JP3732801B2 - Volume reduction method of excess sludge in activated sludge treatment method - Google Patents

Volume reduction method of excess sludge in activated sludge treatment method Download PDF

Info

Publication number
JP3732801B2
JP3732801B2 JP2002156977A JP2002156977A JP3732801B2 JP 3732801 B2 JP3732801 B2 JP 3732801B2 JP 2002156977 A JP2002156977 A JP 2002156977A JP 2002156977 A JP2002156977 A JP 2002156977A JP 3732801 B2 JP3732801 B2 JP 3732801B2
Authority
JP
Japan
Prior art keywords
sludge
tank
ozone
manganese dioxide
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156977A
Other languages
Japanese (ja)
Other versions
JP2003285090A (en
Inventor
淳一 廣田
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002156977A priority Critical patent/JP3732801B2/en
Publication of JP2003285090A publication Critical patent/JP2003285090A/en
Application granted granted Critical
Publication of JP3732801B2 publication Critical patent/JP3732801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水、産業廃水等の有機性排水を活性汚泥法で処理する際の余剰汚泥の減容化方法に関するものである。
【0002】
【従来の技術】
この分野における先行技術としては、図13に示すように沈殿槽3から抜き出す汚泥の一部を余剰汚泥とし、残部を返送汚泥とし、その返送汚泥の循環ラインに汚泥可溶化槽1を設けてオゾン処理による可溶化を行い、一部が可溶化した返送汚泥を生物反応槽2に循環して、可溶化した汚泥の生物による無機化を促進し、その結果、余剰汚泥の発生を抑制する方法が知られている。
【0003】
しかしこの方法は、可溶化された汚泥の生物分解性は高まるものの、可溶化にオゾンのみを使用していることから汚泥の可溶化率が低く、可溶化されずに残ったSS性の固形物を資化する時間がかかるために、一定の汚泥減容化率を達成するためには生物反応槽2の滞留時間を長くとる必要があった。
また、溶解性CODとともに難分解性の溶解性BODを増加させる傾向が見られ、さらに窒素やリンなど富栄養化物が溶出するため生物処理の負荷が増加し、処理水質が低下するという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は上記した従来技術の問題点を解決して、汚泥の活性化を妨げることなく汚泥の可溶化率を高め、余剰汚泥の発生量を減少させることができる活性汚泥処理法における余剰汚泥の減容化方法を提供する。
【0005】
【課題を解決するための手段】
上記問題は、本発明の第1発明である、原水を生物処理し、発生した汚泥の一部を汚泥可溶化槽で可溶化処理し、前記原水とともに生物処理するようにした活性汚泥処理法において、既設曝気槽の流下方向の流入側から順に、下部開口仕切り板、上部開口仕切り板を設置して返送汚泥の流入流路、汚泥可溶化槽、生物反応槽を形成するとともに、汚泥可溶化槽には下部からオゾン含有気体を供給できる構造の二酸化マンガンを充填した上向流式の固定床を設け、原水の全部/または大部分は生物反応槽に供給し、原水の残部と返送汚泥の全部/または大部分は流入水路を経由して汚泥可溶化槽に上向流として供給し、その二酸化マンガン触媒下、オゾンにより可溶化処理した後、返送汚泥の残部とともに生物反応槽に供給する汚泥処理法であって、汚泥可溶化槽へ供給する返送汚泥とオゾンの比が20〜80 g (O /kg (DS)、かつ反応時間が0.5〜2.0 Hrs であり、汚泥可溶化槽のLVが50〜200 m/ 日であることを特徴とする活性汚泥処理法における余剰汚泥の減容化方法によって、解決される。
【0006】
【0007】
また、上記の問題は、本発明の第2発明である、原水を生物処理し、発生した汚泥の一部を汚泥可溶化槽で可溶化処理、前記原水とともに生物処理するようにした活性汚泥処理法において、既設曝気槽の流下方向の流入側から順に、下部開口仕切り板、上部開口仕切り板を設置して汚泥可溶化槽、二酸化マンガン沈殿槽、生物反応槽を形成するとともに、汚泥可溶化槽には下部からオゾン含有気体を供給できる構造の粒状二酸化マンガンを分散した流動床を設け、原水の全部/または大部分は生物反応槽に供給し、原水の残部と返送汚泥の全部/または大部分は汚泥可溶化槽に供給し、その二酸化マンガン触媒下、オゾンにより可溶化処理し、前記二酸化マンガン沈殿槽にて二酸化マンガン触媒を分離した後、返送汚泥の残部とともに生物反応槽に供給する汚泥処理法であって、汚泥可溶化槽へ供給する返送汚泥とオゾンの比が20〜80g(O)/kg(DS)、かつ反応時間が0.5〜2.0Hrsであり、汚泥可溶化槽に添加する粒状二酸化マンガンの粒径が20〜500μm、濃度が1000〜5000mg/lであって、オゾン含有気体の吹き込み率が0.8m3/ m3.Hr以上であり、さらに二酸化マンガン沈殿槽の上向流速が20〜50m/Hrであることを特徴とする活性汚泥処理法における余剰汚泥の減容化方法によっても解決される。
【0008】
【0009】
【0010】
さらに、何れの発明においても汚泥可溶化槽、生物反応槽などの上部開放部分に覆蓋を設け、各槽から排出された排ガスを混合した上で、水洗塔または充填塔を通して排ガス中の臭気成分および有害微生物を除去することが好ましく、この場合に水洗塔の線速度が0.5〜2.5m/Sec、液-ガス比が1〜3LH2O/m3 Gasであり、充填塔の空筒速度が2000〜5000/Hr、 液-ガス比が3〜6LH2O/m3 Gas であることが好ましい。
【0011】
本発明によれば、オゾンのほかに触媒として二酸化マンガンを併用し、汚泥可溶化槽へ 供給する返送汚泥とオゾンの比が20〜80 g (O /kg (DS)、かつ反応時間が0.5〜2.0 Hrs などの運転条件を採用することにより、余剰汚泥可溶化率の向上および汚泥可溶化槽での汚泥無機化の促進を図ることができ、余剰汚泥可溶化率を従来の65〜75%から、80〜95%にまで向上させることができる。また本発明によれば、返送汚泥の一部を可溶化しないで、直接、生物反応槽へ循環することにより、生物反応槽における処理の立ちあがりの向上を図ることができる。さらに、排オゾンを曝気槽排ガスの脱臭と除菌に利用することにより、排オゾンの活用を図ることができるとともに、オゾンによる二次公害を防止することができる。
以下に本発明の好ましい実施形態を示す。
【0012】
【発明の実施の形態】
(第1の発明・第1実施形態)
次に、本発明の第1発明について詳細に説明する。
図14は、第1発明の第1実施形態のフローシートを示したものである。生物反応槽15の前段に汚泥可溶化槽14を、後段に沈殿槽19を配置していて、この生物反応槽15には、下部には空気供給手段18を設置した通常の曝気槽が例示されているが、これは嫌気槽であってもよい。
【0013】
そして、本実施形態の特徴は、この汚泥可溶化槽14には、ハニカムまたは櫛歯状といった目詰まりし難い担体上に被覆された二酸化マンガンの固定床16を形成し、その下部にオゾン含有気体の供給手段17を設置した点にある。
【0014】
沈殿槽19から抜き出された返送汚泥の大部分は汚泥可溶化槽14へ返送され、残部は生物反応槽15へ供給される。通常、汚泥可溶化槽14へ返送される返送汚泥は、発生汚泥全体の80〜100%であり、処理水の水質に応じて加減する。処理水の水質が悪化したときは汚泥可溶化槽14への供給を減少させ、生物反応槽15への供給を増加させる。また、水質が良好なときは、極力、汚泥可溶化槽14への供給を増加させる。なお、この固定床方式の汚泥可溶化槽14では槽内の水循環が少なく、可溶化に伴って発生したスカムが水面に溜まりやすいことから、上向流方式にして生物反応槽15へ流出し易くしている。
【0015】
そして、この汚泥可溶化槽14では、槽底部から散気装置を介して供給されたオゾン含有気体と返送汚泥とが混合されて、二酸化マンガン触媒と接触しながら上昇する。この間、返送汚泥(C5H7O2N)はより低分子化合物へと分解・可溶化され、さらに一部は炭酸ガスと水に無機化される。この反応は酸化反応であり、返送汚泥はオゾンにより直接、酸化を受けるだけではなく、触媒である二酸化マンガンによる酸化も受け、この結果、生じた酸化マンガンはオゾンにより酸化されて、再び二酸化マンガンに戻る。これらの反応は、数1に示す化学反応式の通りである。かくして汚泥可溶化槽14において、返送汚泥はオゾンと二酸化マンガン触媒の作用で可溶化と無機化が促進されるのである。
【0016】
【数1】

Figure 0003732801
【0017】
(第1発明・第2実施形態)
図1は第1発明の第2実施形態のフローシートを示したものである。図中の10は改修前通常の曝気槽であり、槽の水深は5m以上が好ましいが、5m未満でも適用は可能である。この既設の曝気槽10に、流下方向の流入側から順に、下部開口仕切り板11と上部開口仕切り板12とを設置して、図のように返送汚泥の流入水路13、汚泥可溶化槽14、生物反応槽15を形成する。
【0018】
汚泥可溶化槽14には、ハニカムまたは櫛歯状といった目詰まりし難い担体上に被覆された二酸化マンガンの固定床16が形成されており、その下部にオゾン含有気体の供給手段17を設置する。また生物反応槽15の下部には空気供給手段18を設置する。19は後段に設置された従来と同様の沈殿槽である。
【0019】
沈殿槽19からの返送汚泥の大部分は流入水路13を経て汚泥可溶化槽14へ供給され、残部は生物反応槽15へ供給される。通常、流入水路13へ供給される返送汚泥は、全体の80〜100%であり、処理水の水質に応じて加減する。処理水の水質による供給量の調節や、固定床方式を上向流方式に設定する理由は第1実施形態の場合と同様である。
【0020】
流入水路13を経由して汚泥可溶化槽14へ供給された返送汚泥は、オゾンと二酸化マンガン触媒の作用で可溶化と無機化が促進される。すなわち槽底部から散気装置を介して供給されたオゾン含有気体と返送汚泥とが混合されて、二酸化マンガン触媒と接触しながら上昇し、この間、返送汚泥(C5H7O2N)はより低分子化合物へと分解・可溶化され、さらに一部は炭酸ガスと水に無機化される。なお、この反応は、第1実施形態で述べたものと同様に、数1に示す通りである。
【0021】
このように第1発明によれば、オゾンと二酸化マンガン触媒の併用によって、従来のオゾン単独使用に比べて酸化力が向上するだけではなく、二酸化マンガン触媒によってのみ酸化される成分も返送汚泥中には存在するので、従来より格段に汚泥可溶化率は向上するのである。
【0022】
汚泥可溶化槽14における重要な条件として、触媒層充填高さ、オゾン添加率、反応時間があげられる。触媒層の充填高さは、オゾンの液側移動効率を90〜95%に保つためには4mが必要であり、このため、槽水深も5m以上が好ましい。ただ、既設の曝気槽では5m未満のものも、多数、設置されているが、オゾン使用量を増加させれば触媒層の充填高さは4m未満でも適用は可能である。
【0023】
オゾン添加率と反応時間については、図4、図5に示す流動床方式の例と同様に、オゾン添加率が20〜150g(O3)/kg(DS)、より好ましくは20〜80g(O3)/kg(DS)であって、反応時間が0.5〜2Hrがよい。オゾン添加率が20gO3/kgDSより小さいと、また、反応時間が0.5Hrより短いと、汚泥可溶化率が低下して本発明のメリットが十分に得られない。逆に、これら上限値より多くしても、オゾンおよび時間の無駄(設備規模が過大)になる。
【0024】
この他に、汚泥可溶化槽14の処理条件としては、触媒層を上昇する線速度(LV)がある。図6に示すように、適正値は50〜200m/日であり、200m/日を超えると触媒表面へのオゾン、返送汚泥の拡散が不十分になって汚泥可溶化率が低下する。反対に、50m/日未満でも高い汚泥可溶化率は維持するが、触媒層の断面積を必要以上に大きく設定する必要が生じる。
【0025】
汚泥可溶化槽14で処理された可溶化後の返送汚泥は、一部の可溶化しない返送汚泥および原水と混合され、生物反応槽15において通常の活性汚泥処理がなされる。ここでは、返送汚泥の多くが可溶化されているために、活性汚泥処理によって炭酸ガスと水に変換する無機化率が高くなり、余剰汚泥の発生が少なくなる。結果として、余剰汚泥の減容化率は80〜95%もの高率となり、炭酸ガスと水に変換できない無機固形物が主体の余剰汚泥が、通常の活性汚泥法における余剰汚泥の5〜20%程度排出されるだけとなる。
【0026】
また、可溶化した返送汚泥は資化しやすいため反応速度が大きくなるので、生物反応槽15を小さく設定することができる。あるいは、第2実施形態のように、既設曝気槽内に汚泥可溶化槽14を設置するスペースが生まれる。即ち、従来の活性汚泥法では資化するのに時間のかかっていたSS性の固形物を、本法では活性汚泥に取り込んだ後に返送汚泥として可溶化するので短時間で資化できるのである。
【0027】
図7は、返送汚泥の返送率を一定として返送汚泥の可溶化したものと可溶化しない汚泥の比を変えて生物反応槽入り口付近における酸素利用速度を調査したものである。返送汚泥を可溶化汚泥のみにした場合は、可溶化により返送汚泥の活性が低下しているため酸素利用速度は低下するが、それ以外は可溶化汚泥の比率を増加するに従って酸素利用速度は増加し、最大、通常の返送汚泥のみ(図の0%)と比較して60%もの増加が認められる。
【0028】
このことによって、生物反応槽15の滞留時間は、通常は8時間程度のところを6時間前後にまで短縮できる。生物反応槽15から出た混合液は沈殿槽19にて固液分離され、上澄水は処理水として放流し、沈殿汚泥の一部は余剰汚泥として汚泥処理にまわす以外は返送汚泥として返送される。そして、その返送汚泥の大部分は汚泥可溶化槽14へ、また、残部は生物反応槽15へ再び供給される。以上のサイクルを繰り返して余剰汚泥の減容化が達成されることとなる。
【0029】
(第2発明・第1実施形態)
次に、本発明の第2発明について説明する。
図15は、第2の発明の第1実施形態を示すもので、第1発明における汚泥可溶化槽14を、粒状二酸化マンガン触媒を流動可能に分散した流動床方式の汚泥可溶化槽21として具現化したものである。基本的には、図14のフローと同じであるが、以下の点で若干の相違がある。先ず、汚泥可溶化槽21は上向流方式にする必要がないことから、第1発明、第2実施形態における流入水路13は削除してある。またこの流動床方式では、粒状二酸化マンガン触媒を可溶化汚泥から分離する必要があるので、汚泥可溶化槽21の下流側に粒状二酸化マンガン触媒を沈降させ分離する二酸化マンガン沈殿槽22を設置してある。
【0030】
(第2発明・第2実施形態)
図2は、第2発明の第2実施形態を示すもので、第1の発明における汚泥可溶化槽14を流動床方式の汚泥可溶化槽21として具現化したものである。基本的には、図1のフローと同じであるが、固定床方式とは異なり、汚泥可溶化槽21は上向流方式にする必要がないことから、第1の発明における流入水路13は削除してある。また流動床方式では、粒状二酸化マンガン触媒を可溶化汚泥から分離する必要があるので、下部開口仕切り板11の下流側に二酸化マンガン沈殿槽22を設置してある。
【0031】
これら第2発明における流動床方式で重要となる操作因子としては、二酸化マンガン沈殿槽22における沈降特性を左右する触媒の粒径、反応性を左右する二酸化マンガン濃度、触媒の流動性を確保するためのオゾン含有気体吹き込み率が技術のポイントとなり、その他はほぼ第1発明の場合の固定床方式と同等でよい。
【0032】
図8は、48時間、装置を運転したときの二酸化マンガン触媒の損失率を、二酸化マンガン沈殿槽22の上向流速をパラメーターとして、粒径との関係を示したものである。図にみられるように、二酸化マンガン沈殿槽22の上向流速が20〜50m/Hrの範囲で20〜500μmの二酸化マンガン触媒の損失が小さいことが判る。これは、粒径が小さいと二酸化マンガン沈殿槽22で沈降が不十分になり流出するためであり、大きいと流動が不十分で沈降してしまうからである。従って、上記の二酸化マンガン触媒の粒径および上向流速の範囲で運転操作することが肝心になる。
【0033】
次に、図9は二酸化マンガン濃度と汚泥可溶化率の関係を示したものである。図から、1000〜5000mg/Lの濃度が適正であることが読み取れる。なお、1000mg/L未満では汚泥可溶化が不充分で、また、5000mg/Lを越えても汚泥可溶化率は向上しない。
さらに、図10はオゾン含有気体の吹き込み率と投入二酸化マンガン触媒に対する流動化率の関係を示している。オゾン含有気体の吹き込み率が0.8m3/m3.Hr以上でないと500μm(最大粒径)の二酸化マンガン触媒を十分に流動化させることはできない。
かくして、流動床方式の汚泥可溶化槽21において、以上の条件を満足させるとともに、他については固定床方式と同様に操作することにより、余剰汚泥の減容化を達成することができる。
【0034】
一方、本発明では、汚泥可溶化槽の排ガス中に含まれる未反応のオゾンが、通常、1000〜3000ppm程度残留しているので、この未反応オゾンを利用して各槽(主として生物反応槽)の排ガス臭気成分および有害微生物を除去することができる。その方法としては、図3に示すように汚泥可溶化槽14を含む各槽の排ガスを混合して水洗塔または充填塔30を通過させればよい。
【0035】
図11および図12は、水洗塔における処理条件として、排ガスが通過する際の線速度および液-ガス比の適正値を求めた実験結果を示したものである。その結果、線速度は0.2〜1.0m/sec、液-ガス比が1〜3LH2O/m3 Gasの条件で硫化水素が完全に除去されることが判明した。図示してないが、充填塔においても空筒速度が2000〜5000/Hr、液-ガス比が3〜6LH2O/m3 Gasの条件で硫化水素が完全に除去されることが確認されている。
【0036】
以上のように、本発明では固定床方式および流動床方式の触媒オゾン法を汚泥可溶化槽に適用することにより、既設曝気槽の改修だけで大幅な汚泥可溶化率の向上と余剰汚泥の減容化を達成することができる。あわせて、COD、窒素、リンなど富栄養化物質の溶出を抑えながら分解するので水質に与える負荷も少ないという利点が得られる。さらに、廃オゾンを再利用すれば廃オゾン処理が不要になるばかりか、排ガスの臭気成分および有害微生物の除去も行うことができる。
【0037】
【実施例】
分流式下水を用いて、1日に1m3の処理規模で2ヶ月間の下水処理を行い、余剰汚泥の減容化効果を確かめた。あわせて、発生する排ガスの臭気成分および有害微生物の除去効果も調査した。結果を表1に示す。
表1に示すように、本発明における余剰汚泥の発生率は従来の活性汚泥法の11%となり、その減容化率は従来の89%と高いものであり、オゾンによる汚泥可溶化の方法に比べても14%上回った良好な結果となっている。また、排ガス処理においても、硫黄系の臭気成分および有害微生物が除去されており、ウィルスなどの除去効果も期待できる。さらに、生物反応槽の滞留時間も2時間削減されており、本発明の効果が大きいことを示している。
【0038】
【表1】
Figure 0003732801
【0039】
【発明の効果】
本発明の効果を要約すると下記の通りであり、従来の問題を解決したものとして、産業の発展に寄与するところ極めて大である。
1)従来のオゾン法と比べても14%程度(活性汚泥法基準)の高い余剰汚泥の減容化率が達成できる。また、CODなど難分解性物質が溶出せず、窒素やリンなどの富栄養化物質の溶出も抑えられるので水質に与える負荷を軽減できる。従って、汚泥処理工程を大幅に縮小でき、埋め立て地の確保難等の問題にも対処できる。
2)生物反応槽の短縮により、既設曝気槽の改修のみで汚泥可溶化槽を組み込むことができる。従って、汚泥可溶化槽を設置する土地の余裕のない場合でも、適用が可能になる。
3)廃オゾンを利用することで各槽の混合排ガス中の臭気成分、有害微生物を除去することができ、安価に二次公害の対策ができる。
【図面の簡単な説明】
【図1】第1発明、第2実施形態のフローシートである。
【図2】第2発明、第2実施形態のフローシートである。
【図3】請求項6の発明のフローシートである。
【図4】オゾン添加量と汚泥可溶化率との関係を示すグラフである。
【図5】反応時間と汚泥可溶化率との関係を示すグラフである。
【図6】充填層LVと汚泥可溶化率との関係を示すグラフである。
【図7】可溶化汚泥の割合と酸素利用速度の関係を示すグラフである。
【図8】触媒粒径と槽内触媒損失率との関係を示すグラフである。
【図9】二酸化マンガン濃度と汚泥可溶化率との関係を示すグラフである。
【図10】オゾン含有気体吹込率と触媒流動化率との関係を示すグラフである。
【図11】水洗塔の線速度と硫化水素除去率との関係を示すグラフである。
【図12】水洗塔の液―ガス比と硫化水素除去率との関係を示すグラフである。
【図13】従来技術を示すフローシートである。
【図14】第1発明、第1実施形態のフローシートである。
【図15】第2発明、第1実施形態のフローシートである。
【符号の説明】
1 従来技術における汚泥可溶化槽、2 生物反応槽、3 沈殿槽、10 通常の曝気槽、11 下部開口仕切り板、12 上部開口仕切り板、13 返送汚泥の流入水路、14 汚泥可溶化槽、15 生物反応槽、16 二酸化マンガンの固定床、17 オゾン含有気体の供給手段、18 空気供給手段、19 沈殿槽、21 流動床方式の汚泥可溶化槽、22 二酸化マンガン沈殿槽、30 水洗塔または充填塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing excess sludge when organic wastewater such as sewage and industrial wastewater is treated by an activated sludge method.
[0002]
[Prior art]
As a prior art in this field, as shown in FIG. 13, a part of the sludge extracted from the sedimentation tank 3 is used as surplus sludge, the remaining part is used as return sludge, and the sludge solubilization tank 1 is provided in the return sludge circulation line. There is a method of performing solubilization by treatment and circulating the return sludge partially solubilized in the biological reaction tank 2 to promote mineralization of the solubilized sludge by living organisms, and as a result, suppress the generation of excess sludge. Are known.
[0003]
However, this method increases the biodegradability of the solubilized sludge, but because only ozone is used for solubilization, the sludge solubilization rate is low, and the SS solids that remain without being solubilized Therefore, it is necessary to increase the residence time of the biological reaction tank 2 in order to achieve a certain sludge volume reduction rate.
In addition, there is a tendency to increase persistent BOD as well as soluble COD. Furthermore, eutrophication such as nitrogen and phosphorus is eluted, which increases the burden of biological treatment and lowers the quality of treated water. It was.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, increases the sludge solubilization rate without hindering sludge activation, and reduces the amount of surplus sludge generated in the activated sludge treatment method capable of reducing the amount of surplus sludge generated. Provide a volume reduction method.
[0005]
[Means for Solving the Problems]
In the activated sludge treatment method according to the first invention of the present invention, the raw water is biologically treated, a part of the generated sludge is solubilized in a sludge solubilization tank, and biologically treated together with the raw water. In order from the inflow side in the downstream direction of the existing aeration tank, a lower opening partition plate, an upper opening partition plate are installed to form a return sludge inflow channel, a sludge solubilization tank, a biological reaction tank, and a sludge solubilization tank Is equipped with an upflow fixed bed filled with manganese dioxide that can supply ozone-containing gas from the lower part, and all / or most of the raw water is supplied to the biological reaction tank, with the remainder of the raw water and all of the returned sludge. / or mostly supplied as an upward stream in sludge solubilization tank via the inflow water channel, the manganese dioxide catalyst under was treated solubilized by the ozone, sludge treatment and supplies with the remainder of the return sludge in the bioreactor In law Te, the ratio of the return sludge and ozone supplied to the sludge solubilization tank 20~80 g (O 3) / kg (DS), and a reaction time 0.5 to 2.0 Hrs, the sludge solubilization tank The problem is solved by a method for reducing the volume of excess sludge in the activated sludge treatment method , wherein the LV is 50 to 200 m / day .
[0006]
[0007]
Further, the above problem is a second aspect of the present invention, raw water and biological processes, a part of the generated sludge solubilized treated sludge solubilization tank, activated sludge so as to biological treatment with the raw water In the treatment method, in order from the inflow side in the downstream direction of the existing aeration tank, a lower opening partition plate and an upper opening partition plate are installed to form a sludge solubilization tank, a manganese dioxide precipitation tank, a biological reaction tank, and sludge solubilization The tank is provided with a fluidized bed in which granular manganese dioxide is structured so that ozone-containing gas can be supplied from the bottom. All / or most of the raw water is supplied to the bioreactor, and the remainder of the raw water and all / or a large amount of the returned sludge. The portion is supplied to the sludge solubilization tank, solubilized with ozone under the manganese dioxide catalyst, separated from the manganese dioxide catalyst in the manganese dioxide precipitation tank, and then living together with the remainder of the returned sludge. A sludge treatment method for supplying a応槽, the ratio of return sludge and ozone supplied to the sludge solubilization tank 20~80g (O 3) / kg ( DS), and the reaction time 0.5~2.0Hrs The particle size of the granular manganese dioxide added to the sludge solubilization tank is 20 to 500 μm, the concentration is 1000 to 5000 mg / l, and the blowing rate of the ozone-containing gas is 0.8 m 3 / m 3 . It is also solved by a method for reducing excess sludge in the activated sludge treatment method, characterized in that it is Hr or more and the upward flow rate of the manganese dioxide precipitation tank is 20 to 50 m / Hr.
[0008]
[0009]
[0010]
Furthermore, in any of the inventions, a cover is provided on the upper open part of the sludge solubilization tank, biological reaction tank, etc., and after mixing the exhaust gas discharged from each tank, the odor components in the exhaust gas through the water washing tower or packed tower and It is preferable to remove harmful microorganisms. In this case, the linear velocity of the washing tower is 0.5 to 2.5 m / Sec, the liquid-gas ratio is 1 to 3 L H2O / m 3 Gas , and the cylinder speed of the packed tower Is preferably 2000 to 5000 / Hr, and the liquid-gas ratio is 3 to 6 L H2O / m3 Gas .
[0011]
According to the present invention, in addition to ozone, manganese dioxide is used in combination as a catalyst, the ratio of return sludge to ozone supplied to the sludge solubilization tank and ozone is 20 to 80 g (O 3 ) / kg (DS), and the reaction time. By adopting operating conditions such as 0.5 to 2.0 Hrs, it is possible to improve the excess sludge solubilization rate and promote the sludge mineralization in the sludge solubilization tank, and the surplus sludge solubilization rate can It can be improved from 65 to 75% of 80 to 95%. Further, according to the present invention, it is possible to improve the start-up of the treatment in the biological reaction tank by circulating directly to the biological reaction tank without solubilizing a part of the returned sludge. Furthermore, by utilizing the exhaust ozone for deodorization and sterilization of the aeration tank exhaust gas, it is possible to utilize the exhaust ozone and prevent secondary pollution caused by ozone.
Preferred embodiments of the present invention are shown below.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(First Invention / First Embodiment)
Next, the first invention of the present invention will be described in detail.
FIG. 14 shows a flow sheet according to the first embodiment of the first invention. A sludge solubilization tank 14 is disposed in the front stage of the biological reaction tank 15 and a sedimentation tank 19 is disposed in the rear stage. The biological reaction tank 15 is exemplified by a normal aeration tank having an air supply means 18 installed in the lower part. However, this may be an anaerobic tank.
[0013]
The feature of the present embodiment is that the sludge solubilization tank 14 is formed with a fixed bed 16 of manganese dioxide coated on a carrier that is not easily clogged such as a honeycomb or a comb-like shape, and an ozone-containing gas is formed thereunder. The supply means 17 is provided.
[0014]
Most of the returned sludge extracted from the sedimentation tank 19 is returned to the sludge solubilization tank 14 and the remainder is supplied to the biological reaction tank 15. Usually, the return sludge returned to the sludge solubilization tank 14 is 80 to 100% of the entire generated sludge, and is adjusted depending on the quality of the treated water. When the quality of the treated water deteriorates, the supply to the sludge solubilization tank 14 is decreased and the supply to the biological reaction tank 15 is increased. When the water quality is good, the supply to the sludge solubilization tank 14 is increased as much as possible. In the fixed bed type sludge solubilization tank 14, there is little water circulation in the tank, and scum generated along with the solubilization tends to accumulate on the water surface. is doing.
[0015]
And in this sludge solubilization tank 14, the ozone containing gas and return sludge which were supplied via the air diffuser from the tank bottom are mixed, and it raises contacting a manganese dioxide catalyst. During this time, the returned sludge (C 5 H 7 O 2 N) is decomposed and solubilized into lower molecular weight compounds, and some of them are mineralized into carbon dioxide and water. This reaction is an oxidation reaction, and the returned sludge is not only directly oxidized by ozone, but also oxidized by manganese dioxide, which is a catalyst. As a result, the resulting manganese oxide is oxidized by ozone and converted again into manganese dioxide. Return. These reactions are as shown in the chemical reaction formula shown in Equation 1. Thus, in the sludge solubilization tank 14, the return sludge is solubilized and mineralized by the action of ozone and the manganese dioxide catalyst.
[0016]
[Expression 1]
Figure 0003732801
[0017]
(First Invention / Second Embodiment)
FIG. 1 shows a flow sheet according to a second embodiment of the first invention. 10 in the figure is a normal aeration tank before renovation, and the water depth of the tank is preferably 5 m or more, but can be applied even if it is less than 5 m. In this existing aeration tank 10, a lower opening partition plate 11 and an upper opening partition plate 12 are installed in order from the inflow side in the downstream direction, and the return sludge inflow channel 13, sludge solubilization tank 14, as shown in the figure, A biological reaction tank 15 is formed.
[0018]
The sludge solubilization tank 14 is provided with a fixed bed 16 of manganese dioxide coated on a carrier that is not easily clogged, such as a honeycomb or a comb-like shape, and an ozone-containing gas supply means 17 is installed therebelow. An air supply means 18 is installed in the lower part of the biological reaction tank 15. Reference numeral 19 denotes a conventional sedimentation tank installed in the latter stage.
[0019]
Most of the returned sludge from the sedimentation tank 19 is supplied to the sludge solubilization tank 14 via the inflow water channel 13, and the remainder is supplied to the biological reaction tank 15. Usually, the return sludge supplied to the inflow water channel 13 is 80 to 100% of the whole, and is adjusted depending on the quality of the treated water. The reason for setting the supply amount according to the quality of the treated water and setting the fixed bed method to the upward flow method is the same as in the first embodiment.
[0020]
The return sludge supplied to the sludge solubilization tank 14 via the inflow water channel 13 is promoted for solubilization and mineralization by the action of ozone and a manganese dioxide catalyst. That is, the ozone-containing gas supplied from the bottom of the tank through the air diffuser and the return sludge are mixed and risen in contact with the manganese dioxide catalyst. During this time, the return sludge (C 5 H 7 O 2 N) is more They are decomposed and solubilized into low molecular weight compounds, and some are mineralized with carbon dioxide and water. In addition, this reaction is as shown in Formula 1 as described in the first embodiment.
[0021]
As described above, according to the first invention, the combined use of ozone and the manganese dioxide catalyst not only improves the oxidizing power as compared with the conventional use of ozone alone, but also the components oxidized only by the manganese dioxide catalyst in the return sludge. Therefore, the sludge solubilization rate is significantly improved than before.
[0022]
Important conditions in the sludge solubilization tank 14 include the catalyst layer filling height, the ozone addition rate, and the reaction time. The filling height of the catalyst layer needs to be 4 m in order to keep the liquid side transfer efficiency of ozone at 90 to 95%. For this reason, the tank water depth is preferably 5 m or more. However, many existing aeration tanks having a length of less than 5 m are installed, but if the amount of ozone used is increased, the catalyst layer can be applied even if the packing height is less than 4 m.
[0023]
As for the ozone addition rate and the reaction time, the ozone addition rate is 20 to 150 g (O 3 ) / kg (DS), more preferably 20 to 80 g (O 2), as in the examples of the fluidized bed system shown in FIGS. 3 ) / kg (DS), and the reaction time is preferably 0.5-2Hr. When the ozone addition rate is less than 20 g O3 / kg DS and when the reaction time is shorter than 0.5 Hr, the sludge solubilization rate is lowered and the merit of the present invention cannot be sufficiently obtained. On the contrary, even if it exceeds these upper limit values, ozone and time are wasted (excessive equipment scale).
[0024]
In addition, as a treatment condition of the sludge solubilization tank 14, there is a linear velocity (LV) for raising the catalyst layer. As shown in FIG. 6, the appropriate value is 50 to 200 m / day, and if it exceeds 200 m / day, the diffusion of ozone and return sludge to the catalyst surface becomes insufficient and the sludge solubilization rate decreases. Conversely, a high sludge solubilization rate is maintained even at less than 50 m / day, but the cross-sectional area of the catalyst layer needs to be set larger than necessary.
[0025]
The return sludge after solubilization processed in the sludge solubilization tank 14 is mixed with a part of the return sludge not solubilized and raw water, and the normal activated sludge treatment is performed in the biological reaction tank 15. Here, since most of the returned sludge is solubilized, the mineralization rate converted into carbon dioxide gas and water by the activated sludge treatment is increased, and the generation of excess sludge is reduced. As a result, the volume reduction rate of surplus sludge is as high as 80 to 95%, and surplus sludge mainly composed of inorganic solids that cannot be converted into carbon dioxide and water is 5 to 20% of surplus sludge in the normal activated sludge process. It will only be discharged to a certain extent.
[0026]
In addition, since the solubilized return sludge is easily assimilated, the reaction rate increases, so that the biological reaction tank 15 can be set small. Or the space which installs the sludge solubilization tank 14 in an existing aeration tank is born like 2nd Embodiment. In other words, the SS-type solid material, which has taken time to be assimilated in the conventional activated sludge method, is solubilized as the return sludge after being taken into the activated sludge in this method, so that it can be assimilated in a short time.
[0027]
FIG. 7 shows the oxygen utilization rate in the vicinity of the bioreactor entrance by changing the ratio of the sludge solubilized and the sludge not solubilized with the return rate of the returned sludge constant. If only the return sludge is solubilized sludge, the oxygen utilization rate decreases because the activity of the return sludge is reduced by solubilization, but otherwise the oxygen utilization rate increases as the proportion of the solubilized sludge increases. However, an increase of as much as 60% is observed compared to the normal return sludge alone (0% in the figure).
[0028]
As a result, the residence time of the biological reaction tank 15 can be shortened from about 8 hours to about 6 hours. The liquid mixture discharged from the biological reaction tank 15 is solid-liquid separated in the sedimentation tank 19, the supernatant water is discharged as treated water, and a part of the precipitated sludge is returned as return sludge except for being sent to sludge treatment as excess sludge. . And most of the returned sludge is supplied again to the sludge solubilization tank 14, and the remainder is supplied again to the biological reaction tank 15. By repeating the above cycle, the volume of excess sludge can be reduced.
[0029]
(Second Invention / First Embodiment)
Next, the second invention of the present invention will be described.
FIG. 15 shows the first embodiment of the second invention, and the sludge solubilization tank 14 in the first invention is embodied as a fluid bed type sludge solubilization tank 21 in which a granular manganese dioxide catalyst is fluidly dispersed. It has become. Basically, it is the same as the flow of FIG. 14, but there are some differences in the following points. First, since it is not necessary for the sludge solubilization tank 21 to be an upward flow system, the inflow water channel 13 in the first invention and the second embodiment is omitted. Further, in this fluidized bed system, it is necessary to separate the granular manganese dioxide catalyst from the solubilized sludge. Therefore, a manganese dioxide precipitation tank 22 is installed on the downstream side of the sludge solubilization tank 21 to settle and separate the granular manganese dioxide catalyst. is there.
[0030]
(Second Invention / Second Embodiment)
FIG. 2 shows a second embodiment of the second invention, in which the sludge solubilization tank 14 in the first invention is embodied as a fluidized bed sludge solubilization tank 21. Basically, it is the same as the flow of FIG. 1, but unlike the fixed bed method, the sludge solubilization tank 21 does not need to be the upward flow method, so the inflow water channel 13 in the first invention is deleted. It is. Further, in the fluidized bed system, since the granular manganese dioxide catalyst needs to be separated from the solubilized sludge, a manganese dioxide precipitation tank 22 is installed on the downstream side of the lower opening partition plate 11.
[0031]
In order to secure the fluidity of the catalyst, the particle size of the catalyst that determines the sedimentation characteristics in the manganese dioxide precipitation tank 22, the concentration of manganese dioxide that affects the reactivity, and the operating factors that are important in the fluidized bed system in these second inventions. The ozone-containing gas blowing rate becomes the technical point, and the others may be almost the same as the fixed bed system in the first invention.
[0032]
FIG. 8 shows the relationship between the loss rate of the manganese dioxide catalyst when the apparatus is operated for 48 hours and the particle size with the upward flow rate of the manganese dioxide precipitation tank 22 as a parameter. As can be seen from the figure, the loss of the manganese dioxide catalyst of 20 to 500 μm is small when the upward flow rate of the manganese dioxide precipitation tank 22 is in the range of 20 to 50 m / Hr. This is because if the particle size is small, sedimentation is insufficient in the manganese dioxide precipitation tank 22 and flows out, and if it is large, the flow is insufficient and sedimentation occurs. Therefore, it is important to operate within the range of the particle size and upward flow rate of the manganese dioxide catalyst.
[0033]
Next, FIG. 9 shows the relationship between manganese dioxide concentration and sludge solubilization rate. From the figure, it can be read that the concentration of 1000 to 5000 mg / L is appropriate. In addition, if it is less than 1000 mg / L, sludge solubilization is insufficient, and even if it exceeds 5000 mg / L, the sludge solubilization rate does not improve.
Furthermore, FIG. 10 shows the relationship between the blowing rate of the ozone-containing gas and the fluidization rate with respect to the input manganese dioxide catalyst. Blow rate of ozone-containing gas is 0.8m 3 / m 3 . If it is not Hr or more, a 500 μm (maximum particle size) manganese dioxide catalyst cannot be sufficiently fluidized.
Thus, in the fluidized bed type sludge solubilization tank 21, the above conditions can be satisfied, and the remaining sludge volume can be reduced by operating in the same manner as the fixed bed type.
[0034]
On the other hand, in the present invention, since unreacted ozone contained in the exhaust gas of the sludge solubilization tank usually remains at about 1000 to 3000 ppm, each tank (mainly a biological reaction tank) using this unreacted ozone. The exhaust gas odor component and harmful microorganisms can be removed. As the method, as shown in FIG. 3, the exhaust gas from each tank including the sludge solubilization tank 14 may be mixed and passed through the washing tower or packed tower 30.
[0035]
FIG. 11 and FIG. 12 show experimental results for obtaining appropriate values of linear velocity and liquid-gas ratio when exhaust gas passes as treatment conditions in the water washing tower. As a result, it was found that hydrogen sulfide was completely removed under the conditions of a linear velocity of 0.2 to 1.0 m / sec and a liquid-gas ratio of 1 to 3 L H2O / m3 Gas . Although not shown, it has been confirmed that hydrogen sulfide is completely removed even in a packed tower under the conditions of a cylinder speed of 2000 to 5000 / Hr and a liquid-gas ratio of 3 to 6 L H2O / m3 Gas . .
[0036]
As described above, in the present invention, the fixed bed type and fluidized bed type catalytic ozone methods are applied to the sludge solubilization tank, so that the sludge solubilization rate can be significantly improved and the excess sludge can be reduced only by refurbishing the existing aeration tank. Containment can be achieved. At the same time, it is possible to obtain the advantage of reducing the load on the water quality because it decomposes while suppressing the elution of eutrophication substances such as COD, nitrogen and phosphorus. Furthermore, if waste ozone is reused, waste ozone treatment is not necessary, and odorous components and harmful microorganisms in exhaust gas can be removed.
[0037]
【Example】
Using diverted sewage, sewage treatment was performed for 2 months at a treatment scale of 1 m 3 per day, and the volume reduction effect of excess sludge was confirmed. At the same time, the removal effect of odorous components and harmful microorganisms in the generated exhaust gas was also investigated. The results are shown in Table 1.
As shown in Table 1, the surplus sludge generation rate in the present invention is 11% of the conventional activated sludge method, and its volume reduction rate is as high as 89% of the conventional method. Even if compared, it is a good result, which is 14% higher. Further, in the exhaust gas treatment, sulfur-based odor components and harmful microorganisms are removed, and a virus removal effect can be expected. Furthermore, the residence time of the biological reaction tank is also reduced by 2 hours, indicating that the effect of the present invention is great.
[0038]
[Table 1]
Figure 0003732801
[0039]
【The invention's effect】
The effects of the present invention can be summarized as follows. As a solution to the conventional problems, it contributes to the development of the industry.
1) A high volume reduction rate of excess sludge of about 14% (active sludge method standard) can be achieved compared with the conventional ozone method. In addition, since a hardly decomposable substance such as COD does not elute and the elution of eutrophication substances such as nitrogen and phosphorus can be suppressed, the load on the water quality can be reduced. Therefore, the sludge treatment process can be greatly reduced, and problems such as difficulty in securing landfill can be dealt with.
2) By shortening the biological reaction tank, the sludge solubilization tank can be incorporated only by refurbishing the existing aeration tank. Therefore, even if there is no room for installing the sludge solubilization tank, it can be applied.
3) By using waste ozone, it is possible to remove odorous components and harmful microorganisms in the mixed exhaust gas in each tank, and it is possible to take measures against secondary pollution at low cost.
[Brief description of the drawings]
FIG. 1 is a flow sheet according to a first invention and a second embodiment.
FIG. 2 is a flow sheet according to the second invention and the second embodiment.
FIG. 3 is a flow sheet of the invention of claim 6;
FIG. 4 is a graph showing the relationship between the amount of ozone added and the sludge solubilization rate.
FIG. 5 is a graph showing the relationship between reaction time and sludge solubilization rate.
FIG. 6 is a graph showing the relationship between packed bed LV and sludge solubilization rate.
FIG. 7 is a graph showing the relationship between the proportion of solubilized sludge and the oxygen utilization rate.
FIG. 8 is a graph showing the relationship between catalyst particle size and in-tank catalyst loss rate.
FIG. 9 is a graph showing the relationship between manganese dioxide concentration and sludge solubilization rate.
FIG. 10 is a graph showing a relationship between an ozone-containing gas blowing rate and a catalyst fluidization rate.
FIG. 11 is a graph showing the relationship between the linear velocity of the water washing tower and the hydrogen sulfide removal rate.
FIG. 12 is a graph showing the relationship between the liquid-gas ratio of the water washing tower and the hydrogen sulfide removal rate.
FIG. 13 is a flow sheet showing a conventional technique.
FIG. 14 is a flow sheet according to the first invention and the first embodiment;
FIG. 15 is a flow sheet of the second invention, the first embodiment.
[Explanation of symbols]
1 sludge solubilization tank, 2 biological reaction tank, 3 sedimentation tank, 10 normal aeration tank, 11 lower opening partition plate, 12 upper opening partition plate, 13 return sludge inflow channel, 14 sludge solubilization tank, 15 Biological reaction tank, 16 Manganese dioxide fixed bed, 17 Ozone-containing gas supply means, 18 Air supply means, 19 Precipitation tank, 21 Fluidized bed sludge solubilization tank, 22 Manganese dioxide precipitation tank, 30 Washing tower or packed tower

Claims (4)

原水を生物処理し、発生した汚泥の一部を汚泥可溶化槽で可溶化処理し、前記原水とともに生物処理するようにした活性汚泥処理法において、既設曝気槽の流下方向の流入側から順に、下部開口仕切り板、上部開口仕切り板を設置して返送汚泥の流入流路、汚泥可溶化槽、生物反応槽を形成するとともに、汚泥可溶化槽には下部からオゾン含有気体を供給できる構造の二酸化マンガンを充填した上向流式の固定床を設け、原水の全部/または大部分は生物反応槽に供給し、原水の残部と返送汚泥の全部/または大部分は流入水路を経由して汚泥可溶化槽に上向流として供給し、その二酸化マンガン触媒下、オゾンにより可溶化処理した後、返送汚泥の残部とともに生物反応槽に供給する汚泥処理法であって、汚泥可溶化槽へ供給する返送汚泥とオゾンの比が20〜80g(O)/kg(DS)、かつ反応時間が0.5〜2.0Hrsであり、汚泥可溶化槽のLVが50〜200m/日であることを特徴とする活性汚泥処理法における余剰汚泥の減容化方法。In the activated sludge treatment method in which raw water is biologically treated, a part of the generated sludge is solubilized in a sludge solubilization tank and biologically treated together with the raw water, in order from the inflow side in the downstream direction of the existing aeration tank, A lower-opening partition plate and an upper-opening partition plate are installed to form a return sludge inflow channel, a sludge solubilization tank, and a biological reaction tank. The sludge solubilization tank can be supplied with ozone-containing gas from the bottom. An up-flow type fixed bed filled with manganese is provided, and all / or most of the raw water is supplied to the biological reaction tank, and the remainder of the raw water and all / or most of the returned sludge can be sludge via the inflow channel. This is a sludge treatment method that is supplied to the solubilization tank as an upward flow, solubilized with ozone under the manganese dioxide catalyst, and then supplied to the biological reaction tank together with the remainder of the return sludge. Sludge The ratio of ozone 20~80g (O 3) / kg ( DS), and the reaction time is 0.5~2.0Hrs, LV sludge solubilization tank is characterized in that is 50 to 200 m / day Volume reduction method of excess sludge in the activated sludge treatment method. 原水を生物処理し、発生した汚泥の一部を汚泥可溶化槽で可溶化処理、前記原水とともに生物処理するようにした活性汚泥処理法において、既設曝気槽の流下方向の流入側から順に、下部開口仕切り板、上部開口仕切り板を設置して汚泥可溶化槽、二酸化マンガン沈殿槽、生物反応槽を形成するとともに、汚泥可溶化槽には下部からオゾン含有気体を供給できる構造の粒状二酸化マンガンを分散した流動床を設け、原水の全部/または大部分は生物反応槽に供給し、原水の残部と返送汚泥の全部/または大部分は汚泥可溶化槽に供給し、その二酸化マンガン触媒下、オゾンにより可溶化処理し、前記二酸化マンガン沈殿槽にて二酸化マンガン触媒を分離した後、返送汚泥の残部とともに生物反応槽に供給する汚泥処理法であって、汚泥可溶化槽へ供給する返送汚泥とオゾンの比が20〜80g(O)/kg(DS)、かつ反応時間が0.5〜2.0Hrsであり、汚泥可溶化槽に添加する粒状二酸化マンガンの粒径が20〜500μm、濃度が1000〜5000mg/lであって、オゾン含有気体の吹き込み率が0.8m3/ m3.Hr以上であり、さらに二酸化マンガン沈殿槽の上向流速が20〜50m/Hrであることを特徴とする活性汚泥処理法における余剰汚泥の減容化方法。Raw water to the biological processes, a part of the generated sludge solubilized treated sludge solubilization tank, the activated sludge treatment method as the organism treated with the raw water, in order from the inflow side of flow-down direction of the existing aeration tank, Granular manganese dioxide with a structure in which a lower-opening partition plate and an upper-opening partition plate are installed to form a sludge solubilization tank, a manganese dioxide precipitation tank, and a biological reaction tank. The whole of the raw water is supplied to the biological reaction tank, and the whole of the raw water and all / or most of the returned sludge is supplied to the sludge solubilization tank. It is a sludge treatment method that is solubilized with ozone and separated into the manganese dioxide precipitation tank, and then supplied to the biological reaction tank together with the remainder of the returned sludge. The ratio of return sludge and ozone supplied to the vat 20~80g (O 3) / kg ( DS), and the reaction time is 0.5~2.0Hrs, grain granular manganese dioxide are added to the sludge solubilization tank The diameter is 20 to 500 μm, the concentration is 1000 to 5000 mg / l, and the blowing rate of the ozone-containing gas is 0.8 m 3 / m 3 . A method for reducing excess sludge in an activated sludge treatment method, characterized in that it is at least Hr and the upward flow rate of the manganese dioxide precipitation tank is 20 to 50 m / Hr. 上部開放部分に覆蓋を設け、各槽から排出された排ガスを混合した上で、水洗塔または充填塔を通して排ガス中の臭気成分および有害微生物を除去することを特徴とする請求項1または2に記載の活性汚泥処理法における余剰汚泥の減容化方法。  3. The odorous component and harmful microorganisms in the exhaust gas are removed through a water-washing tower or a packed tower after a cover is provided in the upper open part, and the exhaust gas discharged from each tank is mixed. Of excess sludge in the activated sludge treatment method in Japan. 水洗塔の線速度が0.5〜2.5m/Sec、液-ガス比が1〜3LH2O/m3 Gasであり、充填塔の空筒速度が2000〜5000/Hr、 液-ガス比が3〜6LH2O/m3 Gas であることを特徴とする請求項3に記載の活性汚泥処理法における余剰汚泥の減容化方法。The linear velocity of the flushing tower is 0.5 to 2.5 m / Sec, the liquid-gas ratio is 1 to 3 L H2O / m3 Gas , the cylinder speed of the packed tower is 2000 to 5000 / Hr, and the liquid-gas ratio is It is 3-6L H2O / m3 Gas , The volume reduction method of the excess sludge in the activated sludge processing method of Claim 3 characterized by the above-mentioned.
JP2002156977A 2002-01-25 2002-05-30 Volume reduction method of excess sludge in activated sludge treatment method Expired - Fee Related JP3732801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156977A JP3732801B2 (en) 2002-01-25 2002-05-30 Volume reduction method of excess sludge in activated sludge treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002017309 2002-01-25
JP2002-17309 2002-01-25
JP2002156977A JP3732801B2 (en) 2002-01-25 2002-05-30 Volume reduction method of excess sludge in activated sludge treatment method

Publications (2)

Publication Number Publication Date
JP2003285090A JP2003285090A (en) 2003-10-07
JP3732801B2 true JP3732801B2 (en) 2006-01-11

Family

ID=29253214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156977A Expired - Fee Related JP3732801B2 (en) 2002-01-25 2002-05-30 Volume reduction method of excess sludge in activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP3732801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833687A (en) * 2016-04-29 2016-08-10 广东工业大学 Deodorizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833687A (en) * 2016-04-29 2016-08-10 广东工业大学 Deodorizing device

Also Published As

Publication number Publication date
JP2003285090A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP6785311B2 (en) Wastewater treatment equipment and wastewater treatment method
JP5238002B2 (en) Organic waste water treatment apparatus and treatment method
CN101323493A (en) Waste water treatment apparatus based on ozone oxidation and aerating biological filter
CN201240972Y (en) Waste water advanced treatment apparatus combining ozone oxidation and downflow type aerating biological filter pool
CN206512041U (en) A kind of device of two-stage gradient ozone catalytic fluidized bed deep treatment biochemical tail water
CN106630110A (en) Integrated fluidized bed device for gradient ozone catalyzing and application of integrated fluidized bed device
CN105439370B (en) A kind of process of combination BAF processing refinery sewage
JP2006297374A (en) Method and apparatus for wastewater treatment
JP4490908B2 (en) Wastewater treatment equipment
JP4732845B2 (en) Water treatment method and apparatus
CN112125476A (en) Two-stage ozone oxidation-biological contact coupling sewage advanced treatment method and device
JP2004097856A (en) Equipment and method for waste liquid treatment
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
KR100217893B1 (en) Organic substance, nitrogen and phosphor removal device using immobilization biofilm method and bypass flow
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
CN105016529B (en) The total system of carbide neoprene wastewater
JP3732801B2 (en) Volume reduction method of excess sludge in activated sludge treatment method
CN109534620A (en) Catalytic ozonation and aerated biological activated carbon filter tank sewage water advanced treatment apparatus
JP2002192181A (en) High-degree treatment method for wastewater by addition of powdery activated carbon
JP3552754B2 (en) Advanced treatment method of organic sewage and its apparatus
JP2861045B2 (en) Treatment of water containing organic matter
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
CN109796105A (en) A kind of highly difficult organic wastewater treatment process
CN213977249U (en) Novel ozone catalytic oxidation biofilm reactor industrial wastewater treatment device
JP2883009B2 (en) Organic wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Ref document number: 3732801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees