JP3733801B2 - X線センサ信号処理回路及びそれを用いたx線ct装置 - Google Patents

X線センサ信号処理回路及びそれを用いたx線ct装置 Download PDF

Info

Publication number
JP3733801B2
JP3733801B2 JP26750199A JP26750199A JP3733801B2 JP 3733801 B2 JP3733801 B2 JP 3733801B2 JP 26750199 A JP26750199 A JP 26750199A JP 26750199 A JP26750199 A JP 26750199A JP 3733801 B2 JP3733801 B2 JP 3733801B2
Authority
JP
Japan
Prior art keywords
ray
conversion
output
signal processing
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26750199A
Other languages
English (en)
Other versions
JP2001091477A (ja
Inventor
上村  博
克利 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26750199A priority Critical patent/JP3733801B2/ja
Publication of JP2001091477A publication Critical patent/JP2001091477A/ja
Application granted granted Critical
Publication of JP3733801B2 publication Critical patent/JP3733801B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非破壊検査を行うためのX線センサの出力信号を処理するX線センサ信号処理回路及びそれを用いたX線CT装置に係わり、特に、X線センサ信号処理回路のダイナミックレンジを拡大できるX線センサ信号処理回路及びそれを用いたX線CT装置に関する。
【0002】
【従来の技術】
近年、金属製部品や装置の内部欠陥などを非破壊で検査したいという要求により、1MeV以上のX線を用いた工業用X線CT装置が開発されており、また、より大きな被試験体を高解像度で検査するために更なる研究開発が進んでいる。工業用のX線CTについては「H.Miyai, et al.: "A High Energy X-Ray Computed Tomography Using Silicon Semiconductor Detectors", 1996 Nuclear Science Symposium Conference Record, Vol.2, pp816-821, Nov.2-9 1996, Anaheim, CA, USA (1997)](以下、従来技術という)に記載されている。この第1従来技術に示された、X線センサの出力信号を処理する信号処理回路について説明する。
【0003】
信号処理回路において、多数の半導体センサ(X線センサ)はそれぞれ初段回路に接続されている。X線パルスが半導体センサに入射すると、センサ内部に発生した電荷により回路に電流が流れる。それを抵抗で電圧変換し、電圧増幅器で増幅し、サンプルホールドアンプでホールドして後段の装置に出力する。すなわちX線パルスにより発生する電圧波形をできるだけ、保持した状態で増幅し、X線入射レベルが安定した時点でホールドするという方法が採られる。
【0004】
工業用X線CT装置用の半導体センサは、高エネルギーのX線パルスを効率よく検出するために短冊形で寸法が大きく(例えば、3×40×0.4mm)、必然的に数nAから数十nAレベルの大きな暗電流を生じる。このため、初段回路においては、電圧増幅器が暗電流による直流電圧を増幅しないように、半導体センサは交流結合される。
【0005】
X線パルスが厚い被検体を透過した場合、X線パルスは被試験体で減衰されて半導体センサに入射するため、被試験体が設置されていない場合と比べて、入射するフォトン数は4桁以上小さくなる。すなわちX線CTの信号処理回路は高ダイナミックレンジを必要とする。ダイナミックレンジを大きくするには、大入力側と微少入力側の双方にレンジを広げる必要がある。
【0006】
従来技術では半導体センサからの出力電流を電圧変換してそのまま増幅しているため、フォトン数が少なくなるとホールド時の電圧が必ずしも単位時間当たりの平均フォトン数に比例した電圧にならない。
【0007】
この問題を解決するため、発明者等は次のような技術を既に提案している。すなわち、X線センサの出力信号からフィルタにより前記従来技術と同じく、直流成分を除去するだけでなく、前記フィルタにより直流成分が除去された前記X線センサの出力信号を積分する積分回路を備えることにより、パルス発生時間内にセンサに入射するフォトンによる出力電流を積分でき、単位時間当たりの平均フォトン数に比例した出力を測定できるようにしている。これにより、フォトン数の少ない場合の微少入力側のセンサ出力を確実に測定することができる(以下、先行技術という)。
【0008】
【発明が解決しようとする課題】
しかし、さらにダイナミックレンジを拡大するには高出力電流時の測定を可能にする必要があるが、測定の上限値はAD変換回路の入力レンジや分解能で制限される。すなわち、測定できる最小入力を例えば2ビット分のディジタル出力になるように設計したとすれば、14ビットAD変換回路のダイナミックレンジは78dB(=20log(2の14乗÷2))となる。
【0009】
このため、前記先行技術では積分回路の出力を対数回路で対数変換し出力レンジを圧縮してAD変換回路に入力することにより、ダイナミックレンジを拡大する方法が述べられている。この方法は原理的に実現可能であるが、実機製作の上ではハードウェア量が増加するという問題点がある。
【0010】
AD変換器の入力レンジは5Vから10Vが通常である。それにひきかえ、積分回路に使用するOPアンプは通常10から20V以上の入力レンジを持つ。
【0011】
本発明の目的は、この積分回路のダイナミックレンジを有効に活用し、AD変換回路の入力レンジを越える積分回路出力を測定可能とするX線センサ信号処理回路及びそれを用いたX線CT装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的は、制御されて発生するパルス状の信号を検出するセンサにより検出されたパルス出力信号を積分し一定時定数で放電させる積分回路と、積分回路の出力信号を1回目のAD変換後次のパルス状信号入射前に2回目のAD変換する手段と、2回目のAD変換出力から1回目のAD変換出力を計算する手段とを備えたことによって達成される。
【0013】
また上記目的は、加速器から出射されて被試験体を透過したパルス状のX線を検出するX線センサにより検出されたパルス出力信号を積分し一定時定数で放電させる積分回路と、積分回路の出力信号を1回目のAD変換後次のX線パルス入射前に2回目のAD変換する手段と、2回目のAD変換出力から1回目のAD変換出力を計算する手段とを備えたことによって達成される。
【0016】
【発明の実施の形態】
以下図面を用いて本発明の実施の形態を詳細に説明する。
【0017】
図1は、本発明の好適な一実施形態であるX線センサ信号処理回路(信号処理回路)を示す。また、図2は、図1のX線センサ信号処理回路を用いたX線CT装置を示す。
【0018】
はじめに、図2を用いてX線CT装置による被破壊検査について説明する。なお、図2(a)は側面から見たX線CT装置を示し、図2(b)は上方から見たX線CT装置の一部を示す。図2(a)において、まずCT制御装置9が加速器4に対してX線パルス出射指令を出力する。また、CT制御装置9は、X線パルス出射指令を出力するのと同時に、信号処理回路(X線センサ信号処理回路)1に対してX線パルス出射開始信号を出力する。
【0019】
加速器4はX線パルス出射指令が入力されると、ライナック41によってイオンビームを加速して出射し、そのイオンビームをターゲット42に照射することにより放射状で高エネルギー(1MeV以上)のX線を発生させる。発生させたX線は、コリメータ43を通して加速器4から扇状に出射される。なお、X線はパルス幅5μsの短いパルスで加速器4から出射されるが、X線のエネルギー及びパルス幅の制御は、ターゲット42に照射するイオンビームのエネルギー及びパルス幅をライナック41により制御することで行われる。
【0020】
加速器4から出射されたX線パルスは、スキャナ6上に配置された被試験体5に照射され、被試験体5を透過する。スキャナ6にはCT制御装置9より制御信号が入力されており、スキャナ6はその制御信号に応じて回転や上下動作を行う。スキャナ6の回転・上下動作によって、被試験体5には任意の箇所に対して様々な方向からX線パルスが複数回照射される。
【0021】
被試験体5を透過したX線パルスは、コリメータ7を通り、一列に並べられた半導体センサ(X線センサ)21〜2nに入射される。半導体センサ21〜2nにおいて、pn接合部の空乏層にX線が入射すると多数の電子・正孔ペアが生じ、電流が流れる。信号処理回路1は、半導体センサ21〜2nに生じた電流に応じたディジタルデータを出力する。信号処理回路1はCT制御装置からの指令に基づいてX線パルス1回につきセンサ1個当たりディジタルデータ2個を出力する。信号処理回路1の動作については後述する。
【0022】
データ送受信回路3は、信号処理回路1から出力されたディジタルデータを入力し、そのディジタルデータをCT制御装置9に出力する。なお、データ送受信回路3とCT制御装置9との間には遮蔽壁8があるため、両者間のデータの伝送は遮蔽壁8を貫通するケーブルを介して行われる。なお、加速器4及びスキャナ6とCT制御装置9の間のデータ伝送も同様である。
【0023】
CT制御装置9はデータ送受信回路3を介して信号処理回路1からディジタルデータを取得する。X線パルス1回発生につきセンサ1個当たり2個のディジタルデータを取得し、その2個のデータを処理して補正した(真の)ディジタルデータを計算する。この動作については後述する。また、CT制御装置9は、ディジタルデータを用いて被試験体5の断面の透視画像を再構成し、表示装置10に表示させる。
【0024】
以上のようにして、被試験体5の断面の透視画像が得られる。
【0025】
次に、図1を用いて信号処理回路1について説明する。図1において、半導体センサ21〜2nは、各々初段回路111〜11nに接続される。なお、初段回路112(図示しない)〜11nは初段回路111と同じ構成であるので、ここでは初段回路111についてのみ説明する。
【0026】
初段回路111は、半導体センサ21の一端に、半導体センサ21に逆バイアスをかける向きでバイアス電源118が接続され、他端には抵抗119が接続される。なお、抵抗119の他端は接地されている。また、半導体センサ21と抵抗119の接続部にはコンデンサ114が接続される。コンデンサ114の他端は、OPアンプ115の反転入力に接続され、OPアンプ115には並列に抵抗116及びコンデンサ117が接続される。OPアンプ115,抵抗116及びコンデンサ117は積分回路を構成している。以下、OPアンプ115,抵抗116及びコンデンサ117をまとめて積分器(プリアンプ)という。初段回路111は以上のように構成される。
【0027】
従来の技術で述べたように、半導体センサ21では数十nA程度の暗電流が発生する。しかし、この暗電流は直流成分であるため、コンデンサ114を通してプリアンプ側に流れ込むことはなく、抵抗119の方へ流れる。初段回路111ではこのようにして暗電流が除去される。
【0028】
半導体センサ21がX線パルスを検出した場合、X線パルスはパルス幅が5μsとなっているので、半導体センサ21の出力電流の周波数帯域は数十kHz以上となり、そのため、その出力電流はコンデンサ114を通過してプリアンプ側に流れ込む。OPアンプ115の反転入力はイマジナリショートであるので、出力電流は抵抗116にはほとんど流れずにコンデンサ117に流れ込み、コンデンサ117において電荷が蓄積される。
【0029】
半導体センサ21におけるX線パルスの検出が終わると、半導体センサ21からの出力電流は直流成分の暗電流のみとなるので、コンデンサ117に蓄積された電荷が、抵抗116とコンデンサ117で決まる時定数に従って放電(減衰)していく。抵抗116の抵抗値R、及びコンデンサ117のキャパシタンスCの決定方法、つまり時定数の決定方法は以下のとおりである。
【0030】
前記先行技術では、被試験体がスキャナ上にないとき、すなわちX線パルスが空気中のみを通過して半導体センサ21に入射するとき、すなわち出力最大時にAD変換器の入力レンジを越えないようにキャパシタンスCの値を決定し、さらにX線パルス間隔5ms内にプリアンプの出力がゼロになるように抵抗の値を決めている。
【0031】
本発明では、被試験体がスキャナ上にないとき、すなわちX線パルスが空気中のみを通過して半導体センサ21に入射するとき、すなわち出力最大時に、プリアンプの出力レンジを超えないようにキャパシタンスCの値を決定し、さらにX線パルス間隔5ms内にプリアンプの出力がゼロになるように抵抗の値を決める。キャパシタンスと抵抗の値決定方法の詳細は後述する。
【0032】
初段回路111〜11nの出力は信号処理IC13に入力される。信号処理IC13はサンプルホールド回路141〜14n、スイッチ回路151〜15n、AD変換回路16及びメモリ回路17からなる。信号処理IC13の動作は制御回路12により、およびバス18を介してデータ送受信回路3により制御される。また、制御回路12は制御線181,182,183を信号処理IC13の制御に用い、時間制御のためにタイマー19を用いる。
【0033】
すなわち、制御回路12は制御線181によりサンプルホールド回路141〜14nを同時にホールド状態またはサンプリング状態とすることが出来る。また、制御線182によりスイッチ回路151〜15nを順次「閉」状態とし、サンプルホールド回路141〜14nの出力をAD変換回路16に入力しディジタルデータに変換することができる。変換されたセンサ出力測定データはメモリ回路17に一時格納され、センサ21〜2nのすべてのデータがメモリ回路17に格納された後、データ送受信回路3を経由してCT制御装置9に送出される。
【0034】
以下、図3、図4、図5を用いて信号処理回路1の動作を詳細に説明する。
【0035】
図3は加速器のトリガ信号、X線パルス、センサの出力電流、プリアンプ(初段回路)出力、及び制御回路12から制御線181を介してサンプルホールド回路141〜14nへのホールド信号の波形と時間関係とを示している。本実施例ではX線パルスの周期は5msであるので、CT制御装置9から加速器4への加速器トリガ信号は5ms毎に送出される。加速器トリガ信号より少し遅れて実際のX線パルスは発生する。センサ電流はX線パルス入射に対応して出力されるが、その大きさは被試験体の厚さに依存する。すなわち、厚さが薄ければ大きく(センサ電流33a)、厚ければ小さく(センサ電流33b)なる。
【0036】
プリアンプ出力はセンサ電流を積分・増幅し、電流が無くなると一定時定数で放電するので、センサ電流33aに対応してプリアンプ出力電圧34a、センサ電流33bに対応してプリアンプ出力電圧34b、の電圧波形が出力される。実施例ではプリアンプの最大出力は15V、AD変換回路(ADC)16の入力レンジは5Vを用いている。
【0037】
1回目の測定はセンサ電流終了直後に行う。すなわち、ホールド信号35により、サンプルホールド回路141〜14nで初段回路111〜11nの出力信号をホールドし、順次測定する。このとき、プリアンプ出力電圧34aのホールド値はVa、プリアンプ出力電圧34bのホールド値はVbである。VaはADC入力レンジを超えているので変換されたディジタル値はADC入力の最大値5Vになる。Vbはレンジ内なので正確な値が測定できる。
【0038】
2回目の測定は1回目測定からΔt(本実施例では、270μs)後に実施する。Δtμs後に再度ホールド信号36により、サンプルホールド回路141〜14nで初段回路111〜11nの出力信号をホールドし、順次測定する。初段回路111〜11nの出力信号は一定時定数(本実施例では、220μs)で減衰しているので、VaはVa′にVbはVb′になる。従って、2回目の測定ではVa′もADC入力レンジ内に入るので、正確な値が測定できることになる。
【0039】
Vaは測定されたVa′から下記の数2で求められる。
【0040】
【数2】
Va=Va′×exp(Δt/τ)
ここで、Δtは1回目測定から2回目測定までの時間間隔、τは積分器の時定数である。
【0041】
図4は本実施例の効果をセンサ出力とプリアンプ出力電圧の関係として示したものである。横軸はセンサの出力(pc)、すなわち、1回のX線パルスにてセンサで発生する電荷量、縦軸はプリアンプ(積分器)出力電圧(V)である。本図にはプリアンプ出力電圧上限Vpre、ADコンバータ入力上限Vadcを示す。直線51は1回目の測定の場合のセンサ出力とプリアンプ出力電圧の関係を示し、直線52は2回目の測定の場合のセンサ出力とプリアンプ出力電圧の関係を示している。
【0042】
前述のように、例えばセンサ出力250pCの場合には1回目の測定時にプリアンプ出力はV1であり、ADCの入力上限を超えているので測定できないが、2回目の測定時にはV2となり測定できる。V2を用いて数2の補正をすることにより、V2からV1を求めることができる。すなわち、従来方法ではセンサ出力0から125pC(Q1点)までしか測定できなかったが、本発明を適用することにより、0から375pC(Q2点)まで測定できる。すなわち約10dBのダイナミックレンジ向上を図ることができる。
【0043】
1回目測定から2回目測定までの時間間隔Δtは図4のV1とV2の関係を数2を用いて表すと、数3
【0044】
【数3】
V1=V2×exp(Δt/τ)
となり、さらに数4及び数5
【0045】
【数4】
V2≦Vadc
【0046】
【数5】
V1≦Vpre
でなければならないことを考慮すると、Δtは、数6
【0047】
【数6】
Δt≧τ×ln(Vpre/Vadc)
を満足する必要がある。
【0048】
本実施例ではVpre=15V、Vadc=5V、τ=220μsであるので、Δt≧242μsの必要がある。図3に示したように本実施例ではΔt=270μsとしている。
【0049】
図5を用いて制御回路12の動作を説明する。本実施例では図3、図4を用いて説明した動作は制御回路12により制御される。図5は半導体センサの出力を測定するための制御回路12の動作を示すフローチャートである。制御回路12は本実施例ではワンチップマイクロプロセッサで実現している。
【0050】
前述のように、X線CT装置の全体の動作はCT制御装置9(図2)で制御される。CT制御装置9はX線パルスをトリガするための加速器トリガ信号が加速器4に送出された後、制御回路12にデータ送受信回路3を介してホールド指令を送出する。図5に示すように、ホールド指令を制御回路12が受信することにより測定が開始される(ステップ201)。
【0051】
制御回路12はまずタイマー19をスタートさせ(ステップ202)、サンプルホールド回路141〜14nにホールド信号を出力する(ステップ204)。次いでスイッチ151に「閉」指令を出力(ステップ206)して、ホールドされたアナログ信号をAD変換回路16に入力し、AD変換回路16にAD変換指令を出力(ステップ207)してディジタル信号に変換し、ディジタル化されたデータをメモリ回路17に格納(ステップ208)し、スイッチ回路151を「開」(ステップ209)にする。この動作を接続されるセンサ数nだけ順次繰り返す。
【0052】
1回目の測定が終了すると、サンプルホールド回路141〜14nのホールドを解除し(ステップ212)、CT制御装置9からのデータ送信要求信号を待つ(ステップ213)。データ送信要求信号を受信すると、CT制御装置9にメモリ回路17に格納していたデータを送信し(ステップ214)、タイマーの値をチェックして(ステップ217)値がΔtになると、2回目の測定を実施する(ステップ204から214)。2回目の測定が終了すると(ステップ215)、ホールド指令待ち状態(ステップ201)に戻る。
【0053】
以上の動作により、図3で説明した測定方法が実現される。信号処理回路1に接続された全センサを測定するのに要する時間がΔtよりも短いのは無論である。センサ数が多く、測定時間が長くなる場合には、信号処理IC13を複数個設け、並列動作すれば測定時間を短縮できる。または、信号処理回路1自体を複数台設けて並列動作させても良い。
【0054】
次に、図6、図7、及び図8を用いて、CT制御装置9における測定データ処理について記述する。
【0055】
図6はCT制御装置9の動作フローチャートである。本フローチャートはセンサ出力測定データを取得する部分のみを示している。スキャナの制御や測定データを用いた画像再構成の部分は従来と変わりないので、説明は省略する。
【0056】
加速器トリガ信号を加速器4に送出する(ステップ231)と、X線パルスが発生し、終了するまでの遅延時間を考慮して一定時間待機(ステップ232)し、その後データ送受信回路3を介して信号処理回路1にホールド指令を送出する(ステップ234)。1回目と2回目測定の時間間隔をあけるためのタイマーをスタートさせる(ステップ234)。信号処理回路1において測定が終了するまで一定時間待機した(ステップ236)後、データ送信要求信号を送出する(ステップ237)。1回目の測定データをすべて受信し(ステップ238)、自己のメモリに格納すると(ステップ239、240)、タイマーをチェックし(ステップ242)、測定間隔Δtになったら、2回目データを受信しメモリに格納する(ステップ236〜239)。
【0057】
2回目の測定が終了すると、1回目と2回目の測定データを用いて測定データ補正を実行する(ステップ241)。測定データ補正方法については後述する。図6のフローチャートの動作は加速器トリガ毎、すなわち本実施例では5msの周期で実行される。
【0058】
図7は測定データの補正処理を示すフローチャートで、図5のステップ241を詳細に示したものである。
【0059】
図7を用いて測定データ補正処理を説明する。まず、1回目測定値V1iを格納メモリから読み出し(ステップ262)、V1i≦VTならばV1iの値をそのまま、補正済み測定値としてメモリに格納する(ステップ267)。ここで、閾値VTはAD変換回路16の入力最大値(5V)よりも少し低い4.99Vに設定してある。VTの値は測定回路のS/Nにより変える必要がある。
【0060】
V1i>VTならば2回目測定値V2iをメモリから読み出し(ステップ264)、V2iから補正値V3iをV3i=K*V2iの計算により求める(ステップ265)。ここで定数Kは数2より、K=exp(Δt/τ)である。本実施例ではK=3.4146である。
【0061】
求めたV3iがV3i≧Vadc、すなわちAD変換回路16の入力レンジを超えているならば(ステップ265)、V3iの値を補正済み測定値としてメモリに格納する(ステップ266)。これは1回目の測定がAD変換回路の入力レンジを越えていた場合に相当する。
【0062】
求めたV3iがV3i<Vadcならば、1回目の測定値V1iを補正済み測定値とする(ステップ267)。これは、1回目測定値がVadc付近にある場合である。2回目の測定値よりも1回目の測定値の方が出力電圧が高く測定精度は高いので1回目の実測値を用いる。
【0063】
以上のステップをセンサ数nだけ繰り返す。
【0064】
図8は図7で説明したデータ補正処理を表にまとめたものである。1回目の測定データV1iと閾値VTの大小関係と、2回目の測定データから計算されるV3iとAD変換回路の最大入力電圧Vadcの大小関係から、3つのケースにわかれる。
【0065】
図9は実際の測定データに図7のアルゴリズムを適用した場合のCT制御装置9内の測定データ格納メモリの内容を示している。センサ番号に対応して、1回目測定値、2回目測定値が信号処理回路1から入力され、図7のアルゴリズムにより、補正済み測定値が求められる。右脇には図8で示した3つのどのケースに相当するかを示してある。閾値VTをVadc=5.00Vにとらずに4.99Vと少し低くとってあるのはノイズによる誤動作を避けるためである。
【0066】
たとえば、図9において、センサ番号k5とnはいずれも1回目測定値は5.9988Vであるが、2回測定値は1.4639Vと3.9670Vである。2回目測定のデータから1回目データを逆算すると、k5番のデータは1回目測定値で正しいが、n番のデータは測定系の雑音によりたまたま5V以下になったことを示している。本実施例ではこのような場合にも後者の正しい値を求めることができる。
【0067】
以上、述べたように本実施例に於いては、X線センサの出力が大きく積分回路出力がAD変換回路の入力レンジを越えた場合でも、一定放電時定数で減衰した後の積分回路出力を再測定できるので、AD変換回路の測定ダイナミックレンジを拡大できる効果がある。
【0068】
図3,図4を用いて説明したように、AD変換回路よりも通常大きい積分器のダイナミックレンジを有効に活用でき、本実施例では約10dB向上することができる。
【0069】
また、ほとんどハードウェア量は増加しないので、低コストで高ダイナミックレンジのX線センサ信号処理回路を提供することができる。
【0070】
本実施例のように工業用X線CT装置に本発明を用いると、加速器の出力が10dB小さくてすむことによりコストを削減することができ、逆に加速器出力が同じであればより大きい被試験体の断面像を測定できる効果がある。
【0071】
実施例で述べた積分器やX線パルス間隔等の定数は本発明を適用する装置により設計で決定されるもので、本発明を制限するものではない。
【0072】
また、詳細に説明した一実施例ではCT制御装置9からはX線パルス1回当たり1回のホールド指令を送出し、信号処理回路1で2回のホールド信号を生成するようにしているが、CT制御装置9が直接X線パルス1回当たり2回のホールド指令を送出し、信号処理回路では測定間隔の時間制御をしない構成でも本発明が実現できる。
【0073】
また、本発明の内容はX線検出用の半導体センサの信号処理に限定されるものではない。トリガに同期してセンサの出力電流を積分して測定する装置に広範囲に応用できることは言うまでもない。
【0074】
また、実施例ではX線パルストリガ1回について2回の測定をする回路形態を記述したが、積分回路のダイナミックレンジがAD変換回路の入力レンジよりも非常に大きければ、時間間隔を置いて3回以上の測定を実施することもよい。この場合の測定データ補正法は実施例と同様にできる。
【0075】
また、前述の実施例では、2回目の測定結果から1回目の測定時点の積分回路出力を求めるのに、積分回路の時定数と1回目と2回目の測定の時間間隔を用いて計算しているが、実測によりあらかじめ積分回路の時定数による減衰を測定してデータテーブルとしてCT制御装置9に格納しておき、利用することもできる。
【0076】
また、測定データのデータ補正処理は、信号処理回路1内で処理するようにしてもよい。
【0077】
【発明の効果】
本発明によれば、X線センサの出力が大きく積分回路出力がAD変換回路の入力レンジを越えた場合でも、一定放電時定数で減衰した後の積分回路出力を再測定できるので、AD変換回路の測定ダイナミックレンジを拡大できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例であるX線センサ信号処理回路の構成を示す図である。
【図2】本発明の一実施例であるX線センサ信号処理回路を用いたX線CT装置の構成を示す図である。
【図3】加速器のトリガ信号、X線パルス、センサの出力電流、プリアンプ出力、及びホールド信号の波形と時間関係を示す説明図である。
【図4】センサ出力とプリアンプ出力電圧の関係を示す図である。
【図5】制御回路の動作を示すフローチャートである。
【図6】CT制御装置の動作を示すフローチャートである。
【図7】測定データの補正処理方法を示すフローチャートである。
【図8】データ補正処理方法をまとめた表である。
【図9】CT制御装置内の測定データ格納メモリの内容の一例を示す図である。
【符号の説明】
1…信号処理回路、2…半導体センサ、3…データ送受信回路、4…加速器、5…被試験体、6…スキャナ、7…コリメータ、8…遮蔽壁、9…CT制御装置、10…表示装置、12…制御回路、13…信号処理IC、16…AD変換回路、17…メモリ回路、18…バス、19…タイマー、21,2n…半導体センサ、41…ライナック、42…ターゲット、43…コリメータ、111,11n…初段回路、114…コンデンサ、115…OPアンプ、116…抵抗、117…コンデンサ、118…バイアス電源、119…抵抗、141,14n…サンプルホールド回路、151、15n…スイッチ回路、181、182、183…制御線。

Claims (6)

  1. 制御されて発生するパルス状の信号を検出するセンサにより検出されたパルス出力信号を積分し一定時定数で放電させる積分回路と、該積分回路の出力信号を1回目のAD変換後次のパルス状信号入射前に2回目のAD変換する手段と、前記2回目のAD変換出力から前記1回目のAD変換出力を計算する手段とを備えたことを特徴とする信号処理回路。
  2. 加速器から出射されて被試験体を透過したパルス状のX線を検出するX線センサにより検出されたパルス出力信号を積分し一定時定数で放電させる積分回路と、該積分回路の出力信号を1回目のAD変換後次のX線パルス入射前に2回目のAD変換する手段と、前記2回目のAD変換出力から前記1回目のAD変換出力を計算する手段とを備えたことを特徴とするX線センサ信号処理回路。
  3. 請求項2に記載のX線センサ信号処理回路において、前記AD変換手段は、各X線センサのパルス出力信号を積分放電する複数の積分回路の出力信号を1回目のサンプルホールドした各信号を順次繰返処理によりAD変換してメモリ格納し、さらに、2回目のサンプルホールドした各信号を順次繰返処理によりAD変換してメモリ格納するものであることを特徴とするX線センサ信号処理回路。
  4. パルス状のX線を出射する加速器と、前記加速器から出射されたX線が照射される被試験体を回転或いは上下動させるスキャナと、前記被試験体に照射されて前記被試験体を透過したX線を検出する複数のX線センサと、前記複数のX線センサのパルス出力信号を積分し一定時定数で放電させる積分回路の出力をAD変換するX線センサ信号処理回路と、前記X線センサ信号処理回路によって処理された前記X線センサの出力信号に基づいて前記被試験体の断面の透視画像を再構成するCT制御装置とを有するX線CT装置において、前記X線センサ信号処理回路は、請求項2又は3に記載のX線センサ信号処理回路を備えたことを特徴とするX線CT装置。
  5. 請求項4記載のX線CT装置において、前記X線センサ信号処理回路または前記CT制御装置は、前記AD変換手段の1回目と2回目のAD変換の時間間隔と前記積分回路の時定数に基づいて前記AD変換手段の2回目のAD変換出力から1回目のAD変換出力を計算する手段を備えたことを特徴とするX線CT装置。
  6. 請求項4又は5に記載のX線CT装置において、前記X線センサ信号処理回路または前記CT制御装置は、前記AD変換手段の1回目の測定値V1iをAD変換手段の入力電圧最大値より少し低く設定した閾値VTと比較し、V1i<VTならばV1iを補正済み測定値としてメモリに格納し、V1i>VTならば前記AD変換手段の2回目の測定値V2iから数1を用いて補正値V3iを計算し、求めたV3iを前記AD変換手段の入力電圧最大値Vadcと比較し、V3i>VadcならばV3iを補正済み測定値としてメモリに格納し、V3i<Vadcならば1回目測定値V1iを補正済み測定値としてメモリに格納する測定データ処理手段を備えたことを特徴とするX線CT装置。
    (数1)
    V3i=K*V2i
    ここでKは定数
JP26750199A 1999-09-21 1999-09-21 X線センサ信号処理回路及びそれを用いたx線ct装置 Expired - Lifetime JP3733801B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26750199A JP3733801B2 (ja) 1999-09-21 1999-09-21 X線センサ信号処理回路及びそれを用いたx線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26750199A JP3733801B2 (ja) 1999-09-21 1999-09-21 X線センサ信号処理回路及びそれを用いたx線ct装置

Publications (2)

Publication Number Publication Date
JP2001091477A JP2001091477A (ja) 2001-04-06
JP3733801B2 true JP3733801B2 (ja) 2006-01-11

Family

ID=17445735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26750199A Expired - Lifetime JP3733801B2 (ja) 1999-09-21 1999-09-21 X線センサ信号処理回路及びそれを用いたx線ct装置

Country Status (1)

Country Link
JP (1) JP3733801B2 (ja)

Also Published As

Publication number Publication date
JP2001091477A (ja) 2001-04-06

Similar Documents

Publication Publication Date Title
JP6175137B2 (ja) スペクトル光子計数検出器及び検出方法
US4591984A (en) Radiation measuring device
US9588230B2 (en) Systems and methods for calibrating a silicon photomultiplier-based positron emission tomography system
TWI756337B (zh) 輻射檢測器
US11782173B2 (en) Radiation detector and methods of data output from it
JPH11231058A (ja) センサーの中のアクテイブなピクセルにより放出されるデータ信号を読み取るための方法およびシステム
JP3740315B2 (ja) X線センサ信号処理回路及びそれを用いたx線ct装置並びにx線センサ信号処理方法
JPH04274791A (ja) ベースポテンシャルを補正した核検出法およびその装置
JP2003294844A (ja) X線センサ信号処理回路及びx線ct装置
US4381450A (en) Pulsed radiation dosimetry apparatus
JP4241942B2 (ja) 撮像線量の測定方法および放射線像の撮像装置
JP2019197054A (ja) 残光検出装置及び残光検出方法
JP3733801B2 (ja) X線センサ信号処理回路及びそれを用いたx線ct装置
GB2030815A (en) Determination of internal body structures by measuring scattered radiation
JP3873912B2 (ja) X線センサ信号処理回路及びx線センサ信号処理方法
JPH0335635B2 (ja)
Moline et al. Auto-adaptive trigger and pulse extraction for digital processing in nuclear instrumentation
JP6393637B2 (ja) 産業用x線ct装置及びデータ収集装置
EP3977936A1 (en) Radiographic imaging device and radiographic imaging method
JP2000023965A (ja) 放射線撮像装置
Ranucci et al. A sampling board optimized for pulse shape discrimination in liquid scintillator applications
US7247862B2 (en) Afterglow detection and count rate generation in a nuclear imaging system
JP2775279B2 (ja) X線ctのデータ収集装置
SU1599731A1 (ru) Способ получени изображени исследуемого сечени томографируемого объекта при веерной геометрии проникающего излучени
JPH0619455B2 (ja) 放射線測定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R151 Written notification of patent or utility model registration

Ref document number: 3733801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term