 2021-03-01 | Jfeスチール株式会社 | Device for selecting member of rigid-frame structure building with history type damper, and method |
JP7131511B2 (en) | 2019-08-28 | 2022-09-06 | Jfeスチール株式会社 | MEMBER SELECTION APPARATUS AND METHOD FOR RENAM STRUCTURE BUILDING HAVING HISTORIC DAMPER |
CN113533505A (en) * | 2021-06-17 | 2021-10-22 | 北京工业大学 | Seismic damage structure damage quantification method based on Kalman filtering and elastic-plastic energy consumption difference |
CN113533505B (en) * | 2021-06-17 | 2023-10-20 | 北京工业大学 | Vibration damage structure damage quantification method based on Kalman filtering and elastoplastic energy consumption difference |
Also Published As
Publication number | Publication date |
---|---|
JP6120559B2 (en) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120559B2 (en) | Evaluation method for residual seismic performance of multi-layer structures | |
Merino et al. | Consistent floor response spectra for performance‐based seismic design of nonstructural elements | |
Petrone et al. | Seismic demand on light acceleration‐sensitive nonstructural components in European reinforced concrete buildings | |
Polese et al. | Damage‐dependent vulnerability curves for existing buildings | |
Deierlein et al. | Nonlinear structural analysis for seismic design | |
Lombardi et al. | Evaluation of seismic performance of pile‐supported models in liquefiable soils | |
Petrone et al. | Floor response spectra in RC frame structures designed according to Eurocode 8 | |
Lu et al. | Experimental evaluation of a glass curtain wall of a tall building | |
Dragos et al. | Simplification of fully confined blasts for structural response analysis | |
Sorace et al. | The damped cable system for seismic protection of frame structures—Part I: General concepts, testing and modeling | |
Arabzadeh et al. | Seismic collapse risk assessment and FRP retrofitting of RC coupled C-shaped core walls using the FEMA P695 methodology | |
Iranmanesh et al. | Energy-based damage assessment methodology for structural health monitoring of modern reinforced concrete bridge columns | |
Zhou et al. | Seismic fragility assessment of a tall reinforced concrete chimney | |
Khatiwada et al. | Limitations in simulation of building pounding in earthquakes | |
Hu et al. | Seismic risk assessment of steel frames equipped with steel panel wall | |
Altalabani et al. | Development of new rectangular rubber isolators for a tunnel-form structure subjected to seismic excitations | |
Mojiri et al. | Seismic fragility evaluation of lightly reinforced concrete-block shear walls for probabilistic risk assessment | |
Guan et al. | Combination model for conventional pushover analysis considering higher mode vibration effects | |
Du et al. | Comparative seismic performance assessment of reinforced concrete frame structures with and without structural enhancements using the FEMA P-58 methodology | |
Skafida et al. | Analytical modeling of masonry infilled RC frames and verification with experimental data | |
Athanasiou et al. | Nonlinear wind and earthquake loads on tall steel-braced frame buildings | |
Bansal | Pushover analysis of reinforced concrete frame | |
Eskew et al. | Damage assessment of a building subjected to a terrorist attack | |
Heo | Framework for damage-based probabilistic seismic performance evaluation of reinforced concrete frames | |
AlHafian | Seismic Progressive Collap Concrete Frame Structu Applied Element M |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170224 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6120559 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |