JP4728730B2 - Building health diagnosis method and health diagnosis program based on microtremor measurement - Google Patents

Building health diagnosis method and health diagnosis program based on microtremor measurement Download PDF

Info

Publication number
JP4728730B2
JP4728730B2 JP2005222087A JP2005222087A JP4728730B2 JP 4728730 B2 JP4728730 B2 JP 4728730B2 JP 2005222087 A JP2005222087 A JP 2005222087A JP 2005222087 A JP2005222087 A JP 2005222087A JP 4728730 B2 JP4728730 B2 JP 4728730B2
Authority
JP
Japan
Prior art keywords
building
event
data
microtremor
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005222087A
Other languages
Japanese (ja)
Other versions
JP2007040713A (en
Inventor
健司 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005222087A priority Critical patent/JP4728730B2/en
Publication of JP2007040713A publication Critical patent/JP2007040713A/en
Application granted granted Critical
Publication of JP4728730B2 publication Critical patent/JP4728730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、常時微動計測に基づく建物の健全性診断法並びに健全性診断プログラムに関する。さらに詳述すると、本発明は、常時微動と呼ばれる微小振動の計測に基づいて地震や強風等による建物の損傷の有無を判断する方法並びにプログラムに関する。なお、本発明で建物の健全性とは、構造的な損傷の有無など建物の構造に係る健全性のことをいう。   The present invention relates to a soundness diagnosis method and soundness diagnosis program for buildings based on microtremor measurement. More specifically, the present invention relates to a method and a program for determining the presence or absence of damage to a building due to an earthquake, strong wind, or the like based on measurement of minute vibration called microtremor. In the present invention, the soundness of a building refers to the soundness related to the structure of the building, such as the presence or absence of structural damage.

従来の建物の振動の計測に基づいて健全性を診断する方法としては、例えば常時微動計測に基づく建物の健全性診断法がある(特許文献1)。   As a conventional method for diagnosing soundness based on measurement of building vibration, there is, for example, a building soundness diagnosis method based on microtremor measurement (Patent Document 1).

この建物の健全性診断法は、図20に示すように、健全時及び評価時における建物の常時微動を計測し(S101、S101’)、その計測記録から健全時及び評価時のクロススペクトル並びにパワースペクトルを算定し(S102、S103、S103’)、それらスペクトルの算定結果から固有振動数並びに固有モードを求めて建物の振動特性を計算する(S104、S105、S105’)。そして、健全時と評価時の振動特性の計算結果を比較することにより(S106)、建物全体の健全性の良否を判定する(S107)。建物の健全性が失われていると判定された場合には振動特性の計算結果から建物の剛性分布を計算し(S108、S109、S109’)、健全時と評価時の剛性分布の計算結果を比較することにより(S110)、健全性に劣る位置とその程度を判定する(S111)ものである。   As shown in FIG. 20, this building health diagnostic method measures the microtremors of the building at the time of health and evaluation (S101, S101 '), and the cross spectrum and power at the time of health and evaluation from the measurement records. The spectrum is calculated (S102, S103, S103 ′), and the vibration characteristics of the building are calculated by obtaining the natural frequency and the natural mode from the calculation results of the spectra (S104, S105, S105 ′). Then, by comparing the calculation results of the vibration characteristics at the time of soundness and evaluation (S106), the soundness of the whole building is judged as good (S107). When it is determined that the soundness of the building is lost, the rigidity distribution of the building is calculated from the calculation result of the vibration characteristics (S108, S109, S109 ′), and the calculation result of the rigidity distribution at the time of healthy and evaluation is obtained. By comparing (S110), a position inferior to soundness and its degree are determined (S111).

また、建物の健全性に影響を与える事象の前後の建物の振動情報に着目して健全性を診断する方法として、構造性能指標推定装置及び構造物の構造性能リアルタイムモニタリング方法がある(特許文献2)。   Moreover, as a method for diagnosing soundness by paying attention to vibration information of the building before and after an event that affects the soundness of the building, there is a structural performance index estimation device and a structure performance real-time monitoring method (Patent Document 2). ).

この構造性能リアルタイムモニタリング方法は、図21に示すように、基礎加速度が入力されることにより出力される絶対加速度の測定を行うための計測点を構造物の各層に設定した上で計測点に計測装置を設置し(第1の工程)、計測装置を介して観測された構造物の各層における絶対加速度を構造性能指標推定装置本体に送信し(第2の工程)、構造性能指標推定装置本体において各層毎の絶対加速度を用いて構造性能指標推定装置本体に格納された演算式により構造物の各層毎に減衰係数及び剛性を推定する(第3の工程)。そして、第2の工程及び第3の工程を繰り返して構造物の各層における減衰係数及び剛性に係る推定値を時系列に取得し、構造性能をモニタリングする(第4の工程)ものである。   In this structural performance real-time monitoring method, as shown in FIG. 21, the measurement points for measuring the absolute acceleration output when the basic acceleration is input are set in each layer of the structure and then measured at the measurement points. The apparatus is installed (first step), and the absolute acceleration in each layer of the structure observed through the measuring device is transmitted to the structural performance index estimating apparatus body (second process). Using the absolute acceleration for each layer, the damping coefficient and the rigidity are estimated for each layer of the structure by the arithmetic expression stored in the structural performance index estimating apparatus main body (third step). Then, the second step and the third step are repeated to obtain the estimated values related to the damping coefficient and the stiffness in each layer of the structure in time series, and the structural performance is monitored (fourth step).

即ち特許文献2の方法は、振動計測データをリアルタイムで評価し、建物の層(階)毎の剛性と減衰を時々刻々と評価してそれらの変化を検出することにより、建物の健全性をリアルタイムで評価する方法である。   In other words, the method of Patent Document 2 evaluates vibration measurement data in real time, evaluates the rigidity and damping of each building layer (floor) from moment to moment, and detects these changes to detect the health of the building in real time. It is a method to evaluate with.

特開2003−322585号JP 2003-322585 A 特開2005−083975号Japanese Patent Application Laid-Open No. 2005-083975

特許文献1の方法では、建物の固有振動数や剛性は安定したものであり、建物に損傷が発生することなく健全性が同一の状態であれば固有振動数等は一定値であることを前提としている。即ち、固有振動数や剛性は建物の損傷によって変化するが他の要因によっては変化しないので、健全時と評価時で固有振動数等を比較して差違がある場合には建物に損傷が発生していると判断することができることを前提にしている。   In the method of Patent Document 1, it is assumed that the natural frequency and rigidity of the building are stable, and the natural frequency and the like are constant values if the soundness is the same without damage to the building. It is said. In other words, the natural frequency and stiffness change due to damage to the building, but do not change depending on other factors.Therefore, if there is a difference between the natural frequency and the like between the healthy state and the evaluation, the building will be damaged. It is assumed that it can be judged.

しかしながら、本発明者は、建物の振動の計測に基づく健全性の診断の検討において、建物の固有振動数は一定値で安定してはおらず、一日の中で周期的に変動しており、その変動は気温や日射、風力などの環境条件に依存して複雑な様相を示して規則正しい変動ではないことを知見した。即ち、建物の固有振動数は、建物に何ら損傷が発生していない場合であっても環境条件等により変動していることを知見した。また、建物の剛性分布は固有振動数等に基づいて推定される指標であるため、固有振動数が変動することにより見かけ上の剛性分布も変動することになる。したがって、従来の前提条件の下では、時点の異なる固有振動数を比較した場合に、建物に何ら損傷が発生していないにもかかわらず固有振動数が変化しているので損傷が発生していると誤って判断したり、実際には建物に損傷が発生しているにもかかわらず固有振動数が変化していないので損傷が発生していないと誤って判断したりしてしまうという問題がある。   However, in the examination of soundness diagnosis based on the vibration measurement of the building, the inventor does not stabilize the natural frequency of the building at a constant value, and fluctuates periodically throughout the day. It was found that the fluctuations are not regular fluctuations, depending on environmental conditions such as temperature, solar radiation, and wind power, and showing complex aspects. That is, it has been found that the natural frequency of the building fluctuates due to environmental conditions and the like even when the building is not damaged at all. Further, since the stiffness distribution of the building is an index estimated based on the natural frequency or the like, the apparent stiffness distribution also varies as the natural frequency varies. Therefore, under conventional assumptions, when comparing natural frequencies at different points in time, damage has occurred because the natural frequency has changed despite no damage to the building. Or because the natural frequency has not changed in spite of the fact that the building is damaged, it may be erroneously determined that no damage has occurred. .

更に、特許文献1の方法は健全時と評価時の固有振動数等を比較して建物の健全性を診断する方法であり、構築直後の健全時の状態を示すデータが必要とされ、健全時のデータがない場合には建物の健全性の診断を行うことができない。このため、健全性評価が実施できる対象が限られてしまうという問題がある。   Furthermore, the method of Patent Document 1 is a method of diagnosing the soundness of a building by comparing the natural frequency and the like at the time of soundness and evaluation, and data indicating the state of soundness immediately after construction is required. If there is no data, the health of the building cannot be diagnosed. For this reason, there exists a problem that the object which can implement soundness evaluation will be restricted.

また、地震や強風時における建物の挙動は常時微動のような微小変形時の挙動と比較して複雑であるため、以下に示す理由により、現実には、特許文献2の方法のようにリアルタイムで剛性や減衰を推定することは困難であると考えられる。   In addition, since the behavior of buildings during earthquakes and strong winds is more complicated than the behavior at the time of microdeformation such as microtremors, in reality, in the real time as in the method of Patent Document 2 for the following reasons. It is considered difficult to estimate stiffness and damping.

図22に示すように、軸方向に鉛直荷重Nが作用する鉄筋コンクリート単柱に横荷重Pを作用させた場合における変形δ−荷重Pの関係を例に挙げて説明する(柴田明徳:最新耐震構造解析,森北出版,1981年,p114)。   As shown in FIG. 22, the relationship of deformation δ-load P when a lateral load P is applied to a reinforced concrete single column on which a vertical load N is applied in the axial direction will be described as an example (Akinori Shibata: latest earthquake-resistant structure) Analysis, Morikita Publishing, 1981, p114).

図22において、剛性は、荷重Pの増加量を変形δの増加量で除した値、言い換えれば、変形δ−荷重P曲線の接線の傾きで与えられる。   In FIG. 22, the rigidity is given by a value obtained by dividing the increase amount of the load P by the increase amount of the deformation δ, in other words, the tangential slope of the deformation δ-load P curve.

ここで、地震時のように大きな変形δが発生した場合には、変形δ−荷重P特性が紡錘形の曲線となって変形δと荷重Pは非線型の関係にあるため、荷重Pや変形δに応じて剛性が時々刻々と変化することになる。また、実際の建物は複数の柱や梁、壁から構成されるため、建物全体の剛性は単柱よりも更に複雑な挙動を示すことになる。したがって、建物に損傷が発生している状態での剛性は、図22に示すような単柱の場合よりもさらに複雑な挙動を示すことになる。   Here, when a large deformation δ occurs as in an earthquake, the deformation δ-load P characteristic becomes a spindle-shaped curve, and the deformation δ and the load P are in a non-linear relationship. The stiffness will change from moment to moment depending on. In addition, since an actual building is composed of a plurality of columns, beams, and walls, the rigidity of the entire building exhibits a more complicated behavior than a single column. Therefore, the rigidity in a state where the building is damaged exhibits a more complicated behavior than the case of a single pillar as shown in FIG.

このことは、剛性の推定という観点からみると、時々刻々変化する瞬間的な剛性は、本質的には、その時刻周辺の「瞬間的な剛性の影響が及ぶ近傍の時刻の」短時間の振動計測データに基づいて推定しなければならないことを示している。しかし、振動計測データは短時間であるほど剛性に係わる情報量が少なくなり、偶発的に発生する推定誤差の影響が大きくなることにつながるため、短時間の振動計測データから瞬間的な剛性を推定するには限界があるという問題がある。   From the viewpoint of stiffness estimation, the instantaneous stiffness that changes from moment to moment is essentially a short-time vibration around the time “near the time at which the instantaneous stiffness affects”. It shows that it must be estimated based on measurement data. However, as the vibration measurement data becomes shorter, the amount of information related to rigidity decreases, and the influence of accidental estimation errors increases, so the instantaneous rigidity is estimated from the short-time vibration measurement data. There is a problem that there is a limit.

一方で、上記の問題を解決するため、瞬間的な剛性の精度を向上させようとして振動データの長さを長くしていくと剛性の瞬間的な値が異なる時間帯のデータを含んでしまうことになるため、結果として瞬間的な剛性の精度が低下してしまうということになる。   On the other hand, in order to solve the above problem, if the length of the vibration data is increased in order to improve the accuracy of the instantaneous stiffness, data of a time zone in which the instantaneous value of the stiffness is different is included. Therefore, as a result, the accuracy of instantaneous rigidity is lowered.

以上から、特許文献2の方法のように、建物に地震時のように大きな変形が発生している状態における剛性の複雑な変化をリアルタイムで追跡することは現実には困難であると言える。   From the above, it can be said that it is actually difficult to track in real time a complicated change in rigidity in a state where a large deformation occurs in the building as in the case of an earthquake as in the method of Patent Document 2.

そこで、本発明は、建物の健全性診断の指標自体の周期的な変動の影響を受けずに健全性を診断することが可能であると共に線形の範囲にある変形−荷重関係を利用することによって安定的に健全性を診断することが可能な建物の健全性の診断方法を提供することを目的とする。   Therefore, the present invention is capable of diagnosing soundness without being affected by periodic fluctuations in the building health diagnosis index itself, and by utilizing a deformation-load relationship in a linear range. An object of the present invention is to provide a method for diagnosing the health of a building capable of stably diagnosing the health.

図22において、地震時のように大きな変形δに対し、常時微動時の単柱の変形δと荷重Pは共に小さい挙動であり、原点付近で推移する(枠101内の範囲。ただし、実際の常時微動では横軸の変形δが10−4cm以下の非常に微小な範囲であり枠101は正確な範囲を示したものではない)。そして、この領域内の変形δ−荷重P関係はほぼ直線となって変形δと荷重Pはほぼ線形の関係になり、その剛性(変形δ−荷重P関係の傾き)は一定値となる。 In FIG. 22, the single column deformation δ and the load P at the time of fine movement are both small behaviors as compared to the large deformation δ as in the case of an earthquake, and change near the origin (range within the frame 101. In the case of fine movement, the horizontal axis deformation δ is a very small range of 10 −4 cm or less, and the frame 101 does not show an accurate range). In this region, the deformation δ-load P relationship is almost a straight line, and the deformation δ and the load P have a substantially linear relationship, and its rigidity (the slope of the deformation δ-load P relationship) is a constant value.

このことから、複数の柱や梁、壁を組み合わせた実際の建物についてもその変形−荷重関係は直線的な形状になることは容易に類推でき、したがって建物の剛性も安定した一定値をとることとなる。このことを剛性の推定という観点からみると、健全時と評価時のそれぞれの状態において建物の剛性は安定した状態を保っており、時々刻々と値が変化しないため、振動データの計測時間として一定時間を確保することによって剛性の推定精度を向上させることができる。   From this, it is easy to infer that the deformation-load relationship of an actual building that combines multiple pillars, beams, and walls is a linear shape, and therefore the building rigidity must also be a stable and constant value. It becomes. From the perspective of stiffness estimation, the building stiffness remains stable in both the healthy and evaluation states, and the value does not change from moment to moment, so the measurement time for vibration data is constant. By ensuring the time, it is possible to improve the rigidity estimation accuracy.

なお、上記では剛性を例に挙げ、損傷時の瞬間的な剛性を推定するよりも常時微動時のような微小変形時の安定した剛性を推定した方が剛性の推定精度が良くなることを述べた。ここで、固有振動数は建物の剛性と質量で決定される量であり、質量が建物の損傷によらず一定値となることを考慮すれば、上記の剛性に関する議論は固有振動数にもそのまま当てはまる。即ち、固有振動数を建物の健全性診断の指標に用いた場合を想定しても、リアルタイムに瞬間的な量を推定するよりも常時微動時のような微小変形時の安定した固有振動数をある程度の長さの振動データを使って推定することにより推定精度を向上させることができる。   In the above, rigidity is taken as an example, and it is stated that the estimation accuracy of rigidity is better when estimating stable rigidity at the time of microdeformation such as at the time of fine movement rather than estimating instantaneous rigidity at the time of damage. It was. Here, the natural frequency is an amount determined by the rigidity and mass of the building, and considering that the mass becomes a constant value regardless of the damage of the building, the above discussion on rigidity remains unchanged for the natural frequency. apply. In other words, even if the natural frequency is used as an index for building health diagnosis, the stable natural frequency at the time of minute deformation such as at the time of fine movement is always estimated rather than the instantaneous amount estimated in real time. The estimation accuracy can be improved by estimating using vibration data of a certain length.

そこで、前記の発明者独自の新たな知見に基づくと共に建物の変形と荷重の安定した関係を利用することを踏まえ、請求項1記載の常時微動計測に基づく建物の健全性診断法は、建物の常時微動の計測を常時行って常時微動の計測データを収集すると共に建物の健全性に影響を与え得る事象の発生前後の常時微動の計測データを抽出し、事象発生前並びに事象発生後の常時微動の計測データのそれぞれを複数に分割し、分割した常時微動の計測データ毎に建物の健全性を診断する指標を算定し、事象発生前の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式1)の定数ki及びmi並びに事象発生後の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式1)の定数ki及びmiを推定し、回帰直線のそれぞれの切片miを比較して建物の健全性を診断するようにしている。
(数1) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
Therefore, based on the new knowledge unique to the inventor and utilizing a stable relationship between deformation and load of the building, the building health diagnosis method based on microtremor measurement according to claim 1 Collecting microtremor measurement data by always performing microtremor measurement and extracting microtremor measurement data before and after the occurrence of an event that may affect the health of the building. Each of the measurement data is divided into a plurality, and an index for diagnosing the soundness of the building is calculated for each divided microtremor measurement data, and the time y of the microtremor measurement data divided from the index y before the event occurs The constants ki and mi of the regression line (Equation 1) and the index y after the occurrence of the event and the regression line (Equation 1) of the regression line (Equation 1) with the time x of the divided microtremor measurement data are estimated, That By comparing the sections mi Les so that to diagnose the health of the building.
(Equation 1) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.

また、請求項2記載の常時微動計測に基づく建物の健全性診断プログラムは、建物の健全性を診断するためのコンピュータを、建物の健全性に影響を与え得る事象の発生前後の建物の常時微動の計測データを入力する手段、事象発生前並びに事象発生後の常時微動の計測データのそれぞれを複数に分割する手段、分割した常時微動の計測データ毎に建物の健全性を診断する指標を算定する手段、事象発生前の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式2)の定数ki及びmi並びに事象発生後の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式2)の定数ki及びmiを推定する手段、回帰直線のそれぞれの切片miを比較して建物の健全性を診断する手段として機能させるようにしている。
(数2) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
The building health diagnosis program based on the microtremor measurement according to claim 2 uses a computer for diagnosing the health of the building as a microtremor of the building before and after the occurrence of an event that may affect the health of the building. The means to input the measurement data, the means to divide the microtremor measurement data before and after the occurrence of the event into multiple parts, and calculate the index for diagnosing the health of the building for each divided microtremor measurement data Means, constants ki and mi of the regression line (Equation 2) between the index y before the occurrence of the event and the time x of the microtremor measurement data divided, and the time x of the microtremor measurement data divided from the index y after the occurrence of the event And a means for estimating constants ki and mi of the regression line (Equation 2) and a means for diagnosing the soundness of the building by comparing each intercept mi of the regression line.
(Equation 2) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.

更に、請求項3記載の常時微動計測に基づく建物の健全性診断プログラムは、建物の健全性を診断するためのコンピュータを、建物の常時微動の計測を常時行って収集した常時微動の計測データを入力する手段、常時微動の計測データから建物の健全性に影響を与え得る事象の発生前後の常時微動の計測データを抽出する手段、事象発生前並びに事象発生後の常時微動の計測データのそれぞれを複数に分割する手段、分割した常時微動の計測データ毎に建物の健全性を診断する指標を算定する手段、事象発生前の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式3)の定数ki及びmi並びに事象発生後の指標yと分割した常時微動の計測データの時刻xとの回帰直線(数式3)の定数ki及びmiを推定する手段、回帰直線のそれぞれの切片miを比較して建物の健全性を診断する手段として機能させるようにしている。
(数3) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
Furthermore, the building health diagnosis program based on the microtremor measurement according to claim 3 is a computer program for diagnosing the health of the building, and the microtremor measurement data collected by constantly measuring the microtremor of the building is collected. Means to input, means to extract microtremor measurement data before and after the occurrence of an event that can affect the soundness of the building from microtremor measurement data, and microtremor measurement data before and after the event Means for dividing into a plurality of means, means for calculating an index for diagnosing the soundness of a building for each divided microtremor measurement data, a regression line between the index y before the occurrence of the event and the time x of the microtremor measurement data divided ( It means for estimating the constants ki and mi the regression line (equation 3) with constant ki and mi and time x of the measurement data microtremor divided as an index y after event occurrence in equation 3), regression By comparing the respective sections mi line it is caused to function as means for diagnosing the soundness of the building.
(Expression 3) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.

したがって、この建物の健全性診断法並びに健全性診断プログラムによると、固有振動数等の建物の健全性を診断する指標自体が気温や日射、風力などの環境条件の影響を受けて周期的に変動する建物であっても、その変動の影響を受けずに健全性を診断することができる。また、常時微動データに基づいて指標を算定するので線形の範囲にある変形−荷重関係を前提として安定的に健全性を診断することができる。更に、建物の完成時又はその直後の健全時の計測データやそれに基づく健全性の指標を必要としないので、新規な建物か相当時間経過した建物かにかかわらず建物の健全性を診断することができる。   Therefore, according to this building health diagnosis method and health diagnosis program, the index itself for diagnosing building health such as natural frequency fluctuates periodically under the influence of environmental conditions such as temperature, solar radiation, and wind power. Even if it is a building that does, the health can be diagnosed without being affected by the fluctuation. Further, since the index is calculated based on the microtremor data at all times, the soundness can be stably diagnosed on the premise of the deformation-load relationship in the linear range. In addition, since it does not require measurement data at the time of completion of the building or immediately after that, or an index of soundness based on it, it is possible to diagnose the soundness of a building regardless of whether it is a new building or a building that has passed a considerable amount of time. it can.

以上説明したように、本発明の建物の健全性診断法並びに健全性診断プログラムによれば、固有振動数等の健全性診断の指標自体の周期的な変動の影響を受けずに健全性診断を行うことができると共に、線形の範囲にある変形−荷重関係を前提として健全性診断を行うことができるので健全性診断の信頼性の向上を図ることが可能である。更に、新規な建物か相当時間経過した建物かにかかわらず建物の健全性診断を行うことができるので多様な用途に対応することが可能である。   As described above, according to the soundness diagnosis method and soundness diagnosis program of a building of the present invention, soundness diagnosis can be performed without being affected by periodic fluctuations in the soundness diagnosis index itself such as the natural frequency. In addition, the soundness diagnosis can be performed on the premise of the deformation-load relationship in the linear range, so that the reliability of the soundness diagnosis can be improved. Furthermore, since the soundness diagnosis of a building can be performed regardless of whether it is a new building or a building after a considerable period of time, it is possible to deal with various uses.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1から図10に、本発明の常時微動計測に基づく建物の健全性診断法の実施形態の一例を示す。   FIG. 1 to FIG. 10 show an example of an embodiment of a building health diagnostic method based on microtremor measurement of the present invention.

この建物の健全性診断法は、図1のフローチャートに示すように、建物の常時微動の計測を常時行って常時微動の計測データを収集すると共に建物の健全性に影響を与え得る事象の発生前後の常時微動の計測データを抽出し(S1)、事象発生前並びに事象発生後の常時微動の計測データのそれぞれを複数に分割し(S2)、分割した常時微動の計測データ毎に建物の健全性を診断する指標を算定し(S3)、事象発生前の指標の回帰直線及び事象発生後の指標の回帰直線を推定し(S4)、回帰直線のそれぞれの切片を比較して建物の健全性を診断する(S5)ようにしている。   As shown in the flow chart of FIG. 1, this building health diagnostic method collects measurement data of microtremors by constantly measuring microtremors of buildings and before and after the occurrence of events that may affect the health of the buildings. The microtremor measurement data is extracted (S1), the microtremor measurement data before and after the event occurrence is divided into a plurality of pieces (S2), and the soundness of the building is divided for each divided microtremor measurement data. (S3), the regression line of the index before the event occurrence and the regression line of the index after the event occurrence are estimated (S4), and the health of the building is compared by comparing each intercept of the regression line Diagnose (S5).

本発明の健全性診断法の適用にあたっては、まず、建物の常時微動の計測を常時行って収集している常時微動の計測データから地震や強風等の建物に構造的な損傷を与え得る事象の発生前後の建物の常時微動データの抽出を行う(S1)。なお、ここでの常時微動とは例えば日常的な風や交通振動等により励起される微小振動のことを指す。また、以降においては、地震や強風等の建物に構造的な損傷を与え得る事象をイベントと呼ぶ。   In applying the soundness diagnosis method of the present invention, first, the measurement of the microtremors of the building that is constantly collected and collected from the microtremor measurement data that is constantly collected, the events that may cause structural damage to the building such as earthquakes and strong winds. The microtremor data of the building before and after the occurrence are extracted (S1). Here, the constant fine movement refers to minute vibrations excited by, for example, daily winds or traffic vibrations. In the following, an event that can cause structural damage to a building such as an earthquake or a strong wind is called an event.

常時微動の計測は、例えば、建物に設置した振動センサ等を用いて常時行う。また、常時計測している建物の常時微動の計測データからの常時微動データの抽出は、例えば、地盤や建物の地震観測に用いられてきたプレトリガー計測法とレベルトリガー方式を組み合わせた方法を用いて行う。   Measurement of microtremor is always performed using, for example, a vibration sensor installed in a building. The extraction of microtremor data from the microtremor measurement data of a building that is constantly measured uses, for example, a method that combines a pretrigger measurement method and a level trigger method that have been used for earthquake observations of the ground and buildings. Do it.

プレトリガー計測法とレベルトリガー方式を組み合わせた方法は、図2に示すように、まず、例えば振動センサ等により計測している振動の振幅の中心に対してプラス側とマイナス側のそれぞれの振幅超過閾値をトリガーレベルTL1及びTL2として設定する。   As shown in FIG. 2, the combination of the pre-trigger measurement method and the level trigger method is as follows. First, for example, the amplitude excess on the plus side and the minus side exceeds the center of the amplitude of vibration measured by a vibration sensor or the like. Threshold values are set as trigger levels TL1 and TL2.

トリガーレベルTL1及びTL2は、日常的な風、交通振動、他の人為的振動のレベルを考慮し、本発明が対象としているイベント以外の振動では閾値を超えないように作業者が適当な閾値を設定する。具体的には例えば、1及び−1[gal]程度にすることが考えられるが、トリガーレベルTL1及びTL2はこれに限られるものではなく、これより大きくてもこれより小さくても構わない。   The trigger levels TL1 and TL2 take into consideration the levels of daily wind, traffic vibration, and other artificial vibrations, and the operator sets an appropriate threshold value so that the threshold value is not exceeded for vibrations other than the event targeted by the present invention. Set. Specifically, for example, it can be considered to be about 1 and −1 [gal], but the trigger levels TL1 and TL2 are not limited to this, and may be larger or smaller than this.

プレトリガー計測法とレベルトリガー方式を組み合わせた方法では、計測している振動波形1の振動振幅がトリガーレベルTL1又はTL2を超えた場合に(図2中のトリガー点TP1)その時点をイベント発生時点T0とし、イベント発生時点T0前の計測時間T1とイベント発生時点T0後の計測時間T2を計測対象時間としてその計測対象時間内の振動データを最終的な計測対象R1とする。   In the method combining the pre-trigger measurement method and the level trigger method, when the vibration amplitude of the measured vibration waveform 1 exceeds the trigger level TL1 or TL2 (trigger point TP1 in FIG. 2), that point is the event occurrence point. The measurement time T1 before the event occurrence time T0 and the measurement time T2 after the event occurrence time T0 are set as the measurement target time, and the vibration data within the measurement target time is set as the final measurement target R1.

計測時間T1は後述するイベント発生前の建物の健全性診断の指標の算定に必要とされるデータ量(時間)を考慮して作業者が設定する。また、計測時間T2はイベント自体の継続時間及びイベント発生後の建物の健全性診断の指標の算定に必要とされるデータ量(時間)を考慮して作業者が設定する。具体的には例えば、計測時間T1及びT2それぞれ5分以上、好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上、更により好ましくは40分以上である。なお、計測時間T1とT2は同じ長さでも異なる長さでもどちらでも構わない。   The measurement time T1 is set by the operator in consideration of the amount of data (time) required for calculation of an index for the soundness diagnosis of the building before the event described later. Also, the measurement time T2 is set by the operator in consideration of the duration of the event itself and the amount of data (time) required for calculation of an index for building health diagnosis after the event occurs. Specifically, for example, each of the measurement times T1 and T2 is 5 minutes or more, preferably 10 minutes or more, more preferably 20 minutes or more, still more preferably 30 minutes or more, and even more preferably 40 minutes or more. Note that the measurement times T1 and T2 may be the same length or different lengths.

なお、計測対象時間の決定法はプレトリガー計測法に限られるものではなく、イベント発生前後の建物の健全性診断の指標の算定に必要とされる常時微動データの計測対象時間を決定可能な方法であればいずれの方法であっても構わない。例えば、計測対象時間の決定法としてプレトリガー計測法の代わりにプレ・ポストトリガー計測法を用いても良い。   Note that the method of determining the measurement target time is not limited to the pre-trigger measurement method, but a method that can determine the measurement target time of microtremor data required for calculating the index for building health diagnosis before and after the event occurs. Any method can be used. For example, a pre / post-trigger measurement method may be used instead of the pre-trigger measurement method as a method for determining the measurement target time.

プレ・ポストトリガー計測法は、図3に示すように、計測している振動波形1の振動振幅がトリガーレベルTL1又はTL2を超えた場合に(図3中のトリガー点TP1)その時点をイベント発生時点T0とし、イベント発生時点T0前の計測時間T1をイベント発生前の計測対象時間とするところまではプレトリガー計測法と同様である。   In the pre-post trigger measurement method, as shown in FIG. 3, when the vibration amplitude of the measured vibration waveform 1 exceeds the trigger level TL1 or TL2 (trigger point TP1 in FIG. 3), an event is generated at that point. The process is the same as the pre-trigger measurement method until the time T0 and the measurement time T1 before the event occurrence time T0 is set as the measurement target time before the event occurrence.

プレ・ポストトリガー計測法では更に、イベントに対応する振動波形1の振動振幅がトリガーレベルTL1及びTL2より小さくなった場合に(ポストトリガー点TP2)その時点をイベント終了時点T3とし、イベント発生時点T0からイベント終了時点T3までの計測時間T4をイベント継続中の計測対象時間とすると共にイベント終了時点T3後の計測時間T5をイベント終了後の計測対象時間とする。そして、以上により、計測時間T1、T4及びT5を計測対象時間としてその計測対象時間内の振動データを最終的な計測対象R2とする。   In the pre-post-trigger measurement method, when the vibration amplitude of the vibration waveform 1 corresponding to the event becomes smaller than the trigger levels TL1 and TL2 (post-trigger point TP2), that point is set as the event end point T3, and the event occurrence point T0. Measurement time T4 from the event end time T3 to the measurement target time during the event continuation, and measurement time T5 after the event end time T3 as the measurement target time after the event end. And by the above, measurement time T1, T4, and T5 are made into measurement object time, and the vibration data in the measurement object time are made into final measurement object R2.

プレ・ポストトリガー計測法では、プレトリガー計測法とは異なり、イベント継続時間である計測時間T4を自働で制御できる。したがって、プレ・ポストトリガー計測法を用いる場合には、計測時間T1は後述するイベント発生前の建物の健全性診断の指標の算定に必要とされるデータ量(時間)を考慮して作業者が設定し、計測時間T5はイベント発生後の建物の健全性診断の指標の算定に必要とされるデータ量(時間)を考慮して作業者が設定する。なお、イベント継続時間である計測時間T4は、イベントの種類により異なるが、イベントが例えば地震であれば地震の発生メカニズムや伝播経路によっても異なり、地震動によっては10秒以下から数10分までの幅を有する。よって、イベント継続時間を自働で制御できるプレ・ポストトリガー計測法はプレトリガー計測法と比べ、イベント継続時間にかかわらず一定のイベント発生後の計測時間T5を確保するという特徴を有する。   Unlike the pre-trigger measurement method, the pre-post trigger measurement method can automatically control the measurement time T4 that is the event duration. Therefore, when the pre / post-trigger measurement method is used, the measurement time T1 is determined by the operator in consideration of the amount of data (time) required for calculating an index for building soundness diagnosis before the event described later. The measurement time T5 is set by the operator in consideration of the amount of data (time) required for calculating the index for the soundness diagnosis of the building after the event occurs. Note that the measurement time T4, which is the event duration, varies depending on the type of event, but if the event is an earthquake, for example, it varies depending on the occurrence mechanism and propagation path of the earthquake, and ranges from less than 10 seconds to several tens of minutes depending on the earthquake motion. Have Therefore, the pre / post-trigger measurement method that can automatically control the event duration has a feature of ensuring a constant measurement time T5 after the occurrence of an event, regardless of the event duration, compared to the pre-trigger measurement method.

なお、建物の常時微動の計測を常時行って収集している常時微動の計測データから上記で述べた方法により計測対象R1やR2の常時微動データを抽出する方法としては、例えば以下の二つの方法が考えられる。   In addition, as a method for extracting the microtremor data of the measurement objects R1 and R2 by the above-described method from the microtremor measurement data collected by constantly measuring the microtremors of the building, for example, the following two methods are used. Can be considered.

第一の方法は、振動センサ等に記録装置を設け、通常時には更新を繰り返しながら少なくとも計測時間T1に対応する最新の常時微動データをこの記録装置に記録するようにする。そして、イベントの発生を検知した場合には計測時間T1に対応する最新の常時微動データに対しては以後更新をせずにイベント発生前データとして保持し続け、更にイベント発生後の計測時間T2又はT4及びT5に対応する常時微動データをイベント発生後データとして記録する方法である。これにより、結果として、常時計測している建物の常時微動の計測データから計測対象R1やR2の常時微動データを抽出することとなる。   In the first method, a recording device is provided in a vibration sensor or the like, and the latest continuous fine movement data corresponding to at least the measurement time T1 is recorded in the recording device while updating is repeated in normal times. Then, when the occurrence of an event is detected, the latest continuous fine movement data corresponding to the measurement time T1 is not updated and kept as data before the occurrence of the event. Further, the measurement time T2 after the occurrence of the event or This is a method for recording constantly fine movement data corresponding to T4 and T5 as data after the occurrence of an event. As a result, the continuous fine movement data of the measurement objects R1 and R2 are extracted from the continuous fine movement measurement data of the building that is constantly measured.

第二の方法は、振動センサ等に記録装置を設け、常時計測している建物の常時微動の計測データをそのまま全て磁気データ或いは紙データとして記録しておいて、記録された一定期間の常時微動データから計測対象R1やR2の常時微動データを抽出する方法である。   The second method is to provide a recording device in the vibration sensor, etc., and record all the fine movement measurement data of the building that is constantly measured as magnetic data or paper data as it is, This is a method for extracting fine movement data of the measurement objects R1 and R2 from the data.

ここで、記録装置とは、例えば磁気ディスクドライブ及び差し込みと取り出しが可能な磁気ディスクである。また、更新とは、例えば磁気ディスに記録された古いデータに新しいデータを上書きして記録することである。   Here, the recording device is, for example, a magnetic disk drive and a magnetic disk that can be inserted and removed. In addition, the update is, for example, recording by overwriting new data on old data recorded on a magnetic disk.

イベント発生の検知方法はレベルトリガー方式に限られるものではなく、例えばSTA/LTA方式を用いても良い。   The detection method of event occurrence is not limited to the level trigger method, and for example, the STA / LTA method may be used.

STA/LTA方式は、2つの異なる時間区間の平均的な振動振幅の比をとり、この比が予め設定した閾値を超過したことをもってイベントが発生したと判定する方法である(STA:Short Time Average、LTA:Long Time Average)。具体的には、短い時間区間の振動振幅の平均をSTAとし、短い時間区間を含み且つそれより長い時間区間の振動振幅の平均をLTAとし、STA/LTAの値が予め設定した閾値を超過した場合にイベントが発生したと判定する。例えば地震発生時であれば短い時間区間の振動振幅の平均STAが長い時間区間の振動振幅の平均LTAと比べて急激に大きくなるためにSTA/LTAの値が大きくなる原理を利用した方法である。   The STA / LTA method is a method of taking an average vibration amplitude ratio in two different time intervals and determining that an event has occurred when this ratio exceeds a preset threshold (STA: Short Time Average). , LTA: Long Time Average). Specifically, the average of the vibration amplitude in the short time interval is STA, the average of the vibration amplitude in the long time interval including the short time interval is LTA, and the STA / LTA value exceeds a preset threshold. It is determined that an event has occurred. For example, in the event of an earthquake, this is a method that uses the principle that the STA / LTA value increases because the average STA of vibration amplitude in a short time section increases rapidly compared to the average LTA of vibration amplitude in a long time section. .

本発明にSTA/LTA方式を適用する場合に、短い時間区間及び長い時間区間の時間長さ並びにSTA/LTAの閾値に特に制限はなく、対象とするイベントを考慮して作業者がそれぞれ適当な値を設定する。具体的には例えば、STAに対応する短い時間区間は1秒から2秒、LTAに対応する長い時間区間は10秒から20秒並びにSTA/LTAの閾値は3から5程度とすることが考えられる。   When the STA / LTA method is applied to the present invention, the time length of the short time section and the long time section and the threshold value of the STA / LTA are not particularly limited, and each worker is appropriate in consideration of the target event. Set the value. Specifically, for example, it is conceivable that a short time interval corresponding to STA is 1 to 2 seconds, a long time interval corresponding to LTA is 10 to 20 seconds, and a threshold of STA / LTA is about 3 to 5. .

次に、S1により得られた常時微動データを用いて建物の健全性診断の指標の算定を行う(S2〜S3)。なお、ここでの指標とは、建物の固有振動数や剛性等を指す。   Next, the index of the soundness diagnosis of a building is calculated using the microtremor data obtained in S1 (S2 to S3). The index here refers to the natural frequency or rigidity of the building.

本実施形態では、プレトリガー計測法とレベルトリガー方式を組み合わせた方法で常時微動の抽出を行い(S1)、図4に示すように、振動波形1の振動振幅がトリガー点TP1でトリガーレベルTL1を超過し、その時点T0の前後の計測時間T1とT2を計測対象時間とする計測対象R1内の常時微動データD1及びD2が得られた場合について説明する。   In the present embodiment, the fine movement is always extracted by a method combining the pre-trigger measurement method and the level trigger method (S1), and as shown in FIG. 4, the vibration amplitude of the vibration waveform 1 is the trigger level TL1 at the trigger point TP1. A case will be described in which the constant fine movement data D1 and D2 in the measurement target R1 are obtained that exceed the measurement time T1 and T2 before and after the time T0 and have the measurement target time.

まず、S1の結果得られた計測対象R1内のイベント発生前と発生後の常時微動データD1及びD2をそれぞれ分割する(S2)。   First, the fine movement data D1 and D2 before and after the event occurrence in the measurement target R1 obtained as a result of S1 are respectively divided (S2).

本実施形態では、イベント発生前の常時微動データD1を時間順に三分割し、イベント発生後の常時微動データD2を時間順に四分割する。そして、本発明の健全性診断法ではイベント継続中の振動振幅に該当するデータは使わず、四分割したイベント発生後の常時微動データD2のうち、イベント継続中の振動振幅を含む区分の常時微動データd0を除いて診断を行う。言い換えれば、イベント発生後の常時微動データD2についてはイベント継続中のデータを除いた残りの部分を三分割している。   In the present embodiment, the continuous fine movement data D1 before the occurrence of the event is divided into three in order of time, and the continuous fine movement data D2 after the occurrence of the event is divided into four in order of time. In the soundness diagnosis method of the present invention, data corresponding to the vibration amplitude during the event is not used, and the continuous fine motion of the section including the vibration amplitude during the event in the quarterly fine motion data D2 after the event occurrence divided into four is used. Diagnosis is performed except for data d0. In other words, with respect to the constantly fine movement data D2 after the occurrence of the event, the remaining part excluding the data during the event is divided into three.

以上により、本実施形態では、イベント発生前の三つの分割データd1、d2及びd3(以下、分割データd1〜d3と表記する)とイベント発生後の三つの分割データd4、d5及びd6(以下、分割データd4〜d6と表記する。更に、先の分割データd1〜d3と合わせて分割データd1〜d6と表記する)を用いて診断を行う。   As described above, in the present embodiment, the three divided data d1, d2, and d3 (hereinafter referred to as divided data d1 to d3) before the occurrence of the event and the three divided data d4, d5, and d6 (hereinafter referred to as the divided data) after the occurrence of the event. Diagnosis is performed using the divided data d4 to d6 and the divided data d1 to d6 together with the previous divided data d1 to d3.

なお、常時微動データD1及びD2の分割数は三分割や四分割には限られず、プレトリガー計測法を用いて常時微動の計測を行った場合には、イベント発生前の常時微動データD1については少なくとも二分割以上、イベント発生後の常時微動データD2についてはイベント継続中の振動振幅を含むデータを除いた残りの部分を少なくとも二分割以上するものであれば良い。   Note that the number of divisions of the fine movement data D1 and D2 is not limited to three divisions or four divisions, and when the fine movement measurement is performed using the pre-trigger measurement method, For the fine movement data D2 after the occurrence of the event, at least in two or more divisions, the remaining portion excluding data including the vibration amplitude during the event may be divided into at least two or more.

常時微動データD1及びD2の分割数は、計測時間T1とT2のそれぞれの長さ及び建物の健全性診断の指標の算定に必要とされるデータ量を考慮して作業者が適当な分割数を判断する。また、イベント発生前の常時微動データD1の分割数とイベント発生後の常時微動データD2の分割数は同じであっても異なっていてもどちらでも良い。更に、常時微動データD1及びD2の分割は、等分に分割しても良いし不等分に分割しても良い。   The number of divisions of the microtremor data D1 and D2 is determined by the operator in consideration of the length of each of the measurement times T1 and T2 and the amount of data required for calculating the index for building health diagnosis. to decide. Further, the division number of the fine movement data D1 before the event occurrence and the division number of the fine movement data D2 after the occurrence of the event may be the same or different. Furthermore, the fine movement data D1 and D2 may be divided equally or evenly.

ここで、前記のプレ・ポストトリガー計測法を用いて常時微動データの計測を行った場合には、計測時間T1及びT5に対応する常時微動データを分割して指標の算定に用いる。この場合には、計測時間T5に対応する常時微動データにはイベント継続中の振動振幅は含まれていないので、分割データのいずれかを除くことなく全ての分割データを用いる。したがって、イベント発生前と発生後のそれぞれの常時微動データを少なくとも二分割以上すれば良いことになる。   Here, when the fine movement data is measured using the pre-post trigger measurement method, the fine movement data corresponding to the measurement times T1 and T5 is divided and used for calculation of the index. In this case, since the vibration data during the event continuation is not included in the continuous fine movement data corresponding to the measurement time T5, all the divided data are used without removing any of the divided data. Therefore, it is only necessary to divide the fine movement data before and after the occurrence of the event into at least two parts.

続いて、S2で分割した分割データd1〜d6毎に建物の健全性診断の指標を算定する(S3)。なお、常時微動データに基づく建物の固有振動数や剛性の算定方法自体は周知の方法であるのでここでは詳細については省略する(例えば、特許文献1)。   Subsequently, an index for building health diagnosis is calculated for each of the divided data d1 to d6 divided in S2 (S3). Note that the method for calculating the natural frequency and rigidity of the building based on the microtremor data is a well-known method, and therefore details thereof are omitted here (for example, Patent Document 1).

更に、分割データd1〜d6毎に、各分割データd1〜d6の時間区分の中間の時刻をそれぞれの分割データd1〜d6に対応した時刻として与える。   Furthermore, for each of the divided data d1 to d6, an intermediate time in the time segment of each divided data d1 to d6 is given as a time corresponding to each divided data d1 to d6.

以上により、分割データd1〜d6毎に健全性診断の指標である建物の固有振動数や剛性と時刻の組み合わせのデータが整理される。   As described above, the data of the combination of the natural frequency of the building, the rigidity, and the time, which are indexes for soundness diagnosis, are arranged for each of the divided data d1 to d6.

本実施形態では、イベント発生前の常時微動データD1を三つに分割した分割データd1〜d3毎の健全性診断の指標と時刻の組み合わせのデータを時刻順に2a、2b及び2c(以下、イベント発生前データ2a〜2cと表記する)とし、イベント発生後の常時微動データD2を三つに分割した分割データd4〜d6毎の健全性診断の指標と時刻の組み合わせのデータを時刻順に3a、3b及び3c(以下、イベント発生後データ3a〜3cと表記する)とする。   In this embodiment, the combination of the soundness diagnosis index and time for each of the divided data d1 to d3 obtained by dividing the microtremor data D1 before the occurrence of the event into three data in the order of time 2a, 2b and 2c (hereinafter, event occurrence) The data of the combination of the soundness diagnosis index and the time for each of the divided data d4 to d6 obtained by dividing the microtremor data D2 after the occurrence of the event into three in the order of time 3a, 3b and 3c (hereinafter referred to as post-event occurrence data 3a to 3c).

次に、イベント発生前データ2a〜2cと発生後データ3a〜3c別に回帰直線を推定する(S4)。   Next, regression lines are estimated separately for the pre-event data 2a to 2c and the post-event data 3a to 3c (S4).

具体的には、(式1)の定数ki及びmiを推定する。   Specifically, the constants ki and mi in (Expression 1) are estimated.

(式1)yi=ki×xi+mi   (Formula 1) yi = ki × xi + mi

ここに、x:時刻、y:健全性診断の指標、k:回帰直線の傾き、m:回帰直線の切片、添字i:イベント発生前データ2a〜2cの場合はi=1、イベント発生後データ3a〜3cの場合はi=2。   Here, x: time, y: index of soundness diagnosis, k: slope of regression line, m: intercept of regression line, subscript i: i = 1 in case of pre-event data 2a to 2c, post-event data In the case of 3a-3c, i = 2.

なお、回帰直線の推定は、例えば最小二乗法を用いて行うことができる。   The regression line can be estimated using, for example, the least square method.

以降では、最終的にイベント発生前後で健全性診断の指標が変化していないと判断し得る場合(図5から図7)と、変化していると判断し得る場合(図8から図10)のそれぞれの場合について説明する。具体的には、S3の結果得られたイベント発生前データ2a〜2c及びイベント発生後データ3a〜3cをプロットした場合に、例えば図5のようになる場合と図8のようになる場合のそれぞれについて説明する。なお、図5から図10の横軸は時刻を表し、縦軸は健全性診断の指標を表し、図中の時刻T0はイベント発生時点を表す。   Thereafter, when it can be determined that the soundness diagnosis index has not changed before and after the event occurrence (FIGS. 5 to 7) and when it can be determined that it has changed (FIGS. 8 to 10). Each case will be described. Specifically, when the pre-event occurrence data 2a to 2c and the post-event data 3a to 3c obtained as a result of S3 are plotted, for example, a case as shown in FIG. 5 and a case as shown in FIG. Will be described. 5 to 10, the horizontal axis represents time, the vertical axis represents a soundness diagnosis index, and time T0 in the figure represents an event occurrence time point.

図6及び図9に示すように、イベント発生前データ2a〜2cの回帰直線4及びイベント発生後データ3a〜3cの回帰直線5を推定する。   As shown in FIGS. 6 and 9, the regression line 4 of the pre-event data 2a to 2c and the regression line 5 of the post-event data 3a to 3c are estimated.

ここで、本発明では、回帰直線4及び5を推定する際に回帰直線4と5の傾きk1とk2は同一であると仮定する。これは、建物の固有振動数は周期的に変動しているとの知見に基づく仮定であって、イベント発生前と発生後で健全性診断の指標は同様の傾向で変動しているとする仮定である。   Here, in the present invention, when estimating the regression lines 4 and 5, it is assumed that the slopes k1 and k2 of the regression lines 4 and 5 are the same. This is based on the knowledge that the natural frequency of the building fluctuates periodically, and it is assumed that the health diagnosis index fluctuates in the same way before and after the event. It is.

傾きk1とk2は同一であると仮定した回帰直線4及び5の推定は、例えば、まず回帰直線4を推定して得られた傾きk1を回帰直線5の傾きとして与えた上で回帰直線5を推定するようにしても良いし、回帰直線4と回帰直線5をそれぞれ推定してそれぞれの傾きk1とk2の平均値をあらためて傾きとして与えて回帰直線4と回帰直線5を推定するようにしても良い。   The estimation of the regression lines 4 and 5 assuming that the slopes k1 and k2 are the same is performed, for example, by first giving the slope k1 obtained by estimating the regression line 4 as the slope of the regression line 5, Alternatively, the regression line 4 and the regression line 5 may be estimated, and the average values of the respective slopes k1 and k2 may be newly given as slopes to estimate the regression line 4 and the regression line 5. good.

続いて、建物の健全性の診断を行う(S5)。   Subsequently, the soundness of the building is diagnosed (S5).

建物の健全性の診断は、S4で推定した回帰直線4と回帰直線5の切片m1とm2を比較することにより行う。   The soundness of the building is diagnosed by comparing the intercepts m1 and m2 of the regression line 4 and the regression line 5 estimated in S4.

具体的には、回帰直線4と回帰直線5を推定した結果、図6に示すように、それぞれの切片m1とm2が同じ若しくは殆ど同じになっている場合には、健全性診断の指標はイベント発生前後で変化しておらず、建物の健全性は損なわれていないと判断する。   Specifically, as a result of estimating the regression line 4 and the regression line 5, as shown in FIG. 6, when the intercepts m1 and m2 are the same or almost the same, the health diagnosis index is an event. It has not changed before and after the occurrence, and it is judged that the soundness of the building has not been impaired.

これは、回帰直線4と回帰直線5の推定結果から、例えば図7に示すような指標の周期変動波形6が想定されるという考え方に基づくものである。即ち、図5や図6からは健全性診断の指標は経時的に見かけ上変化しているが、この見かけ上の変化は、例えば指標の周期変動波形6のように示される健全性診断の指標自体の周期的な変動によるものであって健全性診断の指標が本質的に変化しているものではないとの知見に基づくものである。   This is based on the idea that, from the estimation results of the regression line 4 and the regression line 5, for example, a periodic fluctuation waveform 6 of an index as shown in FIG. 7 is assumed. That is, from FIG. 5 and FIG. 6, the soundness diagnosis index apparently changes over time. This apparent change is, for example, the soundness diagnosis index shown as the periodic fluctuation waveform 6 of the index. It is based on the knowledge that it is due to its own periodic fluctuations and that the index of health diagnosis is not essentially changing.

ここで、建物の健全性が損なわれているか否かを判断するための回帰直線4と5の切片m1とm2の差の大きさは、算定された健全性診断の指標の大きさやばらつき等を考慮して診断対象の建物毎に作業者が適当な基準値を判断する。例えば、切片m1とm2の差として0.02[Hz]程度を基準として用いたり、変化率として1[%]程度を基準として用いたりすることが考えられる。しかしながら、建物の健全性を診断する際の切片の差や変化率の基準値はこれに限られるものではなく、これより小さい基準値を用いても良いし又はこれより大きい基準値を用いても良い。   Here, the magnitude of the difference between the intercepts m1 and m2 of the regression lines 4 and 5 for judging whether or not the soundness of the building is impaired depends on the size and variation of the calculated soundness diagnosis index. In consideration, an operator determines an appropriate reference value for each building to be diagnosed. For example, it is conceivable that the difference between the intercepts m1 and m2 is about 0.02 [Hz], or the change rate is about 1 [%]. However, the reference value of the difference or rate of change in diagnosing the soundness of the building is not limited to this, and a reference value smaller than this or a reference value larger than this may be used. good.

なお、イベント発生前後の健全性診断の指標を単純に比較した場合には、具体的には例えばイベント発生前データ2cとイベント発生後データ3aの指標をそのまま比較したり、イベント発生前データ2a〜2cとイベント発生後データ3a〜3cのそれぞれの指標の平均を比較したりした場合には、本質的には健全性診断の指標は変化していないにもかかわらずイベント発生前後で見かけ上の差があるために建物の健全性が損なわれていると誤った判断をしてしまう可能性があることが分かる。   In addition, when the index of the health diagnosis before and after the occurrence of the event is simply compared, specifically, for example, the index of the pre-event data 2c and the post-event data 3a are directly compared, or the pre-event data 2a to 2 When the average of each index of 2c and post-event data 3a to 3c is compared, an apparent difference between before and after the occurrence of the event even though the health diagnosis index is essentially unchanged. It can be seen that there is a possibility of making a wrong judgment that the soundness of the building is impaired due to

一方で、回帰直線4と回帰直線5を推定した結果、図9に示すように、それぞれの切片m1とm2が異なっている場合には、健全性診断の指標がイベント発生前後で変化し、建物の健全性が損なわれていると判断する。   On the other hand, as a result of estimating the regression line 4 and the regression line 5, as shown in FIG. 9, when the intercepts m1 and m2 are different from each other, the health diagnosis index changes before and after the occurrence of the event. Judge that the soundness of the

これは、回帰直線4と回帰直線5の推定結果から、例えば図10に示すような指標の周期変動波形6a及び6bが想定されるという考え方に基づくものである。図10は、イベントの発生によって健全性診断の指標が本質的に変化し、イベント発生時点T0を境にイベント発生前の指標の周期変動波形6aがイベント発生後の指標の周期変動波形6bに遷移したことを示している。   This is based on the idea that, based on the estimation results of the regression line 4 and the regression line 5, for example, periodic fluctuation waveforms 6a and 6b having indices as shown in FIG. FIG. 10 shows that the index of health diagnosis essentially changes due to the occurrence of an event, and the period fluctuation waveform 6a of the index before the event occurrence changes to the period fluctuation waveform 6b of the index after the event occurrence at the boundary of the event occurrence time T0. It shows that.

ここで、回帰直線4と回帰直線5の切片m1とm2の差Δmに基づいて建物の健全性が損なわれていると判断する際の基準は、前記と同様に、例えば、切片m1とm2の差Δmとして0.02[Hz]程度を基準として用いたり、変化率として1[%]程度を基準として用いたりすることが考えられる。しかしながら、建物の健全性を診断する際の切片の差や変化率の基準値はこれに限られるものではなく、これより小さい基準値を用いても良いし又はこれより大きい基準値を用いても良い。   Here, the criteria for determining that the soundness of the building is impaired based on the difference Δm between the intercepts m1 and m2 of the regression line 4 and the regression line 5 are, for example, the intercepts m1 and m2 as described above. It is conceivable to use about 0.02 [Hz] as a reference for the difference Δm, or to use about 1 [%] for the rate of change. However, the reference value of the difference or rate of change in diagnosing the soundness of the building is not limited to this, and a reference value smaller than this or a reference value larger than this may be used. good.

なお、イベント発生前後の健全性診断の指標を単純に比較した場合には、具体的には例えばイベント発生前データ2cとイベント発生後データ3aの健全性診断の指標をそのまま比較した場合には、本質的に健全性診断の指標が変化しているにもかかわらずイベント発生前後で見かけ上差がないために建物の健全性は損なわれていないと誤った判断をしてしまう可能性があることが分かる。   In addition, when simply comparing the health diagnosis index before and after the event occurrence, specifically, for example, when comparing the health diagnosis index of the pre-event data 2c and the post-event data 3a as they are, In spite of the change in the health diagnosis index, there is no apparent difference between before and after the event, so there is a possibility of misjudging that the health of the building is not impaired. I understand.

以上の手順を採用することにより、建物の固有振動数や剛性が気温や日射、風力等に依存して周期的に変動する場合であっても、その変動を除去して正確にイベント発生前後の構造的な損傷のみに依存した固有振動数や剛性の変化量を評価することが可能となり、それに基づいて建物の健全性を診断することが可能となる。   By adopting the above procedure, even if the natural frequency and rigidity of the building fluctuate periodically depending on the temperature, solar radiation, wind power, etc. It becomes possible to evaluate the natural frequency and the amount of change in rigidity depending only on structural damage, and based on this, it becomes possible to diagnose the soundness of the building.

続いて、本実施形態の建物の健全性診断法をプログラムを用いて行う場合の一例を示す。   Then, an example in the case of performing the soundness diagnostic method of the building of this embodiment using a program is shown.

図11に、健全性診断プログラムを実施するための健全性診断装置7の全体構成を示す。なお、本実施形態では、振動センサ等に記録装置を設け、常時計測している建物の常時微動の計測データをそのまま全て記録しておいて、記録された一定期間の常時微動データからプレトリガー計測法とレベルトリガー方式を組み合わせた方法で計測対象R1の常時微動データを抽出する場合について説明する。   FIG. 11 shows the overall configuration of the health diagnostic apparatus 7 for executing the health diagnostic program. In this embodiment, a recording device is provided in the vibration sensor or the like, and all the measurement data of the microtremor of the building that is constantly measured is recorded as it is, and the pretrigger measurement is performed from the recorded microtremor data for a certain period. A case will be described in which continuous fine movement data of the measurement target R1 is extracted by a method combining a method and a level trigger method.

制御部8には、記憶部9、指示入力部10、表示部11及びデータ入力部12が接続されている。また、メモリ13が制御部8に内蔵若しくは接続されている。   A storage unit 9, an instruction input unit 10, a display unit 11, and a data input unit 12 are connected to the control unit 8. The memory 13 is built in or connected to the control unit 8.

制御部8は、記憶部9に記憶されている健全性診断プログラムにより健全性診断装置7全体の制御並びに健全性診断に係る演算を行うものであり、建物の常時微動の計測を常時行って収集している常時微動の計測データからイベントの発生前後の建物の常時微動データの抽出を行う常時微動データ抽出処理部、イベント発生前と発生後の常時微動データをそれぞれ分割する常時微動データ分割処理部、分割データ毎に建物の健全性診断の指標を算定する健全性診断指標算定処理部、イベント発生前データと発生後データ別に回帰直線を推定する回帰直線推定処理部、算定された回帰直線の切片の値を基に建物の健全性の診断を行う健全性判定処理部を構成している。   The control unit 8 performs the calculation related to the control of the whole health diagnosis device 7 and the soundness diagnosis by the soundness diagnosis program stored in the storage unit 9, and always collects the fine tremors of the building. The continuous fine movement data extraction processing section that extracts the continuous fine movement data of the building before and after the occurrence of the event from the continuous fine movement measurement data, and the continuous fine movement data division processing section that divides the continuous fine movement data before and after the occurrence of the event. , Health diagnostic index calculation processing unit that calculates building health diagnostic index for each divided data, regression line estimation processing unit that estimates regression line by data before event occurrence and data after event occurrence, intercept of calculated regression line The soundness determination processing unit for diagnosing the soundness of the building based on the value of is configured.

制御部8は例えばCPUである。記憶部9は例えばハードディスクである。指示入力部10は少なくとも作業者の命令をCPUに与えるためのインターフェイスであり、例えばキーボードである。表示部11は例えばディスプレイである。データ入力部12は少なくとも電子媒体に記録されたデータをCPUに与えるものであり、例えば磁気ディスクドライブである。   The control unit 8 is a CPU, for example. The storage unit 9 is a hard disk, for example. The instruction input unit 10 is an interface for giving at least an operator command to the CPU, and is, for example, a keyboard. The display unit 11 is a display, for example. The data input unit 12 supplies at least data recorded on an electronic medium to the CPU, and is a magnetic disk drive, for example.

まず、建物の常時微動の計測を常時行って収集している常時微動の計測データからイベントの発生前後の建物の常時微動データの抽出を行う(S1)。ここで、常時微動データの計測と収集は記録装置を設けた振動センサ等により常時行われ、イベント前後の常時微動データ若しくは常時計測している常時微動データの全てが例えば磁気ディスクドライブ或いは装着・脱着可能な磁気ディスク等の記録装置に格納されている。   First, the continuous fine movement data of the building before and after the occurrence of the event is extracted from the continuous fine movement measurement data collected by constantly measuring the fine movement of the building (S1). Here, the measurement and collection of microtremor data is always performed by a vibration sensor or the like provided with a recording device. All of the microtremor data before and after the event or all the microtremor data that is constantly measured is, for example, a magnetic disk drive or attached / detached. It is stored in a recording device such as a magnetic disk.

制御部8の常時微動データ抽出処理部は、磁気ディスクに記録された一定期間の常時微動の計測データとして、時刻及びその時刻に対応する振動振幅のデータをデータ入力部12を介して読み込む。   The microtremor data extraction processing unit of the control unit 8 reads the time and vibration amplitude data corresponding to the time through the data input unit 12 as the microtremor measurement data recorded on the magnetic disk for a certain period.

そして、読み込んだ振動振幅がトリガーレベルTL1又はTL2を超えた場合にはその時刻をイベント発生時点T0として記憶部9又はメモリ13に記憶する。そして、イベント発生時点T0前の計測時間T1に対応する時刻及びその時刻に対応する振動振幅のデータをデータ入力部12を介して磁気ディスクから読み込み、常時微動データD1として記憶部9又はメモリ13に記憶する。また、イベント発生時点T0後の計測時間T2に対応する時刻及びその時刻に対応する振動振幅のデータをデータ入力部12を介して磁気ディスクから読み込み、常時微動データD2として記憶部9又はメモリ13に記憶する。   When the read vibration amplitude exceeds the trigger level TL1 or TL2, the time is stored in the storage unit 9 or the memory 13 as the event occurrence time T0. Then, the time corresponding to the measurement time T1 before the event occurrence time T0 and the vibration amplitude data corresponding to the time are read from the magnetic disk via the data input unit 12, and are always stored in the storage unit 9 or the memory 13 as the fine movement data D1. Remember. Further, the time corresponding to the measurement time T2 after the event occurrence time T0 and the vibration amplitude data corresponding to the time are read from the magnetic disk via the data input unit 12, and are always stored in the storage unit 9 or the memory 13 as the fine movement data D2. Remember.

次に、S1の結果得られたイベント発生前と発生後の常時微動データD1及びD2をそれぞれ分割する(S2)。   Next, the fine movement data D1 and D2 before and after the event occurrence obtained as a result of S1 are respectively divided (S2).

制御部8の常時微動データ分割処理部は、まず、S1で記憶部9又はメモリ13に記憶した常時微動データD1(時刻及びその時刻に対応する振動振幅のデータ)を読み込む。   The fine movement data division processing unit of the control unit 8 first reads the fine movement data D1 (time and vibration amplitude data corresponding to the time) stored in the storage unit 9 or the memory 13 in S1.

そして、読み込んだ常時微動データD1の時刻をもとに常時微動データD1全体をその時刻順に三分割し、分割データd1〜d3として記憶部9又はメモリ13に記憶する。   Then, based on the time of the read fine movement data D1, the entire fine movement data D1 is divided into three parts in the order of the time and stored in the storage unit 9 or the memory 13 as divided data d1 to d3.

次に、制御部8の常時微動データ分割処理部は、S1で記憶部9又はメモリ13に記憶した常時微動データD2を読み込む。   Next, the fine movement data division processing unit of the control unit 8 reads the fine movement data D2 stored in the storage unit 9 or the memory 13 in S1.

そして、読み込んだ常時微動データD2の時刻をもとに常時微動データD2全体をその時刻順に三分割し、分割データd4〜d6として記憶部9又はメモリ13に記憶する。   Then, based on the time of the read fine movement data D2, the entire fine movement data D2 is divided into three parts in the order of the time and stored in the storage unit 9 or the memory 13 as divided data d4 to d6.

なお、S1の常時微動データの抽出を健全性診断装置7で行っていない場合には、記憶部9又はメモリ13に記憶した常時微動データD1及びD2を読み込む代わりに、磁気ディスクに記録された常時微動データD1及びD2をデータ入力部12を介して読み込むようにしても良い。   When the health diagnosis device 7 does not extract the constantly fine movement data in S1, instead of reading the fine movement data D1 and D2 stored in the storage unit 9 or the memory 13, the continuous fine movement data recorded on the magnetic disk is stored. The fine movement data D1 and D2 may be read via the data input unit 12.

次に、S2で分割した分割データd1〜d6毎に建物の健全性診断の指標を算定する(S3)。   Next, an index for building health diagnosis is calculated for each of the divided data d1 to d6 divided in S2 (S3).

まず、制御部8の健全性診断指標算定処理部は、S2で記憶部9又はメモリ13に記憶した分割データd1を読み込む。   First, the soundness diagnostic index calculation processing unit of the control unit 8 reads the divided data d1 stored in the storage unit 9 or the memory 13 in S2.

そして、分割データd1(時刻及びその時刻に対応する振動振幅のデータであり、一定時間分のデータである)を用い、建物の健全性診断の指標である建物の固有振動数や剛性を算定する。   Then, using the divided data d1 (time and vibration amplitude data corresponding to the time, which is data for a certain period of time), the natural frequency and rigidity of the building, which are indices for building health diagnosis, are calculated. .

また、分割データd1の時刻情報を基に、分割データd1の時間区分の中間の時刻を算定する。   Further, based on the time information of the divided data d1, the intermediate time of the time division of the divided data d1 is calculated.

そして、算定した健全性診断の指標の値並びに中間の時刻を分割データd1に対応するイベント発生前データ2aとして記憶部9又はメモリ13に記憶する。   Then, the calculated health diagnosis index value and intermediate time are stored in the storage unit 9 or the memory 13 as pre-event data 2a corresponding to the divided data d1.

同様に、制御部8の健全性診断指標算定処理部は、分割データd2とd3についても指標並びに中間の時刻の算定を行うと共に、各分割データd2とd3に対応するイベント発生前データ2bと2cとしてそれぞれの指標の値並びに時刻を記録部9又はメモリ13に記憶する。   Similarly, the soundness diagnostic index calculation processing unit of the control unit 8 calculates the index and the intermediate time for the divided data d2 and d3, and the pre-event data 2b and 2c corresponding to the divided data d2 and d3. As a result, the value and time of each index are stored in the recording unit 9 or the memory 13.

更に同様に、制御部8の健全性診断指標算定処理部は、分割データd4〜d6についても指標並びに中間の時刻の算定を行うと共に、各分割データd4〜d6に対応するイベント発生後データ3a〜3cとしてそれぞれの指標の値並びに時刻を記録部9又はメモリ13に記憶する。   Similarly, the soundness diagnostic index calculation processing unit of the control unit 8 calculates the index and the intermediate time for the divided data d4 to d6, and the post-event data 3a to 3d corresponding to the divided data d4 to d6. The value of each index and the time are stored in the recording unit 9 or the memory 13 as 3c.

次に、イベント発生前データ2a〜2cと発生後データ3a〜3c別に回帰直線を推定する(S4)。   Next, regression lines are estimated separately for the pre-event data 2a to 2c and the post-event data 3a to 3c (S4).

制御部8の回帰直線推定処理部は、まず、S3で記憶部9又はメモリ13に記憶したイベント発生前データ2a〜2cの指標の値並びに時刻を読み込み、このデータを基に回帰直線4の傾きk1及び切片m1を推定する。   The regression line estimation processing unit of the control unit 8 first reads the index values and times of the pre-event data 2a to 2c stored in the storage unit 9 or the memory 13 in S3, and based on this data, the slope of the regression line 4 is read. Estimate k1 and intercept m1.

そして、イベント発生前データ2a〜2cに対応する回帰直線4の傾きk1及び切片m1として記憶部9又はメモリ13に記憶する。   And it memorize | stores in the memory | storage part 9 or the memory 13 as inclination k1 and intercept m1 of the regression line 4 corresponding to the data 2a-2c before event occurrence.

同様に、制御部8の回帰直線推定処理部は、S3で記憶部9又はメモリ13に記憶したイベント発生後データ3a〜3cの指標の値並びに時刻を読み込み、このデータを基に回帰直線5の傾きk2及び切片m2を推定する。   Similarly, the regression line estimation processing unit of the control unit 8 reads the index values and times of the post-event data 3a to 3c stored in the storage unit 9 or the memory 13 in S3, and based on this data, the regression line 5 Estimate the slope k2 and the intercept m2.

そして、イベント発生後データ3a〜3cに対応する回帰直線5の傾きk2及び切片m2として記憶部9又はメモリ13に記憶する。   And it memorize | stores in the memory | storage part 9 or the memory 13 as inclination k2 and intercept m2 of the regression line 5 corresponding to post-event generation data 3a-3c.

次に、S4で算定した切片m1及びm2を用いて建物の健全性の診断を行う(S5)。   Next, the soundness of the building is diagnosed using the intercepts m1 and m2 calculated in S4 (S5).

制御部8の健全性判定処理部は、S4で記憶部9又はメモリ13に記憶した回帰直線4の切片m1及び回帰直線5の切片m2を読み込む。   The soundness determination processing unit of the control unit 8 reads the intercept m1 of the regression line 4 and the intercept m2 of the regression line 5 stored in the storage unit 9 or the memory 13 in S4.

続いて、制御部8の健全性判定処理部は、切片m1と切片m2の値の比較を行う。そして、値に差違がないと判断した場合には、健全性診断の指標に差違がなく建物に損傷が発生していないと判定する。そして、健全性の診断結果として、健全性に問題なしとの診断結果を必要に応じて記憶部9に記憶すると共に表示部11に表示する。一方、値に差違があると判断した場合には、健全性診断の指標に差違があり建物に損傷が発生していると判定する。そして、健全性の診断結果として、健全性に問題ありとの診断結果を必要に応じて記憶部9に記憶すると共に表示部11に表示する。   Subsequently, the soundness determination processing unit of the control unit 8 compares the values of the intercept m1 and the intercept m2. When it is determined that there is no difference in the values, it is determined that there is no difference in the health diagnosis index and that the building is not damaged. Then, as a diagnosis result of soundness, a diagnosis result indicating that there is no problem with soundness is stored in the storage unit 9 and displayed on the display unit 11 as necessary. On the other hand, when it is determined that there is a difference in value, it is determined that there is a difference in the index of the health diagnosis and the building is damaged. Then, as a diagnosis result of soundness, a diagnosis result indicating that there is a problem with soundness is stored in the storage unit 9 and displayed on the display unit 11 as necessary.

なお、以上において、制御部8は適宜指示入力部10を介して作業者の命令を受け、例えばデータの選択や処理開始等の制御を行う。   In the above description, the control unit 8 receives instructions from the operator through the instruction input unit 10 as appropriate, and performs control such as data selection and processing start.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、イベント発生前データ2a〜2cとイベント発生後データ3a〜3cが共に漸増傾向にある場合について説明したが、例えば、イベント発生前データ2a〜2cは漸増傾向でイベント発生後データ3a〜3cは漸減傾向の場合には、イベント発生後データ3aを起点とする3b、3cへの漸減傾向と変化分の絶対値が等しいイベント発生後データ3aを起点とする漸増傾向を想定することにより、本実施形態で例示した方法と同様にして健全性診断を行うことができる。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the present embodiment, the case where both the pre-event data 2a to 2c and the post-event data 3a to 3c tend to increase gradually has been described. For example, the pre-event data 2a to 2c tends to increase gradually and after the event occurs. When the data 3a to 3c tend to gradually decrease, a gradual increasing tendency starting from the post-event data 3a having the same absolute value of the change and the gradual decreasing tendency to 3b and 3c starting from the post-event data 3a is assumed. Thus, the soundness diagnosis can be performed in the same manner as the method exemplified in the present embodiment.

また、プログラムを用いて行う場合の実施形態として、常時微動を計測する振動センサ等と健全性診断装置が別個のものとして構成されている場合を例に挙げて説明したが、振動センサ等と健全性診断装置が一体のものとして構成されていても良い。   In addition, as an embodiment in the case of performing using a program, a case where a vibration sensor and the like and a soundness diagnosis device that measure microtremors are configured separately has been described as an example. The sex diagnostic apparatus may be configured as an integral unit.

また、本実施形態では健全性診断の指標自体の周期的な変動が比較的大きい場合について説明したが、健全性診断の指標自体の周期的な変動が非常に緩やかで回帰直線の傾きが明瞭でない場合には、傾きをゼロとして健全性診断を行うことも可能である。   Further, in this embodiment, the case where the periodic fluctuation of the health diagnosis index itself is relatively large has been described. However, the periodic fluctuation of the health diagnosis index itself is very gradual and the slope of the regression line is not clear. In some cases, it is possible to perform a soundness diagnosis with a slope of zero.

本発明の実施例として、図12から図19に、財団法人電力中央研究所我孫子地区南研究棟本館(所在地千葉県我孫子市、地上10階建事務所ビル)(以下、対象建物と呼ぶ)を対象として行った常時微動計測並びに健全性の診断の結果を示す。   As an embodiment of the present invention, FIG. 12 to FIG. 19 show a central building of the Abiko District South Research Building (located in Abiko City, Chiba Prefecture, 10-story office building) (hereinafter referred to as a target building). The result of microtremor measurement and soundness diagnosis performed as a target is shown.

対象建物において平成17年2月1日から3月2日までの30日間に亘って観測した応答振幅並びに南北方向及び東西方向の固有振動数の経時変化を15分ごとに整理し、図12並びに図13及び図14に示す結果を得た。   The response amplitude observed over 30 days from February 1 to March 2, 2005, and the natural frequency in the north-south direction and east-west direction were arranged every 15 minutes in the target building. The results shown in FIGS. 13 and 14 were obtained.

まず、図13及び図14の経時変化を整理した結果から固有振動数が日単位で周期的に変動していることが確認された。   First, it was confirmed that the natural frequency fluctuates periodically in units of days from the results of arranging the temporal changes in FIGS. 13 and 14.

また、2月16日午前4時46分(図12から図14中の▼で示した時点)に茨城県南部を震源とする地震が発生し、対象建物付近では震度III程度の揺れが観測された。   In addition, an earthquake with the epicenter in the southern part of Ibaraki Prefecture occurred at 4:46 am on February 16 (at the time indicated by ▼ in FIGS. 12 to 14), and a shaking with a seismic intensity of about III was observed near the target building. It was.

ここで、本発明の健全性診断法による診断結果と比較するため、毎正午から15分間の計測データを用いて固有振動数を算定し、日毎の固有振動数の変化に基づく建物の健全性の診断を試みた。なお、長期的な固有振動数の変化に基づいて建物の健全性を診断するための常時微動データの計測を想定した場合、実用的には一日に一度一定時間(例えば固有振動数の算定に必要な時間)の計測であれば手間とコストが許容され得ることを考慮して毎正午から15分間の計測データを用いることとした。   Here, in order to compare with the diagnosis result of the soundness diagnosis method of the present invention, the natural frequency is calculated using measurement data from 15 noon every 15 minutes, and the soundness of the building based on the change of the natural frequency every day is calculated. Attempted diagnosis. When it is assumed that microtremor data is measured to diagnose the soundness of buildings based on long-term changes in natural frequency, it is practically necessary to calculate the natural frequency once a day (for example, for calculating natural frequency). The measurement data from 15 noon to 15 minutes is used in consideration of the fact that it is possible to allow labor and cost if it is a necessary time) measurement.

毎正午から15分間の計測データを用いて算定した固有振動数の経時変化を整理し、図15及び図16に示す結果を得た。なお、図中の▼の位置が地震発生時刻を示している。   The changes over time in the natural frequency calculated using the measurement data from 15 noon to 15 minutes were organized, and the results shown in FIGS. 15 and 16 were obtained. In addition, the position of ▼ in the figure indicates the earthquake occurrence time.

この結果から、固有振動数の日々のばらつきが大きいため、地震発生前後での固有振動数の変化を読み取ることは困難であり、日毎の固有振動数の変化に基づいて地震による建物の損傷の発生の有無を判断することは困難であることが確認された。   From this result, it is difficult to read the change in natural frequency before and after the occurrence of the earthquake because the natural frequency varies widely, and the occurrence of damage to the building due to the earthquake based on the daily change in natural frequency. It was confirmed that it was difficult to determine the presence or absence.

次に、本発明の建物の健全性診断法を用いて健全性の診断を行った。   Next, the soundness diagnosis was performed using the soundness diagnosis method for buildings according to the present invention.

まず、地震が発生した2月16日の午前中のデータを15分毎のデータに分割して応答振幅並びに固有振動数の経時変化を整理し、図17並びに図18及び図19に示す結果を得た。なお、図中の▼の位置が地震発生時刻を示している。   First, the data of the morning of February 16 when the earthquake occurred was divided into 15-minute data, and changes over time in response amplitude and natural frequency were organized. The results shown in FIGS. 17, 18 and 19 were obtained. Obtained. In addition, the position of ▼ in the figure indicates the earthquake occurrence time.

図18に示す南北方向一次の固有振動数及び図19に示す東西方向一次の固有振動数について、本発明において例えばプレトリガー計測法とレベルトリガー方式を組み合わせた方法で常時微動データとして実際に計測する範囲を想定し、地震発生前と地震発生後のそれぞれについて三つの分割データを用いて健全性の診断を行った。なお、地震発生直後の振動振幅を含む分割データは診断に用いるデータからは除いた。   In the present invention, for example, a combination of a pre-trigger measurement method and a level trigger method is actually measured as microtremor data for the primary natural frequency in the north-south direction shown in FIG. 18 and the primary natural frequency in the east-west direction shown in FIG. Assuming the range, we diagnosed the soundness using three divided data for each before and after the earthquake. The divided data including the vibration amplitude immediately after the earthquake occurred was excluded from the data used for diagnosis.

図18に示す南北方向一次の固有振動数について、地震発生前の三つの分割データを用いて回帰直線を推定した。なお、本実施例では、固有振動数自体の周期的な変動が非常に緩やかなものであったために回帰直線の傾きをゼロとして切片を推定した。その結果、地震発生前データの回帰直線の切片として1.758[Hz]を得た。   For the natural frequency of the north-south direction primary shown in FIG. 18, a regression line was estimated using the three divided data before the occurrence of the earthquake. In this example, since the periodic fluctuation of the natural frequency itself was very gentle, the intercept was estimated with the slope of the regression line as zero. As a result, 1.758 [Hz] was obtained as an intercept of the regression line of the pre-earthquake data.

更に、地震発生前データの回帰直線と同様に傾きをゼロとし、地震発生後の三つの分割データを用いて回帰直線の切片を推定して1.719[Hz]を得た。   Furthermore, the slope was set to zero as in the case of the regression line of the data before the earthquake occurrence, and the intercept of the regression line was estimated using the three divided data after the earthquake occurrence to obtain 1.719 [Hz].

また、図19に示す東西方向一次の固有振動数について、地震発生前の三つの分割データを用いて回帰直線を推定した。なお、前記と同様に、固有振動数自体の周期的な変動が非常に緩やかなものであったために回帰直線の傾きをゼロとして切片を算定した。その結果、地震発生前データの回帰直線の切片として2.002[Hz]を得た。   Moreover, the regression line was estimated using the three division | segmentation data before an earthquake occurrence about the natural frequency of the east-west primary frequency shown in FIG. As described above, since the periodic fluctuation of the natural frequency itself was very gradual, the intercept was calculated with the slope of the regression line set to zero. As a result, 2.002 [Hz] was obtained as an intercept of the regression line of the pre-earthquake data.

更に、地震発生前データの回帰直線と同様に傾きをゼロとし、地震発生後の三つの分割データを用いて回帰直線の切片を算定して1.971[Hz]を得た。   Furthermore, the slope was set to zero in the same manner as the regression line of the data before the earthquake occurrence, and the intercept of the regression line was calculated using the three divided data after the earthquake occurrence to obtain 1.971 [Hz].

以上から、地震発生前データと地震発生後データの回帰直線の切片の差として、南北方向については0.039[Hz]、東西方向については0.031[Hz]を得た。また、変化率はそれぞれ2.2[%]と1.5[%]となった。この結果から、2月16日に発生した地震により対象建物に何らかの損傷が発生していると判断された。   From the above, 0.039 [Hz] was obtained in the north-south direction and 0.031 [Hz] in the east-west direction as the difference between the regression line intercepts of the pre-earthquake data and the post-earthquake data. The change rates were 2.2 [%] and 1.5 [%], respectively. From this result, it was determined that the target building was damaged by the earthquake that occurred on February 16th.

以上の結果から、本発明の健全性診断法を用いることにより、固有振動数自体が周期的に変動している場合であっても地震発生前後の固有振動数の変化を明瞭に見分けることが可能であり、建物の健全性の診断を安定的に行い得る手法であることが確認できた。   From the above results, by using the soundness diagnosis method of the present invention, it is possible to clearly distinguish changes in natural frequency before and after an earthquake even when the natural frequency itself fluctuates periodically. It was confirmed that this is a method that can stably diagnose the soundness of buildings.

本発明の常時微動計測に基づく建物の健全性診断法の実施形態の一例を説明するフローチャートである。It is a flowchart explaining an example of embodiment of the soundness diagnostic method of the building based on the microtremor measurement of this invention. プレトリガー計測法を説明する模式図である。It is a schematic diagram explaining the pre-trigger measurement method. プレ・ポストトリガー計測法を説明する模式図である。It is a schematic diagram explaining the pre-post trigger measurement method. 実施形態の常時微動データを説明する模式図である。It is a schematic diagram explaining constantly fine movement data of the embodiment. 実施形態の時刻と健全性診断の指標の組み合わせのデータを示す図である。It is a figure which shows the data of the combination of the time of embodiment and the parameter | index of soundness diagnosis. 図5に示すデータの回帰直線を示す図である。It is a figure which shows the regression line of the data shown in FIG. 図6に示す回帰直線が推定された場合に想定される指標の周期変動波形を説明する図である。It is a figure explaining the period fluctuation waveform of the parameter | index assumed when the regression line shown in FIG. 6 is estimated. 実施形態の時刻と健全性診断の指標の組み合わせの他のデータを示す図である。It is a figure which shows the other data of the combination of the time of embodiment and the parameter | index of a soundness diagnosis. 図8に示すデータの回帰直線を示す図である。It is a figure which shows the regression line of the data shown in FIG. 図9に示す回帰直線が推定された場合に想定される指標の周期変動波形を説明する図である。It is a figure explaining the period fluctuation waveform of the parameter | index assumed when the regression line shown in FIG. 9 is estimated. 実施形態の健全性診断プログラムを実施するための健全性診断装置の全体構成を示す図である。It is a figure which shows the whole structure of the soundness diagnostic apparatus for implementing the soundness diagnostic program of embodiment. 実施例の応答振幅の計測データを示す図である。It is a figure which shows the measurement data of the response amplitude of an Example. 実施例の固有振動数(南北方向一次)を示す図である。It is a figure which shows the natural frequency (north-south direction primary) of an Example. 実施例の固有振動数(東西方向一次)を示す図である。It is a figure which shows the natural frequency (east-west direction primary) of an Example. 実施例の固有振動数(南北方向一次、毎正午)を示す図である。It is a figure which shows the natural frequency (the north-south direction primary, every noon) of an Example. 実施例の固有振動数(東西方向一次、毎正午)を示す図である。It is a figure which shows the natural frequency (East-west direction primary, every noon) of an Example. 実施例の応答振幅の計測データ(午前中のみ、15分分割)を示す図である。It is a figure which shows the measurement data (divided into 15 minutes only in the morning) of the response amplitude of an Example. 実施例の固有振動数(南北方向一次、午前中のみ、15分分割)を示す図である。It is a figure which shows the natural frequency (The north-south direction primary, the morning only, and 15 minutes division | segmentation) of an Example. 実施例の固有振動数(東西方向一次、午前中のみ、15分分割)を示す図である。It is a figure which shows the natural frequency (East-west direction primary, only in the morning, divided into 15 minutes) of an Example. 従来の常時微動計測に基づく建物の健全性診断法を説明するフローチャートである。It is a flowchart explaining the soundness diagnostic method of the building based on the conventional microtremor measurement. 従来の構造性能指標推定装置、及び構造物の構造性能リアルタイムモニタリング方法を説明するフローチャートである。It is a flowchart explaining the conventional structural performance parameter | index estimation apparatus and the structural performance real-time monitoring method of a structure. 鉄筋コンクリート柱の変位−荷重特性を説明する図である。It is a figure explaining the displacement-load characteristic of a reinforced concrete column.

符号の説明Explanation of symbols

2a〜2c イベント発生前データ
3a〜3c イベント発生後データ
4 イベント発生前データの回帰直線
5 イベント発生後データの回帰直線
7 健全性診断装置
2a to 2c Data before event occurrence 3a to 3c Data after event occurrence 4 Regression line of data before event occurrence 5 Regression line of data after event occurrence 7 Health diagnostic device

Claims (3)

建物の常時微動の計測を常時行って前記常時微動の計測データを収集すると共に前記建物の健全性に影響を与え得る事象の発生前後の前記常時微動の計測データを抽出し、前記事象発生前並びに前記事象発生後の前記常時微動の計測データのそれぞれを複数に分割し、分割した前記常時微動の計測データ毎に前記建物の健全性を診断する指標を算定し、前記事象発生前の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式1)の定数ki及びmi並びに前記事象発生後の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式1)の定数ki及びmiを推定し、該回帰直線のそれぞれの切片miを比較して前記建物の健全性を診断することを特徴とする常時微動計測に基づく建物の健全性診断法。
(数1) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
Collecting the microtremor measurement data by always performing microtremor measurement of the building and extracting the microtremor measurement data before and after the occurrence of the event that may affect the soundness of the building. In addition, each of the microtremor measurement data after the occurrence of the event is divided into a plurality of pieces, and an index for diagnosing the soundness of the building is calculated for each of the divided microtremor measurement data. the index y and the divided constants ki and mi and the index y and time x of the measurement data of said divided microtremors after the event occurrence of the regression line of the time x of the measurement data microtremor (equation 1) estimate the constants ki and mi the regression line (equation 1) with, healthy building by comparing the respective sections mi of the regression line based on microtremor measurement, which comprises diagnosing the soundness of the building Sex diagnosis .
(Equation 1) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.
建物の健全性を診断するためのコンピュータを、建物の健全性に影響を与え得る事象の発生前後の前記建物の常時微動の計測データを入力する手段、前記事象発生前並びに前記事象発生後の前記常時微動の計測データのそれぞれを複数に分割する手段、分割した前記常時微動の計測データ毎に前記建物の健全性を診断する指標を算定する手段、前記事象発生前の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式2)の定数ki及びmi並びに前記事象発生後の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式2)の定数ki及びmiを推定する手段、該回帰直線のそれぞれの切片miを比較して前記建物の健全性を診断する手段として機能させるための常時微動計測に基づく建物の健全性診断プログラム。
(数2) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
A computer for diagnosing the health of the building, means for inputting measurement data of microtremors of the building before and after the occurrence of an event that may affect the health of the building, before the occurrence of the event, and after the occurrence of the event Means for dividing each of the microtremor measurement data into a plurality of means, means for calculating an index for diagnosing the soundness of the building for each of the divided microtremor measurement data, the index y before the occurrence of the event, and A regression line between the constants ki and mi in the regression line (Formula 2) of the divided microtremor measurement data with time x and the index y after the occurrence of the event and the time x of the segmented microtremor measurement data. It means for estimating the constants ki and mi (formula 2), the building based on microtremor measurement for comparing the respective sections mi of the regression line to function as a means of diagnosing the soundness of the building Ken Sex diagnostic program.
(Equation 2) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.
建物の健全性を診断するためのコンピュータを、建物の常時微動の計測を常時行って収集した前記常時微動の計測データを入力する手段、前記常時微動の計測データから前記建物の健全性に影響を与え得る事象の発生前後の前記常時微動の計測データを抽出する手段、前記事象発生前並びに前記事象発生後の前記常時微動の計測データのそれぞれを複数に分割する手段、分割した前記常時微動の計測データ毎に前記建物の健全性を診断する指標を算定する手段、前記事象発生前の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式3)の定数ki及びmi並びに前記事象発生後の前記指標yと前記分割した常時微動の計測データの時刻xとの回帰直線(数式3)の定数ki及びmiを推定する手段、該回帰直線のそれぞれの切片miを比較して前記建物の健全性を診断する手段として機能させるための常時微動計測に基づく建物の健全性診断プログラム。
(数3) yi=ki×xi+mi
ここに、k:回帰直線の傾き、添字i:事象発生前データの場合はi=1、イベント発生後データの場合はi=2。
A computer for diagnosing the soundness of the building, means for inputting the measurement data of the microtremor collected by constantly measuring the microtremor of the building, and influences the health of the building from the measurement data of the microtremor Means for extracting the measurement data of the microtremor before and after the occurrence of an event that can be given, means for dividing the measurement data of the microtremor before and after the occurrence of the event into a plurality of parts, and the divided microtremor Means for calculating an index for diagnosing the soundness of the building for each measurement data, a constant of a regression line (Formula 3) between the index y before the event occurrence and the time x of the divided microtremor measurement data ki and mi and means for estimating the constants ki and mi the regression line (equation 3) and the index y and time x of the measurement data of said divided microtremors after said event occurs, the regression line of its Microtremor health diagnostics building based on the measurement of the order to compare the sections mi of, respectively function as a means for diagnosing the soundness of the building.
(Expression 3) yi = ki × xi + mi
Here, k: slope of regression line, subscript i: i = 1 for pre-event data, i = 2 for post-event data.
JP2005222087A 2005-07-29 2005-07-29 Building health diagnosis method and health diagnosis program based on microtremor measurement Expired - Fee Related JP4728730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222087A JP4728730B2 (en) 2005-07-29 2005-07-29 Building health diagnosis method and health diagnosis program based on microtremor measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222087A JP4728730B2 (en) 2005-07-29 2005-07-29 Building health diagnosis method and health diagnosis program based on microtremor measurement

Publications (2)

Publication Number Publication Date
JP2007040713A JP2007040713A (en) 2007-02-15
JP4728730B2 true JP4728730B2 (en) 2011-07-20

Family

ID=37798858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222087A Expired - Fee Related JP4728730B2 (en) 2005-07-29 2005-07-29 Building health diagnosis method and health diagnosis program based on microtremor measurement

Country Status (1)

Country Link
JP (1) JP4728730B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128034A (en) * 2007-11-20 2009-06-11 Sekisui House Ltd System for examining abnormal noise of building
JP5281475B2 (en) * 2009-04-30 2013-09-04 一般財団法人電力中央研究所 Building health diagnostic method, diagnostic device and diagnostic program based on microtremor measurement
JP5820618B2 (en) * 2011-05-24 2015-11-24 東日本旅客鉄道株式会社 Bridge pier soundness evaluation method using tremor during strong wind
JP5709794B2 (en) * 2012-05-10 2015-04-30 九州電力株式会社 Steel tower soundness evaluation apparatus and steel tower soundness evaluation method
JP6991703B2 (en) * 2016-10-14 2022-01-12 旭化成ホームズ株式会社 Damage degree judgment device and damage degree judgment system
JP2019184389A (en) * 2018-04-09 2019-10-24 株式会社Subaru Diagnostic device
JP7387108B2 (en) 2020-08-05 2023-11-28 国立大学法人 鹿児島大学 Evaluation device and evaluation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153719A (en) * 1999-11-24 2001-06-08 Toshiba Corp Analysis system for vibration characteristic
JP2003322585A (en) * 2002-04-26 2003-11-14 Central Res Inst Of Electric Power Ind Building soundness diagnosing method based on continuous micromotion measurement
JP2004027762A (en) * 2002-06-28 2004-01-29 Sumitomo Forestry Co Ltd Earthquake resistance diagnosis method for building and system therefor
JP2004093579A (en) * 2000-12-28 2004-03-25 Structural Quality Assurance Inc Diagnostic method and diagnostic system of structure by jogging observation
JP2005083975A (en) * 2003-09-10 2005-03-31 Shimizu Corp Apparatus for estimating structural performance indicators and method of performing real-time monitoring of structural performance of structure
JP2005156448A (en) * 2003-11-27 2005-06-16 Terunori Maikuma Dynamic earthquake-proofness performance of building, and evaluation method of the earthquake-proofness performance after earthquake-proofness reinforcement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101418A (en) * 1987-10-15 1989-04-19 Toshiba Corp Diagnosing device for rotary machine
JPH03235027A (en) * 1990-02-09 1991-10-21 Toshiba Corp Abnormality detecting apparatus
JP3140884B2 (en) * 1993-07-22 2001-03-05 株式会社東芝 Plant process monitoring equipment
JPH10183659A (en) * 1996-12-24 1998-07-14 Tokyo Gas Co Ltd Evaluation system and method for pile-foundation
JPH10288546A (en) * 1997-04-16 1998-10-27 Nkk Corp Abnormality judging method for rotating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153719A (en) * 1999-11-24 2001-06-08 Toshiba Corp Analysis system for vibration characteristic
JP2004093579A (en) * 2000-12-28 2004-03-25 Structural Quality Assurance Inc Diagnostic method and diagnostic system of structure by jogging observation
JP2003322585A (en) * 2002-04-26 2003-11-14 Central Res Inst Of Electric Power Ind Building soundness diagnosing method based on continuous micromotion measurement
JP2004027762A (en) * 2002-06-28 2004-01-29 Sumitomo Forestry Co Ltd Earthquake resistance diagnosis method for building and system therefor
JP2005083975A (en) * 2003-09-10 2005-03-31 Shimizu Corp Apparatus for estimating structural performance indicators and method of performing real-time monitoring of structural performance of structure
JP2005156448A (en) * 2003-11-27 2005-06-16 Terunori Maikuma Dynamic earthquake-proofness performance of building, and evaluation method of the earthquake-proofness performance after earthquake-proofness reinforcement

Also Published As

Publication number Publication date
JP2007040713A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US10928271B2 (en) System and method for determining the risk of failure of a structure
JP4728730B2 (en) Building health diagnosis method and health diagnosis program based on microtremor measurement
Maes et al. Validation of vibration-based structural health monitoring on retrofitted railway bridge KW51
Cabboi et al. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower
JP4859557B2 (en) Method for judging the soundness of concrete buildings
Gentile et al. One-year dynamic monitoring of a historic tower: damage detection under changing environment
Asadollahi et al. Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring
Ding et al. Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge
Bazzurro et al. Guidelines for seismic assessment of damaged buildings
KR101935558B1 (en) System and method for earthquake damage prediction and analysis of structures, and a recording medium having computer readable program for executing the method
Pecorelli et al. An automatic modal identification procedure for the permanent dynamic monitoring of the Sanctuary of Vicoforte
Oliveira et al. Seismic and structural health monitoring of dams in Portugal
CN112816352B (en) Engineering structure damage identification method and device, computer equipment and storage medium
JP5281475B2 (en) Building health diagnostic method, diagnostic device and diagnostic program based on microtremor measurement
JP2010276518A (en) Method, apparatus and program for diagnosing robustness of building based on microtremor measurement
US9983776B1 (en) Software system for dynamic feature extraction for structural health monitoring
Yazdanpanah et al. Fragility curves for seismic damage assessment in regular and irregular MRFs using improved wavelet-based damage index
Oliveira et al. Long-term dynamic monitoring of arch dams. The case of Cabril dam, Portugal
CN112613204A (en) Method and device for calculating cable force of arch bridge suspender
De Simone et al. Predictive maintenance and structural health monitoring via IoT system
JP3925910B2 (en) Building health diagnosis method based on microtremor measurement
JP2009098101A (en) Determination method for existence of suffering of building
US11761847B2 (en) System and method for determining the risk of failure of a structure
CN103528778A (en) Rapid damage detection method for three-layer-of-base shock isolation system on basis of incomplete measurement
Zhang et al. Post-earthquake structural damage assessment and damage state evaluation for RC structures with experimental validation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees