JP3735462B2 - 金属酸化物光学薄膜の形成方法および成膜装置 - Google Patents

金属酸化物光学薄膜の形成方法および成膜装置 Download PDF

Info

Publication number
JP3735462B2
JP3735462B2 JP10197698A JP10197698A JP3735462B2 JP 3735462 B2 JP3735462 B2 JP 3735462B2 JP 10197698 A JP10197698 A JP 10197698A JP 10197698 A JP10197698 A JP 10197698A JP 3735462 B2 JP3735462 B2 JP 3735462B2
Authority
JP
Japan
Prior art keywords
film
active species
metal
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10197698A
Other languages
English (en)
Other versions
JPH11279758A (ja
Inventor
和夫 菊池
繁治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP10197698A priority Critical patent/JP3735462B2/ja
Priority to US09/092,644 priority patent/US6103320A/en
Priority to EP98115624A priority patent/EP0940481B1/en
Priority to DE1998625138 priority patent/DE69825138T2/de
Publication of JPH11279758A publication Critical patent/JPH11279758A/ja
Priority to US09/517,340 priority patent/US6274014B1/en
Application granted granted Critical
Publication of JP3735462B2 publication Critical patent/JP3735462B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マグネトロンスパッタリング法により、基板に安定して、かつ高速に金属酸化物光学薄膜を形成する方法、およびそれに使用する成膜装置に関する。
【0002】
【従来の技術】
スパッタリングで、金属あるいは酸化物・窒化物・弗化物等の金属化合物の薄膜を形成することが広く行われている。金属薄膜を形成する場合と比較して、酸化物・窒化物・弗化物のような金属化合物の薄膜を形成するには、以下の代表的な方法がある。
1:高周波(RF)電源を用いて、金属化合物ターゲット(絶縁性)、または金属ターゲット(導電性)に反応性ガス(例えば酸素、窒素、弗素ガス)を導入して反応性スパッタリングにより薄膜形成する方法。
2:直流(DC)電源を用いて、金属ターゲットに反応性ガスを導入して成膜するDC反応性マグネトロンスパッタリングにより薄膜形成する方法。
【0003】
しかし両方法とも以下の問題点がある。
1:薄膜の堆積速度が遅い(特にRFスパッタリングは顕著である。)
2:プラズマにより基板の温度上昇が生じ100℃以下で行うことが困難である。(特にRFスパッタリングは顕著である。)
3:DC反応マグネトロンスパッタリングの場合、ターゲット特に非エロージョン部分のアーク放電によりターゲット材料が基板に飛散し、この飛散は形成されつつある薄膜に欠陥が発生する原因になると考えられる。
4:RFマグネトロンスパッタリングの場合、接地電位になっている装置構成部品等、あるいは、基板、基板の保持治具等に形成された絶縁性の薄膜に電荷が蓄積され、それが異常放電の原因となり、アーク放電をおこした材料が基板に飛散し、あるいは基板にアーク痕が残り、形成されつつある薄膜に欠陥が発生する原因になると考えられる。この現象は大型基板ほど多くなる。
【0004】
スパッタリングなどで得られる化合物薄膜は、その構成元素である酸素・窒素・弗素が欠乏し不完全な金属化合物を生成しやすい。たとえば、酸化物薄膜の代表であり、光学膜、絶縁膜、保護膜などに使用されるSiO2薄膜を作成するとき、一般的には、SiO2ターゲット(絶縁性)を高周波電源を使用しRFマグネトロンスパッタリングによりSiO2薄膜を形成したり、Siターゲット(導電性)をDC電源を使用してDCマグネトロン・スパッタリングによりSiO2薄膜を形成する。この時、スパッタリングの動作ガスであるArと同時に導入される反応性ガスである酸素が不十分であると形成される薄膜の組成はSiOx(X<2)となってしまう。この現象を防止するために、反応するに十分な量の酸素をスパッタリング雰囲気中に導入することにより酸素の欠乏は防止しうるが、この場合には薄膜の付着速度は金属薄膜の付着速度を比べで1/5〜1/10に低下してしまう。
【0005】
またこの時導入した反応性ガスが、ターゲットの表面で反応しSiO2を形成する。このSiO2にプラズマのアルゴンプラスイオン、酸素プラスイオンの電荷の蓄積が生じる。このプラスに帯電した電荷が大量に蓄積し、SiO2膜の絶縁限界を越えると絶縁破壊が起きる。あるいはターゲットの導電性の部分、アースシールド(アノード)に対してアーク放電をおこし、蓄積された電荷が逃げる。これがターゲットの異常放電の過程であり原因である。このアーク放電により以下の問題点が生じる。
1:ターゲット材料が基板に飛散し、形成されつつある薄膜に欠陥が生じる原因になる。
2:ターゲット表面にアーク痕が残り、アーク痕周辺で絶縁部であるSiO2の蓄積が進み、さらなる異常放電の原因になる。
【0006】
成膜速度の点でも、一般的にスパッタリングによる成膜は蒸着材料をイオンビーム加熱方式、抵抗加熱方式で行う真空蒸着と比較し1/2〜1/10程度の成膜速度しか実現できないため、大量生産を行うには問題がある。
また一般的にスパッタリングは、プラズマを利用し成膜するため、電荷を持った粒子(イオン、電子)の衝突により装置の構成部品、基板ホルダー、基板等の加熱の原因となり、プラズマチック等の耐熱性の悪い材料への成膜が困難である。これは特に高周波電源を用いるRFマグネトロンスパッタリングにおいて顕著である。
以上の点が問題となり化合物薄膜をスパッタリングで形成する場合大きな障害となっている。
【0007】
本出願人は先に、以下の提案を行なった。
1:スパッタリングによりチタン等の金属からなる超薄膜を基板上に堆積する工程と、この超薄膜に酸素等の反応性ガスのイオンビームを照射して酸化チタン等の金属化合物の超薄膜に変換する工程とを繰り返し、所望の薄膜の金属化合物薄膜を形成する。(特公昭8−19518号公報)
2:スパッタリングにより金属からなる超薄膜を基板上に堆積する工程と、この超薄膜に誘導型プラズマ源により発生した反応性ガスのプラズマを照射して、金属化合物の超薄膜に変換する工程とを繰り返し、所望の薄膜の金属化合物薄膜を形成する。(特開平8−176821号公報)
【0008】
しかしながら、上記1の方法に関しては、イオン銃は消耗によるフィラメントの交換が必要であり、また、フィラメント、スクリーン電極、サプレッサー電極と構成部材が多く必要であり、さらにこれらに伴い、真空室の汚染、スクリーン電極電流の増大による電源電流容量問題、ニュートラライザによる温度上昇などの問題点があることが判明した。また2の方法は荷電粒子(Arイオン、反応ガスイオン、電子)をプラズマとして基板に照射するため、荷電粒子によって基板と基板に形成されつつある薄膜にダメージを生じさせたり、基板の温度上昇を生じさせたりすることが判明した。
【0009】
【発明が解決しようとする課題】
本発明は、金属超薄膜に対して酸化反応を行ないながら所定膜厚の薄膜を成膜するに際し、薄膜に対するダメージを防止し、特性の安定した金属酸化物光学薄膜を低温下に安定して製造することを目的とする。
【0010】
【課題を解決するための手段】
本発明の金属酸化物光学薄膜の形成方法は、接地電位から電気的に絶縁された一対の同種または異種のマグネトロンスパッタリング用金属ターゲットを用い、それぞれのターゲットに接地電位からプラスとマイナスに交互に交流電圧を印加することにより、常にいずれか一方のターゲットがカソードとなり他方のターゲットがアノードとなるようにし、真空槽内で基板上に金属ないし金属の不完全反応物からなる金属超薄膜を形成する工程と、
この金属超薄膜に電気的に中性な反応性ガスの活性種を接触せしめ、金属超薄膜と反応性酸素ガスの活性種とを反応せしめて金属酸化物超薄膜に変換せしめる工程とを順次繰り返し、
金属酸化物超薄膜を複数層形成して堆積することにより、目的とする膜厚の金属酸化物光学薄膜を基板上に形成することを特徴とする。
【0011】
本発明の成膜装置は、マグネトロンスパッタリング装置において;接地電位から電気的に絶縁された一対の同様または異種のマグネトロンスパッタリング用金属ターゲットを用い、それぞれのターゲットに接地電位からプラスとマイナスに交互に交流電圧を印加することにより、常にいずれか一方のターゲットがカソードとなり他方のターゲットがアノードとなるようにして基板上に、金属ないし金属の不完全反応物からなる金属超薄膜を形成する工程を行なう成膜プロセスゾーンと;この金属超薄膜に電気的に中性な反応性酸素ガスの活性種を接触せしめ、金属超薄膜と反応性酸素ガスの活性種とを反応せしめて金属酸化物超薄膜に変換せしめる工程を行なう反応プロセスゾーンと;成膜プロセスゾーンと反応プロセスゾーンとの間で基板を搬送する搬送手段と;成膜プロセスゾーンと反応プロセスゾーンとを空間的、圧力的に分離して成膜プロセスゾーンに反応性ガスが混入することを防止する遮蔽手段とを具え;安定な成膜プロセスゾーンと反応プロセスゾーンとの間で基板を複数回繰り返して搬送、処理し、金属酸化物超薄膜を複数層形成して堆積することにより、目的とする膜厚の金属酸化物光学薄膜を基板上に形成することを特徴とする。
【0012】
本発明においては、接地電位から電気的に絶縁された一対の同種または異種のターゲットに接地電位からプラスとマイナスに交互に交流電圧を印加することにより、常の一方のターゲットがカソード(マイナス極)となり必ず他方のターゲットがアノード(プラス極)となるようにしてマグネトロンスパッタリングが行なわれる。これにより、従来のDC反応マグネトロンスパッタリング法ではアノードとなるターゲットシールド、装置部品、装置本体が非導電性あるいは導電性の低い不完全金属に被われてアノード電位が低化していた現象を防止できる。すなわち、一対(2個)のスパッタリングターゲットを用いてそれぞれをカソードおよびアノードとして利用し、交番電界により、両ターゲットをアノードとカソードとに交互にそれぞれ変化させてスパッタリングを行なうことにより、ターゲッドがアノード時に付着した非導電性ないしは導電性の低い不完全金属を、ターゲッドがカソード状態になった時にスパッタリングすることにより除去でき、アノード時に安定したアノード電位状態が常に得られ、プラズマ電位(通常はアノード電位とほぼ等しい)の変化を防止し、安定して金属超薄膜の形成を行うことができる。本発明で採用されるこのスパッタリング方式は一般にデュアル・マグネトロンスパッタリングとも呼ばれ、例えば、特開平4−325680号公報、特開平5−222531号公報、特開平5−311433号公報、特許第2574636号公報などにも報告されている。
金属あるいは金属の不完全化合物からなる金属超薄膜を、反応性酸素ガスとの反応により金属酸化物超薄膜に変換せしめる工程において、ラジカル、励起状態にあるラジカル、原子、分子等の電気的に中性な活性種の利用が有効である。
【0013】
【発明の実施の形態】
図1および図2は、本発明の薄膜形成方法および装置について示す説明図であり、図1が上面図(わかりやすいように一部断面を取ってある)、図2が図1の線A−B−Cに沿った側面図である。
真空槽11内の略円筒の基板ホルダ13の回りには、2組の一対のマグネトロンスパッタリング電極21a,b,41a,bと活性種発生装置61およびグリッド81とが配設されている。
マグネトロンスパッタリング電極21a,b,41a,bの前面がそれぞれ成膜プロセスゾーン20,40を構成している。図1では、異なる2種類の物質をスパッタリングすることを想定して一対のマグネトロンスパッタリング電極を2つ設ける場合(21a,bと41a,b)を示している。
一方、活性種発生装置61およびグリッド81の前面が反応プロセスゾーン60を構成する。
【0014】
基板ホルダ13に搭載された基板(図示せず)は、モータ17による基板ホルダ13の回転に伴ない、成膜プロセスゾーン20,40の前面でSi等の金属超薄膜が形成され、反応プロセスゾーンの前面でSiO2等に変換されて金属酸化物超薄膜が形成される。この操作を繰り返すことにより、金属酸化物超薄膜層が複数層積層して堆積されて、最終的な目的とする膜厚のSiO2等の薄膜が形成される。
本発明でいう超薄膜とは、超薄膜が複数回堆積されて最終的な薄膜となることから、この最終的な薄膜との混同を防止するために用いた用語であり、最終的な薄膜よりも十分に薄いという意味である。
超薄膜の厚さは任意であるが、0.1〜20オングストローム程度、あるいは0.5〜10オングストローム程度が好ましい。
【0015】
Si等の金属は、デュアル・マグネトロンスパッタリングにより高速で成膜することができ、これを反応プロセスゾーンによりSiO2等の金属化合物に変換することによって、金属ターゲットを用いたマグネトロンスパッタリング法により高速でSiO2、TiO2等の金属酸化物光学薄膜が得られることになる。
成膜プロセスゾーン20(40も同様)は、一対のマグネトロンスパッタ電極21a,b、スパッタ電源23、金属製の一対のターゲット29a,b、スパッタガスボンベ27、マスフローコントローラ25、遮蔽板(遮蔽手段)12から構成される。真空ポンプ15により真空度を調整された真空槽11の遮蔽板12内に、スパッタ用の動作ガスであるアルゴンガスなどが導かれ、成膜プロセスゾーン20の真空ガス雰囲気が調整されて、デュアル・マグネトロンスパッタリングが行なわれる。
【0016】
図1,2に示した本発明の実施例では、少なくとも1組の一対の(マグネトロン)スパッタリング電極21a,21bと、金属製ないし導電性の一対のスパッタリングターゲット29a,29bを用いて、デュアル・マグネトロンスパッタリングにより金属超薄膜を形成する。
デュアル・マグネトロンスパッタリングにおいては、接地電位から電気的に絶縁された一対のスパッタリング電極21a,21bと、ターゲット29a,29bとが用いられる。したがって図示されていないが、接地されている装置本体(真空槽11)に対してスパッタリング電極21a,21b、ターゲッド29a,29bは絶縁材を介して取り付けられている。また、スパッタリング電極21a,ターゲット29aと、スパッタリング電極21b、ターゲット29bとも互いに電気的に分離されている。このような状態で、アルゴン等の動作ガスを成膜プロセスゾーン20に導入してスパッタ雰囲気を調整し、交流電源23からトランス24を介してスパッタリング電極21a,21bに電圧を印加すると、ターゲット29a,29bには常に交番電界が掛かることになる。すなわち、ある時点においてはターゲット29aがカソード(マイナス極)となり、その時ターゲット29bは必らずアノード(プラス極)となる。次の時点において交流の向きが変化すると、今度はターゲット29bがカソード(マイナス極)となり、ターゲット29aがアノード(プラス極)となる。このように一対の2つのターゲット29a,29bとが交互にアノードとカソードとの役割を担うことによりプラズマが形成され、カソード上のターゲットがスパッタされて金属超薄膜が基板上に形成される。この時、アノード上には非導電性あるいは導電性の低い不完全金属が付着する場合もあるが、このアノードが交番電界によりカソードに変換された時に、これら不完全金属がスパッタされ、ターゲット表面は元の清浄な状態となる。そして、これを繰り返すことにより、常に安定なアノード電位状態が得られ、プラズマ電位(通常アノード電位とほぼ等しい)の変化を防止し、安定して金属、超薄膜を形成することができる。
【0017】
また、後述するように遮蔽板12により成膜プロセスゾーン20を独立化し、同様に遮蔽板16を設けた反応プロセスゾーン60からの酸素等の反応性ガスが成膜プロセスゾーン20に混入し、ターゲット29a,29bに酸化物が一時的に生成した場合でも、交番電界によるデュアルスパッタリングにより安定なアノード部が確保され、再現性の良い成膜を行なうことができる。
ターゲット29aと29bとは同一の金属ターゲットでも異種の金属ターゲットでもよい。同一の金属ターゲットを用いた場合は、単一金属(例えばSi)からなる金属超薄膜が形成され、異種の金属ターゲットを用いた場合は合金からなる金属超薄膜が形成される。
ターゲット29a,29bに印加する交流電圧の周波数は1〜100KHzが好適である。
【0018】
また、ターゲットシールド(図示を省略)、遮蔽板12等の成膜プロセスゾーン20の周辺部材は水冷して、基板の温度上昇等、発熱による悪影響を防止することが望ましい。
ターゲット29a,bとしては、Al,Ti,Zr,Sn,Cr,Ta,Si,Te,Ni−Cr,In−Snなどの金属ターゲットが用いられ、反応プロセスゾーン60における反応性ガスの活性種の曝露により、Al23,TiO2,ZrO2,Ta25,SiO2等の光学膜とされる。TiO2,ZrO2,SiO2のような絶縁性の金属化合物は、金属(Ti,Zr,Si)に比べスパッタリング速度が極端に遅く生産性が悪いので、特に本発明の方法が有用である。
【0019】
ついで、金属超薄膜は、反応プロセスゾーン60においてSiO2等の金属酸化物超薄膜に変換される。
反応プロセスゾーンは、主として活性種発生装置61、グリッド81、遮蔽板(遮蔽手段)14からなる。
活性種発生装置61の反応性ガスプラズマ発生室63で放電により生じたプラズマは、プラズマイオン、電子、ラジカル、励起状態のラジカル、原子、分子等を構成要素とする。本発明ではグリッド81により、反応性ガスプラズマ中の活性種であるラジカル、励起状態のラジカル、原子、分子などが選択的ないし優先的に反応プロセスゾーン60に導かれ、一方、荷電粒子である電子、イオンはグリッド81の通過を阻止され反応プロセスゾーン60に漏出しない。したがって、反応プロセスゾーン60において、金属超薄膜は荷電粒子に曝露されることなく、電気的に中性な反応性ガスの活性種に曝露されて(接触して)反応し、Si等の金属からSiO2等の金属酸化物に変換される。
なお、ラジカルとは、遊離基(ratical)であり、一個以上の不対電子を有する原子または分子である。また、励起状態(excite state)とは、エネルギーの最も低い安定な基底状態に対して、それよりもエネルギーの高い状態のことをいう。
【0020】
金属あるいは金属の不完全化合物から金属酸化物を得る反応性の成膜行程において、イオン、電子等の荷電粒子よりも、活性種たとえばラジカル、励起種等の化学的に活性であり、かつ電気的に中性な粒子が化学反応において、決定的に重要な働きをする。また、荷電粒子のように薄膜にダメージを与えず、基板温度の上昇が抑えられ、薄膜のさまざまな性質、光学的、機械的、電気的な性質のコントロールの制御を複合して行うとき、化学反応プロセスと、成膜プロセスを明確に分離し、かつ化学反応にもっとも寄与する粒子のみを使用することにより、目的とする特性の薄膜を容易に得ることができる。
【0021】
活性種発生装置61は、ラジカル源とも呼ばれ、反応ガスプラズマ発生室63、プラズマを発生させるための電極65、高周波電源69とを具えた反応ガスプラズマ発生部とグリット81とからなっている。反応ガスボンベ73からマスフローコントローラ71を介して酸素ガスなどの反応性ガスが、反応ガスプラズマ発生室63に供給され、マッチングボックス67を介して高周波電源69からの高周波電力が、石英管からなる反応性ガスプラズマ室63の外周面に巻回されたコイル状の電極65に印加されると、反応性ガスのプラズマが反応性ガスプラズマ室63内に発生する。
【0022】
反応性ガスとしては、酸素、オゾン等の酸化性ガスが用いられる。
反応性ガスプラズマ部としては、反応性ガスプラスマ発生室の外部または内部に電極を設けた誘導結合型プラズマ源、容量結合型プラズマ源、誘導結合・容量結合混在型プラズマ源などを用いることができる。これらの具体例としては、以下のものが挙げられる。
1:図1、図2に図示したプラズマ源:円筒状の石英ガラス等の誘電体からなる反応性ガスプラズマガス発生室63の大気側周面にコイル状の電極65を配置し、このコイル状電極に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源。
2:図3に示したプラズマ源:円盤状の石英ガラス等の誘電体からなる反応性ガスプラズマ発生室63の大気側に渦巻き状(蚊取り線香状)のコイル電極91を配置し、この渦巻き状コイル電極91に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源。図3(B)は渦巻状コイル電極91の平面図を示す。
3:図4に示したプラズマ源:反応性ガスプラズマ発生室63の内部に平板状の電極93を配置し、この平板状電極93に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる容量結合型プラズマ発生源。
4:図5に示したプラズマ源:反応性ガス発生室63の内部にコイル状電極95または渦巻き状コイル電極を配置し、これら電極に100KHz〜50MHzの高周波電力を印加して誘導結合型プラズマと容量結合型プラズマとが混存するプラズマを発生されるプラズマ発生源。
【0024】
また、コイルの形状等を調整することにより、ヘリコン波プラズマ源とし、プラズマ中における活性種の発生効率を高めることもできる。
さらに、図1、図2に示したように、外部磁石71および/または内部磁石73を配置し、プラズマ発生部に20〜300ガウスの磁場を形成することにより高密度プラズマが得られ、活性種発生効率を高めることができる。
反応性ガスプラズマ発生室63内のプラズマ中には、荷電粒子である反応性ガスイオン・電子と、電気的に中性な反応性ガスの活性種であるラジカル・励起状態のラジカル・原子、分子とが存在するが、本発明では後者の電気的に中性な粒子を選択的ないし優先的に反応プロセスゾーン60に導き、金属超薄膜から金属酸化物超薄膜への変換反応(例えば、Si→SiO2)に利用する。
【0025】
そこで、反応性ガスプラズマ発生室63と反応プロセスゾーン60との間に、電気的に中性な活性種粒子のみを選択的に通過せしめ、一方、荷電粒子は通過させないグリッドを設ける。グリッドの表面でプラズマ中のイオンと電子との間に電荷交換が行なわれて中和される。
このようなグリッドとしては、例えば、マルチ・アパーチャ・グリッド、マリチ・スリット・グリッドがある。
図6は、マルチ・アパーチャ・グリッド101を示す平面図である。マルチ・アパーチャ・グリッド101は、金属あるいは絶縁物からなる平板に直径0.1〜3mmの穴103が無数に穿設されている。
【0026】
図7は、マルチ・スリット・グリッドを示す平面図である。マルチ・スリット・グリッド111は、金属あるいは絶縁物からなる平板に幅0.1〜1mmのスリットが無数に設けられている。
グリッド101,111は、冷却管105,115等により水冷等の冷却をすることが望ましい。
グリッド101,111は、プラズマ中のイオンと電子をその表面で電荷交換し、電荷を持たない電気的に中性な反応性に富む活性種を、反応プロセスゾーンに導く。
【0027】
次に遮蔽手段(遮蔽板)について説明する。
図1および図2に示されたような、各成膜プロセスゾーン20,40、反応プロセスゾーン60は遮蔽板12,14,16(遮蔽手段)によって囲繞され、それぞれ真空槽11内で真空雰囲的に別個の空間を形成することができる。すなわち、大きな真空槽11の中に完全には仕切られていないものはほぼ独立し、独立して制御可能な2つの真空室、すなわち成膜プロセスゾーン(20,40)と反応プロセスゾーン60が存在する。この結果、各ゾーン(室)は、個別に他のゾーンからの影響が抑えられた真空雰囲気を有することができ、それぞれ最適の条件を設定することができる。例えば、スパッタリングによる放電と、反応性ガスの活性種発生による放電とは個別に制御でき互いに影響を与えることがないので、安定した放電をすることができ、不慮の事故を招くことがなく信頼性が高い。特に成膜プロセスゾーン20,40の圧力を、反応プロセスゾーン60より高くすることが望ましい。これにより、反応プロセスゾーン60に導入された反応性ガスが、成膜プロセスゾーン20,40に流入されることが防止され、成膜プロセスゾーン20,40のターゲット表面で、金属化合物が形成されることによる異常放電を防止することができる。
また、前述の通り、仮りに反応性ガスの流入により成膜プロセスゾーン20,40のターゲット表面に金属化合物が形成された場合でも、デュアル・マグネトロンスパッタリングシステムを採用することにより、ターゲットがカソードとして機能する際に、金属化合物がスパッタリングされ、安定なアノード部を確保して、安定なプラズマ放電を維持できる。
【0028】
遮蔽板を設けることは、特に、複数のターゲットが隣接して設けられた場合に好適である。
成膜プロセスゾーン20,40の圧力(真空度)は、0.8〜10×10-3Torrが好適である。
反応プロセスゾーン60の圧力(真空度)は、0.5〜8×10-3Torrが好適である。
代表的な作動条件を以下に示す。
1:スパッタリング条件(Si)
投入電力:2.8kW
基板温度:室温
成膜プロセスゾーン内圧力:5.0×10-3Torr
印加交流電圧周波数:40KHz
基板ホルダ回転数:100rpm
超金属薄膜の厚さ:2〜6オングストローム
2:スパッタリング条件(Ta)
投入電力:1.5kW
基板温度:室温
成膜プロセスゾーン内圧力:5.0×10-3Torr
印加交流電圧周波数:40KHz
基板ホルダ回転数:100rpm
超金属薄膜の厚さ:1〜4オングストローム
3:活性種発生装置の駆動条件(O2
装置:図1,2に示した誘導結型プラズマ発生源
投入電力:2.0kW
圧力:1.4×10-3Torr
【0030】
この時、スパッタリング・プロセスによる発生したプラズマによる成膜プロセスゾーンを構成している部品、たとえば、成膜プロセスゾーンを囲っている遮蔽板、ターゲットシールド等は基板の温度上昇を防止するために水冷等の冷却手段を施すことが望ましい。
【0031】
図1に示して装置を用いて多層反射防止膜を形成する場合の一例を挙げると以下の通りである。
ターゲット29a,bにSi等の酸化物が低屈折である金属ターゲットを固定し、一方、ターゲット49a,bにはTi,Zr等の酸化物が高屈折率である金属ターゲットを固定する。ターゲット29a,bをデュアル・マグネトロンスパッタリングしてSi超薄膜を形成し、これを反応プロセスゾーン60でSiO2超薄膜に変換する。基板ホルダー13を所定回数回転してSiO2超薄膜を堆積して目的とする膜厚のSiO2薄膜を形成する。ついで、ターゲット49a,bをデュアル・マグネトロンスパッタリングしてTiまたはZr超薄膜を形成し、同様にTiO2またはZrO2超薄膜への変換を繰り返して目的とする膜厚のTiO2またはZrO2薄膜を形成する。以上の操作を繰り返すことにより低屈折率層(SiO2)/高屈折率層(TiO2,ZrO2)の交互積層膜からなる多層反射防止膜が得られる。
【0032】
図8は本発明の他の実施例を示す平面図である。装置構成は全体として成膜室121、その前後の基板ロード室123、および基板アンロード室125から構成される。各室はそれぞれ個別の排気系を有し、RPはロータリーポンプを、TMPはターボモリキュラーポンプを示す。各室間はゲートバルブ131,133を介して連結されている。基板ロード室123はゲートバルブ135ないしは開閉扉により大気に開放可能であり、基板アンロード室125はゲートバルブ137ないしは開閉扉によりより大気に開閉可能である。すなわち、各室は圧力的に隔離され各々独自の排気系を有し、また、ゲートバルブ131,133を通して基板ホルダー143を搬送することができる。
【0033】
基板141を搭載した基板ホルダー143がゲートバルブ135を介して基板ロード室123に搬入され、基板ロード室123がRPにより真空に引かれて、加熱等の必要による前処理を受ける。この処理が終了後に基板ホルダー143は成膜室121に搬送される。すなわち、基板ロード室123は、基板ホルダーの脱着・排気・必要による前処理の機能を有する。
成膜室121で、基板141に薄膜が形成される。なお、煩雑を避けるべく図面上では基板ホルダー143のみを一点鎖線で示し基板141の図示を省略した。
【0034】
成膜処理が終了した基板ホルダー143は基板アンロード室125に搬送され、必要に応じて後処理を受けた後、ゲートバルブ137を介して外部に取り出される。すなわち、基板アンロード室125は、基板ホルダーの脱着・排気・必要による後処理の機能を有する。
成膜室121における成膜処理は、基板ホルダーが水平板状である点を除いて図1、図2に示した実施例と基本的に替わるところがない。すなわち、遮蔽板151,161によって形成される成膜プロセスゾーン153,163にターゲット155a,b、165a,bが配置され、デュアルマグネトロンスパッタリング法により金属超薄膜が形成される。MFCはマスフローコントローラを示す。基板ホルダー143の回転により、金属超薄膜は例えばSi→SiO2のように金属酸化物超薄膜に変換される。これは、遮蔽板171により囲繞された反応プロセスゾーン173により行なわれ、活性種発生装置175から供給される電気的に中性なラジカル等の活性種に対する曝露による。
【0035】
本発明は前述の通りであるが、本発明の実施の形態例、実施例も含めて本発明の特徴的な部分の一例を例記すると以下の通りである。
1:金属超薄膜の形成とその金属酸化物超薄膜への変換を繰り返して行い、金属酸化物超薄膜を複数回堆積して行なうことにより、目的とする膜厚の薄膜を、低基板温度で高速に形成できる。
2:その際、金属超薄膜の形成方法としてデュアル・マグロトロンスパッタリング法を採用することにより、安定したアノード部を確保して、アノード電位の変化を防止して再現性の良い良質の薄膜が形成できる。
3:金属超薄膜を金属酸化物超薄膜に変換するに際し、ラジカル、励起状態にあるラジカル、原子あるいは分子等の活性種を利用することにより、薄膜にダメージを与えることを防止し、基板温度の上昇を抑え、効率的に良好な特性の薄膜を得ることができる。
4:遮蔽手段により成膜プロセスゾーンと反応プロセスソーンとを区切ることにより、両者の条件を個別に最適の条件で制御して安定した薄膜形成を行うことができる。また、成膜プロセスゾーンの圧力を反応プロセスゾーンの圧力よりも高くして、反応性ガスが成膜プロセスゾーンに流入することを防止する事も好ましいことである。
5:仮りに反応性ガスが成膜プロセスゾーンに流入してターゲット上に反応生成物が生じても、デュアル・スパッタリングにより除去され、再現性が良く安定性の高い高速スパッタリングが行える。
【0036】
【発明の効果】
本発明によれば、特性の安定した金属酸化物薄膜を、薄膜にダメージを与えることを防止して、低温基板温度で高速に形成することができる。
【図面の簡単な説明】
【図1】 本発明で用いられる装置の実施例を示す説明上面図である。
【図2】 本発明で用いられる装置の実施例を示す、図1の線A−B−Cに沿った断面図である。
【図3】 プラズマ源の構成例を示す説明図である。
【図4】 プラズマ源の構成例を示す説明図である。
【図5】 プラズマ源の構成例を示す説明図である。
【図6】 マルチ・アパーチャ・グリッドを示す平面図である。
【図7】 マルチ・スリット・グリッドを示す平面図である。
【図8】 本発明で用いる装置の実施例を示す説明平面図である。
【符号の説明】
11 真空槽
12,14,16 遮蔽板
13 基板ホルダー
15 真空ポンプ
17 モータ
20,40 成膜プロセスゾーン
21a,21b、41a,41b スパッタ電極
23、43 スパッタ用交流電源
24 トランス
25,45 マスフローコントローラ
27,47 スパッタガスボンベ
29a,29b、49a,49b ターゲット
60 反応プロセスゾーン
61 活性種発生装置
63 反応性ガスプラズマ発生室
65 電極
67 マッチングボックス
69 高周波電源
71 外部コイル
73 内部コイル
77 マスフローコントローラ
79 反応性ガスボンベ
81 グリッド
91 渦巻き状電極
93 平板電極
95 コイル状電極
101 マルチ・アパーチャ・グリッド
103 穴
105 冷却管
111 マルチ・スリット・グリッド
113 スリット
115 冷却管
121 成膜室
123 基板ロード室
125 基板アンロード室
131,133,135,137 ゲートバルブ
141 基板
143 基板ホルダ
151,161,171 遮蔽板
153,163 成膜プロセスゾーン
155a,155b、165a,165b ターゲット
173 反応プロセスゾーン
175 活性種発生装置

Claims (18)

  1. 接地電位から電気的に絶縁された一対の同種または異種のマグネトロンスパッタリング用金属ターゲットを用い、それぞれのターゲットに接地電位からプラスとマイナスに交互に交流電圧を印加することにより、常にいずれか一方のターゲットがカソードとなり他方のターゲットがアノードとなるようにし、真空槽内で基板上に金属ないし金属の不完全反応物からなる金属超薄膜を形成する工程と、
    この金属超薄膜に電気的に中性な反応性酸素ガスの活性種を接触せしめ、金属超薄膜と反応性酸素ガスの活性種とを反応せしめて金属酸化物超薄膜に変換せしめる工程とを順次繰り返し、
    金属酸化物超薄膜を複数層形成して堆積することにより、目的とする膜厚の金属酸化物光学薄膜を基板上に形成することを特徴とする金属酸化物光学薄膜の形成方法。
  2. 1〜100KHzの範囲の交流電圧を印加する請求項1に記載の金属酸化物光学薄膜の形成方法。
  3. 前記反応性酸素ガスの活性種が、ラジカルまたは励起状態にあるラジカル、原子あるいは分子である請求項1または2に記載の金属酸化物光学薄膜の形成方法。
  4. 反応性ガスを導入して高周波電力を印加し、放電することより、反応性酸素ガスイオン、電子および電気的に中性の活性種とを構成要素とする反応性酸素ガスプラズマを反応性ガスプラズマ発生室内に発生せしめ;この反応性ガスプラズマから荷電粒子である電子およびイオンを選択的にトラップし、一方、電気的に中性の活性種を選択的に通過せしめるグリッドを用いて電気的に中性の活性種を反応性ガスプラズマ発生室から真空槽内に取り出して金属超薄膜と接触せしめ反応さる請求項1〜3のいずれか一項に記載の金属酸化物光学薄膜の形成方法。
  5. 前記グリッドがマルチ・アパッチャ・グリッドまたはマルチ・スリット・グリッドである請求項4に記載の金属酸化物光学薄膜の形成方法。
  6. マグネトロンスパッタリング装置において;接地電位から電気的に絶縁された一対の同種または異種のマグネトロンスパッタリング用金属ターゲットを用い、それぞれのターゲットに接地電位からプラスとマイナスに交互に交流電圧を印加することにより、常にいずれか一方のターゲットがカソードとなり他方のターゲットがアノードとなるようにして基板上に、金属ないし金属の不完全反応物からなる金属超薄膜を形成する工程を行なう成膜プロセスゾーンと;この金属超薄膜に電気的に中性な反応性酸素ガスの活性種を接触せしめ、金属超薄膜と反応性酸素ガスの活性種とを反応せしめて金属酸化物超薄膜に変換せしめる工程を行なう反応プロセスゾーンと;成膜プロセスゾーンと反応プロセスゾーンとの間で基板を搬送する搬送手段と;成膜プロセスゾーンと反応プロセスゾーンとを空間的、圧力的に分離して成膜プロセスゾーンに反応性ガスが混入することを防止する遮蔽手段とを具え;安定な成膜プロセスゾーンと反応プロセスゾーンとの間で基板を複数回繰り返して搬送、処理し、金属酸化物超薄膜を複数層形成して堆積することにより、目的とする膜厚の金属酸化物光学薄膜を基板上に形成することを特徴とする成膜装置。
  7. 1〜100KHzの範囲の交流電圧を印加する請求項6に記載の成膜装置。
  8. 前記反応性酸素ガスの活性種がラジカルまたは励起状態にあるラジカル、原子あるいは分子である請求項6に記載の成膜装置。
  9. 前記活性種を発生する活性種発生装置が、反応性酸素ガスを導入し高周波電力を印加することにより、反応性酸素ガスイオン、電子および電気的に中性の活性種とを構成要素とする反応性ガスプラズマを発生させる反応性ガスプラズマ発生部と、この反応性ガスプラズマから荷電粒子である電子およびイオンを選択的にトラップし、一方、電気的に中性の活性種を選択的に通過せしめるグリッドとを具え、電気的に中性の活性種を反応プロセスゾーンに供給する請求項6〜8のいずれか一項に記載の成膜装置。
  10. 前記グリッドが、マルチ・アパッチャ・グリッドまたはマルチ・スリット・グリッドである請求項9に記載の成膜装置。
  11. 前記活性種発生装置の反応性ガスプラズマ発生部として、円筒状の誘電体の大気側周面にコイル状の電極を配置し、このコイル状電極に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源を用いる請求項9に記載の成膜装置。
  12. 前記活性種発生装置の反応性ガスプラズマ発生部として、円盤状の誘電体の大気側に渦巻き状コイルの電極を配置し、この渦巻き状コイル電極に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源を用いる請求項9に記載の成膜装置。
  13. 前記活性種発生装置の反応性ガスプラズマ発生部として、反応ガスプラズマ発生部内部に平板状の電極を配置し、この平板状電極に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる容量結合型プラズマ発生源を用いる請求項9に記載の成膜装置。
  14. 前記活性種発生装置の反応性ガスプラズマ発生部として、反応ガス発生部内部にコイル状の電極または渦巻き状のコイル電極を配置し、これら電極に100KHz〜50MHzの高周波電力を印加して誘導結合型プラズマと容量結合型プラズマとが混存するプラズマ発生源を用いる請求項9に記載の成膜装置。
  15. 前記活性種発生装置の活性種の発生効率を高めるために、反応性ガスプラズマ発生部でヘリコン波プラズマを発生させる請求項9〜14のいずれか一項に記載の成膜装置。
  16. 前記活性種発生装置の活性種の発生効率を高めるために、反応性ガスプラズマ発生部に、20〜300ガウスの磁場を形成する外部コイルあるいは内部コイルを具えている請求項9〜15のいずれか一項に記載の成膜装置。
  17. 基板における異常放電を防止するために、基板を支持する基板ホルダーを装置電位から電気的に絶縁する請求項6に記載の成膜装置。
  18. 請求項6に記載の成膜装置であって、成膜プロセスゾーンと反応プロセスゾーンを備えた成膜室の前後に更に、基板ホルダーの脱着・排気・必要による前処理の行える基板ロード室と、基板ホルダーの脱着・排気・必要による後処理が行なえる基板アンロード室の2つの室を有し、各室は圧力的に隔離され各々独自の排気系を有し、基板ロード室−成膜室−基板アンロード室間に基板を搬送することにより、薄膜形成の逐時処理を行うことを特徴とする成膜装置。
JP10197698A 1998-03-05 1998-03-30 金属酸化物光学薄膜の形成方法および成膜装置 Expired - Lifetime JP3735462B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10197698A JP3735462B2 (ja) 1998-03-30 1998-03-30 金属酸化物光学薄膜の形成方法および成膜装置
US09/092,644 US6103320A (en) 1998-03-05 1998-06-09 Method for forming a thin film of a metal compound by vacuum deposition
EP98115624A EP0940481B1 (en) 1998-03-05 1998-08-19 Method and apparatus for forming a thin film of a metal compound
DE1998625138 DE69825138T2 (de) 1998-03-05 1998-08-19 Verfahren und Vorrichtung zum Herstellen von dünnen Schichten einer Metallverbindung
US09/517,340 US6274014B1 (en) 1998-03-05 2000-03-02 Method for forming a thin film of a metal compound by vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10197698A JP3735462B2 (ja) 1998-03-30 1998-03-30 金属酸化物光学薄膜の形成方法および成膜装置

Publications (2)

Publication Number Publication Date
JPH11279758A JPH11279758A (ja) 1999-10-12
JP3735462B2 true JP3735462B2 (ja) 2006-01-18

Family

ID=14314907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10197698A Expired - Lifetime JP3735462B2 (ja) 1998-03-05 1998-03-30 金属酸化物光学薄膜の形成方法および成膜装置

Country Status (1)

Country Link
JP (1) JP3735462B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573450B2 (ja) * 2001-02-28 2010-11-04 朋延 畑 スパッタリング装置
DE10347521A1 (de) * 2002-12-04 2004-06-24 Leybold Optics Gmbh Verfahren zur Herstellung Multilayerschicht und Vorrichtung zur Durchführung des Verfahrens
EP1592821B1 (de) * 2002-12-04 2009-01-14 Leybold Optics GmbH Verfahren zur herstellung einer multilayerschicht und vorrichtung zur durchführung des verfahrens
JP2007092095A (ja) * 2005-09-27 2007-04-12 Shincron:Kk 薄膜形成方法及び薄膜形成装置
JP5468191B2 (ja) * 2006-04-17 2014-04-09 株式会社シンクロン 有色基材の製造方法および有色基材
JP5582809B2 (ja) * 2009-02-13 2014-09-03 ワイエス電子工業株式会社 プラズマ発生装置
US8017198B2 (en) * 2009-04-24 2011-09-13 Ovshinsky Innovation Llc Thin film deposition via charged particle-depleted plasma achieved by magnetic confinement
US9157146B2 (en) 2011-08-02 2015-10-13 Shincron Co., Ltd. Method for depositing silicon carbide film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191377A (ja) * 1984-10-12 1986-05-09 Anelva Corp 表面処理装置
JPS61222534A (ja) * 1985-03-28 1986-10-03 Anelva Corp 表面処理方法および装置
JPS62227089A (ja) * 1986-03-27 1987-10-06 Anelva Corp 表面処理方法および装置
JPH0715731B2 (ja) * 1987-09-28 1995-02-22 富士通株式会社 薄膜磁気ヘッドの製造方法
JPH03223458A (ja) * 1990-01-26 1991-10-02 Anelva Corp 酸化物超電導体薄膜作製用スパッタリング装置
DE4138794A1 (de) * 1991-11-26 1993-05-27 Leybold Ag Verfahren und vorrichtung zum beschichten eines substrats, insbesondere mit elektrisch nichtleitenden schichten
JP3269834B2 (ja) * 1991-11-26 2002-04-02 旭硝子株式会社 スパッタリング装置とスパッタリング方法
JP3398447B2 (ja) * 1993-11-26 2003-04-21 新電元工業株式会社 スパッタ装置用電源
JP3802127B2 (ja) * 1996-03-26 2006-07-26 株式会社シンクロン 薄膜形成方法

Also Published As

Publication number Publication date
JPH11279758A (ja) 1999-10-12

Similar Documents

Publication Publication Date Title
US6103320A (en) Method for forming a thin film of a metal compound by vacuum deposition
JP3774353B2 (ja) 金属化合物薄膜の形成方法およびその形成装置
EP1640474B1 (en) Thin film forming device
US10056237B2 (en) Low pressure arc plasma immersion coating vapor deposition and ion treatment
EP0945523B1 (en) Method for forming a thin film and apparatus for carrying out the method
EP2778254B1 (en) Low pressure arc plasma immersion coating vapor deposition and ion treatment
KR20210102499A (ko) 유전체 스퍼터링 동안 워크피스에서 결함들을 감소시키기 위한 플라즈마 챔버 타겟
KR20150016983A (ko) 사전 안정화된 플라즈마를 이용하는 프로세스들을 위한 스퍼터링을 위한 방법
US9455057B2 (en) Method and apparatus for sputtering with a plasma lens
EP2354268A1 (en) Method of manufacturing optical filter
WO2006013968A1 (ja) 薄膜形成装置
WO2007086276A1 (ja) スパッタリング装置及び成膜方法
JPH11256327A (ja) 金属化合物薄膜の形成方法および成膜装置
JP3735462B2 (ja) 金属酸化物光学薄膜の形成方法および成膜装置
JP2004204304A (ja) 薄膜の製造方法およびスパッタリング装置
EP0691419A1 (en) A process and apparatus for forming multi-layer optical films
JP3779317B2 (ja) 薄膜の形成方法
JP3738154B2 (ja) 複合金属化合物の薄膜形成方法及びその薄膜形成装置
JP2007277659A (ja) スパッタ成膜装置およびスパッタ成膜方法
JP7163154B2 (ja) 薄膜製造方法、対向ターゲット式スパッタリング装置
JP5312138B2 (ja) スパッタリング方法
JP2002180241A (ja) 成膜装置
JP4480336B2 (ja) 誘電体薄膜の製造方法及び製造装置
JP2001279440A (ja) Co含有酸化物膜の成膜方法
JPH02133564A (ja) 密着性および耐食性に優れたセラミック被覆鋼板の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term