JP2016114411A - Portion affection degree estimation method, disaster degree evaluation method and portion affection degree estimation device - Google Patents

Portion affection degree estimation method, disaster degree evaluation method and portion affection degree estimation device Download PDF

Info

Publication number
JP2016114411A
JP2016114411A JP2014251958A JP2014251958A JP2016114411A JP 2016114411 A JP2016114411 A JP 2016114411A JP 2014251958 A JP2014251958 A JP 2014251958A JP 2014251958 A JP2014251958 A JP 2014251958A JP 2016114411 A JP2016114411 A JP 2016114411A
Authority
JP
Japan
Prior art keywords
building
degree
analysis
model
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014251958A
Other languages
Japanese (ja)
Other versions
JP6409550B2 (en
Inventor
耕太 三浦
Kota Miura
耕太 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2014251958A priority Critical patent/JP6409550B2/en
Publication of JP2016114411A publication Critical patent/JP2016114411A/en
Application granted granted Critical
Publication of JP6409550B2 publication Critical patent/JP6409550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily estimate an affection degree of a portion.SOLUTION: A portion affection degree estimation method for estimating an affection degree of a portion to a building aseismatic performance is configured to: perform Pushover analysis to a before-disaster model before inputting external force to the building; determine, by simple analysis, response acceleration, response displacement and attenuation constant, during safety limit on a partial pin model of building in which one of damaged portions specified by the Pushover analysis is set to a pin portion, based on the analysis result of Pushover analysis on the before-disaster model, a position of the pin portion, and property of the portion, without performing Pushover analysis on the partial pin model; then calculate an aseismatic performance index which the partial pin model has; and based on the calculated aseismatic performance index, estimate the affection degree.SELECTED DRAWING: Figure 6

Description

本発明は、部位の影響度推定方法、被災度評価方法、及び、部位の影響度推定装置に関する。   The present invention relates to a part influence degree estimation method, a damage degree evaluation method, and a part influence degree estimation apparatus.

建物の耐震性能に対する部位の影響度を推定する部位の影響度推定方法は既によく知られている。従来例に係る部位の影響度推定方法においては、建物への外力の入力前の被災前モデルにおけるPushover解析の解析結果と、当該Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおけるPushover解析の解析結果と、に基づいて、部位の影響度を推定することとしていた。   A method for estimating the degree of influence of a part for estimating the degree of influence of the part on the earthquake resistance of a building is already well known. In the conventional method for estimating the influence of a part, the analysis result of the pushover analysis in the pre-disaster model before the external force is input to the building, and one of the damaged parts specified by the pushover analysis is defined as a pin part. Based on the analysis result of Pushover analysis in the partial pin model of the building, the influence of the part was estimated.

三浦耕太、外3名、「架構耐震性能に及ぼす各部位の影響度に基づいたRC造被災建物の残存耐震性能評価法の多層建物への拡張」、コンクリート工学年次論文集、Vol.34、No.2、2012、p.847-p852Kouta Miura, 3 others, “Extension of the residual seismic performance evaluation method of RC damaged buildings based on the degree of influence of each part on frame seismic performance to multi-layer buildings”, Annual report on concrete engineering, Vol. 34, no. 2, 2012, p.847-p852

従来例に係る部位の影響度推定方法には、以下の問題が生じていた。すなわち、被災前モデルにおけるPushover解析により特定される損傷部位の数が多い場合であっても、被災度評価のためには、その数だけ部分ピンモデルにおけるPushover解析を行わなければならなかった。そして、Pushover解析は時間も手間もかかるため、部位の影響度推定が簡潔に行われないという問題が生じていた。特に、建物の規模が大きい場合には、ピン部位とする損傷部位の数が膨大となるため、かかる問題の発生が顕著となっていた。   The following problem has arisen in the influence degree estimation method of the site according to the conventional example. That is, even if the number of damaged parts identified by the pushover analysis in the pre-disaster model is large, it is necessary to perform the pushover analysis in the partial pin model by that number in order to evaluate the degree of damage. And since the pushover analysis takes time and effort, there has been a problem that the influence degree of the part cannot be estimated simply. In particular, when the scale of a building is large, the number of damaged parts as pin parts becomes enormous, and the occurrence of such a problem has been remarkable.

本発明は、上記のような従来の問題に鑑みなされたものであって、その主な目的は、部位の影響度を簡潔に推定することにある。   The present invention has been made in view of the above-described conventional problems, and its main purpose is to simply estimate the degree of influence of a part.

主たる本発明は、建物の耐震性能に対する部位の影響度を推定する部位の影響度推定方法であって、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を行い、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定することを特徴とする部位の影響度推定方法である。
The main present invention is a method for estimating the degree of influence of a part for estimating the degree of influence of a part on the seismic performance of a building,
Perform pushover analysis in the pre-disaster model before external force input to the building,
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
An influence degree estimation method for a part, wherein the influence degree is estimated based on the calculated seismic performance index.

本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。   Other features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明によれば、部位の影響度を簡潔に推定することが可能となる。   According to the present invention, it is possible to simply estimate the influence degree of a part.

損傷度と耐震性能低減係数の関係を示した図である。It is the figure which showed the relationship between a damage degree and a seismic performance reduction coefficient. 損傷度と塑性率の関係を示した図である。It is the figure which showed the relationship between a damage degree and a plasticity rate. 基本モデルと部分ピンモデルのイメージ図である。It is an image figure of a basic model and a partial pin model. 保有耐震性能指標算出方法を説明するための説明図である。It is explanatory drawing for demonstrating the possession seismic performance index calculation method. 従来例に係る部位の影響度推定手順を説明するためのブロック図である。It is a block diagram for demonstrating the influence degree estimation procedure of the site | part which concerns on a prior art example. 本実施の形態に係る部位の影響度推定手順を説明するためのブロック図である。It is a block diagram for demonstrating the influence degree estimation procedure of the site | part which concerns on this Embodiment. 部分ピンモデルにおける安全限界時層間変形角の推定例(5層建物における1層の推定手順)を示した図である。It is the figure which showed the example of an estimation of the interlayer deformation angle at the time of a safety limit in a partial pin model (1 layer estimation procedure in a 5 layer building). j層における耐力減少率の算定を説明するための説明図である。It is explanatory drawing for demonstrating calculation of the yield strength decreasing rate in j layer. 層の影響係数の一例を示した図である。It is the figure which showed an example of the influence coefficient of the layer. 柱が剛の場合の層間変形角を表した図である。It is a figure showing the interlayer deformation angle in case a column is rigid. 割線剛性の算定例を示した図である。It is the figure which showed the example of calculation of secant rigidity. 部分ピンモデルにおける安全限界時の建物の減衰定数を説明するための説明図である。It is explanatory drawing for demonstrating the attenuation constant of the building at the time of the safety limit in a partial pin model. 地震発生直後の建物耐震性能残存率算定フローを示した図である。It is the figure which showed the building earthquake resistance performance residual ratio calculation flow immediately after the earthquake occurrence. 被災度評価システムを示したブロック図である。It is the block diagram which showed the damage degree evaluation system.

本明細書及び添付図面の記載により、少なくとも次のことが明らかにされる。   At least the following will be made clear by the description of the present specification and the accompanying drawings.

建物の耐震性能に対する部位の影響度を推定する部位の影響度推定方法であって、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を行い、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定することを特徴とする部位の影響度推定方法。
A method for estimating the degree of influence of a part for estimating the degree of influence of a part on the seismic performance of a building,
Perform pushover analysis in the pre-disaster model before external force input to the building,
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
An influence degree estimation method for a part, wherein the influence degree is estimated based on the calculated possessed seismic performance index.

かかる場合には、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、部位の影響度を簡潔に推定することが可能となる。   In such a case, since it is not necessary to perform pushover analysis in the partial pin model, it is possible to simply estimate the degree of influence of the part.

また、前記簡易解析においては、前記ピン部位が属する層及び前記部位の特性である耐力に基づいて、前記被災前モデルに対する前記部分ピンモデルの前記建物の各層の層間変形角増加率を算定し、
算定された層間変形角増加率に基づいて前記応答加速度、応答変位、減衰定数を求めることとしてもよい。
Further, in the simple analysis, based on the layer to which the pin part belongs and the yield strength which is the characteristic of the part, the interlayer deformation angle increase rate of each layer of the building of the partial pin model relative to the pre-disaster model is calculated,
The response acceleration, response displacement, and damping constant may be obtained based on the calculated interlayer deformation angle increase rate.

かかる場合には、ピン部位が属する層及び部位の特性である耐力に基づいて求められる層間変形角増加率を用いることにより、部分ピンモデルにおけるPushover解析の実行を適切に回避することが可能となる。   In such a case, it is possible to appropriately avoid the pushover analysis in the partial pin model by using the interlayer deformation angle increase rate obtained based on the proof strength that is the characteristics of the layer to which the pin part belongs and the part. .

また、前記簡易解析においては、前記ピン部位が属する層及び前記部位の特性である耐力に加え、梁及び柱の剛性と建物の層数とに基づいて、前記層間変形角増加率を算定することとしてもよい。   In the simple analysis, in addition to the layer to which the pin part belongs and the yield strength which is the characteristic of the part, the increase rate of the interlayer deformation angle is calculated based on the rigidity of the beams and columns and the number of building layers. It is good.

かかる場合には、梁及び柱の剛性や建物の層数も、層間変形角増加率の算定の際に、補正項として加味されるため、部位の影響度の推定精度が向上することとなる。   In such a case, the rigidity of the beams and columns and the number of building layers are also added as correction terms in the calculation of the increase rate of the interlayer deformation angle, so that the accuracy of estimating the influence of the part is improved.

次に、建物の耐震性能に対する部位の影響度を推定して建物の被災度を評価する被災度評価方法であって、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を行い、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定する処理を、
複数箇所の前記損傷部位毎に実行し、
前記損傷部位毎の前記影響度と、前記建物への外力の入力により得られた建物応答と、に基づいて前記建物の耐震性能残存率を算定することを特徴とする被災度評価方法。
Next, a damage degree evaluation method for estimating the damage degree of a building by estimating the degree of influence of the part on the earthquake resistance of the building,
Perform pushover analysis in the pre-disaster model before external force input to the building,
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
A process for estimating the influence based on the calculated seismic performance index,
Execute for each of the damaged sites in multiple locations,
A damage degree evaluation method characterized in that a seismic performance residual ratio of the building is calculated based on the influence degree for each damaged part and a building response obtained by inputting an external force to the building.

かかる場合には、部位の影響度を簡潔に推定することが可能となり、したがって、被災度評価方法が簡潔なものとなる。   In such a case, it is possible to simply estimate the influence degree of the part, and therefore, the damage degree evaluation method becomes simple.

次に、建物の耐震性能に対する部位の影響度を推定する部位の影響度推定装置であって、
部位の特性を記録する記録手段と、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を実行するPushover解析実行手段と、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定する影響度推定手段と、を有することを特徴とする部位の影響度推定装置。
Next, a device for estimating the degree of influence of a part that estimates the degree of influence of a part on the earthquake resistance of a building,
Recording means for recording the characteristics of the site;
Pushover analysis execution means for executing Pushover analysis in the pre-disaster model before input of external force to the building;
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
An influence degree estimation means for estimating the influence degree based on the calculated possessed seismic performance index.

かかる場合には、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、部位の影響度を簡潔に推定することが可能となる。   In such a case, since it is not necessary to perform pushover analysis in the partial pin model, it is possible to simply estimate the degree of influence of the part.

===被災度評価方法について===
大地震発生時に、建物管理者及び所有者が避難の要否や事業継続性の判断を行うためには、地震発生直後において、建物の被害程度(被災度)を正確(定量的)に把握し、継続使用の可否を迅速に判定する手段が必要となる。
=== About damage assessment method ===
In order for building managers and owners to determine the necessity of evacuation and business continuity in the event of a major earthquake, the building damage level (degree of damage) must be accurately (quantitatively) determined immediately after the earthquake occurs, A means for quickly determining whether continuous use is possible is required.

建物の被災度の定量的評価法に関する従来技術として非特許文献1がある。同手法では、建物被災度を定量的に表す指標として、耐震性能残存率Rを用いている。耐震性能残存率Rは、被災前の耐震性能に対する被災後の耐震性能の比として定義されるが、具体的には、建物内の各部位(正確にはヒンジ発生部位)の損傷度に応じて定められる耐震性能低減係数η(図1参照。日本建築防災協会「震災建築物の被災度区分判定基準及び復旧技術指針」2002.8で定義されている)を、建物耐震性能に及ぼす各部位の影響度Erで重みづけし、(1)式で算出する。なお、部位の影響度Erとは、建物の耐震性能に対する部位の影響度であり、当該部位が損傷を受けたときにどれだけ建物全体に影響を及ぼすかを示した値である。また、部位とは、柱、梁等の部材の一部分(例えば柱脚や梁端)を意味するものである。 There is Non-Patent Document 1 as a prior art relating to a quantitative evaluation method of damage level of a building. In this method, seismic performance remaining rate R is used as an index that quantitatively represents the degree of damage to buildings. The seismic performance remaining rate R is defined as the ratio of the seismic performance after the disaster to the seismic performance before the disaster. Specifically, depending on the degree of damage of each part in the building (more precisely, the hinge occurrence part) The effect of each part on the seismic performance of the building, with the specified seismic performance reduction factor η (see Figure 1) defined by the Japan Building Disaster Prevention Association “Decision criteria for earthquake damage building and restoration technology guidelines” 2002.8 Weighted with degree Er and calculated by equation (1). Note that the influence degree Er of the part is the influence degree of the part on the seismic performance of the building, and is a value indicating how much the whole building is affected when the part is damaged. Further, the part means a part of a member such as a column or a beam (for example, a column base or a beam end).

Figure 2016114411
耐震性能低減係数ηの算定に用いる損傷度について、非特許文献1では、被害調査において目視等で判断することを原則としているが、建物モデルの解析結果における塑性率と損傷度を対応させる考え(例えば図2の様な関係)についても言及している。
Figure 2016114411
Non-Patent Document 1 is based on the principle that the damage degree used to calculate the seismic performance reduction coefficient η is determined by visual inspection in the damage investigation. For example, reference is also made to the relationship shown in FIG.

===従来例に係る部位の影響度推定方法について===
非特許文献1では、各部位の影響度Erの算定(推定)に関して、次に示す精算法(3次判定法)を用いることを原則としていた。
=== Regarding the Method of Estimating the Influence of a Part According to the Conventional Example ===
In Non-Patent Document 1, the calculation method (estimation) of the influence degree Er of each part is based on the use of the following settlement method (third-order determination method).

各部位の影響度Erは、一般的な解析手法である骨組のPushover解析(静的漸増載荷解析)と地震応答スペクトルに基づく保有耐震性能指標(日本建築学会「鉄筋コンクリート造建物の耐震性能評価指針(案)・同解説」2004.7で定義されている)から求める。以下にその流れを示す。 The degree of influence Er of each part is based on the general analysis method Pushover analysis of frames (static incremental load analysis) and seismic performance index based on seismic response spectrum (The Architectural Institute of Japan “Guidelines for evaluating seismic performance of reinforced concrete buildings” (Draft) ・ The same explanation ”(defined in 2004.7). The flow is shown below.

a)全ての部位に実際の耐力を入れた基本モデル(建物への外力の入力前の被災前モデルに相当)についてPushover解析を行う。Pushover解析により、損傷部位の位置(すなわち、ヒンジ発生位置。b)でピン部位とする損傷部位の位置(つまり、ピン部位の位置)も含む)を特定する。   a) Pushover analysis is performed on the basic model (corresponding to the pre-disaster model before input of external force to the building) with actual proof stress applied to all parts. By the pushover analysis, the position of the damaged part (that is, the position where the hinge is generated; b) and the position of the damaged part (that is, the position of the pin part) are specified.

b)ある部位の損傷が建物の耐震性能に及ぼす影響を評価するため、ヒンジ発生位置のうち1ヶ所の耐力をゼロ、つまりピン(ピン部位)とした部分ピンモデル(仮想的なモデル。図3参照)についても同様にPushover解析を行う。なお、図3においては、丸で示した部分が、ヒンジ発生位置を表し、黒丸で示した部分が、今回耐力がゼロとされた(つまり、ピンとした)ヒンジ発生位置を表している。   b) Partial pin model (virtual model. Fig. 3) in which the proof strength of one of the hinge generation positions is zero, that is, the pin (pin part), in order to evaluate the effect of damage on a part of the building on the seismic performance of the building. The pushover analysis is performed in the same way. In FIG. 3, the part indicated by a circle represents the hinge generation position, and the part indicated by a black circle represents the hinge generation position where the current proof stress is zero (that is, a pin).

c)解析結果を用い、(2)〜(4)式で等価1自由度系の応答加速度Sa-応答変位Sd関係(耐力曲線)を求める。 c) Using the analysis result, the response acceleration S a -response displacement S d relationship (proof stress curve) of the equivalent single-degree-of-freedom system is obtained by the equations (2) to (4).

Figure 2016114411
mi:i層の重量 Di:i層の層間変形 ΣQ1:1層せん断力
d)基本モデルと部分ピンモデルの耐力曲線に関し、安全限界時(層間変形角最大値=1/50rad.とした)において、第2種地盤の告示の応答スペクトルに対する保有耐震性能指標α、α'(建物の耐震性能の大小を数値で表したもの)を求める(図4)。保有耐震性能指標は、基準地震動Sに対する限界地震動αS(図4において、安全限界点を通る地震動)の比として定義される。限界地震動αSは、建物が安全限界状態に達する際の地震動強さであり、耐力曲線上の安全限界点を通過するスペクトルの大きさに該当する。基準地震動は、告示の応答スペクトルを、安全限界時の建物の減衰定数h(建物のエネルギー吸収力の大小を数値で表したもの)の大きさに応じた応答低減率Fhで低減したものである((5)式)。建物の減衰定数hは、塑性率μに応じて定義される建物内各部位(各バネ)の減衰定数hiを、歪エネルギーWiで重みづけ平均し、(6)式で求められる。
Figure 2016114411
m i : Weight of i layer D i : Interlayer deformation of i layer ΣQ 1 : Single layer shear force
d) Regarding the strength curves of the basic model and the partial pin model, the seismic performance index α, α 'possessed with respect to the response spectrum of the type 2 ground notification at the safety limit (maximum interlayer deformation angle = 1/50 rad.) (The numerical value of the magnitude of the earthquake resistance of the building) is obtained (Fig. 4). The possessed seismic performance index is defined as the ratio of the limit ground motion αS (the ground motion passing through the safety limit point in FIG. 4) to the reference ground motion S. The limit seismic motion αS is the strength of the seismic motion when the building reaches the safe limit state, and corresponds to the size of the spectrum passing through the safe limit point on the proof stress curve. The standard ground motion is a reduction of the response spectrum of the notification with a response reduction rate F h according to the magnitude of the building's damping constant h (a numerical value of the building's energy absorption capacity) at the safety limit. Yes (Formula (5)). The damping constant h of the building is obtained by Equation (6) by averaging the damping constant h i of each part (each spring) in the building defined according to the plasticity ratio μ with the strain energy W i .

Figure 2016114411
図4からもわかるように、保有耐震性能指標は安全限界時の応答加速度Sa、応答変位Sd、減衰定数hによって定まり、それぞれの値が大きい程、高い値となる。
Figure 2016114411
As can be seen from FIG. 4, the possessed seismic performance index is determined by the response acceleration S a at the safety limit, the response displacement S d , and the damping constant h, and the higher the value, the higher the value.

e)基本モデルに対する、部分ピンモデルの保有耐震性能指標の減少率Drを(9)式により求める。ただし、Drが負の値となった場合については、Dr=0とする。 for e) basic model, the reduction rate D r holdings seismic performance index portions pin model (9) obtained by equation. However, when Dr is a negative value, Dr = 0.

Figure 2016114411
f)全ての損傷部位の位置(ヒンジ発生位置)について減少率Drを求める。
Figure 2016114411
f) Obtain the reduction rate Dr for all the damaged site positions (hinge occurrence positions).

g)Drを和が1になるよう基準化したものを、影響度Erと定義する((10)式)。 g) A value obtained by normalizing D r so that the sum is 1 is defined as an influence E r (Equation (10)).

Figure 2016114411
===従来例に係る部位の影響度推定方法の問題点について===
従来技術における各部位の影響度Erの算定(推定)において、主要な計算部分となる保有耐震性能指標の算定には、安全限界時の建物の応答加速度Sa、応答変位Sd及び減衰定数hが必要である。従来方法では、基本モデル、部分ピンモデルそれぞれに対してPushover解析を行うことで、上記の3つの指標を算定している。すなわち、各部位の影響度Erを算定(推定)して建物被災度を定量的に評価するためには、ヒンジ数と同じ回数だけのPushover解析を行う必要があり、実建物、特に大規模建物を対象とした場合には、計算量が膨大になる(図5参照)。
Figure 2016114411
=== Regarding Problems of the Method for Estimating the Influence Level of a Part According to Conventional Example
In the calculation (estimation) of the influence degree Er of each part in the prior art, the response acceleration S a of the building at the safety limit, the response displacement S d and the damping constant are used to calculate the seismic performance index that is the main calculation part. h is required. In the conventional method, the above three indicators are calculated by performing pushover analysis on each of the basic model and the partial pin model. In other words, in order to calculate (estimate) the degree of influence Er of each part and quantitatively evaluate the damage level of a building, it is necessary to perform pushover analysis as many times as the number of hinges, and it is necessary for real buildings, particularly large-scale buildings. When a building is targeted, the calculation amount is enormous (see FIG. 5).

換言すれば、被災前モデルにおけるPushover解析により特定される損傷部位の数が多い場合であっても、被災度評価のためには、その数だけ部分ピンモデルにおけるPushover解析を行わなければならない。そして、Pushover解析は時間も手間もかかるため、部位の影響度推定が簡潔に行われないという問題が生じていた。特に、建物の規模が大きい場合には、ピン部位とする損傷部位の数が膨大となるため、かかる問題の発生が顕著となっていた。   In other words, even when the number of damaged parts specified by the pushover analysis in the pre-disaster model is large, the pushover analysis in the partial pin model has to be performed for that damage evaluation. And since the pushover analysis takes time and effort, there has been a problem that the influence degree of the part cannot be estimated simply. In particular, when the scale of a building is large, the number of damaged parts as pin parts becomes enormous, and the occurrence of such a problem has been remarkable.

また、部分ピンモデルは、建物内の一部分だけが損傷を受けるという極端な状態(現実離れした状態)を仮定した仮想モデルである。そのため、本来このような極端な状態(現実離れした状態)の仮想モデルに適用することが予定されていないPushover解析を、部分ピンモデルに対して行った場合には、計算上のエラー(誤差などを含む)が生ずる可能性がある(つまり、推定結果の安定性の欠如)。   Further, the partial pin model is a virtual model that assumes an extreme state (a state in which it is far from reality) in which only a part of the building is damaged. For this reason, if a pushover analysis that is not originally intended to be applied to a virtual model in such an extreme state (an unrealistic state) is performed on a partial pin model, a calculation error (such as an error) (That is, the estimation results are not stable).

===本実施の形態に係る部位の影響度推定方法について===
<<<概要>>>
従来技術の問題点を解決するため、本実施の形態においては、基本モデルにおけるPushover解析結果と、解析の入力データとしても用いる基本的な部材特性(耐力、剛性)、及びピンとする部位の位置(階数)と耐力に基づいて、部分ピンモデルにおける応答加速度Sa'、代表変位(応答変位)Sd'、減衰定数h'を推定し、各々の部分ピンモデルの保有耐震性能指標α'並びに各部位の影響度Erを算定する(図6参照)。
=== Regarding the Method for Estimating the Influence of a Part According to this Embodiment ===
<<< Overview >>>
In order to solve the problems of the prior art, in this embodiment, the pushover analysis result in the basic model, the basic member characteristics (proof stress, rigidity) used as input data for the analysis, and the position of the part to be used as a pin ( The response acceleration S a ′, representative displacement (response displacement) S d ′, and damping constant h ′ in the partial pin model are estimated based on the number of floors) and the strength, and the seismic performance index α ′ of each partial pin model and each The influence degree Er of the part is calculated (see FIG. 6).

本実施の形態は、従来の定量的被災度(耐震性能残存率)評価法における、部分ピンモデルの保有耐震性能指標α'算定部分(従来例に係る部位の影響度推定方法のb)〜d))を、Pushover解析が不要なものに置換することで、評価法全体の安定性及び簡便性を実用可能なレベルまで向上させたものである。   This embodiment is based on the conventional method for evaluating the degree of earthquake damage (seismic performance remaining rate), and the part of the partial pin model's seismic performance index α ′ calculation part (b) to d) )) Is replaced with the one that does not require Pushover analysis, and the stability and simplicity of the entire evaluation method are improved to a practical level.

なお、影響度Erが推定されて、(1)式により耐震性能残存率Rを求める際には、耐震性能低減係数ηを得る必要があることについては既に述べたが、従来手法においては、前述のとおり、RC造建物を対象として、現地調査結果あるいは解析モデル上の応答最大塑性率に基づいて、建物各部位の耐震性能低減係数ηを算定することとしていた。 In addition, when the degree of influence Er is estimated and the seismic performance remaining rate R is calculated by the equation (1), it has already been described that it is necessary to obtain the seismic performance reduction coefficient η. As described above, the seismic performance reduction factor η of each part of the building was calculated based on the results of field surveys or the maximum response plasticity rate in the analysis model for RC buildings.

しかしながら、Miner則による累積損傷値Dに基づいて、(11)式で各部位の耐震性能低減係数ηを算定することで、鉄骨造建物における耐震性能残存率評価を行うようにしてもよい。累積損傷値Dは、鈴木芳隆,小鹿紀英ほか「長周期地震動に対する鉄骨造超高層建築物の安全性検証方法の検討(その22 地震応答解析結果を用いた損傷評価手法)」日本建築学会大会学術講演梗概集,2013.8等に示されている方法を用いれば、応答最大塑性率と累積塑性変形倍率の値から、略算的に計算することも出来る。   However, based on the cumulative damage value D according to the Miner rule, the seismic performance remaining rate evaluation in the steel structure building may be performed by calculating the seismic performance reduction coefficient η of each part by the equation (11). Cumulative damage value D is Yoshitaka Suzuki, Norihide Oga et al. “Examination of safety verification method for steel high-rise buildings against long-period ground motion (Part 22: Damage evaluation method using seismic response analysis results)” If the method shown in Academic Lecture Summary, 2013.8, etc. is used, it can also be calculated approximately from the values of the maximum response plasticity ratio and the cumulative plastic deformation ratio.

Figure 2016114411
Ni:最大塑性率μiのサイクルが単独で繰り返された際の、破断までの繰り返し回数で、疲労曲線により規定される。疲労曲線は、成原弘之,山田哲ほか「長周期地震動に対する鉄骨造超高層建築部の安全性検証方法の検討(その20 梁端溶接接合部の低サイクル疲労損傷評価法)」日本建築学会大会学術講演梗概集,2013.8等に示されている。
Figure 2016114411
N i : The number of repetitions until fracture when a cycle with the maximum plasticity ratio μ i is repeated independently, and is defined by the fatigue curve. Fatigue curves are from Hiroyuki Naruhara, Satoshi Yamada, and others “Examination of the safety verification method for steel high-rise buildings against long-period ground motions (Part 20: Low cycle fatigue damage evaluation method for beam-end welded joints)” It is shown in Academic Lecture Summary, 2013.8 etc.

ni: 最大塑性率μiのサイクルの繰り返し回数
ただし、RC造及びSRC造建物については、従来技術の塑性率等を用いた方法で、耐震性能低減係数ηを算定する。このようにすれば、構造種別に関わらず、本実施の形態に係る被災度評価方法を用いることができる。
n i : Number of repetitions of cycle with maximum plastic ratio μ i However, for RC and SRC buildings, the seismic performance reduction factor η is calculated by the method using the plastic ratio of the prior art. In this way, the damage degree evaluation method according to the present embodiment can be used regardless of the structure type.

次項では、曲げ降伏型の純ラーメン建物を想定し、部分ピンモデルにおける保有耐震性能指標α'算定法の手順を示す。   In the next section, assuming a bending yield type pure ramen building, the procedure for calculating the possessed seismic performance index α 'in the partial pin model is shown.

<<<具体的推定方法>>>
<応答変位Sd'の算定>
1)層間変形角δr'の算定
部分ピンモデルにおける各層の層間変形角δr'をa)〜d)に示す手順で算定する(図7参照)。
<<< Specific estimation method >>>
<Calculation of response displacement S d '>
1) The 'story drift of each layer [delta] r in calculating portion pin model' story drift [delta] r is calculated by the procedure shown in a) to d) (see FIG. 7).

a) 全ての部位に実際の耐力を入れた基本モデル(建物への外力の入力前の被災前モデルに相当)についてPushover解析を行う。Pushover解析により、損傷部位の位置(すなわち、ヒンジ発生位置。b)でピン部位とする損傷部位の位置(つまり、ピン部位の位置)も含む)を特定する。Pushover解析結果における各層の層間変形角をδriとする。 a) Pushover analysis is performed on the basic model (corresponding to the pre-disaster model before the external force is input to the building) with actual strength applied to all parts. By the pushover analysis, the position of the damaged part (that is, the position where the hinge is generated; b) and the position of the damaged part (that is, the position of the pin part) are specified. Let δ ri be the interlayer deformation angle of each layer in the Pushover analysis result.

b) Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおいては、ピン部位が属する層(以下損傷層)の耐力が減少するため、損傷層及びその周辺層の変形が増加する。そこで、(13)式でi層の層間変形角増加率Δi(被災前モデルに対する部分ピンモデルの建物の各層の層間変形角増加率)を算定する。なお、Δeiが層間変形角増加率基準値でメインの項となるのに対し、K、S、Cは調整項(補正用の項)である。 b) In a partial pin model of a building where one of the damaged parts identified by Pushover analysis is a pin part, the proof stress of the layer to which the pin part belongs (hereinafter referred to as the damaged layer) decreases, so the damaged layer and its surroundings Layer deformation increases. Therefore, the inter-layer deformation angle increase rate Δ i of the i layer (the inter-layer deformation angle increase rate of each layer of the partial pin model building relative to the pre-disaster model) is calculated by Equation (13). Note that Δei is the main term in the interlayer deformation angle increase rate reference value, whereas K, S, and C are adjustment terms (correction terms).

Figure 2016114411
b-1)
Δei:i層の層間変形角増加率基準値。ピンとした部位の耐力や、損傷層からi層までの距離等に応じて、(14)式で求める。
Figure 2016114411
b-1)
Δ ei : Interlayer deformation angle increase rate reference value of the i layer. It is calculated by equation (14) according to the proof stress of the pinned part, the distance from the damaged layer to the i layer, and the like.

Figure 2016114411
A部分:
部分ピンモデルにおける損傷層の耐力減少率が大きく、また、当該層(i層)が損傷層に近い程、層間変形角の変化Δeiが大きくなることを評価する。
Figure 2016114411
Part A:
It is evaluated that the change rate Δ ei of the interlayer deformation angle increases as the proof stress reduction rate of the damaged layer in the partial pin model is larger and the layer (i layer) is closer to the damaged layer.

n:建物層数
sMurj:j層における耐力減少率(ヒンジ発生部位をピンとしたことでj層の耐力がどれだけ落ちてしまったかを表す量である)。j層におけるヒンジ発生部位の耐力の和sΣMuj(以下、層の耐力)に対する、ピン部位の耐力Muの比率として、(15)式で求める。
n: Number of building layers
s M urj : Yield reduction rate in the j layer (This is a quantity indicating how much the yield strength of the j layer has dropped due to the hinge generation site as a pin). the sum of the yield strength of the hinge generation site in the j layer s? M uj (hereinafter, strength of the layer) for, as the ratio of yield strength M u of the pin sites, determined by equation (15).

Figure 2016114411
損傷層以外においては、sMurj=0となる。ここで、中間階の梁ヒンジについては、梁耐力で決まる節点モーメントが上下層に分配されるため、(15)式におけるsΣMuj及びMuに対して、それぞれ梁耐力の1/2を加算することとする。剛域を無視した場合、Murjは、梁ヒンジによって決まる節点モーメントを上下層の柱に均等に分配した場合の層せん断力ΣQujを、部分ピンモデル、基本モデルそれぞれについて求め、部分ピンモデルにおける減少率を算定したものに等しくなる(図8参照)。図8の例において、仮に全ての梁の耐力Muiが等しいとすると、sMurj=1/8となる。
Figure 2016114411
Except for the damaged layer, s M urj = 0. Here, the intermediate floor beam hinge, since the nodes moment determined by the beam strength is distributed to the upper and lower layers, (15) s? M with respect to uj and M u, respectively adding the 1/2 of the beam strength of formula I decided to. When the rigid zone is ignored, Murj obtains the layer shear force ΣQ uj for each of the partial pin model and basic model when the nodal moment determined by the beam hinge is evenly distributed to the upper and lower columns. It is equal to the calculated reduction rate (see FIG. 8). In the example of FIG. 8, suppose that the proof stress M ui of all the beams is equal, s M urj = 1/8 .

すなわち、図8の例において、黒丸で示されるピン部位が属する層を例えば2層(黒丸の直下の層)及び3層(黒丸の直上の層)とすると、損傷層は、2層と3層のみとなる。そのため、2層と3層以外の層(1層や4層以上の層)については、sMurj=0となる(図7参照)。また、2層について、sMurjを求める際には、図8に示すように、2層に属するピン部位が1つに対し、2層に属する損傷部位(ピン部位も含む)が8つであるため、全ての梁の耐力Muiが等しいと、sMurj=1/8となる。 That is, in the example of FIG. 8, if the layer to which the pin portion indicated by the black circle belongs is, for example, two layers (layer immediately below the black circle) and three layers (layer immediately above the black circle), the damaged layer has two and three layers. It becomes only. Therefore, s M urj = 0 for layers other than the second and third layers (one layer or four or more layers) (see FIG. 7). Further, the two layers, when determining the s M URJ, as shown in FIG. 8, with respect to the pin portions belonging to two layers one, injury site belonging to the two layers (including pin portion) is 8 Tsude Therefore , s M urj = 1/8 when the proof stress M ui of all the beams is equal.

aj:層の影響係数(ピン部位が属する層からどれだけ離れた層であるかを表した係数と言える。)。i層とj層(j=1〜n)の距離(L=j-i)の値に応じて、(16)式で算定する。なお、図7の例においては、ピン部位が属する層が2層及び3層となり、1層が2層からどれだけ離れているかがa2で表され、1層が3層からどれだけ離れているかがa3で表されている。 a j : Influence coefficient of the layer (it can be said that it is a coefficient representing how far the layer from the layer to which the pin site belongs). It is calculated by equation (16) according to the value of the distance (L = ji) between the i layer and the j layer (j = 1 to n). In the example of FIG. 7, the layer to which the pin part belongs is 2 layers and 3 layers, and how far one layer is from 2 layers is represented by a 2 , and how far 1 layer is from 3 layers Is represented by a 3 .

Figure 2016114411
n=3,5,10の各場合におけるajの値の算定例を図9に示す。
Figure 2016114411
An example of calculating the value of a j in each case of n = 3, 5, 10 is shown in FIG.

なお、A部分の分母は基準化のための項である。   In addition, the denominator of A part is a term for standardization.

B部分:
部分ピンモデルにおける建物全体の耐力減少率が大きい程、層間変形角の変化Δeiが大きくなるという関係を、耐力減少率係数allMurによって評価する。allMurは、全てのヒンジ位置(損傷部位の位置)における曲げ耐力の合計値として定義する建物全体の耐力ΣMuに対するピン部位の耐力Muの比率(以下、耐力減少率Mu/ΣMu)を、減少率の平均値ave(Mu/ΣMu)で基準化し、(17)式で求める。ave(Mu/ΣMu)は、(18)式で算定出来る。
Part B:
The larger the strength reduction of the entire building in the partial pin model, the relationship of change in delta ei interlayer deformation angle increases, is evaluated by strength decrease rate factor all M ur. all M ur, the ratio of yield strength M u of the pin portion bent relative strength? M u of the entire building be defined as the sum of the yield strength at all hinge position (position of the injury site) (hereinafter, strength reduction rate M u /? M u ) Is normalized by the average value ave (M u / ΣM u ) of the reduction rate, and is obtained by equation (17). ave (M u / ΣM u ) can be calculated by equation (18).

Figure 2016114411
nh:ヒンジ箇所数
b-2)
K:柱剛性による補正係数。各層の層間変形角の差は、柱変形によって生じる(仮に柱を剛とした場合、図10に示すように、各層の層間変形角は等しくなる)。一般に、柱剛性(剛比)が小さい程、柱変形が大きくなり、層間変形の差は大きくなる。従って、部分ピンモデルにおける層間変形の変化率Δiも、柱剛比が小さい程大きくなる。その影響を、(19)式で算定される係数Kによって評価する。
Figure 2016114411
n h : Number of hinges
b-2)
K: Correction coefficient based on column rigidity. The difference in the interlayer deformation angle of each layer is caused by column deformation (if the column is rigid, the interlayer deformation angle of each layer becomes equal as shown in FIG. 10). In general, the smaller the column stiffness (rigidity ratio), the greater the column deformation and the greater the difference in interlayer deformation. Therefore, the interlayer deformation change rate Δ i in the partial pin model also increases as the column stiffness ratio decreases. The effect is evaluated by the coefficient K calculated by equation (19).

Figure 2016114411
ΣKb:梁の割線剛性の合計値。各梁部材の割線剛性Kbは、安全限界時における梁端モーメントbMを材端バネの曲げ回転角bθfで除すことで求めたi、j端の割線剛性Kbi、Kbj(図11)の平均値として求める。
Figure 2016114411
ΣK b : Total value of the secant stiffness of the beam. The secant stiffness K b of each beam member is obtained by dividing the beam end moment b M at the safety limit by the bending rotation angle b θ f of the material end spring, and the secant stiffness K bi , K bj ( It is obtained as an average value of FIG.

Figure 2016114411
ΣKc:柱の割線剛性の合計値。梁と同様の方法で求める。
Figure 2016114411
ΣK c : Total value of column secant stiffness. It is calculated in the same way as the beam.

b-3)
層間変形角変化率Δiは、一般に、層数nに比例して大きくなる。一方で、(14)式のA部分における分母は、nに比例して大きくなるため、Δeiの値をそのまま用いた場合、逆に変化率Δiがnに比例して小さくなってしまう。そこで、層数による補正係数Sによって、層間変形角変化率Δiが層数nに比例するような関係を構築する。
b-3)
The interlayer deformation angle change rate Δ i generally increases in proportion to the number of layers n. On the other hand, the denominator in the part A of formula (14), increases in proportion to n, when used as the value of delta ei, conversely the rate of change delta i is reduced in proportion to n. Therefore, a relationship is established in which the interlayer deformation angle change rate Δ i is proportional to the number of layers n by the correction coefficient S based on the number of layers.

Figure 2016114411
b-4)
C:定数項(=7)
c)基本モデルにおけるi層の層間変形角δriに、(13)式で求めた層間変形角増加率Δiを乗じ、(22)式で、部分ピンモデルにおける(仮の)層間変形角δrti'を求める。「仮の」と言うのは、後述の手順において最大値で基準化する前の値という意味である。
Figure 2016114411
b-4)
C: Constant term (= 7)
c) Multiplying the inter-layer deformation angle δ ri of the i layer in the basic model by the inter-layer deformation angle increase rate Δ i obtained by the equation (13), and using the equation (22), the (temporary) inter-layer deformation angle δ in the partial pin model ask for rti '. “Temporary” means a value before standardization with the maximum value in the procedure described later.

Figure 2016114411
d)安全限界時の条件(層間変形角の最大値が1/50rad.)を満たすための係数をδrti'に乗じ、安全限界時の層間変形角δri'を求める(図7参照)。
Figure 2016114411
d) Multiply δ rti 'by a coefficient to satisfy the condition at the safety limit (the maximum value of the interlayer deformation angle is 1/50 rad.) to obtain the interlayer deformation angle δ ri ' at the safety limit (see FIG. 7).

Figure 2016114411
δr50:安全限界時層間変形角(=1/50rad.)
max(δrti'):1〜n層におけるδrti'の最大値(=変形角最大層におけるδrti')
2)応答変位Sd'の算定
i層の層間変形δi'は、層間変形角δri'に階高Hiを乗じ、(24)式で算定される。
Figure 2016114411
[delta] r50: safety limit during story drift (= 1 / 50rad.)
max (δ rti '): the maximum value of δ rti ' in the 1 to n layers (= δ rti 'in the layer with the maximum deformation angle)
2) Calculation of response displacement S d '
The interlayer deformation δ i ′ of the i layer is calculated by the equation (24) by multiplying the interlayer deformation angle δ ri ′ by the floor height H i .

Figure 2016114411
また、絶対変位Diは、(25)式で算定される。
Figure 2016114411
The absolute displacement D i is calculated by equation (25).

Figure 2016114411
縮約1質点系における安全限界時の応答変位Sd'は、(2)式に従って算定される。ここで、各層の質量miは基本モデルと同一であるため、既知の値である。
Figure 2016114411
The response displacement S d ′ at the safety limit in the reduced 1 mass system is calculated according to the equation (2). Since the mass m i of each layer is the same as the basic model, a known value.

<応答加速度Sa'の算定>
部分ピンモデルにおける安全限界時のi層せん断力ΣQi'は、基本モデルのPushover解析結果におけるi層せん断力ΣQi及び部分ピンモデルにおける耐力減少率Mu/ΣMu((17)式参照)を用い、(26)式で求められる。
<Calculation of response acceleration S a '>
Part i layer shearing force during safety limit at pin model [sum] Q i 'is strength reduction rate in the i-layer shear [sum] Q i and the partial pin model in Pushover analysis result of the basic model M u / ΣM u ((17 ) see formula) Is obtained by the equation (26).

Figure 2016114411
また、有効質量Mud'は、(25)式で求めた各層の絶対変位Di、及び各層の質量miを用い、(3)式に従って算定される。
Figure 2016114411
The effective mass M ud 'uses the absolute displacement D i, and each layer of the mass m i of each layer obtained in (25), is calculated according to equation (3).

(26)式で求めた安全限界時の1層せん断力ΣQ1'及び有効質量Mud'を用い、(4)式に従って、安全限界時の応答加速度Sa'を算定する。 Using the one-layer shear force ΣQ 1 ′ at the safety limit and the effective mass M ud ′ obtained by the equation (26), the response acceleration S a ′ at the safety limit is calculated according to the equation (4).

<減衰定数h'の推定>
部分ピンモデルにおける安全限界時の減衰定数h'は、次の手順で算定する(図12)。
<Estimation of damping constant h '>
The attenuation constant h ′ at the safety limit in the partial pin model is calculated by the following procedure (FIG. 12).

a)基本モデルのPushover解析結果における層せん断力−層間変形関係をトリリニア型にモデル化し、第2折れ点をi層の降伏変形δyiとして定義する。 a) The layer shear force-interlayer deformation relationship in the Pushover analysis result of the basic model is modeled as a trilinear type, and the second break point is defined as the yield deformation δ yi of the i layer.

b)部分ピンモデルにおいても、i層の降伏変形は基本モデルと同一であると仮定し、(24)式で算定されるi層の層間変形δi'と降伏変形δyiの比率から、(27)式でi層の層塑性率μiを求める。 b) In the partial pin model, it is assumed that the yield deformation of the i layer is the same as that of the basic model, and from the ratio of the interlayer deformation δ i ′ of the i layer and the yield deformation δ yi calculated by (24), ( The layer plasticity ratio μ i of the i layer is obtained by the equation (27).

Figure 2016114411
c)層塑性率μiを用い、(28)式で、i層の減衰定数hiを求める。また、(26)式で算定されるi層せん断力ΣQi'を用い、i層のポテンシャルエネルギーWiを(29)式で求める。
Figure 2016114411
c) Using the layer plasticity ratio μ i , the attenuation constant h i of the i layer is obtained by the equation (28). Further, using the i-layer shear force ΣQ i ′ calculated by the equation (26), the potential energy W i of the i-layer is obtained by the equation (29).

Figure 2016114411
ho:粘性減衰定数
d)建物全体の減衰定数he'を、(30)式で求める。
Figure 2016114411
h o : Viscosity damping constant
d) The attenuation constant h e ′ of the entire building is obtained by equation (30).

Figure 2016114411
e)基本モデルについても同様にa)〜d)の手順で、建物全体の減衰定数(推定値)heを求める。一方、(6)式では、Pushover解析における各バネの出力結果を基に、基本モデルにおける減衰定数の精算値hが求められている。
Figure 2016114411
e) In the procedure of the same for the basic model a) to d), the attenuation constant of the whole building (estimated value) is obtained h e. On the other hand, in equation (6), the settlement value h of the damping constant in the basic model is obtained based on the output result of each spring in the pushover analysis.

基本モデルにおいて減衰定数の推定値heと精算値hが一致するように設定した補正係数Khを、(30)式で求めたhe'に乗じ、部分ピンモデルにおける減衰定数h'を求める((31)式)。 In the basic model, multiply the correction coefficient K h set so that the estimated value h e of the attenuation constant and the settlement value h coincide with the value h e ′ obtained by Equation (30) to obtain the attenuation constant h ′ in the partial pin model. (Equation (31)).

Figure 2016114411
<保有耐震性能指標α'の算定>
上記で求めた安全限界時の応答加速度Sa'、応答変位Sd'、減衰定数h'を用いて、各々の部分ピンモデルの保有耐震性能指標α'を算定する。
Figure 2016114411
<Calculation of possessed seismic performance index α '>
The seismic performance index α ′ of each partial pin model is calculated using the response acceleration S a ′, response displacement S d ′, and damping constant h ′ at the safety limit determined above.

<影響度Erの算定>
保有耐震性能指標α'が得られた際には、従来例に係る部位の影響度推定方法で説明したe)〜g)項により、影響度Erを算定(推定)する。
<Calculation of the degree of influence Er >
When the possessed seismic performance index α ′ is obtained, the degree of influence Er is calculated (estimated) according to the items e) to g) described in the method for estimating the degree of influence of the part according to the conventional example.

===本実施の形態に係る部位の影響度推定方法及び被災度評価方法の有効性について===
上述したとおり、本実施の形態に係る部位の影響度推定方法においては、建物への外力の入力前の被災前モデル(つまり、図6の上図に示した基本モデル)におけるPushover解析を行うこととした。
=== Regarding the Effectiveness of the Method for Estimating the Influence of a Part and the Method for Evaluating the Damage According to the Present Embodiment ===
As described above, in the method for estimating the influence of the site according to the present embodiment, pushover analysis is performed on the pre-disaster model (that is, the basic model shown in the upper diagram of FIG. 6) before the external force is input to the building. It was.

そして、Pushover解析により特定される損傷部位(つまり、ヒンジ部位。例えば、図8において黒丸と白丸で表した部位)のうちの一つをピン部位(例えば、図8において黒丸で表した部位)とした建物の部分ピンモデルにおける安全限界時の応答加速度Sa'、応答変位Sd'、減衰定数h'を、被災前モデルにおけるPushover解析の解析結果(例えば、層せん断力ΣQi, 層間変形角δri(層間変位)、減衰定数h)と、ピン部位の位置(例えば、ピン部位が属する層)と、部位の特性(例えば、損傷部位(ピン部位も含む)の耐力)と、に基づいて、部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、部分ピンモデルの保有耐震性能指標α'を算出することとした。 Then, one of the damaged parts identified by the pushover analysis (that is, the hinge part. For example, the part represented by the black circle and the white circle in FIG. 8) is defined as the pin part (for example, the part represented by the black circle in FIG. 8). The response acceleration S a ', response displacement S d ', and damping constant h 'at the safety limit in the partial pin model of the damaged building, and the analysis results of pushover analysis in the pre-disaster model (for example, layer shear force ΣQ i, interlayer deformation angle Based on δ ri (interlayer displacement), damping constant h), the position of the pin site (eg, the layer to which the pin site belongs), and the characteristics of the site (eg, proof strength of the damaged site (including the pin site)) The seismic performance index α ′ of the partial pin model was calculated by a simple analysis without using the pushover analysis in the partial pin model.

そして、算出された保有耐震性能指標α'に基づいて影響度Erを推定することとした。 Then, the influence E r is estimated based on the calculated possessed seismic performance index α ′.

本実施の形態によれば、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、部位の影響度を簡潔に推定することが可能となる。また、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、極端な状態(現実離れした状態)の仮想モデルに対してPushover解析を行うことにより、計算上のエラー(誤差などを含む)が生ずるという問題を回避することも可能となり、推定結果が安定することとなる。   According to the present embodiment, since it is not necessary to perform pushover analysis in the partial pin model, it is possible to simply estimate the influence degree of the part. In addition, since there is no need to perform pushover analysis on a partial pin model, a calculation error (including errors) occurs when performing pushover analysis on a virtual model in an extreme state (a state that is far from reality). Can be avoided, and the estimation result becomes stable.

また、本実施の形態に係る簡易解析においては、ピン部位が属する層及び部位(例えば、損傷部位(ピン部位も含む))の特性である耐力に基づいて、被災前モデルに対する部分ピンモデルの建物の各層の層間変形角増加率Δiを算定し、算定された層間変形角増加率Δiに基づいて応答加速度Sa'、応答変位Sd'、減衰定数h'を求めることとした。 Further, in the simple analysis according to the present embodiment, the building of the partial pin model with respect to the pre-disaster model based on the strength of the layer and the part to which the pin part belongs (for example, the damaged part (including the pin part)) The interlayer deformation angle increase rate Δ i of each layer was calculated, and the response acceleration S a ′, response displacement S d ′, and damping constant h ′ were determined based on the calculated interlayer deformation angle increase rate Δ i .

本実施の形態によれば、ピン部位が属する層及び部位の特性である耐力に基づいて求められる層間変形角増加率を用いることにより、部分ピンモデルにおけるPushover解析の実行を適切に回避することが可能となる。   According to the present embodiment, it is possible to appropriately avoid the execution of pushover analysis in the partial pin model by using the interlayer deformation angle increase rate obtained based on the strength to which the layer to which the pin part belongs and the characteristic of the part. It becomes possible.

また、本実施の形態に係る簡易解析においては、ピン部位が属する層及び部位の特性である耐力に加え、梁及び柱の剛性(例えば、梁の割線剛性Kb、柱の割線剛性Kc)と建物の層数nとに基づいて、層間変形角増加率Δiを算定することとした。 In the simplified analysis of the present embodiment, in addition to the yield strength pin site is a characteristic of belonging layers and sites of beams and columns stiffness (e.g., secant stiffness K b of the beam, secant stiffness K c columns) And the interlayer deformation angle increase rate Δ i was calculated based on the number of building layers n.

本実施の形態によれば、梁及び柱の剛性や建物の層数も、層間変形角増加率の算定の際に、補正項として加味されるため、部位の影響度の推定精度が向上することとなる。   According to the present embodiment, the rigidity of the beams and columns and the number of building layers are also added as correction terms when calculating the rate of increase in the interlayer deformation angle, so that the accuracy of estimating the degree of influence of the part is improved. It becomes.

また、本実施の形態に係る被災度評価方法においては、建物への外力の入力前の被災前モデル(つまり、図6の上図に示した基本モデル)におけるPushover解析を行うこととした。   Further, in the damage degree evaluation method according to the present embodiment, pushover analysis is performed on the pre-disaster model (that is, the basic model shown in the upper diagram of FIG. 6) before the external force is input to the building.

そして、Pushover解析により特定される損傷部位(つまり、ヒンジ部位。例えば、図8において黒丸と白丸で表した部位)のうちの一つをピン部位(例えば、図8において黒丸で表した部位)とした建物の部分ピンモデルにおける安全限界時の応答加速度Sa'、応答変位Sd'、減衰定数h'を、被災前モデルにおけるPushover解析の解析結果(例えば、層せん断力ΣQi, 層間変形角δri(層間変位)、減衰定数h)と、ピン部位の位置(例えば、ピン部位が属する層)と、部位の特性(例えば、損傷部位(ピン部位も含む)の耐力)と、に基づいて、部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、部分ピンモデルの保有耐震性能指標α'を算出し、算出された保有耐震性能指標α'に基づいて影響度Erを推定する処理を複数箇所の前記損傷部位毎((1)式参照)に実行することとした。 Then, one of the damaged parts identified by the pushover analysis (that is, the hinge part. For example, the part represented by the black circle and the white circle in FIG. 8) is defined as the pin part (for example, the part represented by the black circle in FIG. 8). The response acceleration S a ', response displacement S d ', and damping constant h 'at the safety limit in the partial pin model of the damaged building, and the analysis results of pushover analysis in the pre-disaster model (for example, layer shear force ΣQ i, interlayer deformation angle Based on δ ri (interlayer displacement), damping constant h), the position of the pin site (eg, the layer to which the pin site belongs), and the characteristics of the site (eg, proof strength of the damaged site (including the pin site)) The process of calculating the possessed seismic performance index α ′ of the partial pin model and estimating the degree of influence Er based on the calculated retained seismic performance index α ′ obtained by a simple analysis that does not use Pushover analysis in the partial pin model The multiple points of the loss It was decided to execute for each wound site (refer to formula (1)).

そして、損傷部位毎の影響度Erと、建物への外力の入力により得られた建物応答と、に基づいて建物の耐震性能残存率Rを算定する((1)式参照)こととした。 Then, the seismic performance remaining rate R of the building is calculated based on the degree of influence Er for each damaged part and the building response obtained by inputting the external force to the building (see equation (1)).

そのため、部位の影響度を簡潔に推定することが可能となり、したがって、被災度評価方法が簡潔なものとなる。また、通常の設計で用いられる建物解析モデルに基づき、本実施の形態に係る影響度推定方法によって各部位の影響度Erを事前計算しておけば、加速度センサで記録した入力波形を用いた時刻歴応答解析等によって推定した地震時の建物応答(各部位の塑性率あるいは累積塑性変形)の情報と組み合わせて、地震発生直後に建物の耐震性能残存率を自動計算することが出来る(図13)。 Therefore, it is possible to simply estimate the degree of influence of the part, and thus the damage degree evaluation method becomes simple. Also, based on the building analysis model used in normal design, if the influence degree Er of each part is pre-calculated by the influence degree estimation method according to this embodiment, the input waveform recorded by the acceleration sensor was used. In combination with information on the building response (plastic rate or cumulative plastic deformation of each part) estimated by time history response analysis etc., the earthquake resistance remaining rate of the building can be automatically calculated immediately after the earthquake occurs (FIG. 13). ).

建物所有者や管理者等は、耐震性能残存率の値に基づいて、避難の要否や事業継続性の判断、被害調査や復旧計画の優先順位の決定を効率的に行うことが出来るため、地震発生後の各種対応の迅速化に大いなる貢献が期待される。   Building owners and managers can efficiently determine the necessity of evacuation, business continuity, and prioritize damage surveys and recovery plans based on the seismic performance survivability rate. It is expected to make a great contribution to speeding up various responses after occurrence.

===本実施の形態に係る被災度評価システムについて===
次に、本実施の形態に係る被災度評価システム1について、図14を用いて説明する。被災度評価システム1は、影響度Erを算定(推定)するためのコンピューター(影響度推定装置に相当。以下、便宜上、影響度推定用コンピューター10と呼ぶ)と、被災度を評価するためのコンピューター(以下、便宜上、被災度評価用コンピューター20と呼ぶ)と、を有している。
=== Damage Evaluation System According to this Embodiment ===
Next, the damage evaluation system 1 according to the present embodiment will be described with reference to FIG. The damage degree evaluation system 1 is a computer for calculating (estimating) the degree of influence Er (corresponding to an influence degree estimation apparatus. Hereinafter, for convenience, it will be referred to as an influence degree estimation computer 10), and for evaluating the degree of damage. A computer (hereinafter referred to as a damage degree evaluation computer 20 for convenience).

いずれのコンピューターも、CRT(Cathode Ray Tube:陰極線管)、液晶表示装置、プラズマディスプレイ等の情報を表示するための表示装置と、キーボード、マウス等の入力装置と、CD−ROMドライブ装置、DVD(Digital Versatile Disk)装置等の読取装置と、RAM等の内部メモリと、ハードディスクドライブユニット等の外部メモリと、CPUと、を備えている。   Each computer has a display device for displaying information such as a CRT (Cathode Ray Tube), a liquid crystal display device, a plasma display, an input device such as a keyboard and a mouse, a CD-ROM drive device, a DVD ( A reading device such as a digital versatile disk device, an internal memory such as a RAM, an external memory such as a hard disk drive unit, and a CPU.

影響度推定用コンピューター10においては、記録手段12(外部メモリがこの役割を果たす)に部位の特性(例えば、損傷部位(ピン部位も含む)の耐力や、梁及び柱の剛性や、基本モデルのPushover解析に必要な公知の構造物データ)や建物の層数等の情報が格納されている。そして、算定手段14(主として、CPU及び内部メモリがこの役割を果たす)が記録手段12からこれらの情報を読み出して影響度Erを算定する。算定手段14は、Pushover解析実行手段14aと影響度推定手段14bとを備えている。 In the computer 10 for estimating the degree of influence, the recording means 12 (external memory plays this role) has characteristics of parts (for example, proof strength of damaged parts (including pin parts), rigidity of beams and columns, basic model Information such as well-known structure data necessary for pushover analysis) and the number of building layers is stored. Then, the calculation means 14 (mainly the CPU and the internal memory play this role) reads these pieces of information from the recording means 12 and calculates the degree of influence Er . The calculation means 14 includes a pushover analysis execution means 14a and an influence degree estimation means 14b.

そして、Pushover解析実行手段14aは、建物への外力の入力前の被災前モデル(つまり、図6の上図に示した基本モデル)におけるPushover解析を行う。また、影響度推定手段14bは、Pushover解析により特定される損傷部位(つまり、ヒンジ部位。例えば、図8において黒丸と白丸で表した部位)のうちの一つをピン部位(例えば、図8において黒丸で表した部位)とした建物の部分ピンモデルにおける安全限界時の応答加速度Sa'、応答変位Sd'、減衰定数h'を、被災前モデルにおけるPushover解析の解析結果(例えば、層せん断力ΣQi, 層間変形角δri(層間変位)、減衰定数h)と、ピン部位の位置(例えば、ピン部位が属する層)と、部位の特性(例えば、損傷部位(ピン部位も含む)の耐力)と、に基づいて、部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、部分ピンモデルの保有耐震性能指標α'を算出し、算出された保有耐震性能指標α'に基づいて影響度Erを推定する。推定された影響度Erは、表示手段16(表示装置がこの役割を果たす)に表示される。 Then, the pushover analysis execution unit 14a performs the pushover analysis in the pre-disaster model (that is, the basic model shown in the upper diagram of FIG. 6) before the external force is input to the building. Further, the influence degree estimation means 14b determines one of the damaged parts (that is, the hinge part, for example, the part represented by the black circle and the white circle in FIG. 8) specified by the pushover analysis as the pin part (for example, in FIG. 8). The response acceleration S a ', response displacement S d ', and damping constant h 'at the safety limit in the partial pin model of the building as a black circle) are the analysis results of pushover analysis in the pre-disaster model (eg, layer shear) Force ΣQ i, interlayer deformation angle δ ri (interlayer displacement), damping constant h), pin location (eg, the layer to which the pin location belongs), and site characteristics (eg, damaged site (including pin location)) Based on the seismic performance index α ′ of the partial pin model, calculated by a simple analysis that does not use Pushover analysis in the partial pin model, and based on the calculated seismic performance index α ′ Estimate degree Er . The estimated degree of influence Er is displayed on the display means 16 (the display device plays this role).

このような影響度推定用コンピューター10によれば、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、部位の影響度を簡潔に推定することが可能となる。また、部分ピンモデルにおけるPushover解析を行う必要がなくなるため、極端な状態(現実離れした状態)の仮想モデルに対してPushover解析を行うことにより、計算上のエラー(誤差などを含む)が生ずるという問題を回避することも可能となり、推定結果が安定することとなる。   According to such an influence degree estimation computer 10, it is not necessary to perform pushover analysis in the partial pin model, so that it is possible to simply estimate the influence degree of the part. In addition, since there is no need to perform pushover analysis on a partial pin model, a calculation error (including errors) occurs when performing pushover analysis on a virtual model in an extreme state (a state that is far from reality). Can be avoided, and the estimation result becomes stable.

影響度推定用コンピューター10において推定(算定)された影響度Erは、被災度評価用コンピューター20に転送される。転送手段は、有線、無線を問わず、また、公衆回線であっても専用回線(LANも含む)であってもよい。また、CD−ROM、DVD、USBメモリ等を介す方法でもよい。 The degree of influence Er estimated (calculated) in the degree-of-impact estimation computer 10 is transferred to the damage degree evaluation computer 20. The transfer means may be wired or wireless, and may be a public line or a dedicated line (including a LAN). Alternatively, a method via a CD-ROM, DVD, USB memory or the like may be used.

被災度評価用コンピューター20においては、記録手段22(外部メモリがこの役割を果たす)に損傷部位(ヒンジ部位)毎の影響度Erが格納されている。被災度評価用コンピューター20には、加速度センサ30が連結されており、加速度センサ30で記録された地震の入力波形が被災度評価用コンピューター20に転送されるようになっている。被災度評価用コンピューター20では、耐震性能残存率算定手段24が、地震の入力波形に基づいて、地震時の建物応答を推定し、推定した建物応答と損傷部位(ヒンジ部位)毎の影響度Erとに基づいて、耐震性能残存率Rを算定する。算定された耐震性能残存率Rは、表示手段26(表示装置がこの役割を果たす)に表示される。 In the damage evaluation computer 20, the recording unit 22 (external memory plays this role) stores the degree of influence Er for each damaged part (hinge part). An acceleration sensor 30 is connected to the damage evaluation computer 20, and an earthquake input waveform recorded by the acceleration sensor 30 is transferred to the damage evaluation computer 20. In the damage evaluation computer 20, the seismic performance remaining rate calculation means 24 estimates the building response at the time of the earthquake based on the input waveform of the earthquake, and the estimated building response and the degree of influence Er for each damaged part (hinge part). Based on the above, the residual ratio R of seismic performance is calculated. The calculated seismic performance remaining rate R is displayed on the display means 26 (the display device plays this role).

===その他の実施の形態===
上記の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
=== Other Embodiments ===
The above embodiments are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof. In particular, the embodiments described below are also included in the present invention.

上記実施の形態においては、被災度評価システム1として、2つのコンピューター、すなわち、影響度推定用コンピューター10及び被災度評価用コンピューター20が、設けられていることとしたが、双方のコンピューターの機能を有する1つのコンピューターのみが設けられていることとしてもよい。   In the embodiment described above, two computers, that is, the impact estimation computer 10 and the disaster assessment computer 20 are provided as the disaster assessment system 1, but the functions of both computers are provided. Only one computer may be provided.

1 被災度評価システム
10 影響度推定用コンピューター
12 記録手段
14 算定手段
14a Pushover解析実行手段
14b 影響度推定手段
16 表示手段
20 被災度評価用コンピューター
22 記録手段
24 耐震性能残存率算定手段
26 表示手段
30 加速度センサ
DESCRIPTION OF SYMBOLS 1 Damage degree evaluation system 10 Influence degree estimation computer 12 Recording means 14 Calculation means 14a Pushover analysis execution means 14b Influence degree estimation means 16 Display means 20 Damage degree evaluation computer 22 Recording means 24 Seismic performance residual ratio calculation means 26 Display means 30 Acceleration sensor

Figure 2016114411
Figure 2016114411
Figure 2016114411
mi:i層の重量 Di:i層の相対変位 ΣQ1:1層せん断力
d)基本モデルと部分ピンモデルの耐力曲線に関し、安全限界時(層間変形角最大値=1/50rad.とした)において、第2種地盤の告示の応答スペクトルに対する保有耐震性能指標α、α'(建物の耐震性能の大小を数値で表したもの)を求める(図4)。保有耐震性能指標は、基準地震動Sに対する限界地震動αS(図4において、安全限界点を通る地震動)の比として定義される。限界地震動αSは、建物が安全限界状態に達する際の地震動強さであり、耐力曲線上の安全限界点を通過するスペクトルの大きさに該当する。基準地震動は、告示の応答スペクトルを、安全限界時の建物の減衰定数h(建物のエネルギー吸収力の大小を数値で表したもの)の大きさに応じた応答低減率Fhで低減したものである((5)式)。建物の減衰定数hは、塑性率μに応じて定義される建物内各部位(各バネ)の減衰定数hiを、歪エネルギーWiで重みづけ平均し、(6)式で求められる。
Figure 2016114411
Figure 2016114411
Figure 2016114411
m i : Weight of i layer D i : Relative displacement of i layer ΣQ 1 : Single layer shear force
d) Regarding the strength curves of the basic model and the partial pin model, the seismic performance index α, α 'possessed with respect to the response spectrum of the type 2 ground notification at the safety limit (maximum interlayer deformation angle = 1/50 rad.) (The numerical value of the magnitude of the earthquake resistance of the building) is obtained (Fig. 4). The possessed seismic performance index is defined as the ratio of the limit ground motion αS (the ground motion passing through the safety limit point in FIG. 4) to the reference ground motion S. The limit seismic motion αS is the strength of the seismic motion when the building reaches the safe limit state, and corresponds to the size of the spectrum passing through the safe limit point on the proof stress curve. The standard ground motion is a reduction of the response spectrum of the notification with a response reduction rate F h according to the magnitude of the building's damping constant h (a numerical value of the building's energy absorption capacity) at the safety limit. Yes (Formula (5)). The damping constant h of the building is obtained by Equation (6) by averaging the damping constant h i of each part (each spring) in the building defined according to the plasticity ratio μ with the strain energy W i .

Figure 2016114411
また、相対変位Diは、(25)式で算定される。
Figure 2016114411
Further, the relative displacement D i is calculated by the equation (25).

Figure 2016114411
また、有効質量Mud'は、(25)式で求めた各層の相対変位Di、及び各層の質量miを用い、(3)式に従って算定される。
Figure 2016114411
The effective mass M ud 'is used (25) relative displacement D i of each layer was calculated by the formula, and each of the mass m i, is calculated according to equation (3).

Claims (5)

建物の耐震性能に対する部位の影響度を推定する部位の影響度推定方法であって、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を行い、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定することを特徴とする部位の影響度推定方法。
A method for estimating the degree of influence of a part for estimating the degree of influence of a part on the seismic performance of a building,
Perform pushover analysis in the pre-disaster model before external force input to the building,
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
An influence degree estimation method for a part, wherein the influence degree is estimated based on the calculated possessed seismic performance index.
請求項1に記載の部位の影響度推定方法であって、
前記簡易解析においては、前記ピン部位が属する層及び前記部位の特性である耐力に基づいて、前記被災前モデルに対する前記部分ピンモデルの前記建物の各層の層間変形角増加率を算定し、
算定された層間変形角増加率に基づいて前記応答加速度、応答変位、減衰定数を求めることを特徴とする部位の影響度推定方法。
A method for estimating the degree of influence of a part according to claim 1,
In the simple analysis, based on the layer to which the pin part belongs and the proof stress that is the characteristic of the part, the interlayer deformation angle increase rate of each layer of the building of the partial pin model relative to the pre-disaster model is calculated,
A method for estimating the degree of influence of a part, wherein the response acceleration, response displacement, and attenuation constant are obtained based on the calculated rate of increase in interlayer deformation angle.
請求項2に記載の部位の影響度推定方法であって、
前記簡易解析においては、前記ピン部位が属する層及び前記部位の特性である耐力に加え、梁及び柱の剛性と建物の層数とに基づいて、前記層間変形角増加率を算定することを特徴とする部位の影響度推定方法。
A method for estimating the degree of influence of a part according to claim 2,
In the simple analysis, in addition to the layer to which the pin part belongs and the proof stress that is a characteristic of the part, the interlayer deformation angle increase rate is calculated based on the rigidity of the beam and the column and the number of building layers. The method of estimating the influence level of the part.
建物の耐震性能に対する部位の影響度を推定して建物の被災度を評価する被災度評価方法であって、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を行い、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定する処理を、
複数箇所の前記損傷部位毎に実行し、
前記損傷部位毎の前記影響度と、前記建物への外力の入力により得られた建物応答と、に基づいて前記建物の耐震性能残存率を算定することを特徴とする被災度評価方法。
A damage degree evaluation method for estimating the degree of damage of a building by estimating the degree of influence of the part on the earthquake resistance of the building,
Perform pushover analysis in the pre-disaster model before external force input to the building,
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
A process for estimating the influence based on the calculated seismic performance index,
Execute for each of the damaged sites in multiple locations,
A damage degree evaluation method characterized in that a seismic performance residual ratio of the building is calculated based on the influence degree for each damaged part and a building response obtained by inputting an external force to the building.
建物の耐震性能に対する部位の影響度を推定する部位の影響度推定装置であって、
部位の特性を記録する記録手段と、
前記建物への外力の入力前の被災前モデルにおけるPushover解析を実行するPushover解析実行手段と、
前記Pushover解析により特定される損傷部位のうちの一つをピン部位とした建物の部分ピンモデルにおける安全限界時の応答加速度、応答変位、減衰定数を、
前記被災前モデルにおけるPushover解析の解析結果と、前記ピン部位の位置と、部位の特性と、に基づいて、
前記部分ピンモデルにおけるPushover解析を用いない簡易解析により求めて、前記部分ピンモデルの保有耐震性能指標を算出し、
算出された前記保有耐震性能指標に基づいて前記影響度を推定する影響度推定手段と、を有することを特徴とする部位の影響度推定装置。
An apparatus for estimating the degree of influence of a part that estimates the degree of influence of a part on the seismic performance of a building,
Recording means for recording the characteristics of the site;
Pushover analysis execution means for executing Pushover analysis in the pre-disaster model before input of external force to the building;
Response acceleration, response displacement, and damping constant at the safety limit in the partial pin model of the building with one of the damaged parts specified by the Pushover analysis as a pin part,
Based on the analysis result of Pushover analysis in the pre-disaster model, the position of the pin part, and the characteristic of the part,
Obtained by simple analysis that does not use Pushover analysis in the partial pin model, to calculate the seismic performance index possessed by the partial pin model,
An influence degree estimation means for estimating the influence degree based on the calculated possessed seismic performance index.
JP2014251958A 2014-12-12 2014-12-12 Part impact level estimation method, damage assessment method, and part impact level estimation device Active JP6409550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251958A JP6409550B2 (en) 2014-12-12 2014-12-12 Part impact level estimation method, damage assessment method, and part impact level estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251958A JP6409550B2 (en) 2014-12-12 2014-12-12 Part impact level estimation method, damage assessment method, and part impact level estimation device

Publications (2)

Publication Number Publication Date
JP2016114411A true JP2016114411A (en) 2016-06-23
JP6409550B2 JP6409550B2 (en) 2018-10-24

Family

ID=56141450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251958A Active JP6409550B2 (en) 2014-12-12 2014-12-12 Part impact level estimation method, damage assessment method, and part impact level estimation device

Country Status (1)

Country Link
JP (1) JP6409550B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164007A (en) * 2018-03-19 2019-09-26 株式会社Nttファシリティーズ Building soundness evaluation system, building soundness evaluation method, and program
JP2020046329A (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 Long-period ground motion relevant information notification system, long-period ground motion relevant information notification server, portable terminal, and long-period ground motion relevant information notification method
JP2020153789A (en) * 2019-03-19 2020-09-24 株式会社大林組 Effect-degree estimation method of part, damage-degree evaluation method, and effect-degree estimation device of part
JP2021008779A (en) * 2019-07-02 2021-01-28 株式会社大林組 Seismic performance evaluation method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020162285A1 (en) * 1999-12-03 2002-11-07 Rajendra Sahai Framed structures with coupled girder system and method for dissipating seismic energy
JP2003315204A (en) * 2002-04-26 2003-11-06 Railway Technical Res Inst Method for determining degree of damage by earthquake of structure using vibration measurement
JP2004506214A (en) * 2000-01-12 2004-02-26 カルマツーゴー コム エルエルシー Systems and methods for analyzing structures that undergo catastrophic events.
JP2009015483A (en) * 2007-07-03 2009-01-22 Kajima Corp Seismic performance evaluation program for structure
JP2012013521A (en) * 2010-06-30 2012-01-19 Takenaka Komuten Co Ltd Earthquake damage prediction device and program
JP2012083813A (en) * 2010-10-07 2012-04-26 Building Research Institute Collapse simulation program for wooden building
JP2014122866A (en) * 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020162285A1 (en) * 1999-12-03 2002-11-07 Rajendra Sahai Framed structures with coupled girder system and method for dissipating seismic energy
JP2004506214A (en) * 2000-01-12 2004-02-26 カルマツーゴー コム エルエルシー Systems and methods for analyzing structures that undergo catastrophic events.
JP2003315204A (en) * 2002-04-26 2003-11-06 Railway Technical Res Inst Method for determining degree of damage by earthquake of structure using vibration measurement
JP2009015483A (en) * 2007-07-03 2009-01-22 Kajima Corp Seismic performance evaluation program for structure
JP2012013521A (en) * 2010-06-30 2012-01-19 Takenaka Komuten Co Ltd Earthquake damage prediction device and program
JP2012083813A (en) * 2010-10-07 2012-04-26 Building Research Institute Collapse simulation program for wooden building
JP2014122866A (en) * 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三浦 耕太 他: "架構耐震性能に及ぼす各部位の影響度に基づいたRC造被災建物の残存耐震性能評価法の多層建物への拡張", コンクリート工学年次論文集, vol. 34, no. 2, JPN6018033064, 2012, pages 847 - 852, ISSN: 0003865417 *
加藤 博人 他: "降伏メカニズムの異なるPC造高層建物の動的挙動に関する解析的検討", プレストレストコンクリート, vol. 41, no. 6, JPN6018033066, 1999, pages 77 - 81, ISSN: 0003865418 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164007A (en) * 2018-03-19 2019-09-26 株式会社Nttファシリティーズ Building soundness evaluation system, building soundness evaluation method, and program
JP7080080B2 (en) 2018-03-19 2022-06-03 株式会社Nttファシリティーズ Building soundness evaluation system, building soundness evaluation method and program
JP2020046329A (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 Long-period ground motion relevant information notification system, long-period ground motion relevant information notification server, portable terminal, and long-period ground motion relevant information notification method
WO2020059321A1 (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 System for communicating information relating to long period ground motion, server for communicating information relating to long period ground motion, mobile terminal, and method for communicating information relating to long period ground motion
JP2020153789A (en) * 2019-03-19 2020-09-24 株式会社大林組 Effect-degree estimation method of part, damage-degree evaluation method, and effect-degree estimation device of part
JP7283656B2 (en) 2019-03-19 2023-05-30 株式会社大林組 Part impact estimation method, damage assessment method, and part impact estimation device
JP2021008779A (en) * 2019-07-02 2021-01-28 株式会社大林組 Seismic performance evaluation method and program
JP7272142B2 (en) 2019-07-02 2023-05-12 株式会社大林組 Seismic performance evaluation method and program

Also Published As

Publication number Publication date
JP6409550B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
Karamanci et al. Computational approach for collapse assessment of concentrically braced frames in seismic regions
Tubaldi et al. A probabilistic performance-based risk assessment approach for seismic pounding with efficient application to linear systems
Chimamphant et al. Comparative response and performance of base‐isolated and fixed‐base structures
Karapetrou et al. “Time-building specific” seismic vulnerability assessment of a hospital RC building using field monitoring data
Mortezaei et al. Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions
JP6409550B2 (en) Part impact level estimation method, damage assessment method, and part impact level estimation device
JP5838561B2 (en) Earthquake damage judgment system, structure equipped with earthquake damage judgment system, and earthquake damage judgment program
JP7373616B2 (en) Diagnostic evaluation method for structures based on constant microtremors of structures
Choudhury et al. Treatment of uncertainties in seismic fragility assessment of RC frames with masonry infill walls
JP5488217B2 (en) Earthquake damage prediction method
Hokmabadi et al. Recording inter-storey drifts of structures in time-history approach for seismic design of building frames
Papagiannopoulos et al. Towards a seismic design method for plane steel frames using equivalent modal damping ratios
Park et al. A model updating method with strain measurement from impact test for the safety of steel frame structures
Kashkooli et al. Effect of frame irregularity on accuracy of modal equivalent nonlinear static seismic analysis
Del Vecchio et al. Accuracy of nonlinear static procedures for the seismic assessment of shear critical structures
Mosallam et al. Performance assessment of steel moment-resisting frame structures using fragility methodology
Themelis Pushover analysis for seismic assessment and design of structures
Shan et al. Rapid seismic performance evaluation of existing frame structures using equivalent SDOF modeling and prior dynamic testing
Movaghati et al. Advancements in fragility analysis using numerical calibration methods for a horizontally curved RC bridge
Heshmati et al. Seismic-resilient diagrid structures with hybrid buckling restrained braces
Shan et al. Model-reference damage tracking and evaluation of hysteretic structures with test validation
Cook Advancing performance-based earthquake engineering for modern resilience objectives
Chiu et al. Analysis of lifetime losses of low-rise reinforced concrete buildings attacked by corrosion and earthquakes using a novel method
Polese et al. Residual capacity of earthquake damaged buildings
JP2020113056A (en) Building information processing device and building information processing model learning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150