JP2006297374A - Method and apparatus for wastewater treatment - Google Patents

Method and apparatus for wastewater treatment Download PDF

Info

Publication number
JP2006297374A
JP2006297374A JP2006032578A JP2006032578A JP2006297374A JP 2006297374 A JP2006297374 A JP 2006297374A JP 2006032578 A JP2006032578 A JP 2006032578A JP 2006032578 A JP2006032578 A JP 2006032578A JP 2006297374 A JP2006297374 A JP 2006297374A
Authority
JP
Japan
Prior art keywords
tank
waste water
treatment
treatment apparatus
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032578A
Other languages
Japanese (ja)
Other versions
JP4782576B2 (en
Inventor
Kazuyuki Yamazaki
和幸 山嵜
Kazumi Nakajo
数美 中條
Koji Ooka
孝治 大岡
Yuji Yokozawa
雄二 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006032578A priority Critical patent/JP4782576B2/en
Publication of JP2006297374A publication Critical patent/JP2006297374A/en
Application granted granted Critical
Publication of JP4782576B2 publication Critical patent/JP4782576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for wastewater treatment which is energy-saving, small-sized and capable of enhancing the efficiency for treating nitrogen wastewater containing hydrogen peroxide as well as reducing the running cost. <P>SOLUTION: The wastewater treatment apparatus for treating the nitrogen wastewater containing hydrogen peroxide comprises a regulation tank 1, a denitrification tank 3, and a nitrification tank 11 having an immersed membrane 16 for a microorganism treatment, followed by a photocatalyst tank 18 for a photocatalyst treatment. The photocatalyst treatment enables an advanced treatment of the nitrogen wastewater containing hydrogen peroxide exceeding the limit of the water quality via the microorganism treatment. Therefore, the wastewater treatment apparatus can enhance the efficiency for treating the nitrogen wastewater containing hydrogen peroxide and realize an apparatus which is more energy-saving, small-sized and can reduce more running cost than a conventional one. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、排水処理装置および排水処理方法に関する。この発明は、一例として、2004年4月から施行された水質汚濁防止法の一部改正による窒素の総量規制へ対応するための排水処理装置および排水処理方法に関する。この発明は、例えば、主として半導体工場から排水される過酸化水素を含有する高濃度窒素排水(例えば過酸化水素を含有する高濃度アンモニア含有排水等)やアミノエタノール含有排水中の窒素の高度処理ができる排水処理装置および排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method. As an example, the present invention relates to a wastewater treatment apparatus and a wastewater treatment method for complying with the restriction on the total amount of nitrogen by partial revision of the Water Pollution Control Law, which was enforced from April 2004. The present invention is, for example, a high-level nitrogen wastewater containing hydrogen peroxide mainly drained from a semiconductor factory (for example, a high-concentration ammonia-containing wastewater containing hydrogen peroxide) or an advanced treatment of nitrogen in aminoethanol-containing wastewater. The present invention relates to a wastewater treatment apparatus and a wastewater treatment method.

従来、高濃度窒素排水、具体的一例としては、約3000ppm程度の高濃度アンモニア含有排水のような高濃度窒素排水は、生物毒性が高いため、一般的には、微生物処理できなかった。   Conventionally, high-concentration nitrogen wastewater, and as a specific example, high-concentration nitrogen wastewater such as high-concentration ammonia-containing wastewater having a concentration of about 3000 ppm has generally been biotoxic and therefore generally cannot be treated with microorganisms.

窒素含有排水が微生物処理されているケースは、アンモニア濃度が数百ppmと低い濃度での処理が一般的であった。   In cases where the nitrogen-containing wastewater has been microbially treated, treatment with a low ammonia concentration of several hundred ppm has been common.

そのため、3000ppm以上の高濃度アンモニア含有排水は、物理的方法としての蒸発缶を用いて1/10程度まで濃縮し、その濃縮液を産業廃棄物として処分していた。この蒸発缶で濃縮して、産業廃棄物として工場より排出する方法では、濃縮物が産業廃棄物に該当する。したがって、事業所からの産業廃棄物の増加を招くと共に、その産業廃棄物としての濃縮液の処分方法が一般的には焼却であることから、重油等の燃料の使用による大気汚染等の課題があった。また、蒸発缶にて処理する方法は、エネルギーを多量に消費し、かつ大きなプラント設備となるため、イニシャルコスト、ランニングコストおよびメンテナンスコストが大きいという課題があった。   Therefore, wastewater containing high-concentration ammonia of 3000 ppm or more was concentrated to about 1/10 using an evaporator as a physical method, and the concentrated liquid was disposed as industrial waste. In the method of concentrating with this evaporator and discharging from the factory as industrial waste, the concentrate corresponds to industrial waste. As a result, industrial waste from business establishments is increased, and the disposal method of concentrated liquid as industrial waste is generally incineration, which causes problems such as air pollution due to the use of fuel such as heavy oil. there were. Further, the method of treating with an evaporator has a problem that the initial cost, running cost, and maintenance cost are high because a large amount of energy is consumed and the plant equipment becomes large.

また、別の従来技術として、特許文献1(特開2000−308900号公報)において、生物処理法が開示されている。この従来技術の生物処理法によれば、アンモニア性窒素を高濃度に含有する排水を処理する際に発生する亜硝酸性窒素による処理効率低下を防止して安定した処理を行うことができる。この生物処理法は、具体的には、亜硝酸性窒素に耐性のある独立栄養細菌を用いた生物学的脱窒素法により亜硝酸性窒素を窒素ガスに還元して排水から除去する。   As another conventional technique, a biological treatment method is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2000-308900). According to this biological treatment method of the prior art, a stable treatment can be performed by preventing a reduction in treatment efficiency due to nitrite nitrogen generated when treating wastewater containing ammonia nitrogen at a high concentration. Specifically, in this biological treatment method, nitrite nitrogen is reduced to nitrogen gas by a biological denitrification method using autotrophic bacteria resistant to nitrite nitrogen and removed from waste water.

このアンモニア含有排水の処理方法では、硝化槽、脱窒槽、紫外線酸化槽や硝化槽、光触媒紫外線酸化槽、脱窒槽、紫外線酸化槽での処理が開示されている。   In this ammonia-containing wastewater treatment method, treatment in a nitrification tank, a denitrification tank, an ultraviolet oxidation tank, a nitrification tank, a photocatalytic ultraviolet oxidation tank, a denitrification tank, and an ultraviolet oxidation tank is disclosed.

また、もう1つの従来技術として、特許文献2(特許第3467671号公報)において、別の生物処理法が記載されている。   As another prior art, another biological treatment method is described in Patent Document 2 (Japanese Patent No. 3467671).

この生物処理方法は、原水槽内の有機性排水を、送液ポンプにより脱窒槽および硝化槽に順々に送り込むとともに両槽間で循環させることより、有機性排水中に含まれるアンモニア態窒素を生物学的硝化および脱窒反応を用いて窒素ガスに還元して除去し、さらに吸引ポンプを用いて、硝化槽内の排水中に浸漬されたろ過膜ユニットにより汚泥と処理水とを分離する硝化脱窒方法である。   In this biological treatment method, the organic wastewater in the raw water tank is sequentially fed to the denitrification tank and the nitrification tank by a liquid feed pump and circulated between both tanks, so that ammonia nitrogen contained in the organic wastewater is circulated. Nitrogen gas is removed by reducing it to nitrogen gas using biological nitrification and denitrification, and using a suction pump, the sludge and treated water are separated by a filtration membrane unit immersed in the waste water in the nitrification tank. Denitrification method.

この硝化脱窒方法の特徴として、脱窒槽から硝化槽へ送る導管を途中で分岐させ、分岐部の先端を脱窒槽内に開口させ、脱窒槽から硝化槽へ送り込まれる有機性排水の一部を脱窒槽内の有機性排水中に吹き出させている。つまり、この硝化脱窒方法では、排水を送液ポンプにより脱窒槽および硝化槽に順々に送り込むとともに両槽間で循環させる。   As a feature of this nitrification / denitrification method, the pipe that feeds from the denitrification tank to the nitrification tank is branched in the middle, the tip of the branch is opened in the denitrification tank, and a part of the organic wastewater sent from the denitrification tank to the nitrification tank is It is blown out into the organic waste water in the denitrification tank. That is, in this nitrification / denitrification method, the waste water is sequentially fed to the denitrification tank and the nitrification tank by a liquid feed pump and circulated between both tanks.

また、さらに別の従来技術として、特許文献3(特許第3095620号公報)において、別の生物処理法が記載されている。   As another conventional technique, another biological treatment method is described in Patent Document 3 (Japanese Patent No. 3095620).

この生物処理方法では、有機物を含む原水が流入する脱窒槽と、この脱窒槽の脱窒槽混合液が流入する硝化槽と、この硝化槽の硝化液を上記脱窒槽へ循環させる硝化液循環流路と、上記硝化槽内に配置した硝化槽散気装置とを備えた生物学的窒素除去装置による処理を行う。   In this biological treatment method, a denitrification tank into which raw water containing organic substances flows, a nitrification tank into which a denitrification tank mixed solution of this denitrification tank flows, and a nitrification liquid circulation channel for circulating the nitrification liquid in this nitrification tank to the above denitrification tank And a biological nitrogen removing apparatus including the nitrification tank diffuser disposed in the nitrification tank.

より詳しくは、この生物学的窒素除去装置では、脱窒槽に流入する原水中の浮遊物質を捕捉し除去する脱窒菌固定化担体充填ゾーンを脱窒槽内に設けている。また、原水導入流路および硝化液循環流路を脱窒槽の脱窒菌固定化担体充填ゾーンの下方位置に連通させ、脱窒槽の底部に脱窒菌固定化担体充填ゾーンで捕捉し除去した浮遊物質を堆積するための汚泥ホッパー部を設け、汚泥ホッパー部にホッパー散気装置を設けている。   More specifically, in this biological nitrogen removing apparatus, a denitrifying bacterium immobilization support filling zone for capturing and removing suspended substances in raw water flowing into the denitrifying tank is provided in the denitrifying tank. In addition, the raw water introduction channel and the nitrification solution circulation channel are communicated with the lower position of the denitrifying bacteria immobilization support filling zone of the denitrification tank, and the suspended matter trapped and removed in the denitrification bacteria immobilization support filling zone at the bottom of the denitrification tank. A sludge hopper for depositing is provided, and a hopper air diffuser is provided in the sludge hopper.

しかし、上述の如く、従来は、3000ppm程度の高濃度アンモニア含有排水は、生物毒性が高いため、一般的には、微生物処理はされていなかった。すなわち、生物毒性が高いため、微生物処理できない高濃度アンモニア排水は、濃縮法や気化分離法で処理されていた。このため、濃縮法では、エネルギーの多量消費と濃縮液による産業廃棄物の増加という問題があり、また、気化分離法では、エネルギーの多量消費に加えて、アンモニア以外の亜硝酸や硝酸が処理できない欠点もある。
特開2000−308900号公報 特許第3467671号公報 特許第3095620号公報
However, as described above, conventionally, wastewater containing high-concentration ammonia of about 3000 ppm has a high biological toxicity, and thus has not been generally treated with microorganisms. That is, because of high biological toxicity, high-concentration ammonia wastewater that cannot be treated with microorganisms has been treated by a concentration method or a vaporization separation method. For this reason, the concentration method has a problem of a large amount of energy consumption and an increase in industrial waste due to the concentrated solution. In addition to the large amount of energy consumption, the vapor separation method cannot treat nitrous acid or nitric acid other than ammonia. There are also drawbacks.
JP 2000-308900 A Japanese Patent No. 3467671 Japanese Patent No. 3095620

そこで、この発明の課題は、過酸化水素を含有する窒素排水の処理効率を向上できると共に、省エネルギーでありコンパクト化とランニングコスト低減を実現できる排水処理方法および排水処理装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus that can improve the treatment efficiency of nitrogen wastewater containing hydrogen peroxide and that are energy-saving and can realize downsizing and running costs.

上記課題を解決するため、この発明の排水処理方法は、過酸化水素を含有する窒素排水を液中膜を用いて微生物処理する微生物処理工程と、
上記液中膜から導出された処理水を光触媒処理する光触媒処理工程とを備える。
In order to solve the above problems, a wastewater treatment method of the present invention includes a microorganism treatment step of treating a nitrogen wastewater containing hydrogen peroxide using a submerged membrane,
A photocatalytic treatment step of photocatalytically treating the treated water derived from the submerged membrane.

この発明の排水処理方法によれば、過酸化水素を含有する窒素排水に対して液中膜を使用する微生物処理を行ってから、さらに、光触媒処理する。この光触媒処理によって、過酸化水素を含有する窒素排水を微生物処理による処理の水質上の限界を越えて高度処理できる。したがって、この発明の排水処理方法によれば、過酸化水素を含有する窒素排水の処理効率を向上でき、従来に比べて、省エネルギーでありコンパクト化とランニングコスト低減を実現できる。   According to the wastewater treatment method of the present invention, after performing the microorganism treatment using the submerged membrane on the nitrogen wastewater containing hydrogen peroxide, the photocatalytic treatment is further performed. By this photocatalytic treatment, nitrogen wastewater containing hydrogen peroxide can be treated at a high level beyond the limit of water quality of treatment by microbial treatment. Therefore, according to the wastewater treatment method of the present invention, the treatment efficiency of nitrogen wastewater containing hydrogen peroxide can be improved, and energy saving, compactness, and reduction of running cost can be realized as compared with the prior art.

また、一実施形態の排水処理装置は、過酸化水素を含有する窒素排水が導入されると共に液中膜を有し、上記窒素排水を微生物処理する微生物処理部と、
上記微生物処理部の液中膜から導出された処理水が導入されると共に上記処理水を光触媒処理する光触媒部とを備える。
Moreover, the waste water treatment apparatus of one embodiment has a submerged film while introducing nitrogen waste water containing hydrogen peroxide, and a microorganism treatment unit that performs microorganism treatment of the nitrogen waste water,
A treatment water derived from the submerged membrane of the microorganism treatment part is introduced, and a photocatalyst part for photocatalytically treating the treatment water is provided.

この実施形態の排水処理装置によれば、過酸化水素を含有する窒素排水に対して液中膜を有する微生物処理部で微生物処理を行ってから、さらに、光触媒部で光触媒処理する。この光触媒処理によって、過酸化水素を含有する窒素排水を微生物処理による処理の水質上の限界を越えて高度処理できる。したがって、この発明の排水処理装置によれば、過酸化水素を含有する窒素排水の処理効率を向上でき、従来に比べて、省エネルギーでありコンパクト化とランニングコスト低減を実現できる。   According to the wastewater treatment apparatus of this embodiment, after the microorganism treatment is performed on the nitrogen wastewater containing hydrogen peroxide by the microorganism treatment unit having a submerged film, the photocatalyst treatment is further performed by the photocatalyst unit. By this photocatalytic treatment, nitrogen wastewater containing hydrogen peroxide can be treated at a high level beyond the limit of water quality of treatment by microbial treatment. Therefore, according to the waste water treatment apparatus of the present invention, the treatment efficiency of nitrogen waste water containing hydrogen peroxide can be improved, and energy saving, compactness, and reduction of running cost can be realized as compared with the prior art.

また、一実施形態の排水処理方法は、上記窒素排水にアミノエタノール含有排水を加え合わせて処理する。   Moreover, the waste water treatment method of one embodiment adds aminoethanol containing waste water to the nitrogen waste water and treats it.

この実施形態の排水処理方法によれば、上記窒素排水にアミノエタノール含有排水を加え合わせて処理する。したがって、アミノエタノール含有排水を処理すると同時に、このアミノエタノールがメタノールを代替するので、脱窒処理に必要な水素供与体としてのメタノールの添加を必要とせず、ランニングコストを低減できる効果がある。   According to the wastewater treatment method of this embodiment, aminoethanol-containing wastewater is added to the nitrogen wastewater for treatment. Therefore, at the same time that the aminoethanol-containing wastewater is treated, this aminoethanol replaces methanol, so that it is not necessary to add methanol as a hydrogen donor necessary for the denitrification treatment, and the running cost can be reduced.

また、一実施形態の排水処理方法は、上記窒素排水に、生物処理された処理水または生物処理で生じた汚泥を加え合わせて処理する。   Moreover, the wastewater treatment method of one embodiment treats the nitrogen wastewater by adding biologically treated treated water or sludge generated by biological treatment.

この実施形態の排水処理方法によれば、微生物処理工程において、各種微生物の活性を高めることができる。すなわち、上記生物処理による処理水または汚泥に含まれるミネラルによって、微生物の活性を高めることができる。   According to the wastewater treatment method of this embodiment, the activity of various microorganisms can be enhanced in the microorganism treatment step. That is, the activity of microorganisms can be enhanced by the mineral contained in the treated water or sludge by the biological treatment.

また、一実施形態の排水処理装置では、上記微生物処理部は、
上記窒素排水が導入される調整槽と、
上記調整槽からの処理水が導入されると共にエアーリフト方式で撹拌する撹拌部を有する脱窒槽と、
上記脱窒槽からの処理水が導入されると共にエアーリフト方式で撹拌する撹拌部を有する硝化槽とを有し、
上記脱窒槽の撹拌部は、上記脱窒槽の上部と下部の間に配置された分離壁と、上記脱窒槽内で上下に延びる仕切板と、上記上部と下部の間に配置された散気管とを含み、
上記硝化槽の撹拌部は、上記硝化槽の上部と下部の間に配置された分離壁と、上記硝化槽内で上下に延びる仕切板と、上記上部と下部の間に配置された散気管とを含む。
Moreover, in the wastewater treatment apparatus of one embodiment, the microorganism treatment unit is
An adjustment tank into which the nitrogen drainage is introduced;
A denitrification tank having an agitating part for introducing treated water from the adjustment tank and agitating by an air lift method,
The treatment water from the denitrification tank is introduced and has a nitrification tank having a stirring portion for stirring by an air lift method.
The stirring unit of the denitrification tank includes a separation wall disposed between an upper part and a lower part of the denitrification tank, a partition plate extending vertically in the denitrification tank, and an air diffuser pipe disposed between the upper part and the lower part. Including
The stirring section of the nitrification tank includes a separation wall disposed between an upper part and a lower part of the nitrification tank, a partition plate extending vertically in the nitrification tank, and an air diffuser disposed between the upper part and the lower part. including.

この実施形態の排水処理装置によれば、上記脱窒槽および硝化槽は、仕切板と散気管を活用したエアーリフト方式の撹拌部を有する。これにより、脱窒槽と硝化槽において、MLSS(混合液懸濁物質)濃度で例えば15000ppmという高濃度に微生物が培養されて、通常の撹拌機や循環ポンプで充分に撹拌できない場合であっても、各水槽内の撹拌を効率良く行うことが可能となる。したがって、微生物反応を充分に進行させることができる。また、脱窒槽の上部および硝化槽の上部での散気管による曝気が、それぞれの下部に与える影響を最小限として、各下部での微生物濃度を自然沈降の原理で高濃度に濃縮することができる。   According to the wastewater treatment apparatus of this embodiment, the denitrification tank and the nitrification tank have an air lift type agitation unit utilizing a partition plate and an air diffuser. Thereby, in the denitrification tank and the nitrification tank, microorganisms are cultured at a high concentration of, for example, 15000 ppm in the MLSS (mixed liquid suspension substance) concentration, and even when it cannot be sufficiently stirred with a normal stirrer or a circulation pump, Stirring in each water tank can be performed efficiently. Therefore, the microbial reaction can sufficiently proceed. In addition, it is possible to concentrate the microorganism concentration in each lower part to a high concentration by the principle of natural sedimentation, while minimizing the influence of aeration by the air diffuser on the upper part of the denitrification tank and the upper part of the nitrification tank on each lower part. .

なお、上記脱窒槽に設置された散気管による曝気は、脱窒槽の嫌気状態を維持しつつ槽内の撹拌を行うためのものであるので、上記脱窒槽に設置された散気管に接続されたブロワーは間欠運転とすればよい。一方、上記硝化槽に設置された散気管による曝気は、硝化槽内を撹拌すると共に硝化槽内の溶存酸素濃度を確保するためのものであるので、上記硝化槽に設置された散気管に接続されたブロワーは連続運転とすればよい。   In addition, since the aeration by the diffuser installed in the denitrification tank is for stirring the tank while maintaining the anaerobic state of the denitrification tank, it was connected to the diffuser installed in the denitrification tank The blower may be operated intermittently. On the other hand, the aeration by the diffuser installed in the nitrification tank is for agitating the inside of the nitrification tank and ensuring the dissolved oxygen concentration in the nitrification tank, so it is connected to the diffuser installed in the nitrification tank. The blower that has been used may be operated continuously.

また、一実施形態の排水処理装置では、上記微生物処理部での微生物濃度をMLSS(混合液懸濁物質)濃度で15000ppm以上とする。   Moreover, in the waste water treatment apparatus of one Embodiment, the microorganisms concentration in the said microorganism treatment part shall be 15000 ppm or more by MLSS (mixed-liquid suspension material) density | concentration.

この実施形態の排水処理装置によれば、生物毒性のあるアンモニアやアミノエタノールを効率よく処理できる。   According to the waste water treatment apparatus of this embodiment, biotoxic ammonia and aminoethanol can be efficiently treated.

また、一実施形態の排水処理装置では、上記光触媒部は、紫外線照射部と、上記処理水に接触すると共に上記紫外線照射部からの紫外線が照射される光触媒板とを有する光触媒槽である。   In one embodiment of the waste water treatment apparatus, the photocatalyst unit is a photocatalyst tank having an ultraviolet irradiation unit and a photocatalyst plate that contacts the treated water and is irradiated with ultraviolet rays from the ultraviolet irradiation unit.

この実施形態の排水処理装置によれば、紫外線照射部から光触媒板に紫外線を照射することによって、光触媒処理の効果をさらに高めることができる。   According to the wastewater treatment apparatus of this embodiment, the effect of the photocatalytic treatment can be further enhanced by irradiating the photocatalyst plate with ultraviolet rays from the ultraviolet irradiation unit.

また、一実施形態の排水処理装置では、上記微生物処理部は、上記液中膜の下方に配置されていると共に上記液中膜を洗浄し、かつ、処理水を撹拌する散気管を有する。   Moreover, in the waste water treatment apparatus of one Embodiment, the said microorganisms treatment part has a diffuser pipe which is arrange | positioned under the said submerged membrane, wash | cleans the said submerged membrane, and stirs treated water.

この排水処理装置によれば、1つの散気管で、液中膜の洗浄と微生物処理部内の撹拌が可能となるので、イニシャルコストを低減でき、かつ、洗浄空気を撹拌空気としても利用できるので、ランニングコストを低減できる。   According to this waste water treatment apparatus, since it is possible to wash the submerged membrane and agitate the microorganism treatment unit with one aeration tube, the initial cost can be reduced, and the washing air can also be used as agitation air. Running costs can be reduced.

また、一実施形態の排水処理装置では、上記光触媒槽が有する光触媒板が無機多孔質である。   Moreover, in the waste water treatment apparatus of one Embodiment, the photocatalyst board which the said photocatalyst tank has is inorganic porous.

この実施形態の排水処理装置によれば、光触媒板が無機多孔質であるので、表面積(接触面積)が大きく、光触媒による反応効率を高めることができる。   According to the wastewater treatment apparatus of this embodiment, since the photocatalyst plate is inorganic porous, the surface area (contact area) is large, and the reaction efficiency by the photocatalyst can be increased.

また、一実施形態の排水処理装置では、上記光触媒部で光触媒処理した処理水を、上記微生物処理部の脱窒槽に返送する返送部を有する。   Moreover, in the waste water treatment apparatus of one Embodiment, it has a return part which returns the treated water photocatalyzed by the photocatalyst part to the denitrification tank of the microorganism treatment part.

この実施形態の排水処理装置によれば、上記返送部は、光触媒槽で光触媒処理した処理水を脱窒槽に返送するので、処理水を循環処理することができ、特に、脱窒槽での処理効率を高めることができる。   According to the wastewater treatment apparatus of this embodiment, the return unit returns the treated water photocatalyzed in the photocatalyst tank to the denitrification tank, so that the treated water can be circulated, and in particular, the treatment efficiency in the denitrification tank. Can be increased.

また、一実施形態の排水処理装置では、上記光触媒部で光触媒処理した処理水を、上記微生物処理部の硝化槽に返送する返送部を有する。   Moreover, in the waste water treatment apparatus of one Embodiment, it has a return part which returns the treated water photocatalyzed by the photocatalyst part to the nitrification tank of the microorganism treatment part.

この実施形態の排水処理装置によれば、上記返送部は、光触媒槽で光触媒処理した処理水を硝化槽に返送するので、処理水を循環処理することができ、特に、硝化槽での処理効率を高めることができる。   According to the wastewater treatment apparatus of this embodiment, since the return unit returns the treated water photocatalyzed in the photocatalyst tank to the nitrification tank, the treated water can be circulated, and in particular, the treatment efficiency in the nitrification tank Can be increased.

また、一実施形態の排水処理装置では、上記紫外線照射部が光触媒板に照射する紫外線の強度を、1mW/cm程度または500μW/cm乃至3mW/cmとした。 Further, in waste water treatment apparatus of an embodiment, the intensity of ultraviolet the ultraviolet irradiation unit irradiates the photocatalyst plate, it was 1 mW / cm 2 of about or 500 W / cm 2 to 3 mW / cm 2.

この実施形態の排水処理装置によれば、光触媒板による光触媒処理の効果を充分に発揮できる。   According to the waste water treatment apparatus of this embodiment, the effect of the photocatalyst treatment by the photocatalyst plate can be sufficiently exhibited.

また、一実施形態の排水処理装置では、上記光触媒板は、酸化チタン、酸化亜鉛、酸化ニオブ、チタン酸ストロンチウム、タンタル酸カリウム、酸化タングステンのうちのいずれか1つの化合物で作製されている。   In one embodiment, the photocatalyst plate is made of any one compound of titanium oxide, zinc oxide, niobium oxide, strontium titanate, potassium tantalate, and tungsten oxide.

この実施形態の排水処理装置によれば、上記化合物のそれぞれの特性を生かした有用な光触媒の作用でもって、高度な排水処理を実現可能となる。   According to the wastewater treatment apparatus of this embodiment, advanced wastewater treatment can be realized by the action of a useful photocatalyst utilizing the characteristics of each of the above compounds.

また、一実施形態の排水処理方法では、上記窒素排水は、マイクロナノバブルを含む排水である。   Moreover, in the waste water treatment method of one embodiment, the nitrogen waste water is waste water containing micro-nano bubbles.

この実施形態の排水処理方法によれば、上記窒素排水がマイクロナノバブルを含んでいるので、微生物処理工程で窒素排水を微生物処理するに際して、マイクロナノバブルで微生物を活性化でき、微生物による処理効率を向上できる。   According to the wastewater treatment method of this embodiment, since the nitrogen wastewater contains micro-nano bubbles, when the microorganisms are treated with nitrogen wastewater in the microorganism treatment step, microorganisms can be activated with the micro-nano bubbles, and the treatment efficiency by the microorganisms is improved. it can.

また、一実施形態の排水処理装置では、上記窒素排水は、マイクロナノバブルを含む排水である。   Moreover, in the waste water treatment apparatus of one Embodiment, the said nitrogen waste_water | drain is the waste water containing a micro nano bubble.

この実施形態の排水処理装置によれば、上記窒素排水がマイクロナノバブルを含んでいるので、微生物処理部で窒素排水を微生物処理するに際して、マイクロナノバブルで微生物を活性化でき、微生物による処理効率を向上できる。   According to the wastewater treatment apparatus of this embodiment, since the nitrogen wastewater contains micro / nano bubbles, when the microorganism waste treatment unit performs the microorganism treatment of the nitrogen waste water, the microorganisms can be activated by the micro / nano bubbles and the treatment efficiency by the microorganisms is improved. it can.

また、一実施形態の排水処理装置では、上記脱窒槽からの被処理水が導入されると共に上記被処理水にマイクロナノバブルを含有させてから上記硝化槽に導入するマイクロナノバブル発生槽を設けた。   Moreover, in the waste water treatment apparatus of one Embodiment, the to-be-processed water from the said denitrification tank was introduce | transduced, and the micro-nano bubble generation tank to introduce into the said nitrification tank after making the said to-be-processed water contain a micro nano bubble was provided.

この実施形態の排水処理装置によれば、マイクロナノバブル発生槽は、脱窒槽からの処理水にマイクロナノバブルを含有させてから硝化槽に導入するので、硝化槽の微生物を活性化して、アンモニア性窒素を効率的に硝化できる。   According to the wastewater treatment apparatus of this embodiment, the micro / nano bubble generation tank introduces the micro / nano bubbles into the treated water from the denitrification tank and then introduces it into the nitrification tank. Can be efficiently nitrified.

この発明の排水処理方法によれば、過酸化水素を含有する窒素排水に対して液中膜を使用する微生物処理を行ってから、さらに、光触媒処理する。この光触媒処理によって、過酸化水素を含有する窒素排水を微生物処理による処理の水質上の限界を越えて高度処理できる。したがって、この発明の排水処理方法によれば、過酸化水素を含有する窒素排水の処理効率を向上でき、従来に比べて、省エネルギーでありコンパクト化とランニングコスト低減を実現できる。   According to the wastewater treatment method of the present invention, after performing the microorganism treatment using the submerged membrane on the nitrogen wastewater containing hydrogen peroxide, the photocatalytic treatment is further performed. By this photocatalytic treatment, nitrogen wastewater containing hydrogen peroxide can be treated at a high level beyond the limit of water quality of treatment by microbial treatment. Therefore, according to the wastewater treatment method of the present invention, the treatment efficiency of nitrogen wastewater containing hydrogen peroxide can be improved, and energy saving, compactness, and reduction of running cost can be realized as compared with the prior art.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

(第1の実施の形態)
図1に、この発明の排水処理装置の第1実施形態を模式的に示す。この第1実施形態は、調整槽1、脱窒槽3、液中膜16を有する硝化槽11、および、光触媒槽18を備える。
(First embodiment)
FIG. 1 schematically shows a first embodiment of the wastewater treatment apparatus of the present invention. The first embodiment includes an adjustment tank 1, a denitrification tank 3, a nitrification tank 11 having a submerged film 16, and a photocatalyst tank 18.

調整槽1には、一例として、半導体工場でのCMP(ケミカルメカニカルポリッシング)工程からの過酸化水素を含有する高濃度窒素排水やアミノエタノール含有排水がある。また、この調整槽1には、生物処理された生物処理水または生物処理で生じたスラリー状の生物処理汚泥も導入する。なお、上記過酸化水素を含有する高濃度窒素排水としては、過酸化水素を含有する高濃度アンモニア含有排水がある。この調整槽1では、導入される排水の水量と水質が調整される。   Examples of the adjustment tank 1 include high-concentration nitrogen wastewater containing hydrogen peroxide and aminoethanol-containing wastewater from a CMP (chemical mechanical polishing) process in a semiconductor factory. In addition, biological treatment water that has been subjected to biological treatment or slurry-like biological treatment sludge generated by biological treatment is also introduced into the adjustment tank 1. The high-concentration nitrogen wastewater containing hydrogen peroxide includes high-concentration ammonia-containing wastewater containing hydrogen peroxide. In this adjustment tank 1, the amount and quality of the wastewater introduced are adjusted.

上記調整槽1に、上記生物処理水または生物処理汚泥が導入されることによって、この生物処理水または生物処理汚泥に含まれるリン、カリウム、カルシウム、マグネシウム等の微量要素が、脱窒槽3や硝化槽11の槽内全ての微生物の活性を促進することになる。特に、硝化槽11の液中膜16による高濃度微生物処理では、上記微量要素が被処理水に含有されていないと、微生物の活性が少なく、微生物処理が安定しない。   By introducing the biological treatment water or biological treatment sludge into the adjustment tank 1, trace elements such as phosphorus, potassium, calcium, magnesium contained in the biological treatment water or biological treatment sludge are removed from the denitrification tank 3 or nitrification. The activity of all the microorganisms in the tank of the tank 11 will be promoted. In particular, in high-concentration microbial treatment using the submerged membrane 16 in the nitrification tank 11, if the trace element is not contained in the water to be treated, the activity of the microorganism is small and the microbial treatment is not stable.

また、アミノエタノール含有排水を調整槽1に導入することによって、有害物質であるアミノエタノールの処理は当然として、アミノエタノール中の窒素を処理すると同時に、このアミノエタノールを脱窒槽3における水素供与体として利用できる。一般には、水素供与体として、メタノールを使用する場合が多いが、この実施形態では、アミノエタノールがメタノールを代替するので、脱窒処理に必要な水素供与体としてのメタノールの添加を必要とせず、ランニングコストを低減できる。   In addition, by introducing aminoethanol-containing wastewater into the adjustment tank 1, treatment of aminoethanol, which is a harmful substance, is naturally treated, and at the same time, nitrogen in aminoethanol is treated as a hydrogen donor in the denitrification tank 3. Available. In general, methanol is often used as the hydrogen donor, but in this embodiment, aminoethanol substitutes for methanol, so it is not necessary to add methanol as a hydrogen donor necessary for denitrification treatment. Running costs can be reduced.

また、調整槽1には、調整槽ポンプ2が設置されており、この調整槽ポンプ2は、調整槽1から脱窒槽3の下部8に被処理水を導入する。つまり、この被処理水としての過酸化水素含有高濃度アンモニア含有排水等のような毒性のある過酸化水素含有高濃度窒素排水を、脱窒槽3の上部9に比べて、重力により微生物濃度が高濃度となっている脱窒槽3の下部8に導入する。これにより、過酸化水素含有高濃度窒素排水が微生物に与える刺激を少なくでき、微生物処理に適している。   Moreover, the adjustment tank pump 2 is installed in the adjustment tank 1, and this adjustment tank pump 2 introduces to-be-processed water from the adjustment tank 1 to the lower part 8 of the denitrification tank 3. FIG. That is, toxic hydrogen peroxide-containing high-concentration nitrogen wastewater such as hydrogen peroxide-containing high-concentration ammonia-containing wastewater as the treated water has a higher microorganism concentration due to gravity than the upper part 9 of the denitrification tank 3. It introduce | transduces into the lower part 8 of the denitrification tank 3 used as the density | concentration. Thereby, the irritation | stimulation which a hydrogen peroxide containing high concentration nitrogen waste_water | drain gives to microorganisms can be decreased, and it is suitable for microorganisms processing.

この脱窒槽3は、上部9と下部8との間に配置された分離壁4Aと、上部9から下部8にかけて上下に延びる仕切板6と、上部9と下部8との間に配置された散気管5とを有する。この分離壁4Aと仕切板6と散気管5とがエアーリフト方式の撹拌部を構成している。散気管5は脱窒槽用ブロワー7に接続され、このブロワー7から吐出空気が供給されている。つまり、散気管5が吐出する空気の気泡により仕切板6に沿った水流が生じる。つまり、この脱窒槽3では、図1において、仕切板6の右側の散気管5が設置されたエリアでは上昇水流W1が生じ、仕切板6の左側のエリアでは下降水流W2が生じる。この仕切板6と散気管5とを活用したエアーリフト方式の撹拌部によれば、脱窒槽3内の微生物濃度がMLSS(Mixed Liquor Suspended Solid)で15000ppm以上という高濃度とした場合でも、脱窒槽3内に撹拌ができない部分いわゆるデットスペースができないようにして、脱窒槽3内の撹拌を効率よく行える。なお、上記脱窒槽用ブロワー7は、槽内の撹拌と曝気の必要に応じてタイマー等によって設定される間欠運転とすることを基本としている。   The denitrification tank 3 includes a separation wall 4A disposed between the upper portion 9 and the lower portion 8, a partition plate 6 extending vertically from the upper portion 9 to the lower portion 8, and a dust disposed between the upper portion 9 and the lower portion 8. And trachea 5. The separation wall 4A, the partition plate 6, and the air diffusion pipe 5 constitute an air lift type stirring unit. The air diffuser 5 is connected to a denitrification tank blower 7, and discharge air is supplied from the blower 7. That is, a water flow along the partition plate 6 is generated by air bubbles discharged from the air diffuser 5. That is, in this denitrification tank 3, in FIG. 1, an ascending water flow W <b> 1 is generated in the area where the diffuser pipe 5 on the right side of the partition plate 6 is installed, and a descending water flow W <b> 2 is generated in the area on the left side of the partition plate 6. According to the air lift type agitator utilizing the partition plate 6 and the air diffuser 5, even if the microorganism concentration in the denitrification tank 3 is as high as 15000 ppm or more in MLSS (Mixed Liquor Suspended Solid), the denitrification tank Stirring in the denitrification tank 3 can be performed efficiently so that a portion where stirring cannot be performed in the so-called dead space is not formed. The denitrification tank blower 7 is based on intermittent operation set by a timer or the like according to the necessity of stirring and aeration in the tank.

上記脱窒槽3の側壁には分離壁4が設置されているので、上記撹拌部による撹拌は、脱窒槽3の下部8に比べて、脱窒槽3の上部9の方がスムーズに進行している。この脱窒槽3の下部8では、ある程度の撹拌は必要であるが、脱窒槽3の下部8では、自然沈降によって、微生物を高濃度に濃縮する。したがって、脱窒槽3の下部8では、脱窒槽3の上部9と比較して、撹拌が少ないほうが良い。   Since the separation wall 4 is installed on the side wall of the denitrification tank 3, the stirring by the stirring unit proceeds more smoothly in the upper part 9 of the denitrification tank 3 than in the lower part 8 of the denitrification tank 3. . The lower part 8 of the denitrification tank 3 requires a certain amount of stirring, but the lower part 8 of the denitrification tank 3 concentrates microorganisms to a high concentration by natural sedimentation. Therefore, it is better that the lower part 8 of the denitrification tank 3 has less stirring compared to the upper part 9 of the denitrification tank 3.

また、脱窒槽3の下部8には、次段の硝化槽11が有する下部の半嫌気部13の下部ホッパー部24から、返送汚泥ポンプ10と返送汚泥配管L10とによって、微生物を含む高濃度返送汚泥が多量に導入される。この返送汚泥ポンプ10と返送汚泥配管L10とが構成する返送汚泥部は、硝化槽11の下部の半嫌気性汚泥を、空気中の酸素に全く晒すことなく、脱窒槽3の下部8に移動させることができる。なお、半嫌気部13の下部ホッパー部24はホッパー状(じょうご状)の構造なので、沈殿した汚泥を中心部に集め易く最下部に接続された汚泥返送配管L10に導入し易い。   In addition, a high-concentration return containing microorganisms is returned to the lower part 8 of the denitrification tank 3 from the lower hopper part 24 of the lower semi-anaerobic part 13 of the nitrification tank 11 by the return sludge pump 10 and the return sludge pipe L10. A large amount of sludge is introduced. The return sludge section constituted by the return sludge pump 10 and the return sludge pipe L10 moves the semi-anaerobic sludge at the lower part of the nitrification tank 11 to the lower part 8 of the denitrification tank 3 without exposing it to oxygen in the air at all. be able to. In addition, since the lower hopper part 24 of the semi-anaerobic part 13 has a hopper-like (funnel-like) structure, it is easy to collect the precipitated sludge in the central part and easily introduce it into the sludge return pipe L10 connected to the lowermost part.

この脱窒槽3に導入された高濃度窒素排水は、下部8において嫌気的に処理された後、脱窒槽3の上部9から自然流下によって、硝化槽11の下部の半嫌気部13に導入される。   The high-concentration nitrogen drainage introduced into the denitrification tank 3 is anaerobically treated in the lower part 8 and then introduced into the semi-anaerobic part 13 at the lower part of the nitrification tank 11 by natural flow from the upper part 9 of the denitrification tank 3. .

この硝化槽11は、下部の半嫌気部13と上部の好気部12と、上部と下部との間に設置された分離壁4Bと、上部の好気部12から下部の半嫌気部13に延在している仕切板14とを有する。この仕切板14と分離壁4Bとの間、かつ、上部の好気部12と下部の半嫌気部13との間に散気管15が配置され、この散気管15の上方に液中膜16が配置されている。この散気管15は、硝化槽ブロワー21に接続されている。また、液中膜16には処理水を導出する配管として重力配管17が接続されている。   The nitrification tank 11 includes a lower semi-anaerobic part 13, an upper aerobic part 12, a separation wall 4B installed between the upper part and the lower part, and an upper aerobic part 12 to a lower semi-aerobic part 13. And a partition plate 14 extending. A diffuser tube 15 is disposed between the partition plate 14 and the separation wall 4B, and between the upper aerobic portion 12 and the lower semi-anaerobic portion 13. A submerged membrane 16 is disposed above the diffuser tube 15. Has been placed. The air diffuser 15 is connected to a nitrification tank blower 21. Further, a gravity pipe 17 is connected to the submerged film 16 as a pipe for leading the treated water.

上記散気管15と仕切板14との組み合わせにより、エアーリフト方式の撹拌部が構成され、散気管15が吐出する空気によって仕切板14に沿った水流が生じる。つまり、この硝化槽11では、図1において、仕切板6の右側のエリアでは上昇水流W11が生じ、仕切板6の左側のエリアでは下降水流W12が生じる。これにより、硝化槽11では、処理水のMLSS濃度が15000ppm以上の濃度であっても、槽内の撹拌を行うことができる。   The combination of the air diffusion tube 15 and the partition plate 14 constitutes an air lift type stirring unit, and a water flow along the partition plate 14 is generated by the air discharged from the air diffusion tube 15. That is, in this nitrification tank 11, in FIG. 1, an upward water flow W <b> 11 is generated in the area on the right side of the partition plate 6, and a downward water flow W <b> 12 is generated in the area on the left side of the partition plate 6. Thereby, in the nitrification tank 11, even if the MLSS density | concentration of a treated water is a density | concentration of 15000 ppm or more, the inside in a tank can be performed.

この硝化槽11においては、好気部12に液中膜16が設置されているので、微生物は硝化槽11に留まるか、返送汚泥ポンプ10によって脱窒槽3の下部8に返送されるかである。この液中膜16から出た処理水は重力配管17を通って、光触媒槽18に導入される。この重力配管17は、水頭差を利用して処理水を流出させる方式であるので、電力を必要とせず、省エネルギー運転が可能となる。   In this nitrification tank 11, since the submerged film 16 is installed in the aerobic part 12, the microorganisms remain in the nitrification tank 11 or are returned to the lower part 8 of the denitrification tank 3 by the return sludge pump 10. . The treated water discharged from the submerged membrane 16 is introduced into the photocatalyst tank 18 through the gravity pipe 17. Since the gravity pipe 17 is a system that uses the water head difference to discharge the treated water, it does not require electric power, and energy saving operation is possible.

一方、上述の返送汚泥ポンプ10による返送汚泥の脱窒槽3への移送は、通常のポンプを利用した方法であり、多量の返送汚泥を空気に晒すことなく移送することができるので、返送汚泥の嫌気性を確実に維持できる。脱窒槽3の下部8に返送された微生物汚泥は、脱窒槽3の上部9を通って、再び硝化槽11の半嫌気部13に戻り、循環することとなる。脱窒槽3と硝化槽11の両槽を微生物汚泥が循環することによって、この両槽の微生物濃度がほぼ同様の濃度で維持される。上記したように、微生物濃度がMLSS(Mixed Liquor Suspended Solid)濃度で15000ppm以上と高いと、通常の撹拌機、水中撹拌機および循環ポンプによる撹拌では、撹拌ができないデットスペースが発生することに対する対策として、仕切板14と散気管15の組み合わせによるエアーリフト方式の槽内全体撹拌を実施している。   On the other hand, the return sludge transferred to the denitrification tank 3 by the return sludge pump 10 is a method using a normal pump, and a large amount of return sludge can be transferred without being exposed to air. Anaerobic can be reliably maintained. The microbial sludge returned to the lower part 8 of the denitrification tank 3 passes through the upper part 9 of the denitrification tank 3 and returns to the semi-anaerobic part 13 of the nitrification tank 11 to be circulated. By circulating microbial sludge in both the denitrification tank 3 and the nitrification tank 11, the microbial concentration in both tanks is maintained at substantially the same concentration. As described above, when the microorganism concentration is as high as 15,000 ppm or more in MLSS (Mixed Liquor Suspended Solid) concentration, as a countermeasure against the occurrence of a dead space where stirring cannot be performed with a normal stirrer, submerged stirrer, and circulation pump. The entire agitating of the air lift type tank by the combination of the partition plate 14 and the air diffuser 15 is performed.

この硝化槽11の側壁には分離壁4Bが設置されているので、好気部12と半嫌気部13を比較した場合、好気部12の方が上昇水流W11と下降水流W12とによる撹拌がスムーズに進行している。この半嫌気部13では自然沈降による沈降で微生物を高濃度に濃縮する。よって、この半嫌気部13では、ある程度の撹拌は必要であるが、好気部12と比較して撹拌は少ないほうが良い。   Since the separation wall 4B is installed on the side wall of the nitrification tank 11, when the aerobic part 12 and the semi-anaerobic part 13 are compared, the aerobic part 12 is stirred by the rising water flow W11 and the falling water flow W12. It is progressing smoothly. The semi-anaerobic portion 13 concentrates microorganisms to a high concentration by sedimentation by natural sedimentation. Therefore, the semi-anaerobic part 13 needs a certain amount of stirring, but it is better that the stirring is less than that of the aerobic part 12.

このような脱窒槽3と硝化槽11との両槽における微生物濃度としては、MLSS(Mixed Liquor Suspended Solid)で15000ppm以上を維持する。   The microorganism concentration in both the denitrification tank 3 and the nitrification tank 11 is maintained at 15000 ppm or more by MLSS (Mixed Liquor Suspended Solid).

尚、元に戻るが、脱窒槽3には、嫌気性の度合いを測定するため、酸化還元電位計(図示せず)が設置されている。脱窒槽3内では、返送汚泥ポンプ10によって硝化槽11の半嫌気部13から導入された処理水中の硝酸性窒素が、嫌気性微生物により、水素供与体であるアミノエタノールの存在下で、窒素ガスまで還元処理される。上記処理水中の硝酸性窒素は、硝化槽11で、過酸化水素含有高濃度窒素排水としての、過酸化水素含有高濃度アンモニア排水やアミノエタノールが、微生物により分解されて硝酸性窒素に変化したものである。   In addition, although returning to the former, the denitrification tank 3 is provided with an oxidation-reduction potentiometer (not shown) in order to measure the anaerobic degree. In the denitrification tank 3, nitrate nitrogen in the treated water introduced from the semi-anaerobic portion 13 of the nitrification tank 11 by the return sludge pump 10 is converted into nitrogen gas by anaerobic microorganisms in the presence of aminoethanol as a hydrogen donor. It is reduced until. Nitrate nitrogen in the treated water is a nitrification tank 11 in which hydrogen peroxide-containing high-concentration ammonia wastewater or aminoethanol as hydrogen peroxide-containing high-concentration nitrogen wastewater is decomposed by microorganisms into nitrate nitrogen. It is.

また、脱窒槽3内においては、アミノエタノール以外の有機物は、嫌気性微生物により、生物学的に分解処理される。次に、脱窒槽3の上部9より流出した処理水は、硝化槽11の下部である半嫌気部13に導入される。ここで嫌気部とは、溶存酸素が全く無い状態であり、好気部とは溶存酸素が数ppmに維持されている状態であり、半嫌気部とは溶存酸素が0ppmか、溶存酸素が存在していても0.5ppm程度と定義する。   In the denitrification tank 3, organic substances other than aminoethanol are biologically decomposed by anaerobic microorganisms. Next, the treated water flowing out from the upper part 9 of the denitrification tank 3 is introduced into the semi-anaerobic part 13 which is the lower part of the nitrification tank 11. Here, the anaerobic part is a state where there is no dissolved oxygen, the aerobic part is a state where the dissolved oxygen is maintained at several ppm, and the semi-anaerobic part is 0 ppm of dissolved oxygen or there is dissolved oxygen. However, it is defined as about 0.5 ppm.

上述の如く、硝化槽11の上部の好気部12では散気管15から吐出する空気によって、水流W11,W12が発生するが、この水流W11,W12は下部の半嫌気部13に対して、多少は影響するものの、分離壁4Bの存在によって、好気部12より多くは影響しない。硝化槽11内の微生物濃度が高濃度であるので、図1に示す程度の大きさの分離壁4Bであっても、好気部12での水流による半嫌気部13に対する影響を最小限とすることができる。   As described above, in the aerobic portion 12 at the upper part of the nitrification tank 11, the water flows W11 and W12 are generated by the air discharged from the diffuser tube 15, but these water flows W11 and W12 are somewhat different from the lower semi-anaerobic portion 13. However, more than the aerobic part 12 is not affected by the presence of the separation wall 4B. Since the microbial concentration in the nitrification tank 11 is high, the influence on the semi-anaerobic part 13 due to the water flow in the aerobic part 12 is minimized even with the separation wall 4B having a size as shown in FIG. be able to.

また、上述のように、硝化槽11は下部に半嫌気部13を有する。これにより、脱窒槽3と硝化槽11との間の返送汚泥ポンプ10による循環システムにおいて、脱窒槽3で嫌気性微生物によって処理された処理水と共に硝化槽11に移動してくる嫌気性微生物を、半嫌気部13を経て好気部12に導入することになる。したがって、上記移動して来る嫌気性微生物を、ストレートに好気部12に導入する場合に比べて、嫌気性微生物に対する環境ストレスを少なくでき、嫌気性微生物で窒素を処理する際の効率を向上できる。   Further, as described above, the nitrification tank 11 has the semi-anaerobic portion 13 at the lower portion. Thereby, in the circulation system by the return sludge pump 10 between the denitrification tank 3 and the nitrification tank 11, the anaerobic microorganisms which move to the nitrification tank 11 together with the treated water treated by the anaerobic microorganisms in the denitrification tank 3, It will be introduced into the aerobic part 12 through the semi-anaerobic part 13. Therefore, compared with the case where the moving anaerobic microorganisms are introduced straight into the aerobic part 12, the environmental stress on the anaerobic microorganisms can be reduced, and the efficiency in treating nitrogen with the anaerobic microorganisms can be improved. .

また、半嫌気部13では、この半嫌気部13に特有の微生物が繁殖し、嫌気性微生物、好気性微生物のみならず半嫌気部13に繁殖する各種微生物によって被処理水を処理することにより、微生物処理の効率を総合的に向上できる。また、硝化槽11に半嫌気部13を設けたことで、半嫌気部13で繁殖する微生物が汚泥の減溶化に役立つことを発見した。   In addition, in the semi-anaerobic part 13, microorganisms specific to the semi-anaerobic part 13 are propagated, and by treating the water to be treated with various microorganisms that propagate in the semi-anaerobic part 13 as well as anaerobic microorganisms and aerobic microorganisms, The efficiency of microbial treatment can be improved comprehensively. Moreover, it discovered that the microorganism which propagates in the semi-anaerobic part 13 is useful for the reduction | decrease of sludge by providing the semi-anaerobic part 13 in the nitrification tank 11. FIG.

半嫌気部13の下部には曝気設備としての散気管15が設置されていないので、半嫌気部13は曝気されていないものの、曝気されている上部の好気部12における多少の水流の影響を受ける。これにより、半嫌気部13では、半嫌気部の条件である溶存酸素が0ppmか、溶存酸素が存在していても0.5ppm程度となる。これにより、半嫌気部13において、半嫌気性を維持できることとなる。   Since the aeration pipe 15 as an aeration facility is not installed in the lower part of the semi-anaerobic part 13, although the semi-anaerobic part 13 is not aerated, the influence of some water flow in the upper aerobic part 12 being aerated is affected. receive. Thereby, in the semi-anaerobic part 13, the dissolved oxygen which is the condition of the semi-anaerobic part is 0 ppm, or about 0.5 ppm even if dissolved oxygen is present. Thereby, in the semi-anaerobic part 13, semi-anaerobic property can be maintained.

また、硝化槽11の上部の好気部12では、液中膜16の下部に散気管15が設置されている。この散気管15には、硝化用ブロワー21が吐出する空気が供給される。この散気管15が吐出する空気によって、液中膜16が空気洗浄される。この液中膜16としては、例えば、平膜タイプと中空糸状膜の2種類が市販されているがどちらを採用しても良い。この硝化槽11の好気部12では、被処理水中のアンモニア性窒素が好気性微生物により分解酸化されて硝酸性窒素や亜硝酸性窒素となる。この硝化槽11で処理された処理水は、液中膜16と連結している重力配管17から、重力によって、自然に流れ出てくる。つまり、この重力配管17は、水頭差を利用して、処理水を導出する。この水頭差を利用する方法は電力を必要としないので、省エネルギー運転が可能となる。   Further, in the aerobic part 12 at the upper part of the nitrification tank 11, an air diffuser 15 is installed below the submerged film 16. The air diffuser 15 is supplied with air discharged from the nitrification blower 21. The submerged film 16 is washed with air by the air discharged from the air diffuser 15. As this submerged membrane 16, for example, two types, a flat membrane type and a hollow fiber membrane, are commercially available. In the aerobic part 12 of the nitrification tank 11, ammonia nitrogen in the water to be treated is decomposed and oxidized by aerobic microorganisms to become nitrate nitrogen or nitrite nitrogen. The treated water treated in the nitrification tank 11 naturally flows out from the gravity piping 17 connected to the submerged membrane 16 by gravity. That is, this gravity piping 17 derives treated water using a water head difference. Since the method using the water head difference does not require electric power, energy-saving operation is possible.

また、硝化槽11において、液中膜16の透過水量が低下した場合、すなわち処理水量が低下した場合は、液中膜16自体を次亜塩素酸ソーダ等で洗浄している。そして、重力配管17からの処理水は、光触媒槽18に導入される。   Further, in the nitrification tank 11, when the amount of permeated water of the submerged membrane 16 is reduced, that is, when the amount of treated water is reduced, the submerged membrane 16 itself is washed with sodium hypochlorite or the like. Then, treated water from the gravity pipe 17 is introduced into the photocatalyst tank 18.

この光触媒槽18は、水没していない光触媒槽18の上部18A(すなわち、液に接しない部分)に、紫外線照射部としてのUV光線発生部19が設置されている。また、この光触媒槽18は、上記処理水に接触すると共に上記UV光線発生部19からの紫外線が照射される光触媒板20を有する。このUV光線発生部19は、一例として、紫外線ランプまたはブラックライトを採用できる。UV光線発生部19は、十分な強度の紫外線を照射できるだけの必要な本数の紫外線ランプまたはブラックライトを備えれば良い。また、このUV光線発生部19の設置の位置としては、光触媒槽18における処理水の液面から5cm〜1m程度上方の位置に設定している。なお、上記UV光線発生部19は水銀ランプとしてもよく、太陽光の導入部としてもよい。   In the photocatalyst tank 18, a UV light generation unit 19 as an ultraviolet irradiation unit is installed on an upper part 18 </ b> A (that is, a part not in contact with the liquid) of the photocatalyst tank 18 that is not submerged. The photocatalyst tank 18 has a photocatalyst plate 20 that comes into contact with the treated water and is irradiated with ultraviolet rays from the UV light generation unit 19. As an example, the UV light generation unit 19 can employ an ultraviolet lamp or a black light. The UV light generator 19 may be provided with a necessary number of ultraviolet lamps or black lights that can irradiate ultraviolet rays with sufficient intensity. Further, the installation position of the UV light generation unit 19 is set at a position about 5 cm to 1 m above the surface of the treated water in the photocatalyst tank 18. The UV light generation unit 19 may be a mercury lamp or a sunlight introduction unit.

尚、このUV光線発生部19が照射する紫外線の強度としては、照射対象の排水に対して、一例として、1(mW/cm)としたが、通常は、500μW/cm〜3mW/cm程度の強度の紫外光とする。また、UV光線発生部19が照射する紫外線の強度を、50μW/cm〜5mW/cm程度としてもよい。 As the intensity of the ultraviolet this UV light generating unit 19 irradiates, with respect to drainage of the irradiation target, as an example, was a 1 (mW / cm 2), usually, 500μW / cm 2 ~3mW / cm The intensity of the ultraviolet light is about 2 . Further, the intensity of ultraviolet light UV light generating unit 19 irradiates, may 50μW / cm 2 ~5mW / cm 2 approximately.

次に、光触媒槽18内の光触媒板20については、一例として、酸化チタン、酸化亜鉛、酸化ニオブ、チタン酸ストロンチウム、タンタル酸カリウム、酸化タングステン等の化合物を含有するセラミックをコーティングした光触媒板とした。この光触媒槽18の槽内での処理水の滞留時間は、目的とする処理水質濃度によっても異なるが、この第1実施形態では、30分間〜2時間程度とした。   Next, as an example, the photocatalyst plate 20 in the photocatalyst tank 18 is a photocatalyst plate coated with a ceramic containing a compound such as titanium oxide, zinc oxide, niobium oxide, strontium titanate, potassium tantalate, and tungsten oxide. . The residence time of the treated water in the photocatalyst tank 18 varies depending on the target treated water quality concentration, but in this first embodiment, it is about 30 minutes to 2 hours.

この第1実施形態の排水処理装置によれば、過酸化水素を含有する窒素排水に対して液中膜16を有する硝化槽11で微生物処理を行ってから、さらに、光触媒槽18で光触媒処理する。この光触媒処理によって、過酸化水素を含有する窒素排水を微生物処理による処理の水質上の限界を越えて高度処理できる。しかも、UV光線発生部19から光触媒板20に紫外線を照射することによって、光触媒処理の効果をさらに高めることができる。   According to the waste water treatment apparatus of the first embodiment, the nitrogen waste water containing hydrogen peroxide is subjected to microbial treatment in the nitrification tank 11 having the submerged film 16 and then further subjected to photocatalytic treatment in the photocatalyst tank 18. . By this photocatalytic treatment, nitrogen wastewater containing hydrogen peroxide can be treated at a high level beyond the limit of water quality of treatment by microbial treatment. In addition, by irradiating the photocatalyst plate 20 with ultraviolet rays from the UV light generation unit 19, the effect of the photocatalyst treatment can be further enhanced.

したがって、この第1実施形態の排水処理装置によれば、過酸化水素を含有する窒素排水の処理効率を向上でき、従来に比べて、省エネルギーでありコンパクト化とランニングコスト低減を実現できる。   Therefore, according to the waste water treatment apparatus of the first embodiment, the treatment efficiency of nitrogen waste water containing hydrogen peroxide can be improved, and energy saving, compactness, and reduction of running cost can be realized as compared with the prior art.

(第2の実施の形態)
次に、図2に、この発明の排水処理装置の第2実施形態を示す。この第2実施形態は、前述の第1実施形態の脱窒槽3と硝化槽11に替えて、塩化ビニリデン充填物23Aが充填された脱窒槽3Nと塩化ビニリデン充填物23Bが充填された硝化槽11Nを備える点だけが、前述の第1実施形態と異なる。よって、この第2実施形態では、第1実施形態と同じ部分については、同じ符号を付けて、詳細説明を省略し、第1実施形態と異なる部分を説明する。
(Second embodiment)
Next, FIG. 2 shows a second embodiment of the waste water treatment apparatus of the present invention. In this second embodiment, instead of the denitrification tank 3 and the nitrification tank 11 of the first embodiment described above, a denitrification tank 3N filled with a vinylidene chloride filling 23A and a nitrification tank 11N filled with a vinylidene chloride filling 23B. Only the point provided with is different from the first embodiment described above. Therefore, in this 2nd Embodiment, the same code | symbol is attached | subjected about the same part as 1st Embodiment, detailed description is abbreviate | omitted, and a different part from 1st Embodiment is demonstrated.

この第2実施形態では、脱窒槽3Nは、仕切板6について散気管5と反対側に、上部9から下部8に亘って、塩化ビニリデン充填物23Aが充填されている。また、硝化槽11Nは、仕切板14について散気管15と反対側に、好気部12から半嫌気部13に亘って、塩化ビニリデン充填物23Bが充填されている。   In the second embodiment, the denitrification tank 3N is filled with a vinylidene chloride filler 23A from the upper part 9 to the lower part 8 on the side opposite to the diffuser pipe 5 with respect to the partition plate 6. Further, the nitrification tank 11N is filled with a vinylidene chloride filler 23B from the aerobic part 12 to the semi-anaerobic part 13 on the side opposite to the air diffuser 15 with respect to the partition plate 14.

このように、脱窒槽3および硝化槽11に塩化ビニリデン充填物23Aおよび23Bを充填したことで、脱窒槽3と硝化槽11では槽全体を平均すると充填物が無い場合に比べて、微生物濃度が高濃度となる。しかも、塩化ビニリデン充填物23Aおよび23Bに、微生物が付着し繁殖して、充填物がない状態に比べて、微生物がより安定化し、高濃度窒素排水に対する窒素処理能力が向上する。なお、この塩化ビニリデン充填物23A,23Bは、各水槽の全体に亘って配置することが好ましい。この場合、微生物濃度が各水槽の全体に高濃度に繁殖できる。   Thus, by filling the denitrification tank 3 and the nitrification tank 11 with the vinylidene chloride fillers 23A and 23B, the average concentration of the microorganisms in the denitrification tank 3 and the nitrification tank 11 is smaller than that in the case where there is no filler. High concentration. In addition, the microorganisms adhere to and propagate on the vinylidene chloride fillers 23A and 23B, so that the microorganisms are more stabilized and the nitrogen treatment capacity for the high-concentration nitrogen drainage is improved as compared with the state without the filler. In addition, it is preferable to arrange | position this vinylidene chloride filling 23A, 23B over the whole of each water tank. In this case, the microbial concentration can be propagated at a high concentration throughout each water tank.

この実施形態では、装置の試運転から時間の経過とともに塩化ビニリデン充填物23A,23Bに微生物が繁殖する。この塩化ビニリデン充填物23A,23Bの表面の微生物濃度は30000ppm以上となり、窒素の処理効率の向上につながる。この塩化ビニリデン充填物23A,23Bの材質は、強固で化学物質に侵されない塩化ビニリデンであり、半永久的に使用できる。この塩化ビニリデン充填物23としては、一例として、バイオコード、リングレース、バイオマルチリーフ、バイオモジュール等の商品があるが、排水の性状に合わせて選定すれば良い。   In this embodiment, microorganisms propagate on the vinylidene chloride fillings 23A and 23B with the passage of time from the trial operation of the apparatus. The microbial concentration on the surfaces of the vinylidene chloride fillers 23A and 23B becomes 30000 ppm or more, which leads to an improvement in nitrogen treatment efficiency. The material of the vinylidene chloride fillings 23A and 23B is vinylidene chloride which is strong and not affected by chemical substances, and can be used semipermanently. Examples of the vinylidene chloride filling 23 include products such as biocodes, ring laces, biomulti-leafs, biomodules, and the like, which may be selected according to the properties of the waste water.

(第3の実施の形態)
次に、図3に、この発明の排水処理装置の第3実施形態を示す。この第3実施形態は、光触媒槽18の後段に、ピット25とピットポンプ26および返送配管L20を設置した点が、前述の第1実施形態と異なる。
(Third embodiment)
Next, FIG. 3 shows a third embodiment of the waste water treatment apparatus of the present invention. The third embodiment is different from the first embodiment described above in that a pit 25, a pit pump 26, and a return pipe L20 are installed in the subsequent stage of the photocatalyst tank 18.

この第3実施形態では、光触媒槽18の出口からの処理水は、ピット25に導入される。そして、このピット25に導入された処理水は、一部がピットポンプ25および返送配管L20を経由して、硝化槽11の上部の好気部12に返送される。これにより、上記返送された処理水は、硝化槽11で再度処理されるので、処理水質を向上できる。   In the third embodiment, treated water from the outlet of the photocatalyst tank 18 is introduced into the pit 25. A part of the treated water introduced into the pit 25 is returned to the aerobic portion 12 at the upper part of the nitrification tank 11 via the pit pump 25 and the return pipe L20. Thereby, since the returned treated water is processed again in the nitrification tank 11, the quality of the treated water can be improved.

(第4の実施の形態)
次に、図4に、この発明の排水処理装置の第4の実施形態を示す。この第4実施形態は、光触媒槽18の後段に、ピット25とピットポンプ26および返送配管L30を設置した点が、前述の第1実施形態と異なる。
(Fourth embodiment)
Next, FIG. 4 shows a fourth embodiment of the waste water treatment apparatus of the present invention. The fourth embodiment is different from the first embodiment described above in that a pit 25, a pit pump 26, and a return pipe L30 are installed at the subsequent stage of the photocatalyst tank 18.

この第4実施形態では、光触媒槽18の出口からの処理水は、ピット25に導入される。そして、このピット25に導入された処理水は、一部がピットポンプ25および返送配管L30を経由して、脱窒槽3に返送される。したがって、この返送された処理水は、脱窒槽3と硝化槽11で再度処理される。したがって、この脱窒槽3と硝化槽11での繰り返し処理によって、処理水質をさらに向上できる。   In the fourth embodiment, treated water from the outlet of the photocatalyst tank 18 is introduced into the pit 25. A part of the treated water introduced into the pit 25 is returned to the denitrification tank 3 via the pit pump 25 and the return pipe L30. Accordingly, the returned treated water is treated again in the denitrification tank 3 and the nitrification tank 11. Therefore, the treatment water quality can be further improved by the repeated treatment in the denitrification tank 3 and the nitrification tank 11.

なお、上記第1〜第4実施形態では、図1〜4に実線で示すように、脱窒槽3の上部9から流路41,42,43を経由して硝化槽11の下部の半嫌気部13に窒素排水を導入したが、流路42に替えて、一点鎖線で描いた流路37,マイクロナノバブル発生槽34,一点鎖線で描いた流路38を備えた場合には、上記第1〜第4実施形態の変形例となる。   In the first to fourth embodiments, as shown by solid lines in FIGS. 1 to 4, the semi-anaerobic portion at the lower part of the nitrification tank 11 from the upper part 9 of the denitrification tank 3 through the flow paths 41, 42, 43. In the case where the nitrogen drainage is introduced into the flow path 13, instead of the flow path 42, when the flow path 37 drawn by a one-dot chain line, the micro / nano bubble generation tank 34, and the flow path 38 drawn by a one-dot chain line are provided, This is a modification of the fourth embodiment.

この変形例では、脱窒槽3の上部9からの被処理水が、流路41,流路38を通って自然流下でマイクロナノバブル発生槽34に導入される。このマイクロナノバブル発生槽34内には、図1〜図4に示すように、マイクロナノバブル発生機31が設置され、このマイクロナノバブル発生機31には空気吸い込み配管33からの空気がバルブ32で調整されながら導入される。また、マイクロナノバブル発生機31には、マイクロナノバブル発生槽34内の被処理水が循環ポンプ30によって送水管36から例えば1.5kg/cm以上の圧力で送水される。これにより、マイクロナノバブル発生機31は、マイクロナノバブルを効率良く発生させる。よって、マイクロナノバブル発生槽34では、上記被処理水にマイクロナノバブルを含有させて、マイクロナノバブルを含む被処理水をマイクロナノバブル発生槽ポンプ35によって、流路37,流路43を経由して硝化槽11に導入する。これにより、硝化槽11に繁殖している好気性微生物が、マイクロナノバブルによって活性化され、アンモニア性窒素の硝化効率を飛躍的に向上できる。
ここで、上記マイクロナノバブル発生機31を例えばタイマー運転(一例としては20分/日程度)することで、嫌気性微生物に対してストレスを与えない様にすることができる。また、上記タイマー運転(一例として20分/日、もしくは20分未満/日)により、半嫌気部13の半嫌気状態を崩さない様にすることができる。
In this modification, the water to be treated from the upper part 9 of the denitrification tank 3 is introduced into the micro / nano bubble generation tank 34 through the flow path 41 and the flow path 38 under natural flow. As shown in FIGS. 1 to 4, a micro / nano bubble generator 31 is installed in the micro / nano bubble generation tank 34, and air from an air suction pipe 33 is adjusted by a valve 32 in the micro / nano bubble generator 31. While being introduced. In addition, the water to be treated in the micro / nano bubble generation tank 34 is supplied to the micro / nano bubble generator 31 from the water supply pipe 36 by the circulation pump 30 at a pressure of, for example, 1.5 kg / cm 2 or more. Thereby, the micro / nano bubble generator 31 efficiently generates micro / nano bubbles. Therefore, in the micro / nano bubble generation tank 34, the water to be treated is made to contain micro / nano bubbles, and the water to be treated containing the micro / nano bubbles is supplied to the nitrification tank by the micro / nano bubble generation tank pump 35 via the flow path 37 and the flow path 43. 11 is introduced. Thereby, the aerobic microorganisms breeding in the nitrification tank 11 are activated by the micro / nano bubbles, and the nitrification efficiency of ammonia nitrogen can be dramatically improved.
Here, the micro / nano bubble generator 31 is operated by, for example, a timer (for example, about 20 minutes / day), so that no stress is applied to the anaerobic microorganisms. Further, the semi-anaerobic state of the semi-anaerobic portion 13 can be prevented from being destroyed by the timer operation (for example, 20 minutes / day or less than 20 minutes / day).

また、上記変形例において、調整槽1の前段に上述のマイクロナノバブル発生槽34と同様のマイクロナノバブル発生槽を設置して、マイクロナノバブルを含有する窒素排水を調整槽1に導入するようにしてもよい。この場合には、上記窒素排水が含有するマイクロナノバブルによって、脱窒槽3や硝化槽11の槽内全ての微生物の活性を促進でき、微生物処理を促進できる。   Further, in the above modification, a micro-nano bubble generation tank similar to the above-described micro-nano bubble generation tank 34 is installed in the previous stage of the adjustment tank 1, and nitrogen drainage containing micro-nano bubbles is introduced into the adjustment tank 1. Good. In this case, the activity of all microorganisms in the denitrification tank 3 and the nitrification tank 11 can be promoted by the micro / nano bubbles contained in the nitrogen waste water, and the microorganism treatment can be promoted.

なお、上記第1〜第4実施形態において、硝化槽11内の好気部12の散気管15Aの近くに、上記マイクロナノバブル発生機31,空気吸い込み配管33,循環ポンプ30,送水管36と同様のマイクロナノバブル発生機,空気吸い込み配管,循環ポンプ,送水管を配置して、好気部12においてマイクロナノバブルを発生させてもよい。   In the first to fourth embodiments, the micro / nano bubble generator 31, the air suction pipe 33, the circulation pump 30, and the water supply pipe 36 are located near the air diffuser 15 </ b> A of the aerobic section 12 in the nitrification tank 11. A micro / nano bubble generator, an air suction pipe, a circulation pump, and a water supply pipe may be arranged to generate micro / nano bubbles in the aerobic part 12.

(実験例)
図1に示す第1実施形態の排水処理装置と同じ構造の実験装置を製作した。この実験装置における調整槽1の容量は50リットル、脱窒槽3の容量は100リットル、硝化槽11の容量は200リットル、光触媒槽18の容量は20リットルである。この実験装置での約2ケ月間に渡る微生物の訓養終了後、微生物濃度を22000ppmとして、工場の生産装置から排水される窒素濃度3320ppmの過酸化水素含有高濃度窒素排水を、被処理水として、アミノエタノール含有排水および生物処理汚泥と共に、調整槽1に連続的に導入した。
(Experimental example)
An experimental apparatus having the same structure as the waste water treatment apparatus of the first embodiment shown in FIG. 1 was manufactured. In this experimental apparatus, the capacity of the adjustment tank 1 is 50 liters, the capacity of the denitrification tank 3 is 100 liters, the capacity of the nitrification tank 11 is 200 liters, and the capacity of the photocatalyst tank 18 is 20 liters. After the training of microorganisms in this experimental apparatus for about two months, the microorganism concentration is set to 22000 ppm, and the high concentration nitrogen wastewater containing hydrogen peroxide with a nitrogen concentration of 3320 ppm discharged from the factory production equipment is used as treated water. Then, it was continuously introduced into the adjusting tank 1 together with the aminoethanol-containing waste water and the biological treatment sludge.

その後、1ケ間、水質が安定するのを待って、光触媒槽18の出口の窒素濃度を測定したところ、8ppmであった。   Then, after waiting for the water quality to stabilize for one month, the nitrogen concentration at the outlet of the photocatalyst tank 18 was measured and found to be 8 ppm.

なお、図5Aに、上記第1〜第4実施形態での過酸化水素含有高濃度窒素排水における窒素濃度が2000ppm、過酸化水素濃度が10ppmの場合のタイムチャートの一例を示す。また、図5Bに、上記第1〜第4実施形態での過酸化水素含有高濃度窒素排水における窒素濃度が4000ppm、過酸化水素濃度が20ppmの場合のタイムチャートの一例を示す。   FIG. 5A shows an example of a time chart when the nitrogen concentration in the hydrogen peroxide-containing high-concentration nitrogen drainage in the first to fourth embodiments is 2000 ppm and the hydrogen peroxide concentration is 10 ppm. FIG. 5B shows an example of a time chart when the nitrogen concentration in the hydrogen peroxide-containing high-concentration nitrogen drainage in the first to fourth embodiments is 4000 ppm and the hydrogen peroxide concentration is 20 ppm.

この発明の排水処理装置の第1実施形態とその一変形例を模式的に示す図である。It is a figure which shows typically 1st Embodiment of the waste water treatment equipment of this invention, and its modification. この発明の排水処理装置の第2実施形態とその一変形例を模式的に示す図である。It is a figure which shows typically 2nd Embodiment of the waste water treatment equipment of this invention, and its modification. この発明の排水処理装置の第3実施形態とその一変形例を模式的に示す図である。It is a figure which shows typically 3rd Embodiment of the waste water treatment equipment of this invention, and its modification. この発明の排水処理装置の第4実施形態とその一変形例を模式的に示す図である。It is a figure which shows typically 4th Embodiment of the waste water treatment equipment of this invention, and its modification. 上記第1〜第4実施形態での過酸化水素含有高濃度窒素排水における窒素濃度が2000ppm、過酸化水素濃度が10ppmの場合のタイムチャートの一例である。It is an example of the time chart in case the nitrogen concentration in the hydrogen peroxide containing high concentration nitrogen waste_water | drain in the said 1st-4th embodiment is 2000 ppm, and a hydrogen peroxide concentration is 10 ppm. 上記第1〜第4実施形態での過酸化水素含有高濃度窒素排水における窒素濃度が4000ppm、過酸化水素濃度が40ppmの場合のタイムチャートの一例である。It is an example of the time chart in case the nitrogen concentration in the hydrogen peroxide containing high concentration nitrogen waste_water | drain in the said 1st-4th embodiment is 4000 ppm and hydrogen peroxide concentration is 40 ppm.

符号の説明Explanation of symbols

1 調整槽
2 調整槽ポンプ
3、3N 脱窒槽
4A、4B 分離壁
5 散気管
6 仕切板
7 脱窒槽用ブロワー
8 脱窒槽下部
9 脱窒槽上部
10 返送汚泥ポンプ
11、11N 硝化槽
12 好気部
13 半嫌気部
14 仕切板
15 散気管
16 液中膜
17 重力配管
18 光触媒槽
19 UV光線発生部
20 光触媒板
21 硝化槽ブロワー
23A、23B 塩化ビニリデン充填物
24 下部ホッパー部
25 ピット
26 ピットポンプ
W1、W2、W11、W12 水流
30 循環ポンプ
31 マイクロナノバブル発生機
32 バルブ
33 空気吸い込み配管
34 マイクロナノバブル発生槽
35 マイクロナノバブル発生槽ポンプ
36 送水管
37、38、41〜43 流路
1 Adjustment tank 2 Adjustment tank pump
3, 3N Denitrification tank 4A, 4B Separation wall 5 Aeration pipe 6 Partition plate 7 Denitrification tank blower 8 Denitrification tank lower part 9 Denitrification tank upper part 10 Return sludge pump 11, 11N Nitrification tank 12 Aerobic part 13 Semi-anaerobic part 14 Partition plate 15 Aeration pipe 16 Submerged film 17 Gravity pipe 18 Photocatalyst tank 19 UV light generation part 20 Photocatalyst plate 21 Nitrification tank blower 23A, 23B Filling with vinylidene chloride 24 Lower hopper part 25 Pit 26 Pit pumps W1, W2, W11, W12 Water flow 30 Circulation Pump 31 Micro-nano bubble generator 32 Valve 33 Air suction pipe 34 Micro-nano bubble generation tank 35 Micro-nano bubble generation tank pump 36 Water supply pipe 37, 38, 41-43 Flow path

Claims (16)

過酸化水素を含有する窒素排水を液中膜を用いて微生物処理する微生物処理工程と、
上記液中膜から導出された処理水を光触媒処理する光触媒処理工程とを備えることを特徴とする排水処理方法。
A microbial treatment process for treating microbial wastewater containing hydrogen peroxide using a submerged membrane;
A wastewater treatment method comprising: a photocatalytic treatment step of photocatalytically treating treated water derived from the submerged membrane.
過酸化水素を含有する窒素排水が導入されると共に液中膜を有し、上記窒素排水を微生物処理する微生物処理部と、
上記微生物処理部の液中膜から導出された処理水が導入されると共に上記処理水を光触媒処理する光触媒部とを備えることを特徴とする排水処理装置。
A microbial treatment section for introducing a nitrogen wastewater containing hydrogen peroxide and having a submerged membrane to microbially treat the nitrogen wastewater;
A wastewater treatment apparatus comprising: a treated water derived from a submerged membrane of the microorganism treatment unit; and a photocatalyst unit for photocatalytically treating the treated water.
請求項1に記載の排水処理方法において、
上記窒素排水にアミノエタノール含有排水を加え合わせて処理することを特徴とする排水処理方法。
The waste water treatment method according to claim 1,
A wastewater treatment method characterized by adding aminoethanol-containing wastewater to the nitrogen wastewater for treatment.
請求項1に記載の排水処理方法において、
上記窒素排水に、生物処理された処理水または生物処理で生じた汚泥を加え合わせて処理することを特徴とする排水処理方法。
The waste water treatment method according to claim 1,
A wastewater treatment method characterized by adding and treating biologically treated water or sludge generated by biological treatment to the nitrogen wastewater.
請求項2に記載の排水処理装置において、
上記微生物処理部は、
上記窒素排水が導入される調整槽と、
上記調整槽からの処理水が導入されると共にエアーリフト方式で撹拌する撹拌部を有する脱窒槽と、
上記脱窒槽からの処理水が導入されると共にエアーリフト方式で撹拌する撹拌部を有する硝化槽とを有し、
上記脱窒槽の撹拌部は、上記脱窒槽の上部と下部の間に配置された分離壁と、上記脱窒槽内で上下に延びる仕切板と、上記上部と下部の間に配置された散気管とを含み、
上記硝化槽の撹拌部は、上記硝化槽の上部と下部の間に配置された分離壁と、上記硝化槽内で上下に延びる仕切板と、上記上部と下部の間に配置された散気管とを含むことを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 2,
The microorganism treatment unit is
An adjustment tank into which the nitrogen drainage is introduced;
A denitrification tank having an agitating part for introducing treated water from the adjustment tank and agitating by an air lift method,
The treatment water from the denitrification tank is introduced and has a nitrification tank having a stirring portion for stirring by an air lift method.
The stirring unit of the denitrification tank includes a separation wall disposed between an upper part and a lower part of the denitrification tank, a partition plate extending vertically in the denitrification tank, and an air diffuser pipe disposed between the upper part and the lower part. Including
The stirring section of the nitrification tank includes a separation wall disposed between an upper part and a lower part of the nitrification tank, a partition plate extending vertically in the nitrification tank, and an air diffuser disposed between the upper part and the lower part. A wastewater treatment apparatus comprising:
請求項2に記載の排水処理装置において、
上記微生物処理部での微生物濃度をMLSS(混合液懸濁物質)濃度で15000ppm以上とすることを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 2,
A wastewater treatment apparatus characterized in that the microorganism concentration in the microorganism treatment section is 15000 ppm or more in terms of MLSS (mixed liquid suspended substance) concentration.
請求項2に記載の排水処理装置において、
上記光触媒部は、
紫外線照射部と、
上記処理水に接触すると共に上記紫外線照射部からの紫外線が照射される光触媒板とを有する光触媒槽であることを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 2,
The photocatalyst part is
An ultraviolet irradiation unit;
A wastewater treatment apparatus, comprising a photocatalyst tank in contact with the treated water and having a photocatalyst plate irradiated with ultraviolet rays from the ultraviolet irradiation unit.
請求項2に記載の排水処理装置において、
上記微生物処理部は、
上記液中膜の下方に配置されていると共に上記液中膜を洗浄し、かつ、処理水を撹拌する散気管を有することを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 2,
The microorganism treatment unit is
A wastewater treatment apparatus, which is disposed below the submerged membrane and has an air diffuser for washing the submerged membrane and stirring the treated water.
請求項7に記載の排水処理装置において、
上記光触媒槽が有する光触媒板が無機多孔質であることを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 7,
A wastewater treatment apparatus, wherein the photocatalyst plate of the photocatalyst tank is inorganic porous.
請求項5に記載の排水処理装置において、
上記光触媒部で光触媒処理した処理水を、上記微生物処理部の脱窒槽に返送する返送部を有することを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 5,
A wastewater treatment apparatus comprising a return unit that returns treated water photocatalyzed by the photocatalyst unit to a denitrification tank of the microorganism treatment unit.
請求項5に記載の排水処理装置において、
上記光触媒部で光触媒処理した処理水を、上記微生物処理部の硝化槽に返送する返送部を有することを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 5,
A wastewater treatment apparatus comprising a return unit that returns treated water photocatalyzed by the photocatalyst unit to a nitrification tank of the microorganism treatment unit.
請求項7に記載の排水処理装置において、
上記紫外線照射部が光触媒板に照射する紫外線の強度を、1mW/cm程度または500μW/cm乃至3mW/cmとしたことを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 7,
Waste water treatment apparatus, characterized in that the ultraviolet irradiation unit is an intensity of the irradiated ultraviolet ray to the photocatalyst plate, it was 1 mW / cm 2 of about or 500 W / cm 2 to 3 mW / cm 2.
請求項7に記載の排水処理装置において、
上記光触媒板は、酸化チタン、酸化亜鉛、酸化ニオブ、チタン酸ストロンチウム、タンタル酸カリウム、酸化タングステンのうちのいずれか1つの化合物で作製されていることを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 7,
The waste water treatment apparatus, wherein the photocatalyst plate is made of any one compound of titanium oxide, zinc oxide, niobium oxide, strontium titanate, potassium tantalate, and tungsten oxide.
請求項1に記載の排水処理方法において、
上記窒素排水は、マイクロナノバブルを含む排水であることを特徴とする排水処理方法。
The waste water treatment method according to claim 1,
The nitrogen waste water is waste water containing micro / nano bubbles.
請求項2に記載の排水処理装置において、
上記窒素排水は、マイクロナノバブルを含む排水であることを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 2,
The waste water treatment apparatus, wherein the nitrogen waste water is waste water containing micro / nano bubbles.
請求項5に記載の排水処理装置において、
上記脱窒槽からの被処理水が導入されると共に上記被処理水にマイクロナノバブルを含有させてから上記硝化槽に導入するマイクロナノバブル発生槽を設けたことを特徴とする排水処理装置。
The waste water treatment apparatus according to claim 5,
A wastewater treatment apparatus comprising a micro / nano bubble generation tank that introduces water to be treated from the denitrification tank and introduces micro / nano bubbles into the water to be treated and then introduces the water into the nitrification tank.
JP2006032578A 2005-03-25 2006-02-09 Wastewater treatment equipment Expired - Fee Related JP4782576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032578A JP4782576B2 (en) 2005-03-25 2006-02-09 Wastewater treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005087960 2005-03-25
JP2005087960 2005-03-25
JP2006032578A JP4782576B2 (en) 2005-03-25 2006-02-09 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2006297374A true JP2006297374A (en) 2006-11-02
JP4782576B2 JP4782576B2 (en) 2011-09-28

Family

ID=37466096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032578A Expired - Fee Related JP4782576B2 (en) 2005-03-25 2006-02-09 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4782576B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP2008149265A (en) * 2006-12-18 2008-07-03 Sharp Corp Bioreaction apparatus
WO2009099208A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating radioactive nitrate waste liquid
JPWO2009063737A1 (en) * 2007-11-15 2011-03-31 宇部興産株式会社 Water purification device and water purification method
KR101202906B1 (en) * 2010-06-07 2012-11-19 이은주 Method and devices to treat wastewater by recycling hybrid system
JP2013075248A (en) * 2011-09-29 2013-04-25 Miike Iron Works Co Ltd Vacuum fermentation dryer
KR101277377B1 (en) * 2012-06-10 2013-06-20 이은주 Hybrid-devices to treat wastewater with a synergy effect

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2964891C (en) 2014-10-22 2021-11-09 Koch Membrane Systems, Inc. Membrane filter module with bundle-releasing gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305295A (en) * 1992-04-28 1993-11-19 Shin Etsu Handotai Co Ltd Method for treating drainage containing hydrogen peroxide and apparatus for the same
JPH0910797A (en) * 1995-06-30 1997-01-14 Ebara Corp Treatment of excretion type sewage
JPH09174096A (en) * 1995-12-25 1997-07-08 Ebara Corp Method for treating excretory sewage and apparatus therefor
JPH09290293A (en) * 1996-04-25 1997-11-11 Daikin Ind Ltd Fluid purifying device
JPH09314177A (en) * 1996-05-28 1997-12-09 Sharp Corp Method and apparatus for treating organic waste water
JPH10202293A (en) * 1997-01-20 1998-08-04 Japan Organo Co Ltd Method and device for biologically nitrating nitrogen-containing waste water
JPH10314787A (en) * 1997-05-16 1998-12-02 Mitsubishi Heavy Ind Ltd Method for treatment of waste water containing ethanolamine
JP2001058197A (en) * 1999-08-24 2001-03-06 Mitsubishi Heavy Ind Ltd Treatment of wastewater
JP2001259688A (en) * 2000-03-16 2001-09-25 Kurita Water Ind Ltd Waste liquid treating method
JP2001334275A (en) * 2000-05-26 2001-12-04 Shin Etsu Handotai Co Ltd Method for treating wastewater from wafer processing process
JP2003094086A (en) * 2001-09-26 2003-04-02 Kubota Corp Immersion-type membrane separation activating sludge treating equipment
JP2003205298A (en) * 2002-01-15 2003-07-22 Uno Juko Kk Treatment apparatus for sewage containing domestic animal urine
JP2003311279A (en) * 2002-04-23 2003-11-05 Kurita Water Ind Ltd Apparatus and method for treating waste water
JP2004097856A (en) * 2002-09-04 2004-04-02 Masuda Shokai:Kk Equipment and method for waste liquid treatment
JP2004305814A (en) * 2003-04-02 2004-11-04 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305295A (en) * 1992-04-28 1993-11-19 Shin Etsu Handotai Co Ltd Method for treating drainage containing hydrogen peroxide and apparatus for the same
JPH0910797A (en) * 1995-06-30 1997-01-14 Ebara Corp Treatment of excretion type sewage
JPH09174096A (en) * 1995-12-25 1997-07-08 Ebara Corp Method for treating excretory sewage and apparatus therefor
JPH09290293A (en) * 1996-04-25 1997-11-11 Daikin Ind Ltd Fluid purifying device
JPH09314177A (en) * 1996-05-28 1997-12-09 Sharp Corp Method and apparatus for treating organic waste water
JPH10202293A (en) * 1997-01-20 1998-08-04 Japan Organo Co Ltd Method and device for biologically nitrating nitrogen-containing waste water
JPH10314787A (en) * 1997-05-16 1998-12-02 Mitsubishi Heavy Ind Ltd Method for treatment of waste water containing ethanolamine
JP2001058197A (en) * 1999-08-24 2001-03-06 Mitsubishi Heavy Ind Ltd Treatment of wastewater
JP2001259688A (en) * 2000-03-16 2001-09-25 Kurita Water Ind Ltd Waste liquid treating method
JP2001334275A (en) * 2000-05-26 2001-12-04 Shin Etsu Handotai Co Ltd Method for treating wastewater from wafer processing process
JP2003094086A (en) * 2001-09-26 2003-04-02 Kubota Corp Immersion-type membrane separation activating sludge treating equipment
JP2003205298A (en) * 2002-01-15 2003-07-22 Uno Juko Kk Treatment apparatus for sewage containing domestic animal urine
JP2003311279A (en) * 2002-04-23 2003-11-05 Kurita Water Ind Ltd Apparatus and method for treating waste water
JP2004097856A (en) * 2002-09-04 2004-04-02 Masuda Shokai:Kk Equipment and method for waste liquid treatment
JP2004305814A (en) * 2003-04-02 2004-11-04 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP4485444B2 (en) * 2005-09-28 2010-06-23 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP2008149265A (en) * 2006-12-18 2008-07-03 Sharp Corp Bioreaction apparatus
JPWO2009063737A1 (en) * 2007-11-15 2011-03-31 宇部興産株式会社 Water purification device and water purification method
WO2009099208A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating radioactive nitrate waste liquid
JP4774120B2 (en) * 2008-02-08 2011-09-14 三菱重工業株式会社 Apparatus and method for treating radioactive nitrate waste liquid
US8409438B2 (en) 2008-02-08 2013-04-02 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating radioactive nitrate waste liquid
KR101202906B1 (en) * 2010-06-07 2012-11-19 이은주 Method and devices to treat wastewater by recycling hybrid system
JP2013075248A (en) * 2011-09-29 2013-04-25 Miike Iron Works Co Ltd Vacuum fermentation dryer
KR101277377B1 (en) * 2012-06-10 2013-06-20 이은주 Hybrid-devices to treat wastewater with a synergy effect

Also Published As

Publication number Publication date
JP4782576B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4088630B2 (en) Wastewater treatment equipment
JP3893402B2 (en) Exhaust gas wastewater treatment apparatus and exhaust gas wastewater treatment method
CN101132992B (en) Method of wastewater treatment and wastewater treatment equipment
JP4782576B2 (en) Wastewater treatment equipment
KR940000563B1 (en) Waste water treating method and apparatus
JP4212588B2 (en) Waste water treatment apparatus and waste water treatment method
US7575684B2 (en) Waste water treatment apparatus and waste water treatment method
JP6750930B6 (en) Sewage purification system
KR0180853B1 (en) Ultrapure water production system having pretreatment system for paper forming both anerobic and aerobic organism treatment
JP5808663B2 (en) Method and apparatus for treating 1,4-dioxane in wastewater
JP4490908B2 (en) Wastewater treatment equipment
KR20160042774A (en) Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP2007319783A (en) Waste water treatment method and waste water treatment equipment
JP4490848B2 (en) Waste water treatment apparatus and waste water treatment method
KR100460942B1 (en) Process for Treating Waste Water and Device Thereof Using Septic Tank and Sequencing Batch Reactor
JP2001300581A (en) Waste water treating method
JP2008036467A (en) Control system for biological treatment tank
JPH0716673B2 (en) Wastewater treatment method
CN118591513A (en) Method and system for water treatment using improved advanced oxidation technology
JPH10249358A (en) Treatment of paper pulp waste water and its treatment equipment
KR20170000749A (en) Sbr wastewater treatment system using soil microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees