JP2004019409A - Base isolation supporting device for building - Google Patents

Base isolation supporting device for building Download PDF

Info

Publication number
JP2004019409A
JP2004019409A JP2002180316A JP2002180316A JP2004019409A JP 2004019409 A JP2004019409 A JP 2004019409A JP 2002180316 A JP2002180316 A JP 2002180316A JP 2002180316 A JP2002180316 A JP 2002180316A JP 2004019409 A JP2004019409 A JP 2004019409A
Authority
JP
Japan
Prior art keywords
building
side fixing
fixing member
foundation
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180316A
Other languages
Japanese (ja)
Other versions
JP3735593B2 (en
Inventor
Fujio Itagaki
板垣 富士男
Atsushi Itagaki
板垣 淳
Jo Cho
張 茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA ENGINEERING KK
Original Assignee
TAMA ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA ENGINEERING KK filed Critical TAMA ENGINEERING KK
Priority to JP2002180316A priority Critical patent/JP3735593B2/en
Publication of JP2004019409A publication Critical patent/JP2004019409A/en
Application granted granted Critical
Publication of JP3735593B2 publication Critical patent/JP3735593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation supporting device having a sufficient base isolating action independently of the direction of earthquake and allowing the setting to start base isolating action when the seismic intensity reaches a certain seismic intensity. <P>SOLUTION: Shock absorbing members 4, 5 having elasticity are provided in a bottomed cylindrical body 3 having an upper part open. On the shock absorbing member, there are provided a foundation side fixing member having a ball supporting plate 6 on the upper face for supporting a plurality of steel balls 7 in a rolling manner and a supporting plate 8 as a building side fixing member provided on the steel balls so as to be horizontally displaceable with the rolling operation of the steel balls 7. A plurality of adjusters 9 are provided between the foundation side fixing member and the building member for restricting the horizontal displacement between the foundation side fixing member and a building with the resilience of a spring 12. The magnitude of the shaking by an earthquake can be set to start the base isolating operation by adjusting the free lengths of the adjusters. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はビルや住宅等の建築物を基礎上に支持するための装置に関し、より詳しくは地震力による建築物への影響をより小ならしめる免震支持装置に関する。
【0002】
【従来の技術とその問題点】
地震による建築物への影響を抑制または制御して建築物の破損を防止する構造には、地震力が建築物に伝わらないようにする免震構造があり、この免震構造は、地盤側の構造物と建築物の本体構造との間に地震のエネルギーを絶縁するアイソレータと呼ばれる部材や機構を備えている。
【0003】
従来から広く採用されているアイソレータとしては、薄いゴムシートと鋼板を交互に積層して接着した積層ゴムアイソレータがあり、この積層ゴムアイソレータでは鉛直方向の荷重(建築物の荷重)に対しては、同荷重によるゴムの水平方向への広がりを鋼板が規制して鉛直方向の変形は抑制されるが、水平方向の力に対してはゴムの弾性により大きく変形することができ、したがって建築物の荷重を十分に支持でき、かつ建築物への地震による水平方向のエネルギーの伝達を確実に遮断することができる。
【0004】
しかし、上述した従来の免震構造では個々の建築物に応じ、また想定される地震の規模に応じて積層ゴムアイソレータの鉛直荷重に対する支持強度や水平応力に対する弾性変形率等の仕様を設計しなければならず、建築物の設計や施工コストが嵩むという問題がある。
【0005】
また、上述した従来の免震構造では直下型地震におけるいわゆる縦揺れによる鉛直方向の地震エネルギーを遮断することができないという問題もある。
【0006】
さらに、上述した従来の免震構造では、免震作用が積層されたゴムや鋼板の寸法や弾性によって決まるので、地震の揺れの大きさに対応させて免震作用を調節することができず、すなわち揺れの小さな地震に対して免震作用を働かせないようにすることはできず、揺れの小さな地震や風によって建築物が揺れると、免震作用によって建築物に緩やかな揺れが長く続くという問題がある。
【0007】
また、地震はその発生後に地盤の変動を伴うケースが非常に多く、この地盤の変動により建築物が不等沈下を生じて傾いてしまうことが往々にしてあるが、従来の免震構造には不等沈下が生じた場合に建築物の沈下修正を行なうことができるようにしたものはない。
【0008】
なお一般住宅用の免震構造として、上面が曲面状に陥凹する下部板と下面が曲面状に陥凹する上部板との間に、上部板と下部板との間が水平方向へ相対的に変位できるよう複数の鋼球を介装してなる免震装置を、コンクリート基礎と住宅の土台との間に配設し、地震の揺れに応じて上部板と下部板との間で鋼球が転動することによって住宅に掛かる地震のエネルギーを抑制するようにしたものがあるが、揺れが大であると鋼球が脱落したり、直下型地震の際における鉛直方向の揺れを抑制することができなかったりという問題があり、十分な免震作用を得ることは期待できない。
【0009】
【目的】
本発明の目的とするところは、地震の揺れの方向にかかわらず十分な免震作用を得ることができ、しかも所要の震度に達すると免震作用が働き始めるように設定することができ、また建築物に不等沈下が生じた場合には建築物の沈下修正を容易かつ正確に行なうことができる免震支持装置を提供することにある。
【0010】
【発明の構成】
上記目的を達成するために、本発明に係る装置は、基礎上に建築物を支承する免震支持装置であって、上部が開口する有底の筒状体内に、上下方向に伸縮可能な弾性を有する緩衝部材を備え、同緩衝部材上に、上面に複数の鋼球を転動可能に支持するボール受け板を備える基礎側固定部材と、鋼球の転動によって水平方向に変位できるよう鋼球上に設けられた建築物側固定部材たる支持プレートとを備え、前記基礎側固定部材と建築物の部材との間に、これら基礎側固定部材と建築物との間の水平方向の変位をばねの弾発力によって規制する複数のアジャスタを設け、このアジャスタは自由長さが調節可能であって、この自由長さを調節することによって免震作用が働き始める地震の揺れの大きさを設定できるようにした構成のものとしてある。
【0011】
また本発明に係る装置は、前記基礎側固定部材と基礎との間に、内周面に巻き方向が互い異なる雌ねじが形成された上下の雌ねじ筒と、これらの雌ねじ筒の各雌ねじに螺合する互いに巻き方向が異なる上下の雄ねじが外周面に形成された雄ねじ体とを備え、この雄ねじ体の外周面における前記上下の雄ねじ間に雄ねじ体を正逆回転させるための回転操作部を有し、この回転操作部を正逆回転させることによって上下の雌ねじ筒が離間または接近して上下方向に伸縮される上下調節機構を介設した構成のものとしてある。
【0012】
【実施例】
以下、本発明に係る免震支持装置の実施例を添付図面に示す具体例に基づいて説明する。
本実施例の装置は、地震による揺れを抑制するための免震機構1と、施工時および沈下修正時に建築物の鉛直方向の位置を調節するための上下調節機構2とを備えている。
【0013】
上記免震機構1は、上部が開口する有底の筒状体3内に緩衝部材たる圧縮コイルばね4と緩衝ゴム5を有し、緩衝部材上にボール受け板6を備えている。
上記緩衝ゴム5は、例えば円柱状に形成した合成ゴムの上面中央に陥凹部5aを設けたものとしてあり、この緩衝ゴム5の外周と筒状体3の内周との間の隙間に前記圧縮コイルばね4を設けてあって、この圧縮コイルばねの自由高さは緩衝ゴムの高さとほぼ同じものとする。
【0014】
また前記ボール受け板6は、図2に示されるように中央孔6aを有するリング状に形成した鋼板の上面に、複数(図2では4つ)の凹部6b、6bを有し、各凹部に鋼球7を転動可能に支持するものとしてあって、外周辺部には鋼球が脱落するのを防止するための立ち上がり縁部6cを設けてあり、ボール受け板6の外径は円筒体3の内径よりも若干小で円筒体の内周面に沿って上下に摺動できるようにしてある。
【0015】
上記ボール受け板6の中央孔6aと、前記緩衝ゴム5の陥凹部5aには、支持プレート8の中央部下面に垂設された円柱部8aが嵌入され、支持プレートは前記鋼球7、7上に支持されている。
なお、緩衝ゴムの陥凹部5aの内径は円柱部8aの外径とほぼ同じであるが、ボール受け板の中央孔6aの内径は円柱部8aの外径よりも十分に大なるものとする。
【0016】
したがって、支持プレート8は円柱部8aが緩衝ゴム5に嵌入してはいるが、緩衝ゴムの弾性力に抗して鋼球7の転動により水平方向に移動できるように設けられている。
【0017】
なお、支持プレート8の下面と筒状体3の上縁部との間は、支持プレート上に建築物からの荷重が掛かった状態で十分な隙間があくようにしてあって、この隙間は地震による鉛直方向の力が掛かった際に想定される前記緩衝部材の鉛直方向の収縮量よりも大とする。
【0018】
前記筒状体3の上部外周には、この筒状体から水平方向に放射状に延びる複数のアジャスタ9、9を備えており、これらのアジャスタは地震の際に筒状体3と建築物との間の水平方向における相対的な移動量を規制するものとしてある。
【0019】
しかしてアジャスタ9は図3に示されるように、一端が開口し他端が閉ざされた円筒状の外筒10と内筒11を備え、外筒内にコイルばね12を収容し、かつ内筒の開口端から或る程度内側にばね受け板13を設け、このばね受け板と外筒の閉ざされた側の端部内面にそれぞれ前記コイルばねの端部を固定してある。
【0020】
なお、上記コイルばね12は圧縮方向と引張り方向のいずれの方向の荷重も受けることができるように各端部が上記ばね受け板13と外筒10に強固に固定され、どちらの方向の荷重に対してもばね定数が同程度であるものを使用する。
【0021】
また、アジャスタ9の両端にはそれぞれ先端にボールジョイント14、15を備えるロッド16、17の基部が取り付けられていて、外筒側のロッド16は基部が外筒の閉塞端部外面に直接固定されており、内筒側のロッド17は外周面に雄ねじ17aが形成されていて、この雄ねじが内筒の閉塞端部にあけた孔の外側に固定されたナット18に螺合して基部が内筒内に臨んでいる。
【0022】
上記ボールジョイントのうち一方のもの、例えば内筒側のロッド17先端のボールジョイント15は、基礎側固定部材たる前記筒状体3の外周面に溶接等によって固定してあり、他方のボールジョイント、例えば外筒側のロッド16先端のボールジョイント14は後述する建築物の土台26側に固定される。
【0023】
前記上下調節機構2は、内周面に雌ねじ部19a、20aをそれぞれ形成した上下の雌ねじ筒19、20と、上下の雄ねじ部21a、21b間に回転操作部22を有する筒体よりなる雄ねじ体21を備え、また、回転操作部22と上下の雌ねじ筒19、20間にロックナット23a、23bを設けてある。
【0024】
上下の雌ねじ筒19、20における各雌ねじ部19a、20aは互いにねじ条の巻き方向が逆向きになっており、かつ雄ねじ体における上下の雄ねじ部21a、21bも互いにねじ条の巻き方向が逆向きになっていて、回転操作部を正逆回転させることによって上下の雌ねじ筒が離間し、または接近して、上下調節機構2全体が伸縮できるようになっている。
【0025】
前記回転操作部22は外周面の横断面形状が六角形状を呈する形状としてあって、前記ロックナット23a、23bと同じ工具で回すことができるようにしてある。
また、前記各雌ねじ部、雄ねじ部、ロックナットの各ねじ条はいずれも耐荷重性の高い角ねじや台形ねじとするのが好適である。
なお、前記上側の雌ねじ筒19における上端部寄りの内側には十字状の補強リブ24を設けてある。
【0026】
上述した構成の上下調節機構2は、上側の雌ねじ筒19の上端が前記免震機構1の筒状体3の下面に溶接にて接続されていて、建築物からの荷重が大である場合には必要に応じて上側の雌ねじ筒19の外側面と筒状体3の下面との間にブラケットを設ける。
【0027】
しかして本実施例に係る装置は、地盤に打設された鋼管杭等の基礎杭25の上端に上下調節機構2における下側の雌ねじ筒20の下端を溶接して取り付け、免震機構1における建築物側固定部材たる支持プレート8の上面に建築物の土台26をボルト・ナット等の止め具27で固定し、また、アジャスタ9の遊端側のボールジョイント14をブラケット28を介して建築物側の部材たる土台26に固定して取り付ける。
なお、免震機構1における支持プレート8以外の構成および上下調節機構2は全て基礎側固定部材である。
【0028】
図1中において、符号29は土台28上に取り付けられた建築物の柱を示し、30は柱の下方における土台の補強材を示す。
【0029】
上述のように構成された本発明の装置は、基礎杭25上において土台26を支承し、より詳しくは土台26から支持プレート8に掛かる建築物の荷重が、鋼球7、7とボール受け板6および円柱部8aを介して圧縮コイルばね4と緩衝ゴム5を備える緩衝部材に掛かり、さらに筒状体3および上下調節機構2を介して基礎杭25に掛かる。
【0030】
上記支持プレート8は、鋼球7、7の転動と緩衝ゴム5の弾性変形によって筒状体3に対して水平方向に変位可能に支持されているが、この水平方向の変位は筒状体3と土台26との間に設けられているアジャスタ9、9により規制される。
【0031】
すなわち、地震によって地盤が水平方向に揺れると、基礎杭25に固定されている上下調節機構2、筒状体3、緩衝部材4、5、ボール受け板6および鋼球7、7は地盤とともに揺れるが、緩衝部材4、5、鋼球7、7およびアジャスタ9、9が揺れを絶縁するアイソレータとして作用し、建築物はその慣性力によって支持プレート8とともに地盤に対して相対的に水平方向に変位するが絶対位置はあまり変化せず、したがって、地盤の揺れは建築物に殆ど伝達されない。
【0032】
なお、アジャスタ9は図1の左右に対向して配設されている場合、一方のアジャスタが伸長すると、他方のアジャスタが収縮して振動を逃がし、またアジャスタは筒状体3とブラケット28に対してそれぞれボールジョイント14、15を介して接続してあるので、基礎杭に対するねじれ方向の揺れにも対応することができる。
【0033】
また、地震による地盤の鉛直方向の揺れは、緩衝部材4、5によって吸収され、建築物に対する衝撃が十分に緩和される。
【0034】
しかして本発明の装置においては、地震による水平方向の揺れの大きさに対し、免震作用を調節できるように構成してある。
すなわち、前記アジャスタ9は内筒側のロッド17を内筒11に対して回動させると、アジャスタ全体の自由長さを調節できるようになっており、このアジャスタの自由長さの設定によって免震作用を調節することができる。
【0035】
より詳しくは、アジャスタ9の自由長さが筒状体3と土台26側のブラケット28間の距離と同じとなるように設定した場合、免震作用は最も大となり、したがって地震による水平方向の揺れが微小であっても建築物は地盤に対して変位し、地震による水平方向の衝撃は建築物に伝達されないが、建築物は地震の揺れが収まっても弱い揺れが長く続く。
【0036】
一方、アジャスタの自由長さが筒状体3と土台26側のブラケット28間の距離に比して大または小となるように設定した場合、アジャスタ9が円筒体と土台とを引き付ける力または押し付ける力が大となり、したがって地震による揺れが所定の大きさを超えないと免震作用が働かず、地震による水平方向の揺れが微小である場合(例えば震度3未満の場合)には建築物は地盤とともに変位して地震による水平方向のエネルギーが建築物に伝達されるが、地震の揺れが収まれば建築物は速やかに揺れが止まり、地震による水平方向の揺れが所定の値(例えば震度3)を超えた場合には、建築物はアジャスタ9のばね力に抗して地盤に対する変位を生じ、地震による水平方向の衝撃が建築物に伝達されず、この地震の衝撃による建築物の損傷が防止される。
【0037】
上述したアジャスタ9の自由長さの調節は、建築物の施工時に建築物の規模や使用目的あるいは地盤の状態に対応して適宜行なうが、建築物の経年変化や地盤の変動に対応して施工後数年経過してから自由長さの設定をやり直すこともできる。
【0038】
なお、上述した構成のアジャスタ9では、地震の揺れが収まっても免震作用による建築物の微小な揺れが残り、この微小な揺れは摩擦によって完全に減衰するまで続くが、このような微小な揺れを迅速に減衰させることが要求される場合には、ダンパ機能を備えるアジャスタを使用し、その一具体例を図4に示す。
【0039】
ダンパ機能を備えるアジャスタ31は、外筒10内に仕切板32を有し、この仕切板32によって外筒内にダンパ室33が形成されていて、仕切板と内筒11のばね受け板13との間にコイルばね12を備え、ばね受け板13に一端が固定されたロッド34のダンパ室内に臨む他端に、ピストン板35が取り付けられ、このピストン板35に複数のオリフィス35aをあけたものとしてある。
【0040】
前記ダンパ室33内には、適宜の流体例えばオイルや窒素ガスあるいはオイルとガスの混合流体が封入され、アジャスタ31の軸方向にアジャスタを伸縮させようとする急激な応力が掛かっても、ピストン板35の移動はオリフィスを通過する流体の量に規制されてアジャスタの急激な伸縮が防止され、また、地震の揺れが収まった後において建築物に残る微小な揺れも、ダンパによって減衰される。
【0041】
ところで、地震は地盤の変動を伴う場合が多く、地震によって建築物に不等沈下が生じ、建築物が傾くというケースが少なくない。
このように建築物に不等沈下した場合、上述のように構成した本発明の装置では上下調節機構2によって容易に沈下修正を行なうことができる。
【0042】
具体的には、各基礎杭25の位置における沈下量を測量して各装置における修正高さを決定し、各装置においてロックナット23a、23bを緩め、回転操作部22を正逆回動させて上下の雌ねじ筒19、20を離間または接近させることにより上下調節機構の長さを所要の修正高さに対応して調節し、ロックナット23a、23bを締めるという簡単な作業で沈下修正を行なうことができ、建築物のジャッキアップ等の煩雑な作業が不要である。
【0043】
上述のように構成した本発明の装置は、建築物の土台26が十字状に交差する部分に、アジャスタ9、9が各土台と平行となるよう筒状体3まわりに四方に設けるのが原則であるが、建築物の外周部においてはアジャスタを四方に設けることができない。したがって、建築物の外周部においては、図5に示されるようにアジャスタを筒状体3まわりに土台に沿って3方向に設ける場合もあるし、火打ち土台と呼ばれる直交する土台間の補強材36にアジャスタの一端を固定する場合もある。
【0044】
図6は本発明に係る装置の他の実施例を示し、上述した第1実施例のものと緩衝部材、支持プレートおよびボール受け板の構成が異なる。
すなわち、第1実施例のものは緩衝部材を圧縮コイルばね4と緩衝ゴム5とで構成しているが、本実施例のものでは圧縮コイルばね37だけでボール受け板38を支持している。この圧縮コイルばね37は同図6では断面円形のものを使用しているが、断面が左右に長い板状を呈するコイルばねを使用する場合もあり、このようなコイルばねを使用するとばね定数すなわち耐荷重を大ならしめることができる。
【0045】
また、第1実施例ではボール受け板6が筒状体3の内周面に沿って上下に摺動できるように構成してあるが、本実施例のものではボール受け板38に下向き外周縁部38aを設け、同周縁部の内周面が筒状体3の外周面に沿ってボール受け板が上下に摺動できるようにしてある。
【0046】
さらに、支持プレート39は下面に陥凹部39aを形成してあり、この陥凹部の曲面が鋼球7、7の上部に接触する構成としてあり、かくすると支持プレート39が水平方向に変位しても常に支持プレートが初期の位置に戻ろうとする復元力が生じ、したがって第1実施例のもののように支持プレートの下面に円柱部を設けて緩衝ゴムに嵌入せしめる必要がない。
【0047】
また、第1実施例のものではアジャスタ9、9の各一端を筒状体3の外周に取り付けてあるが、本実施例のものではボール受け板38の外周に固定してある。なお、アジャスタ9は第1実施例のものと同様に筒状体の外周にその一端を取り付ける場合もある。
【0048】
上述した第1および第2実施例の装置は基礎杭25上に建築物を支持するための構成であるが、本発明の装置はコンクリート基礎上に建築物が支持される例えば一般の戸立て住宅にも適用することができ、その具体例を図7に示す。
【0049】
本実施例の装置は、第1実施例および第2実施例の装置における上下調節機構を設けず、免震機構だけを備えている。
しかして、コンクリート基礎40の上部に、凹部40aを形成し、またこの凹部上における土台26の下部に切り欠き部26aを形成してあって、これら凹部と切り欠き部との間に本実施例の装置を設ける。
【0050】
具体的には、基礎40の凹部中央に防振ゴムシート等よりなる防振部材41を介してボール受け板42を固定してあって、このボール受け板42上の鋼球7、7上に支持プレート39を設けてあり、この支持プレート39を、補強板43を介して土台26に取り付けてある。
【0051】
また、アジャスタ9、9の一端をボール受け板42の外周面に固定してあって、各アジャスタの他端を土台側のブラケットに固定してある。
なお、上記鋼球7および支持プレートの構造は上述した第2実施例のものと同じである。
【0052】
ところで、本実施例の装置は同図7に示されるように土台26を、土台下面とコンクリート基礎40上面との間に適宜の隙間44があくように設けられ、この隙間は前記防振部材41の収縮代と建築物の下部への通風口として作用する。
なお、本実施例の装置では第1および第2実施例のもののように上下調節機構を設ける場合もある。
【0053】
【発明の効果】
本発明によれば、地震による揺れによる衝撃が免震機構によって建築物に殆ど伝達せず、地震の揺れによる建築物の損傷を防止することができる。
しかも、アジャスタの自由長さを適宜調節することにより、所定の地震の揺れの大きさ(震度)に対して上記免震作用が働き始めるように設定することができ、したがって微小な揺れの地震に対しては免震作用が働かないようにして、地震が収まった後に、建築物に微小な揺れが続くようなことが防止され、建築物に損傷を与えるような大きさの揺れの場合には地震のエネルギーを十分に減衰して建築物への損傷を防止することができる。
【0054】
また、緩衝部材によって鉛直方向の振動を吸収することができ、直下型地震の際の鉛直方向の揺れに対しても十分な免震作用を得ることができる。
【0055】
さらに、上下調節機構を備えるものでは地震に伴って生じるケースの多い建築物の不等沈下に対し、回転操作部を正逆回動せしめることによって装置の高さを正確に調節することができ、したがって容易かつ正確に沈下修正を行なうことができる。
【図面の簡単な説明】
【図1】本発明に係る装置の実施例を示す縦断面図。
【図2】ボール受け板の斜視図。
【図3】アジャスタの具体例を示す縦断面図。
【図4】アジャスタの他の例を示す縦断面図。
【図5】本発明に係る装置の施工例を建築物の土台底面から示す図。
【図6】本発明に係る装置の他の実施例を示す縦断面図。
【図7】本発明に係る装置のさらに他の実施例を示す縦断面図。
【符号の説明】
1 免震機構       2 上下調節機構
3 筒状体        4 圧縮コイルばね
5 緩衝ゴム       6 ボール受け板
7 鋼球         8 支持プレート
9 アジャスタ     10 外筒
11 内筒        12 コイルばね
13 ばね受け板     14、15 ボールジョイント
16、17 ロッド    18 ナット
19、20 雌ねじ筒   21 雄ねじ体
22 回転操作部     23a、23b ロックナット
24 補強リブ      25 基礎杭
26 土台        27 止め具
28 ブラケット     29 柱
30 補強材       31 アジャスタ
32 仕切板       33 ダンパ室
34 ロッド       35 ピストン板
36 補強材       37 圧縮コイルばね
38 ボール受け板    39 支持プレート
40 コンクリート基礎  41 防振部材
42 ボール受け板    43 補強板
44 隙間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for supporting a building such as a building or a house on a foundation, and more particularly to a seismic isolation support device for reducing the influence of a seismic force on a building.
[0002]
[Conventional technology and its problems]
There is a seismic isolation structure that prevents or damages the building by suppressing or controlling the effect of the earthquake on the building, so that seismic force is not transmitted to the building. There is a member or mechanism called an isolator that insulates the energy of the earthquake between the structure and the main structure of the building.
[0003]
As an isolator that has been widely used in the past, there is a laminated rubber isolator in which thin rubber sheets and steel plates are alternately laminated and adhered. In this laminated rubber isolator, a vertical load (a load of a building) is applied. The steel plate regulates the horizontal spread of the rubber due to the same load, and the vertical deformation is suppressed.However, it can be greatly deformed by the elasticity of the rubber against the horizontal force, and therefore the load on the building Can be sufficiently supported, and the transmission of horizontal energy due to the earthquake to the building can be reliably shut off.
[0004]
However, in the conventional seismic isolation structure described above, specifications such as the supporting strength of the laminated rubber isolator against vertical load and the elastic deformation rate against horizontal stress must be designed according to the individual building and the anticipated magnitude of the earthquake. Therefore, there is a problem that building design and construction costs increase.
[0005]
The conventional seismic isolation structure described above also has a problem that vertical seismic energy due to so-called pitching in a direct earthquake cannot be cut off.
[0006]
Furthermore, in the conventional seismic isolation structure described above, since the seismic isolation effect is determined by the dimensions and elasticity of the laminated rubber and steel plates, the seismic isolation effect cannot be adjusted according to the magnitude of the earthquake tremor, In other words, it is not possible to prevent seismic isolation from acting on a small shaking earthquake, and if a building shakes due to a small shaking earthquake or wind, a gentle shaking of the building will continue for a long time due to seismic isolation. There is.
[0007]
In addition, earthquakes often cause ground changes after the occurrence, and this ground change often causes buildings to unequally settle and tilt, but conventional seismic isolation structures There is no one that can correct the settlement of a building in case of uneven settlement.
[0008]
In addition, as a seismic isolation structure for ordinary houses, the upper plate and the lower plate are relatively horizontal between the lower plate with the concave upper surface and the upper plate with the lower concave surface. A seismic isolation device with a plurality of steel balls interposed between it and the concrete foundation and the base of the house is installed between the upper and lower plates in response to the shaking of the earthquake. There is something that suppresses the energy of earthquakes on houses by rolling, but if the shaking is large, steel balls fall off and vertical shaking in the case of a direct type earthquake is suppressed. It is not possible to expect sufficient seismic isolation.
[0009]
【Purpose】
An object of the present invention is to provide a sufficient seismic isolation effect regardless of the direction of the earthquake sway, and to set the seismic isolation effect to work when the required seismic intensity is reached, It is an object of the present invention to provide a seismic isolation support device capable of easily and accurately correcting settlement of a building when uneven settlement occurs in the building.
[0010]
Configuration of the Invention
In order to achieve the above object, a device according to the present invention is a seismic isolation support device that supports a building on a foundation, and has an elastically expandable and contractable vertically in a bottomed cylindrical body having an open top. A base-side fixing member having a ball receiving plate that supports a plurality of steel balls on the upper surface of the buffer member so that the steel balls can roll, and a steel member that can be displaced in the horizontal direction by the rolling of the steel balls. A support plate serving as a building-side fixing member provided on a sphere, and between the foundation-side fixing member and the building member, the horizontal displacement between the foundation-side fixing member and the building A plurality of adjusters are provided that are regulated by the spring force of the spring.The adjusters have a free length that can be adjusted, and by adjusting the free length, the magnitude of the earthquake sway that starts seismic isolation action can be set. It has a configuration that allows .
[0011]
Further, the apparatus according to the present invention is characterized in that an upper and lower female screw cylinder in which female threads having winding directions different from each other are formed on the inner peripheral surface between the base-side fixing member and the foundation, And a male screw body having upper and lower male screws having different winding directions formed on the outer peripheral surface thereof, and a rotation operating part for rotating the male screw body between the upper and lower male screws on the outer peripheral surface of the male screw body in the normal and reverse directions. An upper and lower adjustment mechanism is provided in which the upper and lower female screw cylinders are separated or approached by extending and retracting the upper and lower female screw cylinders by rotating the rotation operation unit in the forward and reverse directions.
[0012]
【Example】
Hereinafter, embodiments of the seismic isolation support device according to the present invention will be described based on specific examples shown in the accompanying drawings.
The apparatus of this embodiment includes a seismic isolation mechanism 1 for suppressing shaking caused by an earthquake, and a vertical adjustment mechanism 2 for adjusting the vertical position of a building during construction and settlement correction.
[0013]
The seismic isolation mechanism 1 includes a compression coil spring 4 as a buffer member and a buffer rubber 5 in a cylindrical body 3 having a bottom and an opening at the top, and a ball receiving plate 6 on the buffer member.
The cushioning rubber 5 is provided with a concave portion 5a at the center of the upper surface of, for example, a synthetic rubber formed in a columnar shape. The compression rubber is formed in a gap between the outer periphery of the cushioning rubber 5 and the inner periphery of the cylindrical body 3. A coil spring 4 is provided, and the free height of the compression coil spring is substantially the same as the height of the cushion rubber.
[0014]
The ball receiving plate 6 has a plurality of (four in FIG. 2) recesses 6b on the upper surface of a ring-shaped steel plate having a central hole 6a as shown in FIG. The steel ball 7 is supported so as to be able to roll, and the outer peripheral portion is provided with a rising edge 6c for preventing the steel ball from falling off. The outer diameter of the ball receiving plate 6 is a cylindrical body. 3, which is slightly smaller than the inner diameter, and is capable of sliding up and down along the inner peripheral surface of the cylindrical body.
[0015]
A cylindrical portion 8a vertically extending from the lower surface of the central portion of the support plate 8 is fitted into the central hole 6a of the ball receiving plate 6 and the concave portion 5a of the cushioning rubber 5, and the support plate is formed of the steel balls 7,7. Supported above.
The inner diameter of the concave portion 5a of the cushion rubber is substantially the same as the outer diameter of the cylindrical portion 8a, but the inner diameter of the central hole 6a of the ball receiving plate is sufficiently larger than the outer diameter of the cylindrical portion 8a.
[0016]
Accordingly, the support plate 8 is provided so that the cylindrical portion 8a is fitted in the cushion rubber 5, but can be moved in the horizontal direction by rolling of the steel ball 7 against the elastic force of the cushion rubber.
[0017]
In addition, a sufficient gap is provided between the lower surface of the support plate 8 and the upper edge of the cylindrical body 3 when a load from a building is applied on the support plate. Is larger than a vertical contraction amount of the cushioning member which is assumed when a vertical force is applied.
[0018]
A plurality of adjusters 9, 9 extending radially in the horizontal direction from the tubular body are provided on the outer periphery of the upper portion of the tubular body 3, and these adjusters are used to connect the tubular body 3 to the building during an earthquake. The relative movement amount in the horizontal direction between them is regulated.
[0019]
As shown in FIG. 3, the adjuster 9 includes a cylindrical outer cylinder 10 and an inner cylinder 11 which are open at one end and closed at the other end, and accommodates a coil spring 12 in the outer cylinder. A spring receiving plate 13 is provided to some extent inside from the opening end of the coil spring, and the ends of the coil springs are fixed to the inner surface of the closed end of the spring receiving plate and the outer cylinder, respectively.
[0020]
Each end of the coil spring 12 is firmly fixed to the spring receiving plate 13 and the outer cylinder 10 so that the coil spring 12 can receive a load in either the compression direction or the tension direction. On the other hand, a spring with a similar spring constant is used.
[0021]
At both ends of the adjuster 9, bases of rods 16, 17 having ball joints 14, 15 at their ends are attached, respectively, and the rod 16 on the outer cylinder side is directly fixed to the outer surface of the closed end of the outer cylinder. The rod 17 on the inner cylinder side has a male screw 17a formed on the outer peripheral surface. The male screw is screwed into a nut 18 fixed to the outside of a hole formed in the closed end of the inner cylinder, and the base is formed inside. It faces the inside of the cylinder.
[0022]
One of the ball joints, for example, the ball joint 15 at the tip of the rod 17 on the inner cylinder side is fixed to the outer peripheral surface of the cylindrical body 3 as a base side fixing member by welding or the like, and the other ball joint, For example, the ball joint 14 at the tip of the rod 16 on the outer cylinder side is fixed to the foundation 26 side of a building described later.
[0023]
The vertical adjusting mechanism 2 is a male screw body composed of a cylindrical body having upper and lower female screw cylinders 19 and 20 having female screw parts 19a and 20a formed on the inner peripheral surface thereof and a rotary operation part 22 between upper and lower male screw parts 21a and 21b. The lock nuts 23a and 23b are provided between the rotary operation part 22 and the upper and lower female screw cylinders 19 and 20.
[0024]
The female screw portions 19a and 20a of the upper and lower female screw cylinders 19 and 20 have oppositely wound screw directions, and the upper and lower male screw portions 21a and 21b of the male screw body also have opposite screw winding directions. The upper and lower female screw cylinders are separated or approached by rotating the rotation operation unit in the normal and reverse directions, so that the entire vertical adjustment mechanism 2 can expand and contract.
[0025]
The rotation operating part 22 has a shape in which the cross section of the outer peripheral surface has a hexagonal shape, and can be turned with the same tool as the lock nuts 23a and 23b.
It is preferable that each of the female threads, the male threads, and the lock nuts is a square thread or trapezoidal thread having high load resistance.
A cross-shaped reinforcing rib 24 is provided inside the upper female screw cylinder 19 near the upper end.
[0026]
The vertical adjustment mechanism 2 having the above-described configuration has a configuration in which the upper end of the upper female screw cylinder 19 is connected to the lower surface of the cylindrical body 3 of the seismic isolation mechanism 1 by welding, and the load from the building is large. Is provided with a bracket between the outer surface of the upper female screw cylinder 19 and the lower surface of the cylindrical body 3 as necessary.
[0027]
Thus, the device according to the present embodiment is attached to the upper end of a foundation pile 25 such as a steel pipe pile which is cast on the ground by welding the lower end of the lower female screw cylinder 20 of the vertical adjustment mechanism 2 by welding. The base 26 of the building is fixed on the upper surface of the support plate 8 which is a building-side fixing member with fasteners 27 such as bolts and nuts, and the ball joint 14 on the free end side of the adjuster 9 is connected to the building via a bracket 28. It is fixed and attached to the base 26 as a member on the side.
In addition, all components other than the support plate 8 and the vertical adjustment mechanism 2 in the seismic isolation mechanism 1 are foundation-side fixing members.
[0028]
In FIG. 1, reference numeral 29 denotes a pillar of a building mounted on a base 28, and reference numeral 30 denotes a reinforcement for the base below the pillar.
[0029]
The apparatus of the present invention configured as described above supports the base 26 on the foundation pile 25. More specifically, the load of the building from the base 26 to the support plate 8 is reduced by the steel balls 7, 7 and the ball receiving plate. 6 and a cushion member provided with a compression coil spring 4 and a cushioning rubber 5 via a cylindrical portion 8 a, and further a foundation pile 25 via a cylindrical body 3 and a vertical adjustment mechanism 2.
[0030]
The support plate 8 is supported so as to be displaceable in the horizontal direction with respect to the cylindrical body 3 by the rolling of the steel balls 7 and 7 and the elastic deformation of the cushioning rubber 5. It is regulated by adjusters 9, 9 provided between 3 and the base 26.
[0031]
That is, when the ground shakes in the horizontal direction due to the earthquake, the vertical adjustment mechanism 2 fixed to the foundation pile 25, the cylindrical body 3, the buffer members 4, 5, the ball receiving plate 6, and the steel balls 7, 7 shake with the ground. However, the cushioning members 4, 5, the steel balls 7, 7 and the adjusters 9, 9 act as an isolator for isolating the swing, and the building is displaced in the horizontal direction relative to the ground together with the support plate 8 by its inertia force. However, the absolute position does not change much, so that the ground shaking is hardly transmitted to the building.
[0032]
When the adjuster 9 is disposed to face left and right in FIG. 1, when one adjuster extends, the other adjuster contracts to release vibration, and the adjuster 9 moves between the cylindrical body 3 and the bracket 28. Since they are connected via the ball joints 14 and 15, respectively, it is possible to cope with the swing in the twisting direction with respect to the foundation pile.
[0033]
In addition, the vertical vibration of the ground due to the earthquake is absorbed by the buffer members 4 and 5, and the impact on the building is sufficiently reduced.
[0034]
Thus, the apparatus of the present invention is configured such that the seismic isolation action can be adjusted with respect to the magnitude of horizontal shaking caused by an earthquake.
That is, when the adjuster 9 rotates the rod 17 on the inner cylinder side with respect to the inner cylinder 11, the free length of the entire adjuster can be adjusted, and the seismic isolation is performed by setting the free length of the adjuster. The effect can be adjusted.
[0035]
More specifically, when the free length of the adjuster 9 is set to be the same as the distance between the cylindrical body 3 and the bracket 28 on the base 26 side, the seismic isolation effect becomes the largest, and therefore, the horizontal shaking due to the earthquake. Although the building is very small, the building is displaced with respect to the ground, and the horizontal impact due to the earthquake is not transmitted to the building, but the building continues to be weak for a long time even if the shaking of the earthquake stops.
[0036]
On the other hand, when the free length of the adjuster is set to be larger or smaller than the distance between the cylindrical body 3 and the bracket 28 on the base 26 side, the adjuster 9 pulls or presses the cylindrical body and the base. If the force is large, the seismic isolation function does not work unless the shaking caused by the earthquake exceeds a predetermined size, and if the shaking in the horizontal direction due to the earthquake is small (for example, when the seismic intensity is less than 3), the building is The horizontal energy due to the earthquake is transmitted to the building due to displacement, but if the shaking of the earthquake stops, the building stops immediately and the horizontal shaking due to the earthquake has a predetermined value (for example, seismic intensity 3). If it exceeds, the building will be displaced against the ground against the spring force of the adjuster 9, and the horizontal shock due to the earthquake will not be transmitted to the building. It is locked.
[0037]
The above-mentioned adjustment of the free length of the adjuster 9 is appropriately performed at the time of building construction in accordance with the scale and purpose of use of the building or the state of the ground. A few years later, the free length can be set again.
[0038]
In the adjuster 9 having the above-described configuration, even if the shaking of the earthquake subsides, a slight shaking of the building due to seismic isolation remains, and this small shaking continues until it is completely attenuated by friction. When it is required to quickly attenuate the fluctuation, an adjuster having a damper function is used, and a specific example thereof is shown in FIG.
[0039]
The adjuster 31 having a damper function has a partition plate 32 in the outer cylinder 10, a damper chamber 33 is formed in the outer cylinder by the partition plate 32, and the partition plate, the spring receiving plate 13 of the inner cylinder 11, A piston plate 35 is attached to the other end of the rod 34 having one end fixed to the spring receiving plate 13 and facing the damper chamber, and a plurality of orifices 35a are opened in the piston plate 35. There is.
[0040]
In the damper chamber 33, an appropriate fluid such as oil, nitrogen gas or a mixed fluid of oil and gas is sealed, and even if a sudden stress is applied to expand and contract the adjuster in the axial direction of the adjuster 31, the piston plate The movement of 35 is restricted by the amount of fluid passing through the orifice, so that the adjuster is prevented from suddenly expanding and contracting, and the minute shaking remaining in the building after the shaking of the earthquake stops is attenuated by the damper.
[0041]
By the way, an earthquake often accompanies ground deformation, and in many cases, an earthquake causes unequal settlement of a building and the building tilts.
When the settlement of the building is uneven, the settlement of the settlement can be easily performed by the vertical adjustment mechanism 2 in the apparatus of the present invention configured as described above.
[0042]
Specifically, the correction height in each device is determined by measuring the amount of settlement at the position of each foundation pile 25, the lock nuts 23a and 23b are loosened in each device, and the rotation operation unit 22 is rotated forward and backward. Adjusting the length of the vertical adjustment mechanism in accordance with the required correction height by separating or approaching the upper and lower female screw cylinders 19, 20 and correcting the settlement by a simple operation of tightening the lock nuts 23a, 23b. This eliminates the need for complicated work such as jacking up buildings.
[0043]
In the device of the present invention configured as described above, the adjusters 9 and 9 are provided in four directions around the cylindrical body 3 so that the adjusters 9 and 9 are parallel to the respective bases at the portions where the bases 26 of the building cross in a cross shape. However, adjusters cannot be provided on all sides in the outer periphery of the building. Therefore, in the outer peripheral portion of the building, adjusters may be provided around the cylindrical body 3 in three directions along the base as shown in FIG. 5, or a reinforcing material 36 between orthogonal bases called a fired base. In some cases, one end of the adjuster may be fixed.
[0044]
FIG. 6 shows another embodiment of the apparatus according to the present invention, which differs from the first embodiment in the configuration of the buffer member, the support plate and the ball receiving plate.
That is, in the first embodiment, the cushioning member is constituted by the compression coil spring 4 and the cushion rubber 5, but in this embodiment, the ball receiving plate 38 is supported only by the compression coil spring 37. The compression coil spring 37 has a circular cross section in FIG. 6, but may use a coil spring having a plate shape whose cross section is long on the left and right. The withstand load can be increased.
[0045]
Further, in the first embodiment, the ball receiving plate 6 is configured to be able to slide up and down along the inner peripheral surface of the cylindrical body 3, but in the present embodiment, the ball receiving plate 38 is attached to the outer peripheral edge downward. A portion 38a is provided so that the inner peripheral surface of the peripheral portion can slide up and down along the outer peripheral surface of the tubular body 3.
[0046]
Further, the support plate 39 has a concave portion 39a formed on the lower surface, and the curved surface of the concave portion is configured to be in contact with the upper portions of the steel balls 7, 7, so that even if the support plate 39 is displaced in the horizontal direction. There is always a restoring force for the support plate to return to its initial position, so there is no need to provide a column on the lower surface of the support plate and fit it into the cushion rubber as in the first embodiment.
[0047]
In the case of the first embodiment, one end of each of the adjusters 9 and 9 is attached to the outer periphery of the cylindrical body 3, but in the case of the present embodiment, the adjusters 9 are fixed to the outer periphery of the ball receiving plate 38. In some cases, one end of the adjuster 9 may be attached to the outer periphery of the cylindrical body as in the case of the first embodiment.
[0048]
The apparatus of the first and second embodiments is for supporting a building on a foundation pile 25. The apparatus of the present invention is, for example, a general detached house in which a building is supported on a concrete foundation. FIG. 7 shows a specific example.
[0049]
The device of the present embodiment does not include the vertical adjustment mechanism in the devices of the first and second embodiments, but includes only the seismic isolation mechanism.
A concave portion 40a is formed in the upper portion of the concrete foundation 40, and a cutout portion 26a is formed in the lower portion of the base 26 on the concave portion, and the present embodiment is provided between the concave portion and the cutout portion. Device is provided.
[0050]
Specifically, a ball receiving plate 42 is fixed to the center of the concave portion of the foundation 40 via a vibration isolating member 41 made of a vibration isolating rubber sheet or the like. A support plate 39 is provided, and the support plate 39 is attached to the base 26 via a reinforcing plate 43.
[0051]
One end of each of the adjusters 9, 9 is fixed to the outer peripheral surface of the ball receiving plate 42, and the other end of each of the adjusters is fixed to a bracket on the base side.
The structures of the steel ball 7 and the support plate are the same as those of the second embodiment.
[0052]
By the way, as shown in FIG. 7, the apparatus of the present embodiment is provided with the base 26 so that an appropriate gap 44 is provided between the lower surface of the base and the upper surface of the concrete foundation 40. It acts as a shrinkage allowance and a vent for the lower part of the building.
The apparatus of this embodiment may be provided with a vertical adjustment mechanism as in the first and second embodiments.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the impact by the shaking by an earthquake is hardly transmitted to a building by a seismic isolation mechanism, and the damage of the building by the shaking of an earthquake can be prevented.
In addition, by appropriately adjusting the free length of the adjuster, the seismic isolation effect can be set to start for a predetermined magnitude of seismic intensity (seismic intensity). On the other hand, the seismic isolation function does not work, so that after the earthquake has subsided, it is possible to prevent the building from continuing small shaking, and if the shaking is large enough to damage the building The energy of the earthquake can be sufficiently attenuated to prevent damage to the building.
[0054]
In addition, the vibration in the vertical direction can be absorbed by the shock absorbing member, and a sufficient seismic isolation effect can be obtained even in the case of a vertical vibration in the case of a direct earthquake.
[0055]
Furthermore, with the vertical adjustment mechanism, it is possible to accurately adjust the height of the device by rotating the rotary operation unit forward and backward with respect to unequal settlement of a building that often occurs due to an earthquake, Therefore, the settlement correction can be performed easily and accurately.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an apparatus according to the present invention.
FIG. 2 is a perspective view of a ball receiving plate.
FIG. 3 is a longitudinal sectional view showing a specific example of an adjuster.
FIG. 4 is a longitudinal sectional view showing another example of the adjuster.
FIG. 5 is a view showing a construction example of the device according to the present invention from the bottom of a base of a building.
FIG. 6 is a longitudinal sectional view showing another embodiment of the device according to the present invention.
FIG. 7 is a longitudinal sectional view showing still another embodiment of the device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seismic isolation mechanism 2 Vertical adjustment mechanism 3 Cylindrical body 4 Compression coil spring 5 Buffer rubber 6 Ball receiving plate 7 Steel ball 8 Support plate 9 Adjuster 10 Outer cylinder 11 Inner cylinder 12 Coil spring 13 Spring receiving plate 14, 15 Ball joint 16 , 17 rod 18 nut 19, 20 female screw cylinder 21 male screw body 22 rotation operation part 23a, 23b lock nut 24 reinforcing rib 25 foundation pile 26 base 27 stopper 28 bracket 29 pillar 30 reinforcing material 31 adjuster 32 partition plate 33 damper chamber 34 rod 35 Piston plate 36 Reinforcement material 37 Compression coil spring 38 Ball receiving plate 39 Support plate 40 Concrete foundation 41 Anti-vibration member 42 Ball receiving plate 43 Reinforcement plate 44 Clearance

Claims (2)

基礎上に建築物を支承する免震支持装置であって、上部が開口する有底の筒状体内に、上下方向に伸縮可能な弾性を有する緩衝部材を備え、同緩衝部材上に、上面に複数の鋼球を転動可能に支持するボール受け板を備える基礎側固定部材と、鋼球の転動によって水平方向に変位できるよう鋼球上に設けられた建築物側固定部材たる支持プレートとを備え、前記基礎側固定部材と建築物の部材との間に、これら基礎側固定部材と建築物との間の水平方向の変位をばねの弾発力によって規制する複数のアジャスタを設け、このアジャスタは自由長さが調節可能であって、この自由長さを調節することによって免震作用が働き始める地震の揺れの大きさを設定できるようにした建築物の免震支持装置。A seismic isolation support device for supporting a building on a foundation, comprising a buffer member having elasticity capable of being vertically expanded and contracted in a bottomed cylindrical body having an open top, and on the top surface of the cushioning member, A base-side fixing member including a ball receiving plate that rotatably supports a plurality of steel balls, and a support plate as a building-side fixing member provided on the steel balls so that the steel balls can be displaced horizontally by rolling of the steel balls. Comprising, between the foundation-side fixing member and the building member, a plurality of adjusters that regulate horizontal displacement between these foundation-side fixing member and the building by the elastic force of a spring, The adjuster is a seismic isolation support device for a building whose free length is adjustable, and by adjusting this free length, the magnitude of the quake of an earthquake at which seismic isolation starts to work can be set. 前記基礎側固定部材と基礎との間に、内周面に巻き方向が互い異なる雌ねじが形成された上下の雌ねじ筒と、これらの雌ねじ筒の各雌ねじに螺合する互いに巻き方向が異なる上下の雄ねじが外周面に形成された雄ねじ体とを備え、この雄ねじ体の外周面における前記上下の雄ねじ間に雄ねじ体を正逆回転させるための回転操作部を有し、この回転操作部を正逆回転させることによって上下の雌ねじ筒が離間または接近して上下方向に伸縮される上下調節機構を介設してなる請求項1に記載の建築物の免震支持装置。Between the foundation-side fixing member and the foundation, upper and lower female screw cylinders in which female threads having different winding directions are formed on the inner peripheral surface, and upper and lower female threads different from each other in which the female threads of these female screw cylinders are screwed with each other. A male screw body having an external thread formed on the outer peripheral surface thereof; and a rotary operation part for rotating the male screw body between the upper and lower external threads on the outer peripheral surface of the male screw body in the forward and reverse directions. 2. The seismic isolation support device for a building according to claim 1, wherein an up-down adjustment mechanism is provided so that the upper and lower female screw cylinders are separated or approached by being rotated to expand and contract in the vertical direction.
JP2002180316A 2002-06-20 2002-06-20 Seismic isolation device for buildings Expired - Fee Related JP3735593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180316A JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180316A JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Publications (2)

Publication Number Publication Date
JP2004019409A true JP2004019409A (en) 2004-01-22
JP3735593B2 JP3735593B2 (en) 2006-01-18

Family

ID=31177485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180316A Expired - Fee Related JP3735593B2 (en) 2002-06-20 2002-06-20 Seismic isolation device for buildings

Country Status (1)

Country Link
JP (1) JP3735593B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218509A (en) * 2010-04-12 2011-11-04 Abico Gijutsu Kenkyusho:Kk Polishing device
JP2014015811A (en) * 2012-07-11 2014-01-30 Ohbayashi Corp Support structure and method for structure
CN109137722A (en) * 2018-09-27 2019-01-04 佛山科学技术学院 Half roller spring shock-proof support
CN109457830A (en) * 2018-11-21 2019-03-12 大连大学 The comprehensive shock isolating pedestal of annular shape memory alloy spring
CN111173128A (en) * 2020-02-25 2020-05-19 江苏丰阳建设工程有限公司 Concrete structure applied to segmental casting method
CN112431316A (en) * 2020-11-19 2021-03-02 东莞理工学院 Universal anti-pulling laminated rubber support
CN112709481A (en) * 2020-12-25 2021-04-27 天津轨道交通城市发展有限公司 House earthquake-resistant structure
US11002031B2 (en) 2017-02-16 2021-05-11 Koroneho Limited Base isolation system
CN114277932A (en) * 2022-01-08 2022-04-05 博华工程技术有限公司 Building frame who possesses shockproof structure
CN114991332A (en) * 2022-06-02 2022-09-02 北京市科学技术研究院城市安全与环境科学研究所 Vibration and shock double-control three-dimensional vibration isolation combined supporting member with negative Poisson ratio effect
CN115262791A (en) * 2022-07-12 2022-11-01 广州地铁设计研究院股份有限公司 Vibration damper for building
CN115594053A (en) * 2022-11-30 2023-01-13 杭州静之源噪声控制技术有限公司(Cn) Self-adaptive vibration absorber for traction machine
CN116427452A (en) * 2023-06-13 2023-07-14 吉林建筑大学 Adjustable overhead building base for building construction
CN116657954A (en) * 2023-07-28 2023-08-29 福建省昊立建设工程有限公司 Stone ancient building reinforcing device with anti-seismic structure and use method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680704B (en) * 2019-01-14 2021-02-02 上海通核建筑科技有限公司 Anti-seismic building pile for building construction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164338U (en) * 1985-03-29 1986-10-11
JPS6286265A (en) * 1985-10-09 1987-04-20 株式会社竹中工務店 Earthquake-proof floor construction method and floor earthquake-proof apparatus
JPH03169966A (en) * 1989-11-29 1991-07-23 Murao:Kk Floor supporting metal fitting
JPH10231642A (en) * 1997-02-18 1998-09-02 Sugiyama Kensetsu Kk Vibration-isolation structure
JPH11117320A (en) * 1997-10-14 1999-04-27 Kajima Corp Foundation of vibration isolation building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164338U (en) * 1985-03-29 1986-10-11
JPS6286265A (en) * 1985-10-09 1987-04-20 株式会社竹中工務店 Earthquake-proof floor construction method and floor earthquake-proof apparatus
JPH03169966A (en) * 1989-11-29 1991-07-23 Murao:Kk Floor supporting metal fitting
JPH10231642A (en) * 1997-02-18 1998-09-02 Sugiyama Kensetsu Kk Vibration-isolation structure
JPH11117320A (en) * 1997-10-14 1999-04-27 Kajima Corp Foundation of vibration isolation building

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218509A (en) * 2010-04-12 2011-11-04 Abico Gijutsu Kenkyusho:Kk Polishing device
JP2014015811A (en) * 2012-07-11 2014-01-30 Ohbayashi Corp Support structure and method for structure
US11002031B2 (en) 2017-02-16 2021-05-11 Koroneho Limited Base isolation system
CN109137722A (en) * 2018-09-27 2019-01-04 佛山科学技术学院 Half roller spring shock-proof support
CN109457830A (en) * 2018-11-21 2019-03-12 大连大学 The comprehensive shock isolating pedestal of annular shape memory alloy spring
CN111173128A (en) * 2020-02-25 2020-05-19 江苏丰阳建设工程有限公司 Concrete structure applied to segmental casting method
CN112431316A (en) * 2020-11-19 2021-03-02 东莞理工学院 Universal anti-pulling laminated rubber support
CN112709481A (en) * 2020-12-25 2021-04-27 天津轨道交通城市发展有限公司 House earthquake-resistant structure
CN114277932A (en) * 2022-01-08 2022-04-05 博华工程技术有限公司 Building frame who possesses shockproof structure
CN114991332A (en) * 2022-06-02 2022-09-02 北京市科学技术研究院城市安全与环境科学研究所 Vibration and shock double-control three-dimensional vibration isolation combined supporting member with negative Poisson ratio effect
CN115262791A (en) * 2022-07-12 2022-11-01 广州地铁设计研究院股份有限公司 Vibration damper for building
CN115262791B (en) * 2022-07-12 2023-08-18 广州地铁设计研究院股份有限公司 Vibration damper for building
CN115594053A (en) * 2022-11-30 2023-01-13 杭州静之源噪声控制技术有限公司(Cn) Self-adaptive vibration absorber for traction machine
CN115594053B (en) * 2022-11-30 2023-04-07 杭州静之源噪声控制技术有限公司 Self-adaptive vibration absorber for traction machine
CN116427452A (en) * 2023-06-13 2023-07-14 吉林建筑大学 Adjustable overhead building base for building construction
CN116657954A (en) * 2023-07-28 2023-08-29 福建省昊立建设工程有限公司 Stone ancient building reinforcing device with anti-seismic structure and use method
CN116657954B (en) * 2023-07-28 2023-11-03 福建省昊立建设工程有限公司 Stone ancient building reinforcing device with anti-seismic structure and use method

Also Published As

Publication number Publication date
JP3735593B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP2004019409A (en) Base isolation supporting device for building
US9021751B2 (en) Frictional non rocking damped base isolation system to mitigate earthquake effects on structures
US20040131287A1 (en) Seismic isolation bearing
JP6476379B1 (en) Seismic control, seismic isolation control device and components
JP2007278411A (en) Damper device
JP4743750B2 (en) Building structure
KR102305479B1 (en) Jack support impact reduction apparatus and jack support installation structure using the same
US11447949B2 (en) Friction damper for a building structure
JP2010053958A (en) Vibration suppressing device
JP2006153280A (en) Vibration isolator
JP2020029925A (en) Compound type vibration control device
US20080072508A1 (en) Vibration and force absorbing assembly incorporated into a building foundation for dampening the effects of environmentally induced events
JP6569073B1 (en) Damping device and building material provided with the same
US7090207B2 (en) Single-end-mount seismic isolator
JP2000266116A (en) Swinging bearing type base isolation device
JP4513095B2 (en) Isolation device
JP2007085068A (en) Aseismic device
WO2016072207A1 (en) Seismic base isolation apparatus
JP2007321874A (en) Base isolating device
JP4284743B2 (en) Seismic isolation display
JP6415138B2 (en) Damping device for tension material
JP6878757B1 (en) Vibration damping device and building materials equipped with it
KR102314390B1 (en) Vibration Isolation for Case
JP7499087B2 (en) Damper system and seismic isolation structure equipped with same
JP2002145579A (en) Aseismatic support device for tower crane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees