JP2005156448A - Dynamic earthquake-proofness performance of building, and evaluation method of the earthquake-proofness performance after earthquake-proofness reinforcement - Google Patents

Dynamic earthquake-proofness performance of building, and evaluation method of the earthquake-proofness performance after earthquake-proofness reinforcement Download PDF

Info

Publication number
JP2005156448A
JP2005156448A JP2003397671A JP2003397671A JP2005156448A JP 2005156448 A JP2005156448 A JP 2005156448A JP 2003397671 A JP2003397671 A JP 2003397671A JP 2003397671 A JP2003397671 A JP 2003397671A JP 2005156448 A JP2005156448 A JP 2005156448A
Authority
JP
Japan
Prior art keywords
building
seismic
seismic performance
earthquake
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397671A
Other languages
Japanese (ja)
Other versions
JP3857680B2 (en
Inventor
Terunori Maikuma
輝記 毎熊
Makoto Yamada
眞 山田
Naota Kobayashi
直太 小林
Takeshi Tsuji
健 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003397671A priority Critical patent/JP3857680B2/en
Publication of JP2005156448A publication Critical patent/JP2005156448A/en
Application granted granted Critical
Publication of JP3857680B2 publication Critical patent/JP3857680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively display the earthquake-proofness performance of a building and the effects of earthquake-proofness enforcement, by comparative examination of vibration characteristics, before and after repairing. <P>SOLUTION: Vibration characteristics of a building are calculated, using simultaneous measurement data of the ground and building under minute vibrations, at all times, and the building is diagnosed for earthquake-proofness, based on the vibration characteristics of the building. After upgrading for earthquake-proofness in accordance with this, the earthquake-proofness performance and the effects of earthquake-proofness reinforcement of the building are displayed quantitatively, by comparative examination of vibration characteristics, before and after the upgrading. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行った後、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示するようにした建物の動的耐震性能及び耐震補強後の耐震性能評価方法に関する。   The present invention calculates the vibration characteristics of a building using the simultaneous measurement data of microtremors of the ground and the building, performs a seismic diagnosis of the building based on the vibration characteristics of the building, and performs the seismic retrofit according to the diagnosis The present invention relates to a dynamic seismic performance of a building and a method for evaluating seismic performance after the seismic reinforcement in which the seismic performance of the building and the effect of seismic reinforcement are quantitatively displayed by comparative examination of vibration characteristics before and after the renovation.

従来、建物の動的耐震性能の評価方法として、特許文献1及び特許文献2に示すものがある。   Conventionally, there are methods shown in Patent Document 1 and Patent Document 2 as methods for evaluating the dynamic seismic performance of buildings.

特許文献1は、実際の建物構造や地盤状況を実測した上で得られたデータに基づく建物の動的耐震性の評価方法及び装置であり、耐震性能について、動的耐震健全度H、動的限界地震度C、動的靱性耐力度F、及び動的耐震劣化度Isの4種類について評価するようにしたものである。   Patent document 1 is an evaluation method and apparatus for dynamic earthquake resistance of a building based on data obtained by actually measuring an actual building structure and ground condition. Four types of seismic intensity C, dynamic toughness strength F, and dynamic seismic deterioration Is are evaluated.

また、特許文献2は、建物の微動を測定して得られる振動データを解析して建物情報及び建物の壁要素の微動剛性に関する壁要素情報に基づいて該建物の重量及び微動剛性を算定し該重量及び微動剛性から建物の固有振動数を推定し、振動データに基づいて算出した固有振動数と、建物情報及び壁要素情報に基づいて推定した固有振動数とを比較することにより、建物の耐震性を診断するようにしたものである。   Patent Document 2 analyzes the vibration data obtained by measuring the fine movement of the building, calculates the weight and fine movement rigidity of the building based on the building information and the wall element information on the fine movement rigidity of the wall element of the building. Estimate the natural frequency of the building from the weight and microtremor stiffness, and compare the natural frequency calculated based on the vibration data with the natural frequency estimated based on the building information and wall element information. It is intended to diagnose sex.

特開2003−042892号公報JP 2003-042992 A 特開2003−041781号公報JP 2003-041781 A

特許文献1の方法では、動的耐震健全度HをH=Ke・x/(W・CO・τPH)のように求めているが、Ke,x,W,COは既存の数値を用いており、τPHには計測値を用いるとして算出可能と考えられるが、この推定値と実測値の混合からなるHが動的健全度として使用できるかが明確ではない。   In the method of Patent Document 1, the dynamic seismic soundness degree H is obtained as H = Ke · x / (W · CO · τPH), but Ke, x, W, and CO use existing numerical values. , ΤPH can be calculated by using a measured value, but it is not clear whether H composed of a mixture of the estimated value and the actually measured value can be used as the dynamic soundness.

また、動的限界地震度Cが、C=Ke・x/(W・τDH)と定義されているが、これも同様に、Ke,x,Wは設計図書から得られ、τDHは測定値として得られることが分かるが、Cが動的限界地震度として耐震診断に用いることの妥当性が明確ではない。さらに、動的靱性耐力度Fについても、Hの逆数であるが、動的靱性耐力度の理解が困難である。   In addition, the dynamic seismic intensity C is defined as C = Ke · x / (W · τDH). Similarly, Ke, x, and W are obtained from the design books, and τDH is a measured value. As can be seen, the validity of using C as the dynamic limit seismic intensity for seismic diagnosis is not clear. Further, the dynamic toughness strength F is also a reciprocal of H, but it is difficult to understand the dynamic toughness strength.

また、特許文献2では、耐震改修の効果判定を固有振動数(固有周期の逆数)を求めることにより行うものであるが、計算方法は一般的なものであり、精度的に不十分であると考えられる。また、建物重量と微動剛性から固有振動数を推定し、両方の振動数の比較から耐震性を診断することの精度的な妥当性についても理解が困難である。   Moreover, in patent document 2, although the effect determination of seismic retrofit is performed by calculating | requiring a natural frequency (reciprocal number of a natural period), the calculation method is common and it is inadequate in accuracy. Conceivable. In addition, it is difficult to understand the correctness of estimating the natural frequency from the building weight and fine motion stiffness and diagnosing earthquake resistance from the comparison of both frequencies.

本発明はかかる従来のものを更に改良するもので、建物の性質である振動周期を直接測定して求めることにより耐震性を診断することを可能とするものである。
請求項1記載の考案では、地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行った後、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示するようにしたことを特徴とする。
The present invention further improves such a conventional one, and makes it possible to diagnose earthquake resistance by directly measuring and determining the vibration period which is the property of a building.
According to the first aspect of the present invention, the vibration characteristics of the building are calculated using the simultaneous measurement data of the microtremors of the ground and the building, the building is subjected to the earthquake resistance diagnosis based on the vibration characteristics of the building, and the earthquake resistance repair is performed accordingly. After that, the seismic performance of the building and the effect of seismic reinforcement were quantitatively displayed by comparing the vibration characteristics before and after the renovation.

請求項2記載の考案では、地盤及び建物の常時微動は、地盤上及び建物の所定階層床上で南北方向及び東西方向について測定するようにしたことを特徴とする。   The invention described in claim 2 is characterized in that the microtremors of the ground and the building are measured in the north-south direction and the east-west direction on the ground and a predetermined floor of the building.

請求項3記載の考案では、建物の振動特性は、以下の式により求めることを特徴とする。

Figure 2005156448
H(f)はインパルス応答h(t)のフーリエ変換
h(t)は建物に地盤から加えられる力x(t)と、それによって生じ
る建物の運動y(t)との間の系のインパルス応答である。
Figure 2005156448
The invention according to claim 3 is characterized in that the vibration characteristic of the building is obtained by the following equation.
Figure 2005156448
H (f) is the Fourier transform of the impulse response h (t)
h (t) is the force x (t) applied from the ground to the building and the resulting
The impulse response of the system between the building motion y (t).
Figure 2005156448

請求項4記載の考案では、建物の各部屋に振動測定点を定め、地盤の入力地動を基準として周波数応答を示す振動倍率から、建物の固有周波数(f)、振幅倍率(R)、固有周期(T)と共振の鋭さの度合いを表すQ値を求め、耐震性能指数C(C,C)を次式で求めることを特徴とする。

Figure 2005156448
ここで、Dsは建物の構造特性係数 According to the fourth aspect of the present invention, a vibration measurement point is determined for each room of the building, and the natural frequency (f), amplitude magnification (R), natural period of the building is determined from the vibration magnification indicating the frequency response with reference to the ground ground motion. (T) and the Q value representing the degree of resonance sharpness are obtained, and the seismic performance index C (C 1 , C 2 ) is obtained by the following equation.
Figure 2005156448
Where Ds is the structural characteristic coefficient of the building

請求項5記載の考案では、振動測定結果から耐震性能指数(C)が所定値以上の場合は、耐震性能は要注意として耐震改修を実施するべきであると判断するようにしたことを特徴とする。   The invention of claim 5 is characterized in that when the seismic performance index (C) is equal to or greater than a predetermined value from the vibration measurement result, it is determined that the seismic performance should be implemented as a caution. To do.

請求項6記載の考案では、耐震改修後、振動測定を同じ場所で行い、振幅スペクトル及び固有周期を比較し各部屋が所定値以内になれば耐震改修は合格であると判断するようにしたことを特徴とする。   According to the invention described in claim 6, after the seismic retrofit, the vibration measurement is performed at the same place, and the amplitude spectrum and the natural period are compared, and if each room is within the predetermined value, it is judged that the seismic retrofit is acceptable. It is characterized by.

以上のように、本発明のうち請求項1記載の考案によれば、地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行った後、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示するようにしたことにより、建物の性質である振動周期を直接測定して求めることができるので、建物の耐震性能の評価と建物の耐震補強の効果が定量的に表示できる。   As described above, according to the first aspect of the present invention, the vibration characteristics of a building are calculated using simultaneous measurement data of microtremors of the ground and the building, and based on the vibration characteristics of the building. After performing seismic diagnosis of the building and performing seismic retrofit according to it, the seismic performance of the building and the effect of seismic reinforcement were quantitatively displayed by comparing the vibration characteristics before and after the renovation. Since a certain vibration period can be directly measured, the evaluation of the seismic performance of the building and the effect of the seismic reinforcement of the building can be displayed quantitatively.

本発明のうち請求項2記載の考案によれば、地盤及び建物の常時微動は、地盤上及び建物の所定階層床上で南北方向及び東西方向について測定するようにしたことにより、方角による建物の振動特性をより正確に把握することができる。   According to the invention described in claim 2 of the present invention, the constant tremor of the ground and the building is measured in the north-south direction and the east-west direction on the ground and on the predetermined floor of the building. The characteristics can be grasped more accurately.

本発明のうち請求項3記載の考案によれば、建物の振動特性は、下記の式(1)、式(2)

Figure 2005156448
H(f)はインパルス応答h(t)のフーリエ変換
h(t)は建物に地盤から加えられる力x(t)と、それによって生じ
る建物の運動y(t)との間の系のインパルス応答である。
Figure 2005156448
により求めるようにしたので、建物の振動的な特性がすべてH(f)に入ってきており、建物の振動特性を効果的に求めることができる。 According to the invention described in claim 3 of the present invention, the vibration characteristics of the building are expressed by the following equations (1) and (2).
Figure 2005156448
H (f) is the Fourier transform of the impulse response h (t)
h (t) is the force x (t) applied from the ground to the building and the resulting
The impulse response of the system between the building motion y (t).
Figure 2005156448
Since all the vibration characteristics of the building are in H (f), the vibration characteristics of the building can be effectively obtained.

本発明のうち請求項4記載の考案によれば、建物の各部屋に振動測定点を定め、地盤の入力地動を基準として周波数応答を示す振動倍率から、建物の固有周波数(f)、振幅倍率(R)、固有周期(T)と共振の鋭さの度合いを表すQ値を求め、耐震性能指数C(C,C)を次式

Figure 2005156448
ここで、Dsは建物の構造特性係数
で求めるようにしたので、建物の耐震評価を実情に即した形式として評価することができる。 According to the invention described in claim 4 of the present invention, the vibration measurement point is set in each room of the building, and the natural frequency (f) of the building and the amplitude magnification are obtained from the vibration magnification indicating the frequency response with reference to the ground input ground motion. (R), Q value representing the natural period (T) and the degree of resonance sharpness is obtained, and the seismic performance index C (C 1 , C 2 ) is expressed by the following equation:
Figure 2005156448
Here, since Ds is calculated | required with the structural characteristic coefficient of the building, it can evaluate the earthquake-proof evaluation of a building as a form according to the actual condition.

本発明のうち請求項5記載の考案によれば、振動測定結果から耐震性能指数(C)が所定値以上の場合は、耐震性能は要注意として耐震改修を実施するべきであると判断するようにしたので、より具体的に耐震改修の基準を把握することができる。   According to the invention described in claim 5 of the present invention, if the seismic performance index (C) is greater than or equal to a predetermined value from the vibration measurement result, it is determined that the seismic performance should be subjected to seismic retrofit as a caution. As a result, it is possible to grasp the standards for seismic retrofit more specifically.

本発明のうち請求項6記載の考案によれば、耐震改修後、振動測定を同じ場所で行い、振幅スペクトル及び固有周期を比較し各部屋が所定値以内になれば耐震改修は合格であると判断するようにしたので、具体的な耐震改修の基準を作成することができるため、地震対策として大変有用である。   According to the invention described in claim 6 of the present invention, after the seismic retrofit, the vibration measurement is performed at the same place, the amplitude spectrum and the natural period are compared, and if each room is within the predetermined value, the seismic retrofit is acceptable. Because it was decided, it is very useful as an earthquake countermeasure because it can create a concrete standard for seismic retrofit.

本実施の形態に係る建物の動的耐震性能及び耐震補強後の耐震性能評価方法を図により説明する。
本実施の形態に係る建物の動的耐震性能及び耐震補強後の耐震性能評価方法では、地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行い、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示するようにしたものである。
The dynamic seismic performance of the building according to the present embodiment and the seismic performance evaluation method after seismic reinforcement will be described with reference to the drawings.
In the dynamic seismic performance of the building and the seismic performance evaluation method after seismic reinforcement according to the present embodiment, the vibration characteristics of the building are calculated using simultaneous measurement data of ground and building microtremors. The seismic diagnosis of the building is performed on the basis of it, and the seismic renovation is performed accordingly, and the seismic performance of the building and the effect of seismic reinforcement are quantitatively displayed by comparing the vibration characteristics before and after the renovation.

地盤及び建物の常時微動は、地盤上及び建物の所定階層床上で南北方向及び東西方向について測定する。   The microtremors of the ground and building are measured in the north-south direction and east-west direction on the ground and on the predetermined floor of the building.

建物の振動特性は、以下の式(1)、(2)により求める。

Figure 2005156448
H(f)はインパルス応答h(t)のフーリエ変換
h(t)は建物に地盤から加えられる力x(t)と、それによって生じ
る建物の運動y(t)との間の系のインパルス応答である。
Figure 2005156448
The vibration characteristics of a building are obtained by the following formulas (1) and (2).
Figure 2005156448
H (f) is the Fourier transform of the impulse response h (t)
h (t) is the force x (t) applied from the ground to the building and the resulting
The impulse response of the system between the building motion y (t).
Figure 2005156448

建物の各部屋に振動測定点を定め、地盤の入力地動を基準として周波数応答を示す振動倍率から、建物の固有周波数(f)、振幅倍率(R)、固有周期(T)と共振の鋭さの度合いを表すQ値を求め、耐震性能指数C(C,C)を式(3)、(4)で求めるようにしている。RとQは理論的には同じになるものであるが、必ずしもQが求められない場合があるので、Q、Rを両方使用して平均化することとしている。従来は、C=TQRとしていたが、単位が秒となるため,QRを平均して使用することとしている。また、Tを0.1で除しているのは、0.1の固有周期よりも小さいものはないためである。このように、本発明では、実際の測定値である振幅倍率(R)、固有周期(T)と共振の鋭さの度合いを表すQ値から耐震性能指数を求めるようにしている。これは、地震の際の被害率は沖積層の厚さが厚いほど急増することがわかっており、沖積層の厚みは地盤の卓越周期からわかるものであり、地盤上に建設される建物の卓越周期を測定することにより建物の性質、すなわち耐震性がわかることを根拠としている。

Figure 2005156448
ここで、Dsは建物の構造特性係数であり、変形能力による地震エネルギー吸収性能に応じた低減係数である。Dsは構造種別(RC,SRC,S造)により異なるが、柱、梁、壁の部材種別と耐震壁・ブレースのせん断力の負担比率により決定され、変形能力が大きいほど構造特性係数は小さくなる。 A vibration measurement point is set for each room of the building, and the natural frequency (f), amplitude magnification (R), natural period (T) and resonance sharpness of the building are determined from the vibration magnification showing the frequency response with reference to the ground ground motion. The Q value representing the degree is obtained, and the seismic performance index C (C 1 , C 2 ) is obtained by the equations (3) and (4). R and Q are theoretically the same, but since Q may not always be obtained, averaging is performed using both Q and R. Conventionally, C = TQR was used. However, since the unit is seconds, QR is averaged and used. The reason why T is divided by 0.1 is that there is nothing smaller than the natural period of 0.1. As described above, in the present invention, the seismic performance index is obtained from the amplitude factor (R), the natural period (T), which are actual measurement values, and the Q value representing the degree of resonance sharpness. It is known that the damage rate during an earthquake increases rapidly as the thickness of the alluvium increases, and the thickness of the alluvium is known from the prevailing cycle of the ground, and the predominance of buildings built on the ground It is based on the fact that the properties of the building, that is, the earthquake resistance, can be understood by measuring the period.
Figure 2005156448
Here, Ds is a structural characteristic coefficient of the building, and is a reduction coefficient corresponding to the seismic energy absorption performance due to the deformability. Ds varies depending on the structure type (RC, SRC, S structure), but is determined by the column, beam, and wall member types and the shear ratio of the shear wall and brace. The larger the deformation capacity, the smaller the structural characteristic coefficient. .

振動測定結果から耐震性能指数(C)が所定値以上の場合は、耐震性能は要注意として耐震改修を実施するべきであると判断するようにしている。後述するが、Cが20以下であれば問題なし、30以上の建物では補修が好ましい、40以上であれば補修は必須という基準となる。この基準の決め方は、以下のように行っている。阪神大震災時に、Cが20以下のツーバイフォー型の住宅は全く破損していないことから、20以下であれば問題はないという基準としている。また、Cが40以上の住宅では、破損が生じたものが多いことから、40以上であれば補修は必須という基準としている。   If the seismic performance index (C) is greater than or equal to a predetermined value from the vibration measurement results, it is determined that seismic retrofitting should be implemented with caution regarding seismic performance. As will be described later, there is no problem if C is 20 or less, repair is preferable for 30 or more buildings, and repair is essential if 40 or more. This standard is determined as follows. At the time of the Great Hanshin Earthquake, two-by-four houses with a C of 20 or less are not damaged at all. Moreover, since there are many things where damage has arisen in the house where C is 40 or more, if 40 or more, the standard is that repair is essential.

耐震改修後、振動測定を同じ場所で行い、振幅スペクトル及び固有周期を比較し各部屋が所定値以内になれば耐震改修は合格であると判断している。   After the seismic retrofit, vibration measurement is performed at the same place, and the amplitude spectrum and natural period are compared. If each room is within the specified value, it is judged that the seismic retrofit is acceptable.

図1は、本実施の耐震性能評価方法を実施するための装置である。
本装置は、導電型速度計1(GEO社HS−1 LT)及び専用8ch用の増幅手段2及びパーソナルコンピュータ3に組み込んだ木造建造物耐震診断用の制御解析プログラムから構成される。増幅手段2にはA/D変換機能も備える。また、パーソナルコンピュータには、増幅手段2からのデータのI/Fカードも内蔵される。また、増幅手段器2に各々電源を供給するためのAC100Vの電源ユニット4が設けられる。地盤と建物の常時微動の同時測定データは、導電型速度計1を建物及び地盤に最大8箇所設置して、増幅手段2により、振動を増幅後、A/D変換してデジタルデータとして、パーソナルコンピュータで常時微動データを解析する。
FIG. 1 shows an apparatus for carrying out the seismic performance evaluation method of the present embodiment.
This apparatus is composed of a conductive speedometer 1 (GE-1 HS-1 LT), a dedicated 8ch amplifying means 2 and a control analysis program for seismic diagnosis of a wooden structure incorporated in a personal computer 3. The amplification means 2 also has an A / D conversion function. The personal computer also includes an I / F card for data from the amplification means 2. Further, an AC 100V power supply unit 4 for supplying power to the amplification means 2 is provided. Simultaneous measurement data of microtremors of the ground and the building can be obtained by installing up to 8 conductive type speedometers 1 on the building and ground, amplifying means 2 after amplifying the vibration, and A / D converting it as digital data. Analyze microtremor data with a computer.

本発明の方法により、実際の建物について、地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行い、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示を行った。   By using the method of the present invention, the vibration characteristics of a building are calculated for an actual building using simultaneous measurement data of ground and building microtremors, and the building is subjected to seismic diagnosis based on the vibration characteristics of the building. The seismic retrofit was performed in accordance with the results, and the seismic performance of the building and the effect of seismic reinforcement were quantitatively displayed by comparing the vibration characteristics before and after the retrofit.

対象建物は2階建ての在来工法による木造住宅(中央部分)を鉄骨構造(西側部分)で増築・改築して業務用建物として使用している。この建物の2階部分の間取り図と、A点からG点までの7箇所の振動測定点を図2に示す。   The target building is a 2-story wooden house (central part) that is expanded and renovated with a steel structure (west part) and used as a commercial building. FIG. 2 shows a floor plan of the second floor of this building and seven vibration measurement points from point A to point G.

1階部分の床面積は約270mで、4部屋あるが、作業用に使用していることから間仕切り壁が少なく、明らかに構造的に壁剛性が不足しているように見える。地盤からの入力振動の測定のために、1階玄関ホールの土間に測定点Sを設けた。 Floor area of the first floor is about 270 meters 2, there are 4 rooms, less partition wall because it is used for the work, apparently it seems structurally wall stiffness is insufficient. In order to measure the input vibration from the ground, a measuring point S was provided between the grounds of the first floor entrance hall.

測定機器としては、固有周期1秒の換振器8台、増幅器、記録器を使用して振動データを収録し、また得られたデータは波形が安定している部分を選択してスペクトルアナライザーで解析した。図3に地盤S点と技術室A点の振幅スペクトルを南北方向(NS)と東西方向(EW)成分を合わせて示してある。A点では、南北方向の振動に3−6Hzの顕著な共振による振幅成分が見られる。
また、図4には、地盤S点の入力地動を規準とした周波数応答を表す技術室A点の振幅倍率曲線を示している。
As measurement equipment, vibration data is recorded using 8 exciters with a natural period of 1 second, amplifiers and recorders, and the obtained data is selected with a spectrum analyzer by selecting the part where the waveform is stable. Analyzed. FIG. 3 shows the amplitude spectra of the ground S point and the technical room A point, with the north-south direction (NS) and east-west direction (EW) components combined. At point A, an amplitude component due to significant resonance of 3-6 Hz is observed in the north-south vibration.
Further, FIG. 4 shows an amplitude magnification curve of the technical room A point representing the frequency response based on the input ground motion of the ground S point.

このような解析結果から、この建物の固有周波数(f)、減衰定数(h)、振幅倍率(R)が求められる。しかし、ここでは固有周波数、減衰定数の代わりに固有周期(T)と共振度合の鋭さを表すQ値を便宜的に使用する。   From such an analysis result, the natural frequency (f), attenuation constant (h), and amplitude magnification (R) of this building are obtained. However, here, the natural period (T) and the Q value representing the sharpness of the resonance degree are used for convenience instead of the natural frequency and attenuation constant.

ここで、測定された建物の動特性を表す数値を用いて建物の耐震性を評価するために、耐震性能指数(C)を次式(3)、(4)のように定義して用いることにする。

Figure 2005156448
ここで、Dsは建物の構造特性係数

この場合、固有周期T、共振度合Q値、及び振幅倍率Rは相乗的に建物の耐震性能に関与するものと考える。しかし、こららは、いずれも大きいほど悪い効果が生じる、生み出すものと考えている。ただし、QとRは、理論的には同等のものであることが分かっているが、実際に測定するときには、異なる場合が多いことから平均操作を加えて用いている。 Here, in order to evaluate the earthquake resistance of a building using the measured numerical value representing the dynamic characteristics of the building, the seismic performance index (C) should be defined and used as the following equations (3) and (4) To.
Figure 2005156448
Where Ds is the structural characteristic coefficient of the building

In this case, the natural period T, the resonance degree Q value, and the amplitude magnification R are considered to be synergistically related to the seismic performance of the building. However, they all think that the bigger the result, the worse the effect will be. However, Q and R are theoretically equivalent to each other, but when actually measured, there are many cases where they are different from each other.

図7に、この建物の耐震性能指数(C)のA〜Gの各測定点の関係を示している。これを見ると建物の南東部の技術室A点は64と大きく、北西部の倉庫G点付近は37と小さい。   FIG. 7 shows the relationship between the measurement points A to G of the seismic performance index (C) of this building. Looking at this, the technical room A point in the southeastern part of the building is as large as 64, and the vicinity of the warehouse G point in the northwestern part is as small as 37.

ここで、求めた耐震性能指数(C)は、兵庫県南部地震の被害調査等の実績と照し合わせて判断すると、ほぼ30を超えると建物耐震性能としては要注意であると考えられる。   Here, when the calculated seismic performance index (C) is judged in light of the results of the damage survey of the Hyogoken-Nanbu Earthquake, etc., if it exceeds approximately 30, it is considered that the seismic performance of the building needs attention.

振動測定結果から分かるように対象建物は、技術室A点を含む南東部分は耐震性能が不十分であると判断され、専門の建築士の設計のもとに耐震改修を実施した。その実際の工事は次のようなものであった。
A)構造柱新設
B)構造壁新設(柱・梁・ブレース)
C)構造壁新設(柱・ブレース)
D)構造壁新設(柱・ブレース)、構造用合板張り
E)構造柱新設・3本、構造用合板増し張り
F)構造用壁新設(柱・ブレース)
As can be seen from the vibration measurement results, the target building was judged to have insufficient seismic performance in the southeast part including the Technical Office A point, and was subjected to seismic retrofit under the design of a professional architect. The actual construction was as follows.
A) New structural columns B) New structural walls (columns, beams, braces)
C) New construction wall (posts and braces)
D) New structural walls (posts / braces), structural plywood tension E) New structural pillars, three, additional structural plywood tension F) New structural walls (posts / braces)

建物に耐震補強工事を実施した後で、前述した測定と同様な振動測定を同じ場所と同じ機器で行った。図5に補強後の技術室A点の振幅スペクトルを地盤S点のスペクトルとともに示す。図5においては、図4と比べて補強効果が振動の減少となって顕著に表れている。   After the seismic reinforcement work on the building, the same vibration measurement as that described above was performed with the same equipment at the same location. FIG. 5 shows the amplitude spectrum of the technical room A after reinforcement together with the spectrum of the ground S point. In FIG. 5, the reinforcing effect is significantly shown as a reduction in vibration compared to FIG. 4.

次に、耐震改修前後の建物の固有周期の各測定点の変化について図6に示す。これから分かるように南北方向の振動の固有周期はほぼ0.28秒から0.21秒位に全体的に小さくなっており、建物の1階部分の剛性が大きくなったことを表している。なお、図7によれば、改修後も30を越える部屋が多いが、居住空間ではないこと、また、鉄筋、軽量鉄筋、木造からなる複雑な構造の家屋であること、予算との兼ね合いから今回の改修は妥当であると考えられる。また、参考までに、図8に、これまでに実施して得られた戸建住宅の振動特性調査の結果のうち、各種の工法による住宅の耐震性能指数の実例と、今回の測定結果との比較表示したものを示している。   Next, changes in each measurement point of the natural period of the building before and after the seismic retrofit are shown in FIG. As can be seen, the natural period of vibration in the north-south direction has decreased as a whole from about 0.28 seconds to about 0.21 seconds, indicating that the rigidity of the first floor portion of the building has increased. According to Fig. 7, there are many rooms exceeding 30 after the renovation, but this is not a living space, it is a house with a complex structure consisting of reinforcing bars, lightweight reinforcing bars and wooden structures, and this is due to the balance with the budget. The renovation is considered reasonable. For reference, Fig. 8 shows the actual results of the seismic performance index of houses by various methods, and the results of this measurement. A comparative display is shown.

このように、地盤と建物の常時微動の同時測定データを利用して、建物の振動特性を把握し、それらの情報を基にして建物の耐震改修を実施して、改修前後の振動特性を比較検討することにより、建物の耐震性能の評価と建物の耐震補強の効果が定量的に表示できることが示された。   In this way, using the simultaneous measurement data of microtremors of the ground and the building, the vibration characteristics of the building are grasped, and the earthquake resistance of the building is implemented based on such information, and the vibration characteristics before and after the repair are compared. By studying, it was shown that the evaluation of the seismic performance of buildings and the effect of seismic reinforcement of buildings can be displayed quantitatively.

本発明の実施の形態の耐震性能評価方法を実施するための装置のブロック図である。It is a block diagram of the apparatus for enforcing the seismic performance evaluation method of embodiment of this invention. 本実施例2階部分の間取りと振動測定点を説明する平面図である。It is a top view explaining the floor plan and vibration measurement point of the second floor portion of the present embodiment. 地盤S点と技術室A点の振幅スペクトルを南北方向と東西方向成分を合わせて示したグラフである。It is the graph which combined the north-south direction and the east-west direction component, and showed the amplitude spectrum of the ground S point and the engineering room A point. 地盤S点の入力地動を規準とした周波数応答を表す技術室A点の振幅倍率曲線を示したグラフである。It is the graph which showed the amplitude magnification curve of the technical room A point showing the frequency response on the basis of the input ground motion of the ground S point. 補強後の技術室A点と地盤S点の振幅スペクトルを示した図である。It is the figure which showed the amplitude spectrum of the technical room A point and the ground S point after reinforcement. 耐震改修前後の建物の固有周期の各測定点の変化を示したグラフである。It is the graph which showed the change of each measuring point of the natural period of the building before and after earthquake-proof repair. 建物の耐震性能指数(C)のA〜Gの各測定点の関係を示すグラフである。It is a graph which shows the relationship of each measurement point of AG of a building's seismic performance index (C). 各種の工法による住宅の耐震性能指数の実例と、今回の測定結果とを比較表示したグラフである。It is the graph which compared and displayed the example of the earthquake-resistant performance index of the house by various construction methods, and this measurement result.

符号の説明Explanation of symbols

1 導電型速度計
2 増幅手段
3 パーソナルコンピュータ
4 電源ユニット
DESCRIPTION OF SYMBOLS 1 Conductive type speedometer 2 Amplifying means 3 Personal computer 4 Power supply unit

Claims (6)

地盤と建物の常時微動の同時測定データを利用して建物の振動特性を算出し、その建物の振動特性を基にして建物の耐震診断を行い、それに従い耐震改修を行った後、改修前後の振動特性の比較検討により建物の耐震性能及び耐震補強の効果を定量的に表示するようにしたことを特徴とする建物の動的耐震性能及び耐震補強後の耐震性能評価方法。   Calculate the vibration characteristics of the building using simultaneous measurement data of microtremors of the ground and the building, and make a seismic diagnosis of the building based on the vibration characteristics of the building. A method for evaluating dynamic seismic performance of buildings and seismic performance after seismic reinforcement, characterized by quantitatively displaying the seismic performance of buildings and the effect of seismic retrofit by comparative examination of vibration characteristics. 地盤及び建物の常時微動は、地盤上及び建物の所定階層床上で南北方向及び東西方向について測定するようにしたことを特徴とする請求項1記載の建物の動的耐震性能及び耐震補強後の耐震性能評価方法。   2. Dynamic seismic performance of a building according to claim 1 and seismic resistance after seismic reinforcement, wherein the microtremors of the ground and the building are measured in the north-south direction and the east-west direction on the ground and a predetermined floor of the building. Performance evaluation method. 建物の振動特性は、以下の式により求めることを特徴とする請求項1記載の建物の動的耐震性能及び耐震補強後の耐震性能評価方法。
Figure 2005156448
H(f)はインパルス応答h(t)のフーリエ変換
h(t)は建物に地盤から加えられる力x(t)と、それによって生じ
る建物の運動y(t)との間の系のインパルス応答である。
Figure 2005156448
2. The method according to claim 1, wherein the vibration characteristic of the building is obtained by the following equation.
Figure 2005156448
H (f) is the Fourier transform of the impulse response h (t)
h (t) is the force x (t) applied from the ground to the building and the resulting
The impulse response of the system between the building motion y (t).
Figure 2005156448
建物の各部屋に振動測定点を定め、地盤の入力地動を基準として周波数応答を示す振動倍率から、建物の固有周波数(f)、振幅倍率(R)、固有周期(T)と共振の鋭さの度合いを表すQ値を求め、耐震性能指数C(C,C)を次式で求めることを特徴とする請求項1記載の建物の動的耐震性能及び耐震補強後の耐震性能評価方法。
Figure 2005156448
ここで、Dsは建物の構造特性係数
A vibration measurement point is set for each room of the building, and the natural frequency (f 0 ), amplitude magnification (R), natural period (T 0 ), and resonance frequency of the building are determined from the vibration magnification indicating the frequency response with reference to the ground ground motion. The dynamic seismic performance of the building according to claim 1 and the seismic performance evaluation after seismic reinforcement, characterized in that the Q value representing the degree of sharpness is obtained and the seismic performance index C (C 1 , C 2 ) is obtained by the following equation: Method.
Figure 2005156448
Where Ds is the structural characteristic coefficient of the building
振動測定結果から耐震性能指数(C)が所定値以上の場合は、耐震性能は要注意として耐震改修を実施すべきであると判断するようにしたことを特徴とする請求項1記載の建物の動的耐震性能及び耐震補強後の耐震性能評価方法。   The seismic performance index (C) from the vibration measurement result is a predetermined value or more, and it is determined that the seismic performance should be subjected to seismic renovation with caution. Dynamic seismic performance and seismic performance evaluation method after seismic reinforcement. 耐震改修後、振動測定を同じ場所で行い、振幅スペクトル及び固有周期を比較し各部屋が所定値以内になれば耐震改修は合格であると判断するようにしたことを特徴とする請求項1記載の建物の動的耐震性能及び耐震補強後の耐震性能評価方法。   The vibration measurement is performed at the same place after the earthquake-proof repair, the amplitude spectrum and the natural period are compared, and if each room is within a predetermined value, it is determined that the earthquake-proof repair is acceptable. Of dynamic seismic performance of buildings and seismic performance after seismic reinforcement.
JP2003397671A 2003-11-27 2003-11-27 Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement Expired - Fee Related JP3857680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397671A JP3857680B2 (en) 2003-11-27 2003-11-27 Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397671A JP3857680B2 (en) 2003-11-27 2003-11-27 Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement

Publications (2)

Publication Number Publication Date
JP2005156448A true JP2005156448A (en) 2005-06-16
JP3857680B2 JP3857680B2 (en) 2006-12-13

Family

ID=34722763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397671A Expired - Fee Related JP3857680B2 (en) 2003-11-27 2003-11-27 Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement

Country Status (1)

Country Link
JP (1) JP3857680B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040713A (en) * 2005-07-29 2007-02-15 Central Res Inst Of Electric Power Ind Soundness diagnosis method and soundness diagnosis program of building based on microtremor measurement
JP2009020056A (en) * 2007-07-13 2009-01-29 Univ Of Tsukuba Apparatus and method of determining degree of damage of building
JP2009020002A (en) * 2007-07-12 2009-01-29 A & D Co Ltd Method and apparatus for evaluating earthquake resistance of building
JP2010261754A (en) * 2009-04-30 2010-11-18 Central Res Inst Of Electric Power Ind Soundness diagnosis method of building based on microtremor measurement, diagnosis apparatus, and diagnosis program
JP2010276518A (en) * 2009-05-29 2010-12-09 Central Res Inst Of Electric Power Ind Method, apparatus and program for diagnosing robustness of building based on microtremor measurement
JP2020098101A (en) * 2018-12-17 2020-06-25 株式会社フジタ Structure soundness evaluation apparatus
WO2021145284A1 (en) * 2020-01-15 2021-07-22 株式会社サイエンス構造 Building risk level determination server, building risk level determination method and program thereof, information communication terminal, information processing method and program thereof, and building risk level determination system
CN116929684A (en) * 2023-06-30 2023-10-24 成都瑞波科材料科技有限公司 Process system for producing retardation film and method for installing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253491A (en) * 1997-03-13 1998-09-25 Railway Technical Res Inst Countermeasure effect judging method, and countermeasure effect judging device
JP2002348949A (en) * 2001-05-22 2002-12-04 Kenichi Saito Dynamic seismic resistance assessment system for building
JP2003041781A (en) * 2001-07-31 2003-02-13 Sumitomo Forestry Co Ltd Earthquake resistance diagnosing method of building and earthquake resistance modification designing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253491A (en) * 1997-03-13 1998-09-25 Railway Technical Res Inst Countermeasure effect judging method, and countermeasure effect judging device
JP2002348949A (en) * 2001-05-22 2002-12-04 Kenichi Saito Dynamic seismic resistance assessment system for building
JP2003041781A (en) * 2001-07-31 2003-02-13 Sumitomo Forestry Co Ltd Earthquake resistance diagnosing method of building and earthquake resistance modification designing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040713A (en) * 2005-07-29 2007-02-15 Central Res Inst Of Electric Power Ind Soundness diagnosis method and soundness diagnosis program of building based on microtremor measurement
JP4728730B2 (en) * 2005-07-29 2011-07-20 財団法人電力中央研究所 Building health diagnosis method and health diagnosis program based on microtremor measurement
JP2009020002A (en) * 2007-07-12 2009-01-29 A & D Co Ltd Method and apparatus for evaluating earthquake resistance of building
JP2009020056A (en) * 2007-07-13 2009-01-29 Univ Of Tsukuba Apparatus and method of determining degree of damage of building
JP2010261754A (en) * 2009-04-30 2010-11-18 Central Res Inst Of Electric Power Ind Soundness diagnosis method of building based on microtremor measurement, diagnosis apparatus, and diagnosis program
JP2010276518A (en) * 2009-05-29 2010-12-09 Central Res Inst Of Electric Power Ind Method, apparatus and program for diagnosing robustness of building based on microtremor measurement
JP2020098101A (en) * 2018-12-17 2020-06-25 株式会社フジタ Structure soundness evaluation apparatus
WO2021145284A1 (en) * 2020-01-15 2021-07-22 株式会社サイエンス構造 Building risk level determination server, building risk level determination method and program thereof, information communication terminal, information processing method and program thereof, and building risk level determination system
CN116929684A (en) * 2023-06-30 2023-10-24 成都瑞波科材料科技有限公司 Process system for producing retardation film and method for installing the same
CN116929684B (en) * 2023-06-30 2024-04-09 成都瑞波科材料科技有限公司 Process system for producing retardation film and method for installing the same

Also Published As

Publication number Publication date
JP3857680B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
KR101490308B1 (en) Apparatus of evaluating health of buildings according to earthquake acceleration measured
Zhou et al. Vibration serviceability of pre-stressed concrete floor system under human activity
JP3857680B2 (en) Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement
Ventura et al. Effective use of ambient vibration measurements for modal updating of a 48 storey building in Vancouver, Canada
JP7253231B2 (en) Earthquake resistance evaluation system for houses
Riahi et al. Application of endurance time method in nonlinear seismic analysis of steel frames
JP2009098101A (en) Determination method for existence of suffering of building
O'Donnell et al. Ground motion scaling methods for linear‐elastic structures: an integrated experimental and analytical investigation
Barrett et al. Observations from vibration testing of in-situ structures
Zhang et al. Ambient vibration testing & modal identification of an office building
Barrett Dynamic testing of in-situ composite floors and evaluation of vibration serviceability using the finite element method
Hadianfard et al. Case study on the effects of retrofitting on changing structural dynamic characteristics by microtremor measurements and finite element analysis
US6757620B1 (en) Method for examining structures having high natural vibration frequency using alternating manual vibration-exciting method
Avanaki et al. Collapse analysis by endurance time method
Crick et al. Monitoring and analysis of a temporary grandstand
Minas et al. Spectral shape proxies and simplified fragility analysis of mid-rise reinforced concrete buildings
JP6614561B1 (en) Seismic performance evaluation method and program for wooden buildings by microtremor measurement
Mugabo Multi-scale dynamic monitoring and behavior of cross-laminated timber elements and systems
Setareh Vibration studies of a cantilevered structure subjected to human activities using a remote monitoring system
Zhang Controlled substructure identification for shear structures
Shome et al. Loss estimation of multi-mode dominated structures for a scenario of earthquake event
JP6746348B2 (en) Method and device for identifying building stiffness of a building
JP4767032B2 (en) Reduced vibration level prediction method
JP2002348949A (en) Dynamic seismic resistance assessment system for building
Makarios et al. Modeling and identification of the dynamic response of an existing three-story steel stairway

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees