JPH03235027A - Abnormality detecting apparatus - Google Patents

Abnormality detecting apparatus

Info

Publication number
JPH03235027A
JPH03235027A JP3082390A JP3082390A JPH03235027A JP H03235027 A JPH03235027 A JP H03235027A JP 3082390 A JP3082390 A JP 3082390A JP 3082390 A JP3082390 A JP 3082390A JP H03235027 A JPH03235027 A JP H03235027A
Authority
JP
Japan
Prior art keywords
time
series data
abnormality
value
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3082390A
Other languages
Japanese (ja)
Inventor
Shigeru Matsumoto
茂 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3082390A priority Critical patent/JPH03235027A/en
Publication of JPH03235027A publication Critical patent/JPH03235027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect the change of acoustic signals separately from the stationary change accompanying the operation of plant equipments thereby to improve the detecting accuracy by identifying the catching acoustic signals with an auto-regressive model in the form of a plurality of time series data of different lengths of the storing time. CONSTITUTION:A sound processor 9 changes sound signals obtained through a microphone 3 into digital signals which are taken into an input part 10 and processed in an operating part 11. As a result, whether an equipment which is a target to be monitored is normal or abnormal is judged. The judging result is output from an output part 12 and displayed at 13. According to a self- regression analysis function, the signals are identified with an auto-regressive model 24 to estimate a predicting value 25 at a next sampling time point T+DELTAT and a variance value 26 of white noise components attributing the predicting value 25. Further, the residual between the predicting value 25 and an actually- measured value 27 after another sampling is calculated and then compared with the variance value 26. A probability when the actually-measured value 27 is regarded as outside the change at the normal time is calculated as the degree of reliability for judgement of abnormality.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、発電プラントその他の各種プラントにおける
設備や機器の異常を、音響信号の経時変化に基づいて、
自動検知する機能を持つ異常検知装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention detects abnormalities in equipment and equipment in power generation plants and other various plants based on changes in acoustic signals over time.
This invention relates to an anomaly detection device that has an automatic detection function.

(従来の技術) 近年、発電所等の各種プラントにおいては、配管等のプ
ラント設備からの液体や気体の漏れ、回転機の故障、あ
るいは配管のノ1ンマリング現象等、聴覚で検知できる
異常を音響信号処理技術を用いて自動検知する方式が種
々試みられている。
(Prior technology) In recent years, various plants such as power plants have been using acoustic systems to detect abnormalities that can be detected audibly, such as leakage of liquid or gas from plant equipment such as piping, malfunction of rotating machines, or normalization of piping. Various automatic detection methods using signal processing techniques have been attempted.

その内の一つの方式を、第10図および第11図に示す
配管からの蒸気漏れ検知の例を用いて説明する。
One of these methods will be explained using an example of steam leak detection from piping shown in FIGS. 10 and 11.

第10図において、配管フランジ1から蒸気漏れ2が発
生した場合、その近隣に設置したマイクロホン3で捕え
た音響信号は音響処理装置4によって処理され、蒸気漏
れの有無を検知される。5は配管系統に介挿した制御用
バルブを示す。
In FIG. 10, when a steam leak 2 occurs from a piping flange 1, an acoustic signal captured by a microphone 3 installed in the vicinity is processed by an acoustic processing device 4 to detect the presence or absence of a steam leak. 5 shows a control valve inserted in the piping system.

第11図はマイクロホン3で捕えた音響信号におけるス
ペクトルレベルの周波数特性を示すもので、蒸気漏れか
発生すると、正常時のスペクトル6に対し、一定範囲の
周波数帯域においてスペクトルレベルの増加7が生じる
。従って、このスペクトルレベルの変化分を音響処理装
置4て解析することによって、プラント機器の異常を判
定することができる。
FIG. 11 shows the frequency characteristics of the spectral level in the acoustic signal captured by the microphone 3. When a steam leak occurs, the spectral level increases 7 in a certain frequency band compared to the normal spectrum 6. Therefore, by analyzing this change in the spectral level using the acoustic processing device 4, it is possible to determine whether there is an abnormality in the plant equipment.

(発明が解決しようとする課題) しかしながら、通常の大規模プラントにおいては、膨大
な数の機器を有機的に連続制御しながら運用するように
しているため、多数の機器群から発生する音響信号のス
ペクトルレベルは経時的に、常に変動している。
(Problem to be solved by the invention) However, in normal large-scale plants, a huge number of devices are operated under organic continuous control, so the acoustic signals generated from a large number of devices are Spectral levels are constantly changing over time.

例えば第10図に示したように、プラントの運転に伴っ
て開度か変化する流量制御用のバルブ5と監視対象の配
管フランジ1とが近接している場合には、プラントの運
転に伴う制御用バルブ5の開度変化に応じてマイクロホ
ン3で捕えられる音響信号のスペクトルレベルは周期的
に変動する。
For example, as shown in FIG. 10, if the flow rate control valve 5 whose opening degree changes as the plant operates is close to the piping flange 1 to be monitored, the The spectral level of the acoustic signal captured by the microphone 3 changes periodically in response to changes in the opening degree of the valve 5.

そのため、監視対象の配管フランジ1が正常であっても
、第12図に示したように計測時刻によって相違したス
ペクトルが得られることになる。
Therefore, even if the pipe flange 1 to be monitored is normal, different spectra will be obtained depending on the measurement time as shown in FIG. 12.

一方、マイクロホン3の入力信号には、プラント機器の
運転に伴うスペクトルレベルの変動幅8が存在するので
、第13図に示すように、配管フランジ1から蒸気漏れ
を生じた場合のスペクトルレベルの増分7は、プラント
運転に伴う変動幅8内にうずもれてしまい、検知精度か
低下する恐れかある。
On the other hand, since the input signal of the microphone 3 has a fluctuation range 8 in the spectral level due to the operation of the plant equipment, as shown in FIG. 7 falls within the fluctuation range 8 due to plant operation, and there is a risk that the detection accuracy will decrease.

この検知精度の改善方策としては、プラント運転に伴う
変動のレベルと周期について、変動の要因となるプラン
ト機器の動作との因果関係を究明し、プラント運転に伴
うスペクトルレベル変動を補正する手法か考えられる。
As a measure to improve this detection accuracy, we should investigate the causal relationship between the level and period of fluctuations caused by plant operation and the operation of plant equipment that causes the fluctuations, and consider a method to correct spectral level fluctuations caused by plant operation. It will be done.

しかしながらスペクトルレベル変動の要因は、弁開度の
変化といった比較的短周期のものから気候の変化といっ
た長周期のものまで多岐に亙り、構成機器の数も膨大で
あることから、上記改善方策の実用化は不可能または著
しく困難である。
However, the causes of spectral level fluctuations are wide-ranging, ranging from relatively short-period factors such as changes in valve opening to long-period factors such as climate changes, and the number of component devices is enormous, making it difficult to implement the above improvement measures. conversion is impossible or extremely difficult.

本発明は、このような問題点を解消すべくなされたもの
で、監視対象とする機器の異常時の音響信号の変化分が
プラント機器群の運転に伴って生ずる周期的な変動成分
にうずもれることを防ぐことにより、プラント運転に伴
う音響信号の変動が大きな箇所に位置する機器に対して
も、音響信号を処理することによって異常を捕えること
を可能とした異常検出装置を提供することを目的とする
ものである。
The present invention has been made in order to solve these problems, and the present invention has been made in such a way that the change in the acoustic signal when the equipment to be monitored is abnormal is mixed with the periodic fluctuation component that occurs with the operation of the plant equipment group. We aim to provide an abnormality detection device that can detect abnormalities by processing acoustic signals even in equipment located in locations where acoustic signals fluctuate significantly due to plant operation. This is the purpose.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明の異常検出装置は、監
視対象とする機器から発する音響信号を検出して前記機
器の異常を検知する異常検出装置において、マイクロホ
ンを介して得た音響信号を一定間隔で繰返しディジタル
量として取込むサンプリング機能を持つ入力部と;サン
プリングした音響信号を蓄積する時間長の異なる複数の
時系列データとして保存する時系列データ生成機能と、
各時間長の時系列データを自己回帰モデルに同定して正
常時における音響信号の変化過程を予測値として算出し
た上、これと前記サンプリングによって得た実測値との
残差から実測値が正常時の変化過程外であると見なせる
確率を異常判定の信頼度として計算する自己回帰分析機
能と、各時系列データについて算出した信頼度をしきい
値と比較して異常の有無を判断する判定機能とを持つ演
算部と;前記判定結果を通報装置に出力する出力部と;
からなる音響処理装置を備えることを特徴とする。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the abnormality detection device of the present invention detects an acoustic signal emitted from a device to be monitored to detect an abnormality in the device. In the detection device, there is an input section that has a sampling function that repeatedly takes in the acoustic signal obtained through the microphone as a digital quantity at regular intervals; Series data generation function,
The time-series data of each time length is identified using an autoregressive model, and the change process of the acoustic signal during normal times is calculated as a predicted value, and the actual measured value is determined from the residual difference between this and the actual measured value obtained by the sampling. An autoregression analysis function that calculates the probability that the data is outside the change process as the reliability of abnormality judgment, and a judgment function that compares the reliability calculated for each time series data with a threshold value to determine the presence or absence of an abnormality. an arithmetic unit having; an output unit that outputs the determination result to a reporting device;
It is characterized by comprising a sound processing device consisting of the following.

(作用) このような構成の異常検知装置によれば、機器異常時の
音響信号の変化分がプラント機器群の運転に伴って生ず
る周期的な変動成分にうずもれることを防ぐことにより
、プラントの運転に伴う音響信号の変動が大きな箇所に
位置する監視対象機器に対しても異常の検出が可能にな
る。
(Function) According to the abnormality detection device having such a configuration, the change in the acoustic signal at the time of equipment abnormality is prevented from being buried in periodic fluctuation components that occur with the operation of the plant equipment group. This makes it possible to detect abnormalities even in monitored equipment located in areas where the acoustic signal fluctuates significantly due to the operation of the system.

次に、本発明装置の作用を、第1図ないし第4図を参照
して、より詳細に説明する。なお、これらの図中、第1
0図以降の図におけると同一部分には同一符号を付しで
ある。
Next, the operation of the apparatus of the present invention will be explained in more detail with reference to FIGS. 1 to 4. In addition, in these figures, the first
The same parts as in the figures after figure 0 are given the same reference numerals.

第1図は本発明装置の構成を表す模式図で、音響処理装
置9は、マイクロホン3を介して得た音響信号をディジ
タル化して取込む入力部10と、ディジタル化された音
響信号を処理して監視対象機器の正常・異常を判定する
演算部11と、判定結果を出力する出力部12から構成
されている。
FIG. 1 is a schematic diagram showing the configuration of the device of the present invention, in which an acoustic processing device 9 includes an input section 10 that digitizes and captures the acoustic signal obtained through the microphone 3, and an input section 10 that processes the digitized acoustic signal. It is comprised of an arithmetic unit 11 that determines whether the equipment to be monitored is normal or abnormal, and an output unit 12 that outputs the determination result.

13は判定結果を表示するCRT等の通報装置を示す。Reference numeral 13 indicates a reporting device such as a CRT that displays the determination result.

第2図は音響処理装置9の機能を示すもので、サンプリ
ング機能14は音響処理装置9の入力部10が持つ機能
である。また、時系列データ生成機能15、自己回帰分
析機能16および判定機能17は演算部11に属する機
能であり、出力機能18は出力部12か持つ機能である
FIG. 2 shows the functions of the sound processing device 9, and the sampling function 14 is a function that the input section 10 of the sound processing device 9 has. Further, the time series data generation function 15, the autoregressive analysis function 16, and the determination function 17 are functions belonging to the calculation unit 11, and the output function 18 is a function that only the output unit 12 has.

上記において、マイクロホン3を介して音響処理装置9
か得た音響信号は、まず第2図中のサンプリング機能1
4によって一定時間間隔で繰返しディジタル量として取
込まれる。また、時系列データ生成機能15によってデ
ィジタル化した音響信号は、第3図の19ないし21に
示すように、蓄積する時間長Tの異なる複数の時系列デ
ータとして、プラント運転に伴う種々の変動周期に応じ
それぞれの時間間隔で順次保存される。
In the above, the sound processing device 9
The obtained acoustic signal is first processed by sampling function 1 in Figure 2.
4, it is repeatedly taken in as a digital quantity at fixed time intervals. In addition, the acoustic signals digitized by the time series data generation function 15 are converted into multiple time series data with different accumulation time lengths T, as shown in 19 to 21 in FIG. The data is saved sequentially at each time interval.

自己回帰分析機能16では、まず第3図中の19ないし
21に示した各時系列データの変化過程を、時刻Tで実
測された音響信号レベル23に基づいて、第4図中の2
4に示すように自己回帰モデルに同定し、次回のサンプ
リング時点T+へTでの予測値25と、この予測値25
に付帯する白色雑音成分の分散値26を推算する。
The autoregressive analysis function 16 first analyzes the change process of each time series data shown in 19 to 21 in FIG. 3 based on the acoustic signal level 23 actually measured at time T.
4, the predicted value 25 at T and this predicted value 25 are identified in the autoregressive model as shown in 4.
The variance value 26 of the white noise component incidental to is estimated.

更に、予測値25とサンプリングを新たに行って得た実
測値27との残差を算出した上、分散値26と対比させ
、実測値27が正常時の変化過程外であるとみなせる確
率を異常判定の信頼度として計算する。
Furthermore, after calculating the residual difference between the predicted value 25 and the actual value 27 obtained by performing new sampling, we compare it with the variance value 26 to determine the probability that the actual value 27 is outside the normal change process. Calculated as the reliability of the judgment.

第2図における判定機能17は自己回帰分析機能16で
算出された異常検定の信頼度をしきい値と比較すること
によって異常の有無を判定する。
The determination function 17 in FIG. 2 determines the presence or absence of an abnormality by comparing the reliability of the abnormality test calculated by the autoregression analysis function 16 with a threshold value.

また、出力機能18は判定結果を通報装置13に出力す
る。
Further, the output function 18 outputs the determination result to the notification device 13.

(実施例) 次に、本発明装置の実施例を説明する。(Example) Next, an embodiment of the device of the present invention will be described.

第5図は本発明の一例として、発電プラントにおける流
体の制御用バルブ5を監視する目的で設置した異常検知
装置の構成例を示すもので、異常検知装置は、マイクロ
ホン3と、収納用筺体29に保持された音響処理装置9
および通報装置13とからなる。
FIG. 5 shows, as an example of the present invention, a configuration example of an abnormality detection device installed for the purpose of monitoring a fluid control valve 5 in a power generation plant. The sound processing device 9 held in
and a notification device 13.

マイクロホン3で捕えられる音響信号は周囲に点在する
周期的変動音の発生源30や、監視対象である制御用バ
ルブ5自身から発生するしぼり音により、種々の周期を
持って複雑に変動する。
The acoustic signal captured by the microphone 3 fluctuates in a complicated manner with various periods due to the sources 30 of periodically fluctuating sounds scattered around and the squeezing sound generated from the control valve 5 itself, which is the object of monitoring.

従って、制御用バルブに対する異常検知を精度良く行う
には、プラントの運転に伴って周期的に変動するこれら
の音の影響を取除く必要がある。
Therefore, in order to accurately detect abnormalities with respect to control valves, it is necessary to eliminate the influence of these sounds that periodically fluctuate with the operation of the plant.

この場合、変動の周期としては、気候の変化による出力
の増減に伴う1年周期程度の長いものから蒸気圧力や回
転機の回転数に対する調整制御に係わる数秒周期程度の
ゆらぎまで広範囲の変動が予想される。
In this case, the period of fluctuation is expected to range from a long one-year period due to increases and decreases in output due to climate changes to fluctuations with a period of several seconds related to adjustment control of steam pressure and rotating machine rotation speed. be done.

第2図に示した信号処理機能において、サンプリング機
能14はマイクロホン3で得られる音響信号を、最も短
い周期の変動に対しても波形を再現できる程度のサンプ
リング周期をもって、ディジタル化して取込む。
In the signal processing function shown in FIG. 2, the sampling function 14 digitizes and captures the acoustic signal obtained by the microphone 3 at a sampling period sufficient to reproduce the waveform even with the shortest periodic variation.

時系列データ生成機能15は、順次ディジタル量として
得られる音響信号を、第6図中に示すように、短時間時
系列データ31として一定時間長保持する。また、短時
間時系列データ31が更新されてゆくに従い、順次短時
間時系列データを平均化して中時間時系列データ32及
び長時間時系列データ33を算出し蓄積してゆく。
The time-series data generation function 15 holds the acoustic signals sequentially obtained as digital quantities for a certain length of time as short-time time-series data 31, as shown in FIG. Further, as the short-time time series data 31 is updated, the short time time series data is sequentially averaged to calculate and accumulate intermediate time series data 32 and long time time series data 33.

各時系列データ31〜33の時間長は、プラントの運転
に伴う変化過程が持つ種々の変動周期を漏れなく補足で
きるように設定される。例えば、圧力等の調整制御に係
わる比較的短周期の変動に対応する短時間時系列データ
31の時間長は10秒程度にし、また気候の変化による
影響を捕えるための長時間時系列データ33の時間長は
2年程度に設定することが有効と考えられる。
The time length of each of the time series data 31 to 33 is set so as to be able to completely capture various fluctuation cycles of the change process accompanying the operation of the plant. For example, the time length of short time series data 31 that corresponds to relatively short period fluctuations related to adjustment control of pressure etc. is set to about 10 seconds, and the time length of long time series data 33 that corresponds to relatively short cycle fluctuations related to adjustment control of pressure etc. is set to about 10 seconds. It is considered effective to set the time length to about two years.

自己回帰分析機能16は、これらの時系列データ31〜
33に対して、第4図で示した自己回帰モデルに同定す
る。
The autoregressive analysis function 16 uses these time series data 31 to
33, the autoregressive model shown in FIG. 4 is identified.

次に、自己回帰モデルへの同定および実測値との対比の
手順の詳細を説明する。
Next, details of the procedure of identification to the autoregressive model and comparison with actual measured values will be explained.

まず、データ数Nの時系列データ(Xi)(ただし、i
−1〜N)とし、次回の計測点N+1での予測鎖交6+
1を自己回帰モデルとして次式で同定する。
First, time series data (Xi) of data number N (where i
−1 to N), and predicted linkage 6+ at the next measurement point N+1
1 is identified as an autoregressive model using the following equation.

父N+ I ”” a l X N 十a 2 X N
−1+ ”’ ”’十am X N−s +l + e
N+4    ’ ”’■ここで、(ail(ただし、
i=1〜m)は自己回帰係数、eNmは予測鎖交N+4
に付帯する白色雑音成分である。なお、自己回帰係数(
al)と白色雑音成分eN+4および自己回帰モデルの
次数mは、時系列データ(Xi lの自己相関関数より
構成されるニールウォーカ方程式に、赤池が提唱した最
小予測誤差規範(Final  Prediction
Error、 F P E )に基づく判定式を組合わ
せて算出される。
Father N+ I ”” a l X N 10a 2 X N
-1+ ”'”'10am X N-s +l + e
N+4 ''''■Here, (ail (however,
i=1~m) is an autoregressive coefficient, eNm is predicted linkage N+4
This is the white noise component attached to the . Note that the autoregressive coefficient (
al), the white noise component eN+4, and the order m of the autoregressive model are determined by applying the minimum prediction error criterion (Final Prediction) proposed by Akaike to the Neil Walker equation composed of the autocorrelation function of time series data (Xi
Error, F P E ).

次に、■式を用いて得られる予測鎖交Nllについて、
新たにサンプリングを行って得た実測値X N+ +と
の残差S N+ +を次式で計算する。
Next, regarding the predicted linkage Nll obtained using the formula ■,
The residual difference S N+ + with the actual measurement value X N+ + obtained by newly sampling is calculated using the following equation.

SN++=XN+1−父N+1      ・・・・・
・・・・■続いて、実測値xN++が過去の時系列デー
タ(Xi l における変化過程外であるとみなせる確
率を、標準正規分布における信頼度Pとして次式%式% 判定機能17は0式で算出される各時系列データに対応
した異常判定の信頼度Pをしきい値と比較することで正
常・異常を判定する。
SN++=XN+1-Father N+1...
・・・・■Next, the probability that the measured value xN++ can be considered to be outside the change process in past time series data (Xi l is calculated using the following formula as the reliability P in the standard normal distribution.Judgment function 17 is the formula 0. Normality/abnormality is determined by comparing the reliability P of abnormality determination corresponding to each time series data calculated in with a threshold value.

演算部11内に保持しておく異常判定しきい値テーブル
を次表に示す。
The following table shows an abnormality determination threshold table held in the calculation unit 11.

判定機能17で判定された結果は出力機能18を介して
、通報装置13に出力される。
The result determined by the determination function 17 is output to the notification device 13 via the output function 18.

上述のように構成した本発明装置において、マイクロホ
ン3で捕えられた音響信号は、音響処理装置9内部の入
力部10が持つサンプリング機能14により、最も短い
周期の変動に対しても波形を再現できる程度に設定した
サンプリング周期をもってディジタル化して取込まれる
In the device of the present invention configured as described above, the waveform of the acoustic signal captured by the microphone 3 can be reproduced even with the shortest cycle fluctuation by the sampling function 14 of the input section 10 inside the acoustic processing device 9. The data is digitized and captured at a sampling period set to a certain level.

次に演算部11の時系列データ生成機能15により、比
較的短周期の変動は蓄積する時間長の短い短時間時系列
データ31に捕えられるように、また長周期の変動は長
時間時系列データ33に捕えられるように、各々異なっ
た時間長に設定した3つの時系列データに音響信号を蓄
積してゆく。
Next, the time series data generation function 15 of the arithmetic unit 11 is configured so that relatively short period fluctuations are captured in short time series data 31 with a short accumulated time length, and long period fluctuations are captured in long time series data 31. 33, the acoustic signals are accumulated into three time-series data sets each having a different time length.

自己回帰分析機能16は■式ないし0式により各時系列
データを自己回帰モデルに同定した上で異常判定の信頼
度Pを算出する。
The autoregressive analysis function 16 identifies each time-series data to an autoregressive model using equations 1 to 0, and then calculates the reliability P of abnormality determination.

判定機能17は異常判定の信頼度Pを第1表に示す異常
判定しきい値テーブルと比較し、いずれかの時系列デー
タの信頼度Pがしきい値A、B。
The determination function 17 compares the reliability P of abnormality determination with the abnormality determination threshold table shown in Table 1, and the reliability P of either time series data is equal to the threshold A or B.

Cに達した場合に異常と判定する。この判定結果は、出
力部12の出力機能18に導かれ、正常・異常の区別や
判定の信頼度を通報装置13に出力する。
When it reaches C, it is determined that there is an abnormality. This determination result is led to the output function 18 of the output unit 12, and outputs the distinction between normal and abnormal and the reliability of the determination to the reporting device 13.

上述した本発明の実施例においては、プラント機器群の
運転に伴って生ずる秒単位の短い周期の変動から年単位
の長い周期の変動に至るまで漏らさずに時系列化して捕
えるように各時系列データの時間長を対比させて設定し
た上で自己回帰モデルに同定することにより、圧力等の
調整制御に係わる比較的短周期の変動から、気候の変化
に伴うような長周期の変動に至るまで機器異常時の変化
分とは明確に分離して判定することが可能になり検知精
度が向上するという効果が得られる。
In the above-described embodiment of the present invention, each time series is created in such a way that it captures everything from short-cycle fluctuations on a second-by-second basis to long-cycle fluctuations on a yearly basis that occur as a result of the operation of a group of plant equipment. By comparing and setting the time length of data and identifying it with an autoregressive model, it is possible to detect relatively short-period fluctuations related to adjustment control of pressure, etc., as well as long-period fluctuations such as those associated with climate changes. This makes it possible to clearly separate the change from the change in equipment abnormality and make a determination, resulting in an improvement in detection accuracy.

第7図は本発明装置の他の実施例として、正常な運用と
してのプラント運転操作の内、音響信号の周期的変化過
程に変化を与える運転操作に対して異常判定のしきい値
を変更するしきい値補正機能35を有する音響処理装置
4の機能説明図である。
FIG. 7 shows another embodiment of the device of the present invention, in which the abnormality determination threshold is changed for an operation that causes a change in the periodic change process of an acoustic signal among normal plant operation operations. 3 is a functional explanatory diagram of the sound processing device 4 having a threshold value correction function 35. FIG.

発電プラントにおいて、負荷設定の変更のような非周期
的なプラント運転操作が行われた場合、それまでの周期
的変化過程から新たな変化過程に移行することになるが
、この変化過程の移行について第8図を参照して説明す
る。
When non-periodic plant operation operations such as changes in load settings are performed in a power generation plant, the previous periodic change process will transition to a new change process. This will be explained with reference to FIG.

第8図中の36に示す運転操作実施前の音響信号レベル
の変化過程に対し、運転操作の実施時点37以降は38
に示すような変化過程が生じたものとすると、実/1!
1値Xと予測値RN+ 1との残差Sは第8図中の40
に示すように、運転操作実施時点37の直後において、
それ以前の残差39から急増する。その後、予測鎖交N
+1が運転操作実施後の変化過程38に対し徐々に正確
に推定してゆくため残差Sは40に示すように漸減する
In contrast to the change process of the sound signal level before the execution of the driving operation shown in 36 in Figure 8, after the time 37 of the driving operation, 38
Assuming that the change process shown in has occurred, real/1!
The residual S between the 1 value X and the predicted value RN+1 is 40 in Figure 8.
As shown in , immediately after the driving operation execution time point 37,
This is a sharp increase from the previous residual of 39. Then, the predicted linkage N
Since +1 gradually and accurately estimates the change process 38 after the driving operation is performed, the residual S gradually decreases as shown at 40.

一方、予測鎖交N++に付帯する白色雑音成分eの大き
さは第8図中の42に示すように、運転操作実施前の白
色雑音の分散41に対し、運転操作実施後の変化過程3
8のデータが相当量連結された時点において最大となる
On the other hand, as shown at 42 in FIG. 8, the magnitude of the white noise component e attached to the predicted linkage N++ is as follows:
The maximum value is reached when a considerable amount of 8 data is connected.

その結果、第7図の自己回帰分析機能16で算出される
異常判定の信頼度Pは、■式に示したように残差Sと白
色雑音成分eの比S / eに応じて高くなるため、第
8図中の44に示すように、運転操作の実施時点37の
直後において最も高くなり、その後、残差Sの低下と白
色雑音成分eの増加に伴って下降してくる。
As a result, the reliability P of abnormality determination calculated by the autoregressive analysis function 16 in FIG. , as shown at 44 in FIG. 8, is highest immediately after the driving operation execution point 37, and then decreases as the residual S decreases and the white noise component e increases.

このような非周期的な運転操作を行うことにより、運転
操作の実施時点37直後の一定時間においては、異常判
定の信頼度Pがしきい値45を超え、誤判定を行う危険
性がある。
By performing such an aperiodic driving operation, there is a risk that the reliability P of the abnormality determination exceeds the threshold value 45 during a certain period of time immediately after the driving operation execution time point 37, resulting in an erroneous determination.

そこで、第7図に示す本発明の実施例においては、しき
い値補正機能35が、非周期的な運転操作の操作の有無
を示す情報をプラント制御用の計算機等より得る。
Therefore, in the embodiment of the present invention shown in FIG. 7, the threshold correction function 35 obtains information indicating the presence or absence of non-periodic driving operations from a plant control computer or the like.

この場合、第2表に示すように操作内容をプラントデー
タ設定テーブルとして予め音響処理装置内に規定してお
き、このテーブルに設定された操作が行われた場合に情
報として獲得するものとする。
In this case, as shown in Table 2, the operation contents are defined in advance in the sound processing device as a plant data setting table, and the information is acquired when the operation set in this table is performed.

第2表 プラントデータ設定テーブル 次に、しきい値補正機能35はプラントデータ設定テー
ブルに規定した運転操作が行われた時点で、第9図中の
47に示すように、予め異常判定しきい値テーブル(第
1表)に設定しである異常判定しきい値45に対して、
残差Sに比例した値を加えて補正する。この場合、プラ
ント運転操作実施後の残差Sが一定値以下に収束するま
でのデータ区間について補正を行うこととする。
Table 2 Plant Data Setting Table Next, the threshold correction function 35 sets the abnormality determination threshold value in advance as shown in 47 in FIG. For the abnormality judgment threshold 45 set in the table (Table 1),
A value proportional to the residual S is added to correct it. In this case, correction is performed for the data interval until the residual S after the plant operation converges to a certain value or less.

第7図中の判定機能17は、補正後の異常判定しきい値
47を異常判定の信頼度Pと比較することで、異常の有
無を判定する。
The determination function 17 in FIG. 7 determines the presence or absence of an abnormality by comparing the corrected abnormality determination threshold 47 with the reliability P of abnormality determination.

本実施例によると、音響信号の周期的変化過程に影響を
与えるプラントの運転装置に対し、その操作の有無に関
する情報を入手して異常判定のしきい値を補正すること
により、非周期的な運転操作による誤判定を防止できる
という効果が得られる。
According to this embodiment, information regarding the presence or absence of operation of plant operating equipment that affects the periodic change process of acoustic signals is obtained and the abnormality determination threshold is corrected, thereby preventing non-periodic changes. This has the effect of preventing erroneous judgments caused by driving operations.

[発明の効果] 以上のように本発明によれば、捕えた音響信号を蓄積す
る時間長の異なる複数の時系列データの形で自己回帰モ
デルに同定して異常の有無を判定することにより、機器
異常時の音響信号の変化分を、プラント機器群の運転に
伴って生ずる秒単位の短周期の成分から、年単位の長周
期の成分に至るまでの定常的な変動成分と分離して検知
できるので検知精度が向上し、さらには自己回帰モデル
への同定を継続する過程でパワースペクトルの変動パタ
ーンが自動的に学習されることで調整員個人の能力によ
る検知精度の差が生じ難くなるという有効が得られる。
[Effects of the Invention] As described above, according to the present invention, by identifying the captured acoustic signals in the form of multiple time series data with different accumulation time lengths to an autoregressive model and determining the presence or absence of an abnormality, Detects changes in acoustic signals caused by equipment abnormalities by separating them from steady fluctuation components, ranging from short-period components on the order of seconds to long-period components on the order of years, which occur with the operation of plant equipment. This improves detection accuracy, and furthermore, as the power spectrum fluctuation pattern is automatically learned in the process of continuing identification with the autoregressive model, differences in detection accuracy due to the ability of individual coordinators are less likely to occur. Effectiveness is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の構成を示す模式図、第2図は本発
明における音響処理装置の機能を示すフローチャート、
第3図は時間長の異なる複数の時系列データを例示する
グラフ、第4図は時系列データに対する自己回帰モデル
への同定手法を説明するグラフ、第5図は本発明装置の
実施例の構成を説明する模式図、第6図は時間長の異な
る3組の時系列データを例示するグラフ、第7図は本発
明の他の実施例における音響処理装置の機能を示すフロ
ーチャート、第8図はプラント運転操作による変化過程
の移行を説明するグラフ、第9図は補正後の異常判定し
きい値を示すグラフ、第10図は配管からの蒸気漏れに
対する従来の検知手法を説明する模式図、第11図は配
管からの蒸気漏れによるスペクトルの増分を説明するグ
ラフ、第12図は計測時刻によるスペクトルの相違を説
明するグラフ、第13図はプラント機器の運転に伴うス
ペクトルの変動を説明するグラフである。 3・・・・・・・・・マイクロホン 4.9・・・音響処理装置 10・・・・・・・・・入力部 11・・・・・・・・・演算部 12・・・・・・・・・出力部 13・・・・・・・・・通報装置
FIG. 1 is a schematic diagram showing the configuration of the device of the present invention, and FIG. 2 is a flowchart showing the functions of the sound processing device of the present invention.
Fig. 3 is a graph illustrating a plurality of time series data with different time lengths, Fig. 4 is a graph illustrating an identification method for an autoregressive model for time series data, and Fig. 5 is a configuration of an embodiment of the device of the present invention. FIG. 6 is a graph illustrating three sets of time series data with different time lengths, FIG. 7 is a flowchart showing the functions of the sound processing device in another embodiment of the present invention, and FIG. A graph explaining the transition of the change process due to plant operation, FIG. 9 is a graph showing the abnormality judgment threshold after correction, FIG. 10 is a schematic diagram explaining the conventional detection method for steam leaks from piping, and FIG. Figure 11 is a graph that explains the increment in the spectrum due to steam leakage from piping, Figure 12 is a graph that explains the difference in spectrum depending on the measurement time, and Figure 13 is a graph that explains the fluctuation of the spectrum due to the operation of plant equipment. be. 3... Microphone 4.9... Sound processing device 10... Input section 11... Arithmetic section 12... ...Output section 13...Notification device

Claims (1)

【特許請求の範囲】 監視対象とする機器から発する音響信号を検出して前記
機器の異常を検知する異常検出装置において、 マイクロホンを介して得た音響信号を一定間隔で繰返し
ディジタル量として取込むサンプリング機能を持つ入力
部と; サンプリングした音響信号を蓄積する時間長の異なる複
数の時系列データとして保存する時系列データ生成機能
と、各時間長の時系列データを自己回帰モデルに同定し
て正常時における音響信号の変化過程を予測値として算
出した上、これと前記サンプリングによって得た実測値
との残差から実測値が正常時の変化過程外であると見な
せる確率を異常判定の信頼度として計算する自己回帰分
析機能と、各時系列データについて算出した信頼度をし
きい値と比較して異常の有無を判断する判定機能とを持
つ演算部と; 前記判定結果を通報装置に出力する出力部と;からなる
音響処理装置を備えることを特徴とする異常検知装置。
[Claims] In an abnormality detection device that detects an acoustic signal emitted from a device to be monitored and detects an abnormality in the device, sampling is performed to repeatedly capture the acoustic signal obtained through a microphone as a digital quantity at regular intervals. An input section with functions: a time-series data generation function that stores sampled acoustic signals as multiple time-series data with different time lengths, and an autoregressive model that identifies the time-series data of each time length to determine normal times. After calculating the change process of the acoustic signal as a predicted value, the probability that the actual value can be considered to be outside the normal change process is calculated from the residual difference between this and the actual value obtained by the sampling as the reliability of abnormality determination. an arithmetic unit that has an autoregressive analysis function that performs the calculation, and a determination function that compares the reliability calculated for each time series data with a threshold value to determine the presence or absence of an abnormality; an output unit that outputs the determination result to the reporting device. An anomaly detection device comprising: an acoustic processing device comprising; and;
JP3082390A 1990-02-09 1990-02-09 Abnormality detecting apparatus Pending JPH03235027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082390A JPH03235027A (en) 1990-02-09 1990-02-09 Abnormality detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082390A JPH03235027A (en) 1990-02-09 1990-02-09 Abnormality detecting apparatus

Publications (1)

Publication Number Publication Date
JPH03235027A true JPH03235027A (en) 1991-10-21

Family

ID=12314425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082390A Pending JPH03235027A (en) 1990-02-09 1990-02-09 Abnormality detecting apparatus

Country Status (1)

Country Link
JP (1) JPH03235027A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106893A (en) * 2001-09-28 2003-04-09 Yamatake Sangyo Systems Co Ltd Apparatus and program for monitoring of abnormality
JP2004243501A (en) * 2003-02-17 2004-09-02 Denso Corp Assembly determination device and article structure and jig structure used for it
JP2005339142A (en) * 2004-05-26 2005-12-08 Tokyo Electric Power Co Inc:The Facility maintenance supporting device
JP2007040713A (en) * 2005-07-29 2007-02-15 Central Res Inst Of Electric Power Ind Soundness diagnosis method and soundness diagnosis program of building based on microtremor measurement
JP2009041978A (en) * 2007-08-07 2009-02-26 Applied Research Kk Integrity diagnostic method by tap tone analysis
JP2013205048A (en) * 2012-03-27 2013-10-07 Tokyo Metropolitan Sewerage Service Corp Method for diagnosing soundness of rotary machine
WO2018230645A1 (en) * 2017-06-14 2018-12-20 株式会社東芝 Anomaly detection device, anomaly detection method, and program
JP2019036112A (en) * 2017-08-15 2019-03-07 日本電信電話株式会社 Abnormal sound detector, abnormality detector, and program
CN111190045A (en) * 2019-12-27 2020-05-22 国网北京市电力公司 Voltage abnormity prediction method and device and electronic equipment
WO2022044383A1 (en) * 2020-08-27 2022-03-03 株式会社島津製作所 Peak shape estimation device and peak shape estimation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106893A (en) * 2001-09-28 2003-04-09 Yamatake Sangyo Systems Co Ltd Apparatus and program for monitoring of abnormality
JP2004243501A (en) * 2003-02-17 2004-09-02 Denso Corp Assembly determination device and article structure and jig structure used for it
JP2005339142A (en) * 2004-05-26 2005-12-08 Tokyo Electric Power Co Inc:The Facility maintenance supporting device
JP2007040713A (en) * 2005-07-29 2007-02-15 Central Res Inst Of Electric Power Ind Soundness diagnosis method and soundness diagnosis program of building based on microtremor measurement
JP2009041978A (en) * 2007-08-07 2009-02-26 Applied Research Kk Integrity diagnostic method by tap tone analysis
JP4598809B2 (en) * 2007-08-07 2010-12-15 アプライドリサーチ株式会社 Soundness diagnosis method by sound analysis
JP2013205048A (en) * 2012-03-27 2013-10-07 Tokyo Metropolitan Sewerage Service Corp Method for diagnosing soundness of rotary machine
WO2018230645A1 (en) * 2017-06-14 2018-12-20 株式会社東芝 Anomaly detection device, anomaly detection method, and program
JPWO2018230645A1 (en) * 2017-06-14 2020-05-21 株式会社東芝 Abnormality detection device, abnormality detection method, and program
JP2019036112A (en) * 2017-08-15 2019-03-07 日本電信電話株式会社 Abnormal sound detector, abnormality detector, and program
CN111190045A (en) * 2019-12-27 2020-05-22 国网北京市电力公司 Voltage abnormity prediction method and device and electronic equipment
WO2022044383A1 (en) * 2020-08-27 2022-03-03 株式会社島津製作所 Peak shape estimation device and peak shape estimation method

Similar Documents

Publication Publication Date Title
CN109239265B (en) Fault detection method and device for monitoring equipment
US7702401B2 (en) System for preserving and displaying process control data associated with an abnormal situation
US5838561A (en) Automatic control loop monitoring and diagnostics
US10704982B2 (en) Sensor recording analysis apparatus and method
US20140055274A1 (en) Change detection system using frequency analysis and method
CN101124523A (en) Diagnosis device for course control system
JP5164954B2 (en) Device diagnostic method and device diagnostic device
JPH03235027A (en) Abnormality detecting apparatus
CN110553789A (en) state detection method and device of piezoresistive pressure sensor and brake system
CN114492629A (en) Abnormality detection method, abnormality detection device, electronic apparatus, and storage medium
WO2014031291A2 (en) Fleet anomaly detection system and method
JPWO2004068078A1 (en) State determination method, state prediction method and apparatus
WO1997041494A1 (en) Automatic control loop monitoring and diagnostics
JP6825753B1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method
JP7453049B2 (en) Abnormal sign monitoring system, abnormal sign monitoring method, and program
JPH04152220A (en) Method and device for failure sensing
JP2021076597A (en) Detecting rotor anomalies by determining vibration trends during transient speed operation
TW201833518A (en) Method of real-time prognosis of flooding phenomenon in packed columns
WO2015040683A1 (en) Sensor soundness determination method and sensor soundness determination device
KR20160039078A (en) Method for analyzing signal of power plant pipe
JP7157293B2 (en) Failure detection/prediction device and failure detection/prediction program
JPH04316198A (en) Plant abnormality detecting device
US11047833B2 (en) Method for automatic determination of trend in graphic analysis of turbomachines
US20230265871A1 (en) Detection of an anomaly in a fluid power system
US20220036235A1 (en) Learning data processing device, learning data processing method and non-transitory computer-readable medium