JP7253231B2 - Earthquake resistance evaluation system for houses - Google Patents

Earthquake resistance evaluation system for houses Download PDF

Info

Publication number
JP7253231B2
JP7253231B2 JP2019016826A JP2019016826A JP7253231B2 JP 7253231 B2 JP7253231 B2 JP 7253231B2 JP 2019016826 A JP2019016826 A JP 2019016826A JP 2019016826 A JP2019016826 A JP 2019016826A JP 7253231 B2 JP7253231 B2 JP 7253231B2
Authority
JP
Japan
Prior art keywords
seismic
site
motion data
amplification factor
seismic motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019016826A
Other languages
Japanese (ja)
Other versions
JP2020125911A (en
Inventor
哲慎 益田
強 鈴木
Original Assignee
株式会社益田建設
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社益田建設 filed Critical 株式会社益田建設
Priority to JP2019016826A priority Critical patent/JP7253231B2/en
Publication of JP2020125911A publication Critical patent/JP2020125911A/en
Application granted granted Critical
Publication of JP7253231B2 publication Critical patent/JP7253231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、家屋の耐震性評価システムに関するものである。 The present invention relates to an earthquake resistance evaluation system for houses.

家屋の耐震性を評価する方法として、従来、特許文献1に記載のものが知られている。 As a method for evaluating the earthquake resistance of a house, the method described in Patent Document 1 is conventionally known.

この従来例は、地震時における木造家屋の倒壊に至るまでの時刻歴応答解析をコンピュータに実行させる木造家屋のシミュレーションプログラムであって、このプログラムを使用することにより、地震時の損壊を評価することができる。 This conventional example is a wooden house simulation program that causes a computer to execute time history response analysis up to the collapse of a wooden house during an earthquake. can be done.

特許第5618200号公報Japanese Patent No. 5618200

しかし、上述した従来例は、実際に発生した地震の時刻歴波形を入力して家屋の耐震性を評価するものであるが、地震による揺れは、地盤状態によって変わるために、家屋が実際に建てられている地盤での揺れとは異なり、正確な評価を下せないという問題があった。 However, in the conventional example described above, the time-history waveform of an actual earthquake is input to evaluate the seismic resistance of a house. There was a problem that it was not possible to make an accurate evaluation, unlike ground shaking that has been reported.

本発明は、以上の問題を解決すべくなされたもので、家屋が建てられている地盤を評価要素として加えることにより、評価精度を高めた家屋の耐震性評価システムの提供を目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and aims to provide a system for evaluating the earthquake resistance of a house with improved evaluation accuracy by adding the ground on which the house is built as an evaluation factor.

本発明によれば上記目的は、
発生地、発生時が異なる複数の過去発生地震の各々の地震観測点における地震動データの振幅成分を該地震観測点における表層地盤増幅率11で除した基準地震動データ1の複数を格納した過去地震動データ格納部3と、
家屋の建築地地盤を微動探査して算定された表層地盤増幅率をサイト表層地盤増幅率14として格納するサイト増幅率格納部4と、
前記過去地震動データ格納部3から選択された一の過去発生地震の基準地震動データ1の振幅成分に前記サイト増幅率格納部4内のサイト表層地盤増幅率14を乗じてサイト予想地震動を算出するサイト地震動推計部5と、
入力された所定の地震動に対する応答が予めプログラミングされ、前記サイト予想地震動を入力値として入力される実大振動実験装置と、
を有する家屋の耐震性評価システムを提供することにより達成される。
また、本システムは、
家屋の建築地地盤を微動探査して該建築地地盤の表層地盤増幅率をサイト表層地盤増幅率14として算定する工程と、
所定の過去発生地震の観測点における地震動データの振幅成分を該過去発生地震の観測点における表層地盤増幅率11で除した基準地震動データ1を算出する工程と、
前記基準地震動データ1に前記サイト表層地盤増幅率14を乗じてサイト予想地震動を算出する工程と、
前記サイト予想地震動を入力値として耐震評価装置2に入力して耐震性能を評価する工程と、
を含んで構成される。
According to the present invention, the above objects are:
Past seismic motion data storing a plurality of standard seismic ground motion data 1 obtained by dividing the amplitude component of the seismic motion data at each seismic observation point of a plurality of past earthquakes with different places and times by the surface ground amplification factor 11 at the said seismic observation point a storage unit 3;
a site amplification factor storage unit 4 for storing the surface ground amplification factor calculated by microtremor survey of the building ground of the house as the site surface ground amplification factor 14;
A site for calculating the expected site seismic motion by multiplying the amplitude component of the standard seismic ground motion data 1 of one past earthquake selected from the past seismic motion data storage unit 3 by the site surface ground amplification factor 14 in the site amplification factor storage unit 4 a seismic motion estimation unit 5;
a full-scale vibration experiment apparatus in which a response to a predetermined input seismic motion is pre-programmed and the predicted site seismic motion is input as an input value;
This is achieved by providing a seismic evaluation system for houses with
In addition, this system
A step of performing a microtremor survey on the building ground of a house and calculating the surface layer ground amplification factor of the building ground as the site surface layer ground amplification factor 14;
a step of calculating standard seismic ground motion data 1 by dividing the amplitude component of seismic motion data at an observation point of a predetermined past earthquake by a surface ground amplification factor 11 at the observation point of the past earthquake;
a step of multiplying the standard seismic motion data 1 by the site surface ground amplification factor 14 to calculate a site expected seismic motion;
a step of inputting the predicted site seismic motion as an input value into a seismic evaluation device 2 to evaluate seismic performance;
Consists of

本発明において、耐震評価装置2への入力値として、過去に発生した地震の地震動データをもとに、家屋が建てられる建築地(サイト)の地盤を考慮した地震動データを使用するために、当該過去発生地震が建築地で発生した場合の耐震性能を正確に評価することができる。 In the present invention, in order to use, as input values to the seismic evaluation device 2, seismic motion data based on seismic motion data of earthquakes that have occurred in the past, considering the ground of the building site (site) where the house is built, It is possible to accurately evaluate the seismic resistance performance when past earthquakes occur at the building site.

この場合、上記基準地震動データ1の算出工程を別途先行させて、この結果を、
発生地、発生時が異なる複数の過去発生地震の各々の地震観測点における地震動データの振幅成分を該地震観測点における表層地盤増幅率11で除した基準地震動データ1の複数を過去発生地震のインデックス情報6とともに格納した過去地震動データ格納部3を有し、
前記インデックス情報6の入力により対応する基準地震動データ1を出力する過去地震動データ出力装置7に格納し、サイト予想地震動算出工程を、この過去地震動データ出力装置7から提供される基準地震動データ1を使用して実行することもできる。
In this case, the process of calculating the basic seismic ground motion data 1 is preceded separately, and the result is
A plurality of standard seismic ground motion data 1 obtained by dividing the amplitude component of the seismic motion data at each seismic observation station for multiple past earthquakes with different places and times by the surface ground amplification factor 11 at the seismic station is used as an index for past earthquakes. having a past seismic motion data storage unit 3 stored together with information 6;
Based on the input of the index information 6, the corresponding basic seismic motion data 1 is stored in the past seismic motion data output device 7, and the site expected seismic motion calculation process uses the basic seismic motion data 1 provided from the past seismic motion data output device 7. You can also run

また、本発明は、
家屋の建築地地盤を微動探査して該建築地地盤の表層地盤増幅率をサイト表層地盤増幅率14として算定する工程と、
前記サイト表層地盤増幅率14を所定の過去発生地震の観測点における表層地盤増幅率11で除した揺れやすさ指数を算出する工程と、
所定の過去発生地震の観測点における地震動データの振幅成分に前記揺れやすさ指数を乗じたサイト予想地震動を算出する工程と、
前記サイト予想地震動を入力値として耐震評価装置2に入力して耐震性能を評価する工程と、
を含む家屋の耐震性評価方法として構成することもできる。
In addition, the present invention
A step of performing a microtremor survey on the building ground of a house and calculating the surface layer ground amplification factor of the building ground as the site surface layer ground amplification factor 14;
a step of calculating a swaying ease index obtained by dividing the site surface ground amplification factor 14 by the surface ground amplification factor 11 at an observation point of a predetermined past earthquake;
a step of calculating an expected site seismic motion by multiplying the amplitude component of seismic motion data at an observation point of a predetermined past earthquake by the susceptibility index;
a step of inputting the predicted site seismic motion as an input value into a seismic evaluation device 2 to evaluate seismic performance;
It can also be configured as an earthquake resistance evaluation method for a house including

耐震評価装置2としては、種々の周知のシミュレーションソフトウエアを使用することができるが、実大振動実験装置を使用すると、施主に建築予定地における実際の地震動を体感してもらうことができる。 Various well-known simulation software can be used as the seismic evaluation device 2, but if a full-scale vibration test device is used, the owner can experience the actual seismic motion at the planned construction site.

また、上記方法における過去地震の基準地震動データ1は、
発生地、発生時が異なる複数の過去発生地震の各々の地震観測点における地震動データの振幅成分を該地震観測点における表層地盤増幅率11で除した基準地震動データ1の複数を過去発生地震のインデックス情報6とともに格納した過去地震動データ格納部3を有し、
前記インデックス情報6の入力により対応する基準地震動データ1を出力する過去地震動データ出力装置7から取得することができる。
In addition, the standard seismic ground motion data 1 of past earthquakes in the above method is
A plurality of standard seismic ground motion data 1 obtained by dividing the amplitude component of the seismic motion data at each seismic observation station for multiple past earthquakes with different places and times by the surface ground amplification factor 11 at the seismic station is used as an index for past earthquakes. having a past seismic motion data storage unit 3 stored together with information 6;
The index information 6 can be obtained from the past seismic motion data output device 7 which outputs the corresponding standard seismic motion data 1 by inputting the index information 6 .

過去の地震動データを観測地の表層地盤増幅率11を考慮した基準地震動データ1として集積すると、各々の過去地震を共通の尺度で比較することができる上に、サイトの表層地盤増幅率14を知るだけで同等の地震に対するサイトの揺れを再現することが可能になる。 By accumulating past seismic motion data as design basis seismic ground motion data 1 that takes into account the surface ground amplification factor 11 of the observation site, it is possible to compare each past earthquake on a common scale, and to know the surface ground amplification factor 14 of the site. It becomes possible to reproduce the shaking of the site for equivalent earthquakes only by

本発明の工程図である。It is process drawing of this invention. 本発明の他の実施の形態による工程図である。FIG. 4 is a process diagram according to another embodiment of the present invention; 家屋の耐震性評価システムを示すブロック図である。It is a block diagram which shows the earthquake resistance evaluation system of a house.

図1に示すように、耐震性評価を行うに際して、まず、耐震評価対象である家屋が建てられる地盤(サイト地盤)の特性を知る必要があり、そのために、微動探査を実施し(工程S1)、この結果に基づいてサイト地盤の表層地盤増幅率14を算出する(工程S2)。 As shown in Fig. 1, when conducting an earthquake resistance evaluation, it is first necessary to know the characteristics of the ground (site ground) on which the house to be evaluated is built. , based on this result, the subsurface ground amplification factor 14 of the site ground is calculated (step S2).

耐震評価対象家屋は建築済みのものでも、あるいは建築予定のものでも問わず、サイト地盤は、現に家屋が建てられている地盤であることが望ましいが、計測が困難な場合には、近接地の値を採用することもできる。 Regardless of whether the house to be evaluated for seismic resistance has already been built or is scheduled to be built, it is desirable that the site ground is the ground where the house is actually built. A value can also be adopted.

表層地盤増幅率は、地震時の横揺れ波(S波)の速度が遅くなることにより、S波振幅が増幅され、揺れも大きくなることに着目して設定された指標であり、地表から30m等の所定の距離におけるS波平均速度から導かれた地盤の揺れやすさを示す指標として利用される。 The surface ground amplification factor is an index set by focusing on the fact that the slowing of the rolling wave (S-wave) velocity during an earthquake amplifies the S-wave amplitude and increases the shaking. It is used as an index indicating the ease of shaking of the ground derived from the S-wave average velocity at a predetermined distance.

この表層地盤増幅率の算定は、サイト地盤における常時微動を観測することにより行われ、具体的には、微動探査の手法が利用できる。 Calculation of this subsurface ground amplification factor is carried out by observing microtremors in the site ground at all times. Specifically, microtremor exploration techniques can be used.

微動探査は、地盤の常時微動現象を利用したS波速度構造を知るために有効な探査方法で、通常、地表に配置した数台から10台の高精度な上下動地震計から出力される常時微動観測波形から生成される各々の振動数に対する地盤の伝播速度に一致する伝播速度を有する地盤モデルを生成して行われる微動アレー探査を使用することができるが、極小微動アレイを使用した探査法、あるいは、より簡便な微動探査による表層地盤増幅率検査方法である地震eye(地盤ネット総合研究所株式会社所有の登録商標)を利用することができる。 Microtremor exploration is an effective exploration method for understanding the S-wave velocity structure using the constant microtremor phenomenon of the ground. A microtremor array survey that is performed by generating a ground model having a propagation velocity that matches the propagation velocity of the ground for each frequency generated from the microtremor observation waveform can be used, but an exploration method using a microtremor array Alternatively, seismic eye (registered trademark owned by Chiban Net Research Institute Co., Ltd.), which is a surface layer ground amplification factor inspection method using a simpler microtremor survey, can be used.

また、微動探査においては、常時微動のスペクトル比から地盤の卓越周期等の地盤の振動特性を算出することができるために、必要に応じ、これら振動特性を加えることができる。 In addition, in microtremor exploration, since the vibration characteristics of the ground such as the dominant period of the ground can be calculated from the spectral ratio of the microtremor, these vibration characteristics can be added as necessary.

一方、別途、過去に観測された地震に対する基準地震動データ1を算出する(工程S3)。基準地震動データ算出工程に先立ち、観測点での地震動データは、地震名等のインデックス情報6、観測点における表層地盤増幅率11とともに過去地震動データ格納部3に格納される(図3参照)。 On the other hand, separately, standard seismic ground motion data 1 for earthquakes observed in the past is calculated (step S3). Prior to the design basis seismic motion data calculation process, the seismic motion data at the observation point is stored in the past seismic motion data storage unit 3 together with the index information 6 such as the name of the earthquake and the surface ground amplification factor 11 at the observation point (see FIG. 3).

本例において地震動データには観測点における加速度時刻歴波形が使用され、時刻歴波形の振幅成分を観測点における表層地盤増幅率11で除した波形も基準地震動データ1として加えられる。 In this example, the acceleration time history waveform at the observation point is used as the seismic motion data, and the waveform obtained by dividing the amplitude component of the time history waveform by the surface ground amplification factor 11 at the observation point is also added as the reference seismic motion data 1 .

サイトにおける耐震評価は、上記基準地震動データ1の振幅成分とサイトでの表層地盤増幅率14との積で与えられるサイト予想地震動を、適宜の耐震評価装置2に入力値として与えることにより行われる(工程S4)。 Seismic evaluation at a site is performed by giving the predicted site earthquake motion given by the product of the amplitude component of the standard seismic motion data 1 and the surface ground amplification factor 14 at the site as an input value to an appropriate seismic evaluation device 2 ( step S4).

耐震評価装置2には、従来例として示した木造家屋のシミュレーションプログラム、あるいは出願人の提案による特開2018-100494号公報に記載のシミュレーションプログをはじめとする適宜のシミュレーションプログラムによるシミュレーションの他に、実大振動実験装置を使用することができる。 In the seismic evaluation device 2, in addition to simulation by appropriate simulation programs such as the wooden house simulation program shown as a conventional example or the simulation program described in Japanese Patent Application Laid-Open No. 2018-100494 proposed by the applicant, A full-scale vibration experimental apparatus can be used.

実大振動実験装置を使用することにより、実際の家屋の損傷状況を確認することができるために、より現実的な評価を行うことが可能になる。 By using the full-scale vibration test equipment, it is possible to check the damage situation of the actual house, so it is possible to make a more realistic evaluation.

また、以上においては、過去の地震の地震動データ(地震動観測データ12)から基準地震動データ1を算出した後、サイトの表層地盤増幅率14を掛け合わせて入力値を導出する方法を示したが、この他に、図2に示すように、過去の地震観測点における表層地盤増幅率11とサイトの表層地盤増幅率14との比を揺れやすさ指数として定義し(工程S3’)、過去の地震動の振幅成分と揺れやすさ指数との積を振幅成分とする地震動データをサイト予想地震動として入力することもできる。 In the above, a method of calculating the design basis seismic ground motion data 1 from seismic motion data of past earthquakes (earthquake motion observation data 12) and then multiplying it by the surface layer ground amplification factor 14 of the site to derive an input value was shown. In addition, as shown in Fig. 2, the ratio of the surface ground amplification factor 11 at the past seismic observation point and the surface ground amplification factor 14 at the site is defined as the susceptibility index (step S3'). It is also possible to input the seismic motion data whose amplitude component is the product of the amplitude component of and the swayability index as the expected site seismic motion.

なお、図2において上述した図1と同一の工程は図中に同一符号を付して説明を省略する。 2 that are the same as those in FIG. 1 described above are denoted by the same reference numerals, and descriptions thereof are omitted.

図3に以上の評価方法を実行するための評価システムを示す。この評価システムは、制御部8と、制御部8による制御を受けて動作する過去地震動データ入力部9、過去地震動データ格納部3、および基準地震動演算部10を有する。 FIG. 3 shows an evaluation system for executing the above evaluation method. This evaluation system has a control unit 8 , a past seismic motion data input unit 9 operating under the control of the control unit 8 , a past seismic motion data storage unit 3 , and a standard seismic motion calculation unit 10 .

なお、図3においては単一の装置、すなわち、評価装置として示されているが、各々の部位、あるいは複数部位の集まりを異なったサーバとして構成することもできる。 Although FIG. 3 shows a single device, ie, an evaluation device, each part or a group of parts can be configured as a different server.

過去地震動データ格納部3には、地震動観測データ12が地震名、発生日時、最大震度等のインデックス情報6、および観測地の表層地盤増幅率11とともに、過去地震動データ入力部9を経由して格納される。 In the past seismic motion data storage unit 3, seismic motion observation data 12 is stored via the past seismic motion data input unit 9 together with index information 6 such as the name of the earthquake, the date and time of occurrence, and the maximum seismic intensity, and the surface ground amplification factor 11 of the observation site. be done.

また、上記過去地震動データ格納部3の格納データには、基準地震動データ1が含まれており、制御部8は、地震動観測データ12が入力されると、基準地震動演算部10を起動して該地震動観測データ12から基準地震動データ1を生成する。 The data stored in the past seismic motion data storage unit 3 includes the basic seismic motion data 1. When the seismic motion observation data 12 is input, the control unit 8 activates the basic seismic motion calculation unit 10 to Base seismic motion data 1 is generated from seismic motion observation data 12 .

基準地震動演算部10は、入力された地震動観測データ12の振幅成分、すなわち、地震動データとして加速度時刻歴波形が使用される本例においては、加速度成分を観測地表層地盤増幅率11により除して加速度成分とすることにより、新たな地震動データを生成し、これを基準地震動データ1として過去地震動データ格納部3に格納する。 The standard seismic motion calculation unit 10 divides the amplitude component of the input seismic motion observation data 12, that is, the acceleration component in this example where the acceleration time history waveform is used as the seismic motion data, by the observed surface layer ground amplification factor 11. By using the acceleration component, new seismic motion data is generated and stored in the past seismic motion data storage unit 3 as standard seismic motion data 1 .

さらに、評価システムは、サイト増幅率格納部4を備える。サイト増幅率格納部4は、極小微動アレイ等を使用して求めた家屋の建設地の表層地盤増幅率14が格納される。 Furthermore, the evaluation system includes a site amplification factor storage unit 4 . The site amplification factor storage unit 4 stores the surface layer ground amplification factor 14 of the construction site of the house obtained using a microtremor array or the like.

耐震評価は、以上の過去地震動データ格納部3、およびサイト増幅率格納部4内の数値を使用して行われ、評価に際して、まず、評価用地震選択部13において、過去地震を選択すると、制御部8は、対応する基準地震動データ1を過去地震動データ格納部3から検索するとともに、サイト増幅率格納部4からサイト表層地盤増幅率14を抽出してサイト地震動推計部5に入力する。 The earthquake resistance evaluation is performed using the numerical values in the past seismic motion data storage unit 3 and the site amplification factor storage unit 4 described above. The unit 8 retrieves the corresponding standard seismic ground motion data 1 from the past seismic motion data storage unit 3 , extracts the site surface layer ground amplification factor 14 from the site amplification factor storage unit 4 , and inputs it to the site seismic motion estimation unit 5 .

サイト地震動推計部5は、過去地震動データ格納部3から抽出された基準地震動データ1の振幅成分とサイト表層地盤増幅率14との積を新たな振幅成分としたサイト予想地震動を生成する。 The site seismic motion estimating unit 5 generates a predicted site seismic motion using the product of the amplitude component of the standard seismic motion data 1 extracted from the past seismic motion data storage unit 3 and the site surface ground amplification factor 14 as a new amplitude component.

また、サイト地震動推計部5は、振幅成分を変化させることにより波形の乱れが過大になる場合には、卓越周期等に影響を与えない範囲での波形修正を行うことができる。 In addition, the site seismic motion estimator 5 can correct the waveform within a range that does not affect the dominant period, etc., when the waveform disturbance becomes excessive by changing the amplitude component.

以上のようにして算出されたサイト予想地震動は、地震動入力部を経由して耐震評価装置2に入力される。本例において耐震評価装置2には実大振動実験装置が使用されており、実大振動実験装置上に構築された実大の家屋試験体の状況を観測することにより当該家屋の耐震性能を評価することができる。 The predicted site seismic motion calculated as described above is input to the seismic evaluation device 2 via the seismic motion input section. In this example, a full-scale vibration test device is used as the seismic evaluation device 2, and the seismic performance of the house is evaluated by observing the situation of a full-scale house test model built on the full-scale vibration test device. can do.

また、上述したように、評価システムは、単一の装置として構成することも可能であるが、過去地震動データ格納部3を含んだ過去地震動データ出力装置7を構成することもできる。 Further, as described above, the evaluation system can be configured as a single device, but it is also possible to configure the past seismic motion data output device 7 including the past seismic motion data storage unit 3 .

過去地震動データ出力装置7は、評価用地震選択部13を備えており、該評価用地震選択部13に過去の地震を入力すると、指定した地震の基準地震動データ1が出力される。 The past seismic motion data output device 7 is equipped with an evaluation earthquake selection unit 13. When a past earthquake is input to the evaluation earthquake selection unit 13, the standard seismic motion data 1 of the specified earthquake is output.

1 基準地震動データ
2 耐震評価装置
3 過去地震動データ格納部
4 サイト増幅率格納部
5 サイト地震動推計部
6 インデックス情報
7 過去地震動データ出力装置
11 観測地表層地盤増幅率
14 サイト表層地盤増幅率



1 Basic ground motion data 2 Seismic evaluation device 3 Past ground motion data storage unit 4 Site amplification factor storage unit 5 Site ground motion estimation unit 6 Index information 7 Past ground ground motion data output unit 11 Observed surface ground amplification factor 14 Site surface ground amplification factor



Claims (1)

発生地、発生時が異なる複数の過去発生地震の各々の地震観測点における地震動データの振幅成分を該地震観測点における表層地盤増幅率で除した基準地震動データの複数を格納した過去地震動データ格納部と、
家屋の建築地地盤を微動探査して算定された表層地盤増幅率をサイト表層地盤増幅率として格納するサイト増幅率格納部と、
前記過去地震動データ格納部から選択された一の過去発生地震の基準地震動データの振幅成分に前記サイト増幅率格納部内のサイト表層地盤増幅率を乗じてサイト予想地震動を算出するサイト地震動推計部と、
入力された所定の地震動に対する応答が予めプログラミングされ、前記サイト予想地震動を入力値として入力される実大振動実験装置と、
を有する家屋の耐震性評価システム。
A past seismic motion data storage unit that stores a plurality of standard seismic ground motion data obtained by dividing the amplitude component of the seismic motion data at each seismic observation point of a plurality of past earthquakes with different locations and times by the surface ground amplification factor at the seismic observation point. and,
a site amplification factor storage unit for storing, as a site surface ground amplification factor, a surface ground amplification factor calculated by microtremor probing of the building ground of a house;
a site seismic motion estimating unit for calculating an expected site seismic motion by multiplying the amplitude component of the standard seismic motion data of one past earthquake selected from the past seismic motion data storage unit by the site surface ground amplification factor in the site amplification factor storage unit;
a full-scale vibration experiment apparatus in which a response to a predetermined input seismic motion is pre-programmed and the predicted site seismic motion is input as an input value;
A seismic evaluation system for houses with
JP2019016826A 2019-02-01 2019-02-01 Earthquake resistance evaluation system for houses Active JP7253231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019016826A JP7253231B2 (en) 2019-02-01 2019-02-01 Earthquake resistance evaluation system for houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019016826A JP7253231B2 (en) 2019-02-01 2019-02-01 Earthquake resistance evaluation system for houses

Publications (2)

Publication Number Publication Date
JP2020125911A JP2020125911A (en) 2020-08-20
JP7253231B2 true JP7253231B2 (en) 2023-04-06

Family

ID=72083874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019016826A Active JP7253231B2 (en) 2019-02-01 2019-02-01 Earthquake resistance evaluation system for houses

Country Status (1)

Country Link
JP (1) JP7253231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112733222B (en) * 2020-12-28 2022-04-19 青岛理工大学 Three-level engineering earthquake-resistant ground motion selection method based on physical mechanism
CN115828399B (en) * 2023-01-10 2023-09-19 住房和城乡建设部信息中心(住房和城乡建设部住房信息管理中心) House building earthquake resistance assessment method, device, equipment and storage medium
CN117094138B (en) * 2023-08-08 2024-05-10 北京中关村智连安全科学研究院有限公司 Side slope dangerous rock mass collapse time prediction method and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169460A (en) 2000-11-30 2002-06-14 Sekisui House Ltd Vibration control structure experiencing device
JP2003042892A (en) 2001-08-01 2003-02-13 Naganori Sato Method of evaluating dynamic earthquake resistance of building
JP2003287574A (en) 2002-03-28 2003-10-10 System Soft Corp System, method and program for predicting earthquake damage
JP2008039446A (en) 2006-08-02 2008-02-21 Kajima Corp Earthquake damage evaluation program
JP2009020002A (en) 2007-07-12 2009-01-29 A & D Co Ltd Method and apparatus for evaluating earthquake resistance of building
JP2011080509A (en) 2009-10-05 2011-04-21 Nhk Spring Co Ltd Hinge device
JP2013152197A (en) 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd Evaluation device, evaluation method and evaluation program for earthquake damage loss of building
JP2014122866A (en) 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure
JP2018159659A (en) 2017-03-23 2018-10-11 戸田建設株式会社 Pseudo vibrator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627862B2 (en) * 1986-07-12 1994-04-13 財団法人鉄道総合技術研究所 Surface layer characteristics detector
JPH11231064A (en) * 1998-02-12 1999-08-27 Osaka Gas Co Ltd Earthquake motion estimating method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169460A (en) 2000-11-30 2002-06-14 Sekisui House Ltd Vibration control structure experiencing device
JP2003042892A (en) 2001-08-01 2003-02-13 Naganori Sato Method of evaluating dynamic earthquake resistance of building
JP2003287574A (en) 2002-03-28 2003-10-10 System Soft Corp System, method and program for predicting earthquake damage
JP2008039446A (en) 2006-08-02 2008-02-21 Kajima Corp Earthquake damage evaluation program
JP2009020002A (en) 2007-07-12 2009-01-29 A & D Co Ltd Method and apparatus for evaluating earthquake resistance of building
JP2011080509A (en) 2009-10-05 2011-04-21 Nhk Spring Co Ltd Hinge device
JP2013152197A (en) 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd Evaluation device, evaluation method and evaluation program for earthquake damage loss of building
JP2014122866A (en) 2012-12-22 2014-07-03 Kajima Corp Residual earthquake proof performance evaluation program, method, and marker of multilayer structure
JP2018159659A (en) 2017-03-23 2018-10-11 戸田建設株式会社 Pseudo vibrator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
菅沼 克敏,実大三次元振動破壊実験施設(E-ディフェンス)について,科学技術動向 2004年8月号,日本,2004年08月,25~30頁

Also Published As

Publication number Publication date
JP2020125911A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP7253231B2 (en) Earthquake resistance evaluation system for houses
Law et al. Structural response reconstruction with transmissibility concept in frequency domain
Mukhopadhyay et al. Structural damage identification using response surface-based multi-objective optimization: a comparative study
Kudu et al. Estimation of damping ratios of steel structures by Operational Modal Analysis method
Makris et al. The engineering merit of the “effective period” of bilinear isolation systems
Pioldi et al. Earthquake‐induced structural response output‐only identification by two different Operational Modal Analysis techniques
Li et al. Robust optimal sensor placement for operational modal analysis based on maximum expected utility
Zare Hosseinzadeh et al. Model-based identification of damage from sparse sensor measurements using Neumann series expansion
Davis et al. Force estimation and event localization (feel) of impacts using structural vibrations
Caicedo et al. Fast mode identification technique for online monitoring
Goulet et al. Assessment of ground motion selection and modification (GMSM) methods for non-linear dynamic analyses of structures
Deng et al. A response spectrum-based indicator for structural damage prediction
JP2005156448A (en) Dynamic earthquake-proofness performance of building, and evaluation method of the earthquake-proofness performance after earthquake-proofness reinforcement
JP7512151B2 (en) Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
Boukria et al. Structural monitoring: identification and location of an impact on a structurally dissipating rock-shed structure using the inverse method
Zhong Ground motion simulation validation for building design and response assessment
Rudman et al. Using ground-motion simulations within a Monte Carlo approach to assess probabilistic seismic risk
Georgakis A machine learning approach to earthquake response analysis of structural systems
Akhlaghi et al. Bayesian model updating of a damaged school building in Sankhu, Nepal
JP7487054B2 (en) Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
Bijelić Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings
Roohi et al. Seismic damage assessment of instrumented wood-frame buildings: A case-study of NEESWood full-scale shake table tests
Tien et al. Inference on maximum structural response based on measured accelerations using dynamic Bayesian network
Menasri et al. ARMA Modeling of Artificial Accelerograms for Algeria
Das et al. Frequency response function-based closed-form expression for multi-damage quantification and its application on shear buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230317

R150 Certificate of patent or registration of utility model

Ref document number: 7253231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150