JP3731520B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3731520B2
JP3731520B2 JP2001307314A JP2001307314A JP3731520B2 JP 3731520 B2 JP3731520 B2 JP 3731520B2 JP 2001307314 A JP2001307314 A JP 2001307314A JP 2001307314 A JP2001307314 A JP 2001307314A JP 3731520 B2 JP3731520 B2 JP 3731520B2
Authority
JP
Japan
Prior art keywords
conductivity type
region
vertical
layer
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001307314A
Other languages
Japanese (ja)
Other versions
JP2003115589A (en
Inventor
高広 佐藤
勝典 上野
進 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001307314A priority Critical patent/JP3731520B2/en
Publication of JP2003115589A publication Critical patent/JP2003115589A/en
Application granted granted Critical
Publication of JP3731520B2 publication Critical patent/JP3731520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(伝導度変調型MOSFET)、バイポーラトンラジスタ等の能動素子やダイオード等の受動素子に適用可能で高耐圧化と大電流容量化が両立する縦形パワー半導体装置及びその製造方法に関する。
【0002】
基板の両面に電極部を備えてその基板の厚さ方向に電流を流す縦形ドリフト部を持つ縦形半導体装置においては、オン抵抗(電流容量)と耐圧との間にはトレードオフ関係が存在することから、縦形ドリフト部として、不純物濃度を高めたn型の縦形領域とp型の縦形領域とを基板の横方向へ交互に繰り返した並列pn構造を採用することが知られている。しかし、この並列pn構造の縦形ドリフト部では速く空乏化するものの、ドリフト部の周りの耐圧構造部では空乏層が外方向や基板深部へは拡がり難く、電界強度がシリコンの臨界電界強度に速く達し、耐圧構造部で耐圧が低下してしまうので、耐圧構造部にも並列pn構造を採用することが知られている。
【0003】
図9は縦形MOSFETにおけるドリフト部及び素子外周部(耐圧構造部)を示す平面図、図10は図9中のA−A′線に沿って切断した状態を示す縦断面図、図11は図9中のB−B′線に沿って切断した状態を示す縦断面図である。なお、図9ではドリフト部の1/4を斜線部分で示してある。
【0004】
このnチャネル縦形MOSFETは、裏側のドレイン電極18が導電接触した低抵抗のnドレイン層(コンタクト層)11の上に形成された第1の並列pn構造のドレイン・ドリフト部22と、このドリフト部22の表面層に選択的に形成された素子活性領域たる高不純物濃度のpベース領域(pウェル,チャネル領域)13aと、そのpベース領域13a内の表面側に選択的に形成された高不純物濃度のnソース領域14と、基板表面上にゲート絶縁膜15を介して設けられたポリシリコン等のゲート電極層16と、層間絶縁膜19aに開けたコンタクト孔を介してpベース領域13a及びnソース領域14に跨って導電接触するソース電極17とを有している。ウェル状のpベース領域13aの中にnソース領域14が浅く形成されており、2重拡散型MOS部を構成している。なお、26はpコンタクト領域で、また、図示しない部分でゲート電極層16の上に金属膜のゲート配線が導電接触している。
【0005】
第1の並列pn構造のドレイン・ドリフト部22は、基板の厚み方向に層状縦形のn型ドリフト電路領域22aと基板の厚み方向に層状縦形のp型仕切領域22bとを交互に繰り返して接合した構造である。n型のドリフト電路領域22aは、その上端がpベース領域13aの挾間領域12eに達し、その下端がnドレイン層11に接している。また、p型の仕切領域22bは、その上端がpベース領域13aのウェル底面に接し、その下端がnドレイン層11に接している。
【0006】
基板表面とnドレイン層11との間で縦形ドリフト部22の周りの耐圧構造部20には、基板の厚さ方向に配向する層状縦形のn型領域20aと、基板の厚さ方向に配向する層状縦形のp型領域20bとを交互に繰り返して接合して成る第2の並列pn構造が形成されている。耐圧構造部20の第2の並列pn構造の表面上には、表面保護及び安定化のために、熱酸化膜又は燐シリカガラス(PSG)から成る酸化膜(絶縁膜)23が成膜されている。
【0007】
耐圧構造部20の表面側にはpベース領域を取り囲むように多重のp型リング20cが巡らされている。このp型リング20cは第2の並列pn構造の多数のp型領域20bと電気的に接続するものである。
【0008】
ゲートをソースにショートし、ドレイン電位を正に高めていくと、ドリフト部22の第1の並列pn構造は、n型ドリフト電路領域22aがnドレイン層(コンタクト層)11に導電接続していると共にp型の仕切領域22bがpベース領域13aに導電接続しているため、早期に空乏化し、ドリフト部22から耐圧構造部20へと空乏層が拡張する。ここで、p型リング20cがない場合、耐圧構造部20の第2の並列pn構造のうち、一端がpベース領域13a又はドリフト部22の仕切領域22bに直接接続しているp型領域20bb(図9のドリフト部22からY方向の領域)ではY方向に空乏層が拡張するものの、一端がpベース領域13a又はドリフト部22の仕切領域22bに直接接続していないp型領域20baは電位浮遊状態でガードリングとしてのみ機能するために、ドリフト部22から空乏層のX方向への拡張が弱く、臨界電界に達し易い。ところが、p型リング20cが存在すると、一端がpベース領域13a又はドリフト部22の仕切領域22bに直接接続していないp型領域20baはp型リング20cを介して一端がpベース領域13a又はドリフト部22の仕切領域22bに直接接続しているp型領域20bbに電気的に接続されているため、p型領域20baの電位浮遊状態が解消し、p型領域20baはソース電位側に固定されるので、p型領域20baでのpn接合も確実に逆バイアスになり、空乏層がドリフト部22からX方向へ拡張する。従って、高耐圧化を図ることができる。
【0009】
【発明が解決しようとする課題】
しかしながら、図9乃至図11に示す縦形MOSFETにあっては、次のような問題点があった。
【0010】
即ち、並列pn構造はエピタキシャル層の成長と選択的イオン打ち込みとを繰り返した後熱拡散で形成するものであるから、耐圧構造部20の並列pn構造はドリフト部22の並列pn構造と同時に形成される。耐圧構造部20の並列pn構造はドリフト部22のオン抵抗の低減のために不純物濃度が高くなっているため、p型領域20bbのp型リング20cまでの距離に応じた電圧降下が少ないので、複数のp型リング20c間に相互電位差が現れ難く、耐圧構造部20の表面電界が緩和され難くなる。耐圧構造部20のp型領域20bの幅がドレイン部22の仕切領域22bの幅よりも狭いと、抵抗断面の縮小によりp型領域20bの距離に応じた電圧降下が現れるため、p型領域20bとp型リング20cとの交差点の電位はある程度ドレイン部22からの距離に応じた電位となるものの、p型リング20cの本数が増える。これでは、リング間隔を拡げざるを得ないため、耐圧構造部20の占有面積の拡大を招き、集積化の障害になる。
【0011】
そこで、上記問題点に鑑み、本発明の課題は、ドリフト部の周りの耐圧構造部が並列pn構造を有する半導体装置において、その耐圧構造部の占有面積の拡大を招かずに、耐圧構造部の表面電界を緩和でき、高耐圧化を図ることができる半導体装置及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る半導体装置の基本構造は、基板の第1主面側に形成された素子活性部に導電接続する第1の電極層と、基板の第2主面側に形成された第1導電型の低抵抗層に導電接続する第2の電極層と、素子活性部と低抵抗層との間に介在し、オン状態ではドリフト電流を縦方向に流すと共にオフ状態では空乏化する縦形ドリフト部と、縦形ドリフト部の周りで第1主面と低抵抗層との間に介在し、オフ状態では空乏化する耐圧構造部とを有し、縦形ドリフト部及び耐圧構造部が基板の厚み方向に配向する縦形第1導電型領域と基板の厚み方向に配向する縦形第2導電型領域とを交互に繰り返して接合して成る並列pn構造を有する。ここで、基板の第1主面側に形成された素子活性部とは、例えば縦型MOSFETの場合は第1主面側で反転層を形成するチャネル拡散層とソース領域を含むスイッチング部、バイポーラトランジスタの場合はエミッタ又はコレクタ領域を含むスイッチング部であり、ドリフト部の第1主面側の能動又は受動部分を指す。
【0013】
そして、本発明においては、耐圧構造部が、並列pn構造の第1主面側に接続する第1導電型の高抵抗層を有し、耐圧構造部の並列pn構造の長さがドリフト部の並列pn構造の長さよりも短いことを特徴する。第1導電型の高抵抗層がない並列pn構造の場合に比して、表面電界を緩和できる。この高抵抗層は第1導電型と第2導電型の不純物の双方をドープして形成することができる。
【0014】
また、本発明は、素子活性部の周りで縦形第2導電型領域に非接続で高抵抗層の主面側に形成された第2導電型のリングとを有することを特徴する。第2導電型のリングが耐圧構造部の縦形第2導電型領域に接続していないため、オフ状態の場合、耐圧構造部における縦形第2導電型領域の幅の広狭に拘わらず、第2導電型のリングには素子活性部又はドリフト部からの距離に応じた電圧降下が現れるので、耐圧構造部の表面電界が緩和される。
【0015】
第2導電型のリングが間隔をおいて複数形成されている構造では、リング間隔を拡げずとも、耐圧構造部の表面電界を緩和できるので、耐圧構造部の占有面積を縮小でき、高集積化を図ることができる。
【0016】
ここで、耐圧構造部の並列pn構造の長さはドリフト部の並列pn構造の長さよりも第1主面側において短いことが望ましい
【0017】
更に、耐圧構造部の並列pn構造のpn繰り返しピッチを縦形ドリフト部の並列pn構造のpn繰り返しピッチよりも狭くすることが望ましい。遮断瞬時では構造耐圧部での空乏層の拡張がドリフト部よりも早まり、ダイナミック・アバランシェ・ブレイクダウンが構造耐圧部では発生し難くなり、安定した耐圧の確保が可能である。
【0018】
耐圧構造部の周囲には第1導電型のチャネルストッパー領域が形成されていることが望ましい。漏れ電流を低減できる。このチャネルストッパー領域は側縁領域を介して低抵抗層に接続していても良い。耐圧構造部の周囲が第2電極層の電位となるため、耐圧構造部の占有面積を縮小化でき、また素子耐圧の安定化を図ることができる。
【0019】
次に、本発明は、基板の第1主面側に形成された素子活性部に導電接続する第1の電極層と、基板の第2主面側に形成された第1導電型の低抵抗層に導電接続する第2の電極層と、素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流を縦方向に流すと共にオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで第1主面と低抵抗層との間に介在し、オフ状態では空乏化する耐圧構造部とを有し、縦形ドリフト部及び耐圧構造部が基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とを交互に繰り返して接合して成る並列pn構造を有し、耐圧構造部は並列pn構造の主面側に接続する第1導電型の高抵抗層と素子活性部の周りで縦形第2導電型領域に非接続で前記高抵抗層の主面側に形成された第2導電型のリングとを有する半導体装置の製造方法に関する。
【0020】
この製造方法は、第1導電型の低抵抗基体上の縦形ドリフト部及び耐圧構造部を形成すべき領域において、第1導電型高抵抗のエピタキシャル層を成長させた後、そのエピタキシャル層に離散的に配置した不純物導入窓を介して第2の導電型の不純物イオンを選択的に導入する工程を繰り返す第1の段階と、次いで、新たに第1導電型高抵抗のエピタキシャル層を成長させた後、耐圧構造部を形成すべき領域をマスクした状態で、縦形ドリフト部を形成すべき領域において第2の導電型の不純物イオンを離散的に配置した不純物導入窓を介して選択的に導入する工程を少なくとも1回行う第2の段階と、しかる後、熱処理を施して各エピタキシャル層に選択的に導入した不純物を熱拡散させて層違いの熱拡散領域同士を上下相互に接続し、並列pn構造を形成する第3の段階と、を有することを特徴とする。なお、各エピタキシャル層毎の全面にイオン注入により第1導電型の不純物を導入し、形成される縦形のn型領域の不純物濃度を高め、縦形ドリフト部のオン抵抗の低減を図っても構わない。
【0021】
このように、各エピタキシャル層に仕込んだ不純物を最後に熱拡散させて会合させ、縦形第1導電型領域と縦形第2導電型領域とを一気に形成するものであるから、並列pn構造の形成が容易であるが、第2の段階では耐圧構造部のエピタキシャル層がマスクで覆われているため、不純物イオンの導入が阻止されているので、耐圧構造部の並列pn構造の長さはドリフト部のそれに比して短くすることができ、耐圧構造部の並列pn構造の上に形成される第1導電型高抵抗のエピタキシャル層に第2導電型のリングを形成できる。ドリフト部及び耐圧構造部の並列pn構造が同じ長さの場合に比し、特段のプロセス追加を招かずに済む。
【0022】
この製造方法においては、各エピタキシャル層毎の全面にイオン注入により第1導電型の不純物を導入する場合、上層側のエピタキシャル層での耐圧構造部では第1導電型の不純物導入を阻止するための専用のマスクの成膜及びその除去工程を必要とし、工程数の増加を招く。そこで、第2の段階としては、新たに第1導電型高抵抗のエピタキシャル層を成長させた後、全面に第1の導電型の不純物イオンを導入してから、耐圧構造部を形成すべき領域での不純物導入窓のピッチと窓幅が前記縦形ドリフト部を形成すべき領域でのピッチと窓幅よりも狭いマスクを形成して第2の導電型の不純物イオンを選択的に導入する工程を少なくとも1回行う方法を採用する。上層側のエピタキシャル層の耐圧構造部となるべき領域には、ドリフト部となるべき範囲での不純物導入窓のピッチ及び窓幅よりも狭いピッチ及び窓幅のマスクが覆われているので、熱拡散工程では、導入された分散的な狭限定領域の第2の不純物はその拡散により第1の不純物の拡散と混ざり合うことから、上層側のエピタキシャル層の耐圧構造部に当たる部分には第2導電型の領域が形成されず、略一様な第1導電型の高抵抗層が形成される。従って、第1導電型の不純物導入を阻止するための専用のマスクの成膜及びその除去工程を必要とせず、製造プロセスの簡略化と半導体装置の低コスト化を図ることができる。
【0023】
【発明の実施の形態】
[実施例1]
図1は本発明の実施例1に係る縦形MOSFET素子のチップを示す概略平面図、図2は図1中のA−A′線に沿って切断した状態を示す縦断面図、図3は図1中のB−B′線に沿って切断した状態を示す縦断面図である。なお、図1ではドリフト部の1/4を斜線部分で示してある。
【0024】
本例の縦形MOSFETは、裏側のドレイン電極18が導電接触した低抵抗のnドレイン層(コンタクト層)11の上に形成された第1の並列pn構造のドレイン・ドリフト部22と、このドリフト部22の表面層に選択的に形成された素子活性領域たる高不純物濃度のpベース領域(pウェル)13aと、そのpベース領域13a内の表面側に選択的に形成された高不純物濃度のnソース領域14と、基板表面上にゲート絶縁膜15を介して設けられたポリシリコン等のゲート電極層16と、層間絶縁膜19aに開けたコンタクト孔を介してpベース領域13a及びnソース領域14に跨って導電接触するソース電極17とを有している。ウェル状のpベース領域13aの中にnソース領域14が浅く形成されており、2重拡散型MOS部を構成している。なお、26はpコンタクト領域で、また、図示しない部分でゲート電極層16の上に金属膜のゲート配線が導電接触している。
【0025】
第1の並列pn構造のドレイン・ドリフト部22は、基板の厚み方向に層状縦形のn型ドリフト電路領域22aと基板の厚み方向に層状縦形のp型仕切領域22bとを交互に繰り返して接合した構造である。n型のドリフト電路領域22aは、その上端がpベース領域13の挾間領域12eに達し、その下端がnドレイン層11に接している。また、p型の仕切領域22bは、その上端がpベース領域13aのウェル底面に接し、その下端がnドレイン層11に接している。
【0026】
縦形ドリフト部22の周りの耐圧構造部120は、基板の厚さ方向に配向する層状縦形のn型領域120aと、基板の厚さ方向に配向する層状縦形のp型領域120bとを交互に繰り返して接合して成る第2の並列pn構造を有している。この耐圧構造部120の第2の並列pn構造の長さ(基板厚方向の長さ)は縦形ドリフト部22の第1の並列pn構造のそれよりも短くなっている。また本例の場合、耐圧構造部120の第2の並列pn構造の繰り返しピッチは縦形ドリフト部22の第1の並列pn構造の繰り返しピッチと同じである。耐圧構造部120のうち、第2の並列pn構造の主面側にはn型の高抵抗層122が形成されている。そして、pベース領域13aの周りには複数のp型リング124a〜124eが形成されている。各p型リング124a〜124eは第2の並列pn構造のp型領域120bに非接続で高抵抗層122の主面側に形成されており、図1に示すように、平面y方向ではp型領域120bに直交し、平面x方向ではp型領域120bに平行している。
【0027】
耐圧構造部120の周りにはn型側縁領域126が形成されており、n型側縁領域126の主面側にはnのチャネルストッパー領域128が形成されている。なお、耐圧構造部120の主面上には、表面保護及び安定化のために、熱酸化膜又は燐シリカガラス(PSG)から成る酸化膜(絶縁膜)23が成膜されている。
【0028】
このように、複数のp型リング124a〜124eが耐圧構造部120の第2の並列pn構造のp型領域120bに直接接続していないため、オフ状態では、p型リング124a〜124eにはpベース領域13a又はドリフト部22からの距離に応じた電圧降下が現れるので、耐圧構造部120の表面電界が緩和される。また、耐圧構造部120の占有面積を縮小でき、高集積化を図ることができる。
【0029】
また、チャネルストッパー領域120が形成されているため、漏れ電流を低減できる。このチャネルストッパー領域120は側縁領域126を介してnドレイン層11に接続されているため、耐圧構造部120の周囲がドレイン電圧となるため、耐圧構造部120の占有面積を縮小化でき、また素子耐圧の安定化を図ることができる。また、遮断瞬時では構造耐圧部120での空乏層の拡張がドリフト部22よりも早まり、ダイナミック・アバランシェ・ブレイクダウンが耐圧構造部120では発生し難くなり、安定した耐圧の確保が可能である。
【0030】
なお、本例ではp型リング124a〜124eの表面が酸化膜23で覆われているが、p型リング124a〜124eに接続してフィールドプレートが形成されていても耐圧を保持することができる。
【0031】
[実施例2]
図4は本発明の実施例2に係る縦形MOSFETを示す部分縦断面図である。本例の実施例1と異なる点は、耐圧構造部220の第2の並列pn構造の繰り返しピッチが縦形ドリフト部22の第1の並列pn構造の繰り返しピッチよりも狭いところにある。第2の並列pn構造のp型領域220bが幅狭になっても、p型リング124a〜124eを幅狭に合わせる必要がなく、それらの間隔を自由に設計できる。また、遮断瞬時では構造耐圧部220での空乏層の拡張がドリフト部22よりも早まり、ダイナミック・アバランシェ・ブレイクダウンが耐圧構造部220では発生し難くなり、安定した耐圧の確保が可能である。
【0032】
[実施例3]
図5は本発明の実施例3に係る縦形MOSFETを示す部分縦断面図である。
【0033】
本例と実施例1との違いは、ドリフト部222の第1の並列pn構造の上端側にも高抵抗層122が形成されており、pベース領域13aにはp型仕切領域22bが接続していないと共に、n型ドリフト電路領域22aもpベース領域13の挾間領域12eに接続していないところにある。従って、ドリフト部222の第1の並列pn構造の上端と耐圧構造部120の第2の並列pn構造の上端とが斉一している。
【0034】
本例の場合、実施例1及び2の場合に比し、並列pn構造を形成する際のエピタキシャル層の成長回数とイオン注入回数を減らすことができ、低コスト化を図ることができる。勿論、従来のMOSFETに比べ、同じ耐圧クラスで十分に低いオン抵抗を得ることができる。なお、本例においても、実施例2と同様に、耐圧構造部120の第2の並列pn構造の繰り返しピッチをドリフト部22の第1の並列pn構造の繰り返しピッチよりも狭くしても、同様の効果を得ることができる。
【0035】
[実施例4]
図6(a)〜(g)は本発明の実施例1の製造方法を示す工程断面図である。
【0036】
まず、図6(a)に示す如く、nドレイン層11となるべきn型の低抵抗半導体基体の上に第1層目のn型高抵抗のエピタキシャル層30aを成長させる。
【0037】
次いで、図6(b)に示す如く、イオン注入法によりn型の不純物となる燐イオン31を注入し、エピタキシャル層30aの表面下に燐原子32を導入する。
【0038】
次いで、図6(c)に示す如く、エピタキシャル層30aの表面に、フォトリソグラフィーによりドリフト部22及びその耐圧構造部120となるべき範囲で同一ピッチの不純物導入窓33aが開けられたレジストマスク33を形成した後、イオン注入法によりp型の不純物となるホウ素イオン34を注入し、エピタキシャル層30aの表面下にホウ素原子35を選択的に導入する。なお、燐イオン31の注入工程とホウ素イオン34の注入工程はどちらを先にしても構わない。また、エピタキシャル層30aが高不純物濃度である場合は、その逆導電型のホウ素イオン34の選択的導入だけで良い。
【0039】
次いで、レジストマスク33を除去した後、図6(d)に示す如く、第1層目のエピタキシャル層30aの上に第2層目のn型高抵抗のエピタキシャル層30bを成長させて、上記と同様な不純物導入工程を施し、更に、第3層目のn型高抵抗のエピタキシャル層30cを成長させる。なお、要求される耐圧クラスに応じて、エピタキシャル層の成長工程と不純物導入工程とを交互に繰り返す。この後、ドリフト部22となるべき範囲を窓開けしたレジストマスク36で覆い、イオン注入法によりn型の不純物となる燐イオン31を注入し、エピタキシャル層30cのドリフト部22となるべき表面下に燐原子32を導入する。
【0040】
次いで、図6(e)に示す如く、レジストマスク36の外、フォトリソグラフィーによりドリフト部22となるべき範囲で同一ピッチの不純物導入窓33aが開けられたレジストマスク33を形成した後、イオン注入法によりp型の不純物となるホウ素イオン34を注入し、エピタキシャル層30cの表面下にホウ素原子35を選択的に導入する。
【0041】
次いで、レジストマスク36及びレジストマスク33を除去した後、図6(f)に示す如く、第4層目のn型高抵抗のエピタキシャル層30dを成長させる。
【0042】
しかる後、図6(g)に示す如く、熱処理によってエピタキシャル層30a〜30dに導入されて仕込まれた燐元素32とホウ素元素35を同時に一斉熱拡散させて、各拡散中心から拡散する拡散単位領域を上下相互に接続させ、ドリフト部22におけるn型のドリフト電路領域22aとp型の仕切領域22b並びに耐圧構造部120のn型領域120aとp型領域120bとを同時に形成する。これらの縦形領域は拡散単位領域の相互連結で形成されたものであるから、熱拡散が十分であればpn接合は略平坦面として観察できるが、拡散中心を最大濃度部として濃度分布を呈している。なお、並列pn構造のpn接合は平坦面である必要もないことから、凹であっても構わない。
【0043】
第3層目のエピタキシャル層30cの耐圧構造部120となるべき領域にはレジストマスク36が覆われていたので、不純物導入がなく、第4層目のエピタキシャル層30dの耐圧構造部120に当たる部分がn型の高抵抗層122として残る。この後、第4層目のエピタキシャル層30c又はその上層の成長させたエピタキシャル層に通常のプロセスによりpベース領域13a及びp型リング124a〜124eを同時に形成し、2重拡散型MOSFETを完成する。
【0044】
このように、各エピタキシャル層30a〜30dに仕込んだ不純物を最後に熱拡散させて会合させて並列pn構造を形成することができるが、耐圧構造部120のエピタキシャル層30cがレジストマスク36で覆われていたため、不純物イオンの導入が阻止されているので、耐圧構造部120の並列pn構造の長さはドリフト部22のそれに比して短くすることができ、エピタキシャル層30cにp型リング124a〜124eをpベース領域13aと同時に形成できる。ドリフト部22及び耐圧構造部120の並列pn構造が同じ長さの場合に比し、特段のプロセス追加を招かずに済み、低コスト化を図ることができる。
【0045】
なお、実施例2のように、耐圧構造部220の第2の並列pn構造の繰り返しピッチが縦形ドリフト部22の第1の並列pn構造の繰り返しピッチよりも狭い構造を得るためには、図6(c)に示すレジストマスク33を、ドリフト部22となるべき範囲での不純物導入窓のピッチ及び窓幅よりも耐圧構造部220となるべき範囲での不純物導入窓33cのピッチ及び窓幅を狭くする。
【0046】
[実施例5]
図7(a)〜(g)は本発明の実施例1に係る別の製造方法を示す工程断面図である。
【0047】
本例においては、(a)〜(c)の工程を繰り返すところまでは実施例4と同じである。次いで、レジストマスク33を除去した後、図7(d)に示す如く、第1層目のエピタキシャル層30aの上に第2層目のn型高抵抗のエピタキシャル層30bを成長させて、上記と同様な不純物導入工程を施し、更に、第3層目のn型高抵抗のエピタキシャル層30cを成長させる。なお、要求される耐圧クラスに応じて、エピタキシャル層の成長工程と不純物導入工程とを交互に繰り返す。この後、イオン注入法によりn型の不純物となる燐イオン31を全面注入し、エピタキシャル層30cの表面下に燐原子32を導入する。
【0048】
次いで、図7(e)に示す如く、ドリフト部22となるべき範囲での不純物導入窓33bのピッチ及び窓幅よりも耐圧構造部120となるべき範囲での不純物導入窓33cのピッチ及び窓幅が狭いレジストマスク33′をフォトリソグラフィーにより形成した後、イオン注入法によりp型の不純物となるホウ素イオン34を注入し、エピタキシャル層30cの表面下にホウ素原子35を選択的に導入する。
【0049】
次いで、レジストマスク33′を除去した後、図7(f)に示す如く、第4層目のn型高抵抗のエピタキシャル層30dを成長させる。
【0050】
しかる後、図7(g)に示す如く、熱処理によってエピタキシャル層30a〜30dに導入されて仕込まれた燐元素32とホウ素元素35を同時に一斉熱拡散させて、各拡散中心から拡散する拡散単位領域を上下相互に接続させ、ドリフト部22におけるn型のドリフト電路領域22aとp型の仕切領域22b並びに耐圧構造部120のn型領域120aとp型領域120bとを同時に形成する。これらの縦形領域は拡散単位領域の相互連結で形成されたものであるから、熱拡散が十分であればpn接合は略平坦面として観察できるが、拡散中心を最大濃度部として濃度分布を呈している。なお、並列pn構造のpn接合は平坦面である必要もないことから、凹であっても構わない。
【0051】
第3層目のエピタキシャル層30cの耐圧構造部120となるべき領域には、ドリフト部22となるべき範囲での不純物導入窓33bのピッチ及び窓幅よりも狭いピッチ及び窓幅のレジストマスク36が覆われていたので、熱拡散工程では、導入された分散的な狭限定領域のホウ素原子35はその拡散により燐元素32の拡散と混ざり合うことから、第4層目のエピタキシャル層30dの耐圧構造部120に当たる部分にはp型領域が形成されず、略一様なn型の高抵抗層122が形成される。従って、実施例5における図6(d)のような、燐イオン31の導入を阻止するための専用のレジストマスク36の成膜及びその除去工程を間挿する必要がなく、製造プロセスの簡略化と半導体装置の低コスト化を図ることができる。
【0052】
なお、この後、第4層目のエピタキシャル層30c又はその上層の成長させたエピタキシャル層に通常のプロセスによりpベース領域13a及びp型リング124a〜124eを同時に形成し、2重拡散型MOSFETを完成する。
【0053】
[実施例6]
図8(a)〜(e)は本発明の実施例3の製造方法を示す工程断面図である。
【0054】
本例においては、(a)〜(c)の工程を繰り返すところまでは実施例4と同じである。なお、要求される耐圧クラスに応じて、エピタキシャル層の成長工程と不純物導入工程とを交互に繰り返す。次いで、レジストマスク33を除去した後、図7(d)に示す如く、第1層目のエピタキシャル層30aの上に第2層目のn型高抵抗のエピタキシャル層30bを成長させる。
【0055】
しかる後、図8(e)に示す如く、熱処理によってエピタキシャル層30a〜30dに導入されて仕込まれた燐元素32とホウ素元素35を同時に一斉熱拡散させて、各拡散中心から拡散する拡散単位領域を上下相互に接続させ、ドリフト部222におけるn型のドリフト電路領域22aとp型の仕切領域22b並びに耐圧構造部120のn型領域120aとp型領域120bとを同時に形成する。これらの縦形領域は拡散単位領域の相互連結で形成されたものであるから、熱拡散が十分であればpn接合は略平坦面として観察できるが、拡散中心を最大濃度部として濃度分布を呈している。なお、並列pn構造のpn接合は平坦面である必要もないことから、凹であっても構わない。この後、通常のプロセスによりpベース領域13a及びp型リング124a〜124eを同時に形成し、2重拡散型MOSFETを完成する。本例の場合、並列pn構造を形成する際のエピタキシャル層の成長回数とイオン注入回数を減らすことができ、低コスト化を図ることができる。
【0056】
以上説明したように、本発明においては、耐圧構造部が、並列pn構造の第1主面側に接続する第1導電型の高抵抗層を有し、耐圧構造部の並列pn構造の長さがドリフト部の並列pn構造の長さよりも短いことを特徴する。第1導電型の高抵抗層がない並列pn構造の場合に比して、表面電界を緩和できる。また、素子活性部の周りで縦形第2導電型領域に非接続で高抵抗層の主面側に形成された第2導電型のリングとを有することを特徴する。第2導電型のリングが耐圧構造部の縦形第2導電型領域に接続していないため、オフ状態の場合、耐圧構造部における縦形第2導電型領域の幅の広狭に拘わらず、第2導電型のリングには素子活性部又はドリフト部からの距離に応じた電圧降下が現れるので、耐圧構造部の表面電界が緩和される。
【0057】
第2導電型のリングが間隔をおいて複数形成されている構造では、リング間隔を拡げずとも、耐圧構造部の表面電界を緩和できるので、耐圧構造部の占有面積を縮小でき、高集積化を図ることができる。
【0058】
また、本発明の製造方法において、第2の段階では耐圧構造部のエピタキシャル層がマスクで覆われているため、不純物イオンの導入が阻止されているので、耐圧構造部の並列pn構造の長さはドリフト部のそれに比して短くすることができ、耐圧構造部の並列pn構造の上に形成される第1導電型高抵抗のエピタキシャル層に第2導電型のリングを形成できる。ドリフト部及び耐圧構造部の並列pn構造が同じ長さの場合に比し、特段のプロセス追加を招かずに済む。
【図面の簡単な説明】
【図1】本発明の実施例1に係る縦形MOSFET素子のチップを示す概略平面図である。
【図2】図1中のA−A′線に沿って切断した状態を示す縦断面図である。
【図3】図1中のB−B′線に沿って切断した状態を示す縦断面図である。
【図4】本発明の実施例2に係る縦形MOSFETを示す部分縦断面図である。
【図5】本発明の実施例3に係る縦形MOSFETを示す部分縦断面図である。
【図6】(a)〜(g)は本発明の実施例1の製造方法を示す工程断面図である。
【図7】(a)〜(g)は本発明の実施例1の別の製造方法を示す工程断面図である。
【図8】(a)〜(e)は本発明の実施例3の製造方法を示す工程断面図である。
【図9】縦形MOSFETにおけるドリフト部及び素子外周部(耐圧構造部)を示す平面図である。
【図10】図9中のA−A′線に沿って切断した状態を示す縦断面図である。
【図11】図9中のB−B′線に沿って切断した状態を示す縦断面図である。
【符号の説明】
11…nドレイン層(コンタクト層)
12e…pベース領域の挾間領域
13a…pベース領域(pウェル)
14…nソース領域
15…ゲート絶縁膜
16…ゲート電極層
17…ソース電極
18…ドレイン電極
19a…層間絶縁膜
22,222…ドレイン・ドリフト部
22a…層状縦形のn型ドリフト電路領域
22b…層状縦形のp型仕切領域
23…酸化膜(絶縁膜)
26…pコンタクト領域
30a〜30e…n型高抵抗のエピタキシャル層
31…燐イオン
32…燐原子
33a〜33c…不純物導入窓
33,33′,36…レジストマスク
34…ホウ素イオン
35…ホウ素原子
120,220…耐圧構造部
120a,220a…層状縦形のn型領域
120b,220b…層状縦形のp型領域
122…n型の高抵抗層
124a〜124e…p型リング
126…n型側縁領域
128…nのチャネルストッパー領域
[0001]
BACKGROUND OF THE INVENTION
The present invention can be applied to active elements such as MOSFETs (insulated gate field effect transistors), IGBTs (conductivity modulation MOSFETs) and bipolar transistors, and passive elements such as diodes. The present invention relates to a compatible vertical power semiconductor device and a method for manufacturing the same.
[0002]
In a vertical semiconductor device that has electrode portions on both sides of a substrate and has a vertical drift portion that allows current to flow in the thickness direction of the substrate, there must be a trade-off relationship between on-resistance (current capacity) and breakdown voltage. Therefore, it is known to adopt a parallel pn structure in which an n-type vertical region and a p-type vertical region with an increased impurity concentration are alternately repeated in the horizontal direction of the substrate as the vertical drift portion. However, although the vertical drift portion of this parallel pn structure quickly depletes, the depletion layer does not easily extend outward or deep in the substrate in the breakdown voltage structure around the drift portion, and the electric field strength quickly reaches the critical electric field strength of silicon. Since the breakdown voltage is lowered in the breakdown voltage structure, it is known to adopt a parallel pn structure in the breakdown voltage structure.
[0003]
9 is a plan view showing a drift portion and an element outer peripheral portion (withstand voltage structure portion) in the vertical MOSFET, FIG. 10 is a longitudinal sectional view showing a state cut along the line AA ′ in FIG. 9, and FIG. 9 is a longitudinal sectional view showing a state cut along a line BB ′ in FIG. In FIG. 9, ¼ of the drift portion is indicated by a hatched portion.
[0004]
This n-channel vertical MOSFET has a low resistance n-type in which the drain electrode 18 on the back side is in conductive contact.+A drain / drift portion 22 having a first parallel pn structure formed on the drain layer (contact layer) 11, and a high impurity concentration p which is an element active region selectively formed on the surface layer of the drift portion 22 Base region (p well, channel region) 13a and n of high impurity concentration selectively formed on the surface side in the p base region 13a+The source region 14, the gate electrode layer 16 such as polysilicon provided on the substrate surface via the gate insulating film 15, and the p base regions 13a and n through the contact holes opened in the interlayer insulating film 19a+A source electrode 17 in conductive contact with the source region 14; N in the well-shaped p base region 13a+The source region 14 is formed shallow and constitutes a double diffusion type MOS portion. 26 is p+The gate wiring of the metal film is in conductive contact on the gate electrode layer 16 in the contact region and in a portion (not shown).
[0005]
The drain / drift portion 22 of the first parallel pn structure has a layered vertical n-type drift circuit region 22a and a layered vertical p-type partition region 22b alternately and repeatedly joined in the thickness direction of the substrate. It is a structure. The n-type drift circuit region 22a has an upper end that reaches the intercostal region 12e of the p base region 13a, and a lower end that is n+It is in contact with the drain layer 11. The upper end of the p-type partition region 22b is in contact with the well bottom surface of the p base region 13a, and the lower end is n.+It is in contact with the drain layer 11.
[0006]
Substrate surface and n+In the breakdown voltage structure 20 around the vertical drift portion 22 between the drain layer 11 and the drain layer 11, a layered vertical n-type region 20a oriented in the thickness direction of the substrate and a layered vertical p oriented in the thickness direction of the substrate. A second parallel pn structure is formed by alternately joining the mold regions 20b. An oxide film (insulating film) 23 made of a thermal oxide film or phosphor silica glass (PSG) is formed on the surface of the second parallel pn structure of the breakdown voltage structure 20 for surface protection and stabilization. Yes.
[0007]
Multiple p-type rings 20c are wound around the surface side of the breakdown voltage structure 20 so as to surround the p base region. The p-type ring 20c is electrically connected to a large number of p-type regions 20b having a second parallel pn structure.
[0008]
When the gate is shorted to the source and the drain potential is increased positively, the first parallel pn structure of the drift portion 22 has an n-type drift current path region 22a of n+Since it is conductively connected to the drain layer (contact layer) 11 and the p-type partition region 22b is conductively connected to the p base region 13a, it is depleted early and the depletion layer from the drift portion 22 to the breakdown voltage structure portion 20 Expands. Here, in the case where there is no p-type ring 20c, the p-type region 20bb (one end of the second parallel pn structure of the breakdown voltage structure 20 is directly connected to the p base region 13a or the partition region 22b of the drift portion 22). Although the depletion layer extends in the Y direction in the Y direction region from the drift portion 22 in FIG. 9, the p-type region 20ba whose one end is not directly connected to the p base region 13a or the partition region 22b of the drift portion 22 has a potential floating. Since it functions only as a guard ring in a state, the expansion of the depletion layer from the drift portion 22 in the X direction is weak, and a critical electric field is easily reached. However, when the p-type ring 20c is present, the p-type region 20ba whose one end is not directly connected to the partition region 22b of the p-base region 13a or the drift portion 22 has one end connected to the p-base region 13a or the drift via the p-type ring 20c. Since it is electrically connected to the p-type region 20bb directly connected to the partition region 22b of the portion 22, the potential floating state of the p-type region 20ba is eliminated, and the p-type region 20ba is fixed to the source potential side. Therefore, the pn junction in the p-type region 20ba is also reliably reverse-biased, and the depletion layer extends from the drift portion 22 in the X direction. Therefore, a high breakdown voltage can be achieved.
[0009]
[Problems to be solved by the invention]
However, the vertical MOSFETs shown in FIGS. 9 to 11 have the following problems.
[0010]
That is, since the parallel pn structure is formed by thermal diffusion after repeating the growth of the epitaxial layer and selective ion implantation, the parallel pn structure of the withstand voltage structure 20 is formed simultaneously with the parallel pn structure of the drift part 22. The Since the parallel pn structure of the breakdown voltage structure portion 20 has a high impurity concentration to reduce the on-resistance of the drift portion 22, the voltage drop corresponding to the distance from the p-type region 20bb to the p-type ring 20c is small. A mutual potential difference is unlikely to appear between the plurality of p-type rings 20c, and the surface electric field of the breakdown voltage structure 20 is difficult to be relaxed. If the width of the p-type region 20b of the breakdown voltage structure 20 is narrower than the width of the partition region 22b of the drain portion 22, a voltage drop corresponding to the distance of the p-type region 20b appears due to the reduction of the resistance cross section. Although the potential at the intersection between the p-type ring 20c and the p-type ring 20c becomes a potential corresponding to the distance from the drain part 22 to some extent, the number of p-type rings 20c increases. In this case, since the ring interval must be increased, the occupation area of the pressure-resistant structure 20 is increased, which is an obstacle to integration.
[0011]
Accordingly, in view of the above problems, an object of the present invention is to provide a semiconductor device having a parallel pn structure in the breakdown voltage structure around the drift portion without increasing the occupation area of the breakdown voltage structure. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that can alleviate a surface electric field and achieve a high breakdown voltage.
[0012]
[Means for Solving the Problems]
  In order to solve the above problems, a basic structure of a semiconductor device according to the present invention includes a first electrode layer that is conductively connected to an element active portion formed on the first main surface side of a substrate, and a second main surface of the substrate. Is interposed between the second electrode layer conductively connected to the first resistance type low resistance layer formed on the side, the element active portion and the low resistance layer, and in the ON state, a drift current flows in the vertical direction and is turned off. In the state, the vertical drift portion is depleted, and is interposed between the first main surface and the low resistance layer around the vertical drift portion.TheA vertical first conductivity type region in which the vertical drift portion and the breakdown voltage structure portion are oriented in the thickness direction of the substrate, and a vertical second conductivity type region in which the vertical drift portion and the withstand voltage structure portion are oriented in the thickness direction of the substrate; Have a parallel pn structure in which these are joined alternately. Here, the element active portion formed on the first main surface side of the substrate is, for example, a switching portion including a channel diffusion layer and a source region forming an inversion layer on the first main surface side in the case of a vertical MOSFET, bipolar In the case of a transistor, it is a switching part including an emitter or collector region, and indicates an active or passive part on the first main surface side of the drift part.
[0013]
  In the present invention, the breakdown voltage structure portion has a parallel pn structure.FirstHigh resistance layer of the first conductivity type connected to the main surface sideThe length of the parallel pn structure of the breakdown voltage structure portion is shorter than the length of the parallel pn structure of the drift portion.It is characterized by that. The surface electric field can be relaxed as compared with the parallel pn structure without the first conductive type high resistance layer. This high resistance layer can be formed by doping both the first conductivity type and the second conductivity type impurities.
[0014]
In addition, the present invention is characterized in that it has a second conductivity type ring formed on the main surface side of the high resistance layer without being connected to the vertical second conductivity type region around the element active portion. Since the second conductivity type ring is not connected to the vertical second conductivity type region of the breakdown voltage structure portion, in the off state, the second conductivity type regardless of the width of the vertical second conductivity type region in the breakdown voltage structure portion. Since a voltage drop corresponding to the distance from the element active portion or the drift portion appears in the ring of the mold, the surface electric field of the breakdown voltage structure portion is relaxed.
[0015]
In a structure in which a plurality of rings of the second conductivity type are formed at intervals, the surface electric field of the breakdown voltage structure portion can be relaxed without increasing the ring interval, so the area occupied by the breakdown voltage structure portion can be reduced and high integration can be achieved. Can be achieved.
[0016]
  Here, the length of the parallel pn structure of the breakdown voltage structure portion is longer than the length of the parallel pn structure of the drift portion.Desirably short on the first main surface side.
[0017]
Furthermore, it is desirable to make the pn repetition pitch of the parallel pn structure of the breakdown voltage structure portion narrower than the pn repetition pitch of the parallel pn structure of the vertical drift portion. At the moment of interruption, the expansion of the depletion layer in the structural withstand voltage part is earlier than in the drift part, and dynamic avalanche breakdown is less likely to occur in the structural withstand voltage part, and a stable withstand voltage can be secured.
[0018]
It is desirable that a channel stopper region of the first conductivity type is formed around the breakdown voltage structure portion. Leakage current can be reduced. The channel stopper region may be connected to the low resistance layer through the side edge region. Since the periphery of the breakdown voltage structure portion becomes the potential of the second electrode layer, the area occupied by the breakdown voltage structure portion can be reduced, and the breakdown voltage of the element can be stabilized.
[0019]
  Next, the present invention provides a first electrode layer that is conductively connected to the element active portion formed on the first main surface side of the substrate, and a first conductivity type low resistance formed on the second main surface side of the substrate. A second electrode layer conductively connected to the layer, a vertical drift portion interposed between the element active portion and the low-resistance layer, wherein a drift current flows in a vertical direction in an on state and is depleted in an off state; It is interposed between the first main surface and the low resistance layer around the vertical drift portion.TheA vertical first conductivity type region in which the vertical drift portion and the breakdown voltage structure portion are oriented in the thickness direction of the substrate, and a vertical second conductivity type region in which the vertical drift portion and the withstand voltage structure portion are oriented in the thickness direction of the substrate. Are connected in parallel, and the breakdown voltage structure portion has a first conductive type high-resistance layer connected to the main surface side of the parallel pn structure and a vertical second conductivity around the element active portion. The present invention relates to a method of manufacturing a semiconductor device having a second conductivity type ring formed on a main surface side of the high resistance layer without being connected to a mold region.
[0020]
In this manufacturing method, after growing a first conductivity type high resistance epitaxial layer in a region where a vertical drift portion and a breakdown voltage structure portion on a first conductivity type low resistance substrate are to be formed, the epitaxial layer is discretely formed on the epitaxial layer. A first step of repeating the step of selectively introducing impurity ions of the second conductivity type through the impurity introduction window disposed in the step, and then after newly growing a first conductivity type high resistance epitaxial layer The step of selectively introducing impurity ions of the second conductivity type through the impurity introduction windows discretely arranged in the region where the vertical drift portion is to be formed in a state where the region where the breakdown voltage structure portion is to be formed is masked A second step of performing at least once, and then heat-diffusing the impurities selectively introduced into the respective epitaxial layers by heat treatment to connect the heat diffusion regions of different layers to each other vertically. And having a third step of forming a pn structure. The first conductivity type impurity may be introduced into the entire surface of each epitaxial layer by ion implantation to increase the impurity concentration of the formed vertical n-type region and reduce the on-resistance of the vertical drift portion. .
[0021]
As described above, since the impurities charged in each epitaxial layer are finally thermally diffused and associated to form the vertical first conductive type region and the vertical second conductive type region at a stretch, the formation of the parallel pn structure can be achieved. Although it is easy, since the epitaxial layer of the breakdown voltage structure portion is covered with a mask in the second stage and the introduction of impurity ions is blocked, the length of the parallel pn structure of the breakdown voltage structure portion is equal to that of the drift portion. Compared to this, the second conductive type ring can be formed in the first conductive type high resistance epitaxial layer formed on the parallel pn structure of the breakdown voltage structure portion. Compared to the case where the parallel pn structure of the drift portion and the breakdown voltage structure portion have the same length, it is not necessary to add a special process.
[0022]
  In this manufacturing method, when the first conductivity type impurity is introduced into the entire surface of each epitaxial layer by ion implantation, the breakdown voltage structure portion in the upper epitaxial layer is used to prevent the introduction of the first conductivity type impurity. Dedicated mask deposition and removal processes are required, which increases the number of processes. Therefore, as a second stage, after a new first conductivity type high resistance epitaxial layer is grown,After introducing impurity ions of the first conductivity type over the entire surface,Impurity ions of the second conductivity type are formed by forming a mask in which the pitch and window width of the impurity introduction window in the region where the breakdown voltage structure portion is to be formed are narrower than the pitch and window width in the region where the vertical drift portion is to be formed. A method of performing the step of selectively introducing at least once is adopted. The region to be the breakdown voltage structure portion of the epitaxial layer on the upper layer side is covered with a mask having a pitch and window width narrower than the pitch and window width of the impurity introduction window in the range to be the drift portion. In the process, since the introduced second impurity in the narrow and narrow region is mixed with the diffusion of the first impurity due to the diffusion, the second conductivity type is present in the portion corresponding to the breakdown voltage structure portion of the upper epitaxial layer. This region is not formed, and a substantially uniform high resistance layer of the first conductivity type is formed. Therefore, it is not necessary to form and remove a dedicated mask for preventing the introduction of the first conductivity type impurity, and the manufacturing process can be simplified and the cost of the semiconductor device can be reduced.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
1 is a schematic plan view showing a chip of a vertical MOSFET element according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view showing a state cut along the line AA 'in FIG. 1, and FIG. 1 is a longitudinal sectional view showing a state cut along a line BB ′ in FIG. In FIG. 1, ¼ of the drift portion is indicated by a hatched portion.
[0024]
The vertical MOSFET of this example has a low resistance n-type in which the drain electrode 18 on the back side is in conductive contact.+A drain / drift portion 22 having a first parallel pn structure formed on the drain layer (contact layer) 11, and a high impurity concentration p which is an element active region selectively formed on the surface layer of the drift portion 22 Base region (p well) 13a and n of high impurity concentration selectively formed on the surface side in p base region 13a+The source region 14, the gate electrode layer 16 such as polysilicon provided on the substrate surface via the gate insulating film 15, and the p base regions 13a and n through the contact holes opened in the interlayer insulating film 19a+A source electrode 17 in conductive contact with the source region 14; N in the well-shaped p base region 13a+The source region 14 is formed shallow and constitutes a double diffusion type MOS portion. 26 is p+The gate wiring of the metal film is in conductive contact on the gate electrode layer 16 in the contact region and in a portion (not shown).
[0025]
The drain / drift portion 22 of the first parallel pn structure has a layered vertical n-type drift circuit region 22a and a layered vertical p-type partition region 22b alternately and repeatedly joined in the thickness direction of the substrate. It is a structure. The upper end of the n-type drift electric circuit region 22a reaches the interspace region 12e of the p base region 13, and the lower end thereof is n+It is in contact with the drain layer 11. The upper end of the p-type partition region 22b is in contact with the well bottom surface of the p base region 13a, and the lower end is n.+It is in contact with the drain layer 11.
[0026]
The breakdown voltage structure 120 around the vertical drift portion 22 alternately repeats a layered vertical n-type region 120a oriented in the thickness direction of the substrate and a layered vertical p-type region 120b oriented in the thickness direction of the substrate. And having a second parallel pn structure formed by bonding. The length (length in the substrate thickness direction) of the second parallel pn structure of the breakdown voltage structure portion 120 is shorter than that of the first parallel pn structure of the vertical drift portion 22. In the case of this example, the repetition pitch of the second parallel pn structure of the breakdown voltage structure portion 120 is the same as the repetition pitch of the first parallel pn structure of the vertical drift portion 22. An n-type high resistance layer 122 is formed on the main surface side of the second parallel pn structure in the breakdown voltage structure 120. A plurality of p-type rings 124a to 124e are formed around the p base region 13a. Each of the p-type rings 124a to 124e is not connected to the p-type region 120b of the second parallel pn structure and is formed on the main surface side of the high resistance layer 122. As shown in FIG. It is orthogonal to the region 120b and is parallel to the p-type region 120b in the plane x direction.
[0027]
An n-type side edge region 126 is formed around the breakdown voltage structure 120, and n-type side edge region 126 has n on the main surface side.+The channel stopper region 128 is formed. An oxide film (insulating film) 23 made of a thermal oxide film or phosphor silica glass (PSG) is formed on the main surface of the pressure-resistant structure portion 120 for surface protection and stabilization.
[0028]
As described above, since the plurality of p-type rings 124a to 124e are not directly connected to the p-type region 120b of the second parallel pn structure of the breakdown voltage structure 120, the p-type rings 124a to 124e have p in the off state. Since a voltage drop corresponding to the distance from the base region 13a or the drift portion 22 appears, the surface electric field of the breakdown voltage structure portion 120 is relaxed. In addition, the area occupied by the pressure-resistant structure 120 can be reduced, and high integration can be achieved.
[0029]
Further, since the channel stopper region 120 is formed, the leakage current can be reduced. The channel stopper region 120 is n through the side edge region 126.+Since the drain voltage is connected to the drain layer 11, the area around the breakdown voltage structure 120 becomes a drain voltage, so that the area occupied by the breakdown voltage structure 120 can be reduced and the breakdown voltage of the element can be stabilized. In addition, at the instant of interruption, the expansion of the depletion layer in the structural withstand voltage portion 120 is earlier than in the drift portion 22, and dynamic avalanche breakdown is less likely to occur in the withstand voltage structure portion 120, so that a stable withstand voltage can be secured.
[0030]
In this example, the surfaces of the p-type rings 124a to 124e are covered with the oxide film 23. However, the breakdown voltage can be maintained even if a field plate is formed connected to the p-type rings 124a to 124e.
[0031]
[Example 2]
FIG. 4 is a partial longitudinal sectional view showing a vertical MOSFET according to Embodiment 2 of the present invention. The difference of this example from Example 1 is that the repetition pitch of the second parallel pn structure of the breakdown voltage structure 220 is narrower than the repetition pitch of the first parallel pn structure of the vertical drift portion 22. Even if the p-type region 220b of the second parallel pn structure becomes narrow, it is not necessary to adjust the p-type rings 124a to 124e narrowly, and the interval between them can be designed freely. In addition, the depletion layer expands at the structural withstand voltage unit 220 earlier than the drift unit 22 at the instant of interruption, so that a dynamic avalanche breakdown is less likely to occur at the withstand voltage structure unit 220 and a stable withstand voltage can be secured.
[0032]
[Example 3]
FIG. 5 is a partial longitudinal sectional view showing a vertical MOSFET according to Embodiment 3 of the present invention.
[0033]
The difference between this example and Example 1 is that the high resistance layer 122 is also formed on the upper end side of the first parallel pn structure of the drift portion 222, and the p-type partition region 22b is connected to the p base region 13a. In addition, the n-type drift electric circuit region 22 a is not connected to the interspace region 12 e of the p base region 13. Therefore, the upper end of the first parallel pn structure of the drift portion 222 and the upper end of the second parallel pn structure of the breakdown voltage structure portion 120 are uniform.
[0034]
In the case of this example, the number of times of epitaxial layer growth and the number of ion implantations when forming the parallel pn structure can be reduced as compared with the case of Examples 1 and 2, and the cost can be reduced. Of course, a sufficiently low on-resistance can be obtained with the same breakdown voltage class as compared with the conventional MOSFET. Even in this example, similarly to the second embodiment, even if the repetition pitch of the second parallel pn structure of the breakdown voltage structure portion 120 is made smaller than the repetition pitch of the first parallel pn structure of the drift portion 22, the same applies. The effect of can be obtained.
[0035]
[Example 4]
6A to 6G are process cross-sectional views illustrating the manufacturing method according to the first embodiment of the present invention.
[0036]
First, as shown in FIG.+A first n-type high-resistance epitaxial layer 30a is grown on an n-type low-resistance semiconductor substrate to be the drain layer 11.
[0037]
Next, as shown in FIG. 6B, phosphorus ions 31 that become n-type impurities are implanted by ion implantation, and phosphorus atoms 32 are introduced below the surface of the epitaxial layer 30a.
[0038]
Next, as shown in FIG. 6C, a resist mask 33 is formed on the surface of the epitaxial layer 30a, in which impurity introduction windows 33a having the same pitch are opened in a range to be the drift portion 22 and the breakdown voltage structure portion 120 by photolithography. After the formation, boron ions 34 that become p-type impurities are implanted by an ion implantation method, and boron atoms 35 are selectively introduced below the surface of the epitaxial layer 30a. Note that either the phosphorus ion 31 implantation step or the boron ion 34 implantation step may be performed first. Further, when the epitaxial layer 30a has a high impurity concentration, it is only necessary to selectively introduce boron ions 34 of the reverse conductivity type.
[0039]
Next, after removing the resist mask 33, as shown in FIG. 6D, a second n-type high-resistance epitaxial layer 30b is grown on the first epitaxial layer 30a. A similar impurity introduction step is performed, and a third n-type high resistance epitaxial layer 30c is further grown. Note that the epitaxial layer growth step and the impurity introduction step are alternately repeated according to the required breakdown voltage class. Thereafter, the region to be the drift portion 22 is covered with a resist mask 36 having a window opened, and phosphorus ions 31 to be n-type impurities are implanted by an ion implantation method, and below the surface to be the drift portion 22 of the epitaxial layer 30c. A phosphorus atom 32 is introduced.
[0040]
Next, as shown in FIG. 6E, after forming the resist mask 33 in which the impurity introduction windows 33a having the same pitch are opened in the range to be the drift portion 22 by photolithography, after the resist mask 36, ion implantation is performed. Then, boron ions 34 that become p-type impurities are implanted, and boron atoms 35 are selectively introduced below the surface of the epitaxial layer 30c.
[0041]
Next, after removing the resist mask 36 and the resist mask 33, as shown in FIG. 6F, a fourth n-type high resistance epitaxial layer 30d is grown.
[0042]
Thereafter, as shown in FIG. 6G, the diffusion unit region diffused from each diffusion center by simultaneously thermally diffusing the phosphorus element 32 and the boron element 35 introduced into the epitaxial layers 30a to 30d by heat treatment. Are connected to each other so that the n-type drift circuit region 22a and the p-type partition region 22b in the drift portion 22 and the n-type region 120a and the p-type region 120b of the breakdown voltage structure portion 120 are formed simultaneously. Since these vertical regions are formed by interconnecting diffusion unit regions, if thermal diffusion is sufficient, the pn junction can be observed as a substantially flat surface, but exhibits a concentration distribution with the diffusion center as the maximum concentration portion. Yes. Note that the pn junction of the parallel pn structure does not need to be a flat surface, and may be concave.
[0043]
Since the resist mask 36 is covered in the region to be the breakdown voltage structure portion 120 of the third epitaxial layer 30c, no impurity is introduced, and the portion corresponding to the breakdown voltage structure portion 120 of the fourth epitaxial layer 30d is formed. The n-type high resistance layer 122 remains. Thereafter, the p base region 13a and the p-type rings 124a to 124e are simultaneously formed in the fourth epitaxial layer 30c or the epitaxial layer grown thereon by a normal process to complete a double diffusion MOSFET.
[0044]
As described above, the impurities prepared in the epitaxial layers 30 a to 30 d can be finally thermally diffused and associated to form a parallel pn structure. However, the epitaxial layer 30 c of the breakdown voltage structure 120 is covered with the resist mask 36. Therefore, since the introduction of impurity ions is blocked, the length of the parallel pn structure of the breakdown voltage structure 120 can be made shorter than that of the drift portion 22, and the p-type rings 124a to 124e are formed in the epitaxial layer 30c. Can be formed simultaneously with the p base region 13a. Compared with the case where the parallel pn structure of the drift part 22 and the pressure | voltage resistant structure part 120 is the same length, it does not invite a special process addition and can achieve cost reduction.
[0045]
In order to obtain a structure in which the repetition pitch of the second parallel pn structure of the breakdown voltage structure 220 is narrower than the repetition pitch of the first parallel pn structure of the vertical drift section 22 as in the second embodiment, FIG. In the resist mask 33 shown in (c), the pitch and window width of the impurity introduction window 33c in the range to be the breakdown voltage structure portion 220 are narrower than the pitch and window width of the impurity introduction window in the range to be the drift portion 22. To do.
[0046]
[Example 5]
7A to 7G are process cross-sectional views illustrating another manufacturing method according to the first embodiment of the present invention.
[0047]
This example is the same as Example 4 until the steps (a) to (c) are repeated. Next, after removing the resist mask 33, as shown in FIG. 7D, a second n-type high-resistance epitaxial layer 30b is grown on the first epitaxial layer 30a. A similar impurity introduction step is performed, and a third n-type high resistance epitaxial layer 30c is further grown. Note that the epitaxial layer growth step and the impurity introduction step are alternately repeated according to the required breakdown voltage class. Thereafter, phosphorus ions 31 that are n-type impurities are implanted entirely by ion implantation to introduce phosphorus atoms 32 under the surface of the epitaxial layer 30c.
[0048]
Next, as shown in FIG. 7 (e), the pitch and window width of the impurity introduction windows 33 c in the range to be the breakdown voltage structure portion 120 than the pitch and window width of the impurity introduction windows 33 b in the range to be the drift portion 22. After forming a resist mask 33 'having a narrow width by photolithography, boron ions 34 as p-type impurities are implanted by ion implantation, and boron atoms 35 are selectively introduced below the surface of the epitaxial layer 30c.
[0049]
Next, after removing the resist mask 33 ', a fourth n-type high resistance epitaxial layer 30d is grown as shown in FIG.
[0050]
Thereafter, as shown in FIG. 7G, the diffusion unit region diffused from each diffusion center by simultaneously thermally diffusing the phosphorus element 32 and the boron element 35 introduced into the epitaxial layers 30a to 30d by heat treatment. Are connected to each other so that the n-type drift electric circuit region 22a and the p-type partition region 22b in the drift portion 22 and the n-type region 120a and the p-type region 120b of the breakdown voltage structure portion 120 are formed simultaneously. Since these vertical regions are formed by interconnecting diffusion unit regions, if thermal diffusion is sufficient, the pn junction can be observed as a substantially flat surface, but exhibits a concentration distribution with the diffusion center as the maximum concentration portion. Yes. Note that the pn junction of the parallel pn structure does not need to be a flat surface, and may be concave.
[0051]
A resist mask 36 having a pitch and window width narrower than the pitch and window width of the impurity introduction windows 33b in the range to be the drift portion 22 is formed in the region to be the breakdown voltage structure portion 120 of the third epitaxial layer 30c. In the thermal diffusion process, since the introduced boron atoms 35 in the narrow and limited region are mixed with the diffusion of the phosphorus element 32 by the diffusion, the breakdown voltage structure of the fourth epitaxial layer 30d is covered. A p-type region is not formed in a portion corresponding to the portion 120, and a substantially uniform n-type high resistance layer 122 is formed. Therefore, it is not necessary to interpose the film formation and removal process of the dedicated resist mask 36 for preventing the introduction of phosphorus ions 31 as shown in FIG. Thus, the cost of the semiconductor device can be reduced.
[0052]
Thereafter, the p base region 13a and the p-type rings 124a to 124e are simultaneously formed in the fourth epitaxial layer 30c or the epitaxial layer grown thereon by a normal process to complete a double diffusion type MOSFET. To do.
[0053]
[Example 6]
8A to 8E are process cross-sectional views illustrating the manufacturing method of Example 3 of the present invention.
[0054]
This example is the same as Example 4 until the steps (a) to (c) are repeated. Note that the epitaxial layer growth step and the impurity introduction step are alternately repeated according to the required breakdown voltage class. Next, after removing the resist mask 33, as shown in FIG. 7D, a second n-type high resistance epitaxial layer 30b is grown on the first epitaxial layer 30a.
[0055]
  After that, FIG.(E)As shown in FIG. 4, the phosphorus element 32 and the boron element 35 introduced and introduced into the epitaxial layers 30a to 30d by heat treatment are simultaneously thermally diffused so that the diffusion unit regions diffusing from the respective diffusion centers are connected to each other vertically and drift The n-type drift electric circuit region 22a and the p-type partition region 22b in the portion 222 and the n-type region 120a and the p-type region 120b of the breakdown voltage structure 120 are formed simultaneously. Since these vertical regions are formed by interconnecting diffusion unit regions, if thermal diffusion is sufficient, the pn junction can be observed as a substantially flat surface, but exhibits a concentration distribution with the diffusion center as the maximum concentration portion. Yes. Note that the pn junction of the parallel pn structure does not need to be a flat surface, and may be concave. Thereafter, the p base region 13a and the p-type rings 124a to 124e are simultaneously formed by a normal process to complete a double diffusion MOSFET.In the case of this example, the number of epitaxial layer growths and the number of ion implantations when forming the parallel pn structure can be reduced, and the cost can be reduced.
[0056]
  As described above, in the present invention, the breakdown voltage structure portion has a parallel pn structure.FirstHigh resistance layer of the first conductivity type connected to the main surface sideThe length of the parallel pn structure of the breakdown voltage structure portion is shorter than the length of the parallel pn structure of the drift portion.It is characterized by that. The surface electric field can be relaxed as compared with the parallel pn structure without the first conductive type high resistance layer. Further, it is characterized in that it has a second conductivity type ring formed on the main surface side of the high resistance layer without being connected to the vertical second conductivity type region around the element active portion. Since the second conductivity type ring is not connected to the vertical second conductivity type region of the breakdown voltage structure portion, in the off state, the second conductivity type regardless of the width of the vertical second conductivity type region in the breakdown voltage structure portion. Since a voltage drop corresponding to the distance from the element active portion or the drift portion appears in the ring of the mold, the surface electric field of the breakdown voltage structure portion is relaxed.
[0057]
In a structure in which a plurality of rings of the second conductivity type are formed at intervals, the surface electric field of the breakdown voltage structure portion can be relaxed without increasing the ring interval, so the area occupied by the breakdown voltage structure portion can be reduced and high integration can be achieved. Can be achieved.
[0058]
Further, in the manufacturing method of the present invention, since the epitaxial layer of the breakdown voltage structure portion is covered with the mask in the second stage, the introduction of impurity ions is prevented, so the length of the parallel pn structure of the breakdown voltage structure portion Can be made shorter than that of the drift portion, and a second conductivity type ring can be formed in the first conductivity type high resistance epitaxial layer formed on the parallel pn structure of the breakdown voltage structure portion. Compared to the case where the parallel pn structure of the drift portion and the breakdown voltage structure portion have the same length, it is not necessary to add a special process.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a chip of a vertical MOSFET element according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view showing a state cut along line AA ′ in FIG. 1;
FIG. 3 is a longitudinal sectional view showing a state cut along line BB ′ in FIG. 1;
FIG. 4 is a partial longitudinal sectional view showing a vertical MOSFET according to a second embodiment of the invention.
FIG. 5 is a partial longitudinal sectional view showing a vertical MOSFET according to a third embodiment of the invention.
6A to 6G are process cross-sectional views illustrating the manufacturing method of Example 1 of the present invention.
FIGS. 7A to 7G are process cross-sectional views illustrating another manufacturing method according to the first embodiment of the present invention. FIGS.
FIGS. 8A to 8E are process cross-sectional views illustrating a manufacturing method according to Example 3 of the present invention. FIGS.
FIG. 9 is a plan view showing a drift portion and an element outer peripheral portion (withstand voltage structure portion) in a vertical MOSFET.
10 is a longitudinal sectional view showing a state cut along the line AA ′ in FIG. 9;
11 is a longitudinal sectional view showing a state cut along the line BB ′ in FIG. 9;
[Explanation of symbols]
11 ... n+Drain layer (contact layer)
12e ... p-base region
13a ... p base region (p well)
14 ... n+Source area
15 ... Gate insulating film
16 ... Gate electrode layer
17 ... Source electrode
18 ... Drain electrode
19a ... Interlayer insulating film
22, 222 ... Drain / drift section
22a ... Layered vertical n-type drift circuit region
22b ... Layered vertical p-type partition region
23 ... Oxide film (insulating film)
26 ... p+Contact area
30a-30e ... n-type high resistance epitaxial layer
31 ... Phosphorus ion
32 ... Phosphorus atom
33a-33c ... Impurity introduction window
33, 33 ′, 36... Resist mask
34 ... Boron ion
35 ... Boron atom
120, 220 ... withstand pressure structure
120a, 220a ... Layered vertical n-type region
120b, 220b ... Layered vertical p-type region
122... N-type high resistance layer
124a-124e ... p-type ring
126 ... n-type side edge region
128 ... n+Channel stopper area

Claims (10)

基板の第1主面側に形成された素子活性部に導電接続する第1の電極層と、前記基板の第2主面側に形成された第1導電型の低抵抗層に導電接続する第2の電極層と、前記素子活性部と前記低抵抗層との間に介在しオン状態ではドリフト電流を縦方向に流すと共にオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オフ状態では空乏化する耐圧構造部とを有し、前記縦形ドリフト部及び前記耐圧構造部が前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とを交互に繰り返して接合して成る並列pn構造を有する半導体装置において、
前記耐圧構造部は、前記並列pn構造の前記第1主面側に接続する第1導電型の高抵抗層を有し、前記耐圧構造部の並列pn構造の長さが前記ドリフト部の並列pn構造の長さよりも短いことを特徴する半導体装置。
A first electrode layer that is conductively connected to the element active portion formed on the first main surface side of the substrate, and a first conductive layer that is conductively connected to the low resistance layer of the first conductivity type formed on the second main surface side of the substrate. and second electrode layers, wherein said element active portion interposed between the low-resistance layer, and the vertical drift region deplete in the off state with flow drift current in the vertical direction in the on state, around the vertical drift region in interposed between the low-resistance layer and the first major surface, and a pressure-resistant structure portion for depletion in the off state, the orientation wherein the vertical drift region and the breakdown withstanding section in the thickness direction of the substrate In a semiconductor device having a parallel pn structure in which vertical first conductive type regions and vertical second conductive type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined,
The pressure-resistant structure can have a high resistance layer of a first conductivity type connected to said first main surface side of the parallel pn structure, parallel pn length of the parallel pn structure of the withstand voltage structure is the drift region A semiconductor device characterized by being shorter than the length of the structure .
請求項1において、前記高抵抗層が第1導電型と第2導電型の不純物の双方をドープして形成されていることを特徴する半導体装置。  2. The semiconductor device according to claim 1, wherein the high resistance layer is formed by doping both impurities of a first conductivity type and a second conductivity type. 請求項1において、前記素子活性部の周りで前記縦形第2導電型領域に非接続で前記高抵抗層の主面側に形成された第2導電型のリングとを有することを特徴する半導体装置。  2. The semiconductor device according to claim 1, further comprising a second conductivity type ring formed on the main surface side of the high resistance layer so as not to be connected to the vertical second conductivity type region around the element active portion. . 請求項3において、前記第2導電型のリングが間隔をおいて複数形成されていることを特徴とする半導体装置。  4. The semiconductor device according to claim 3, wherein a plurality of the second conductivity type rings are formed at intervals. 請求項1乃至請求項4のいずれか一項において、前記耐圧構造部の並列pn構造の長さは前記ドリフト部の並列pn構造の長さよりも前記第1主面側において短いことを特徴とする半導体装置。In any one of claims 1 to 4, the length of the parallel pn structure of the pressure-resistant structure is characterized by a short in the first main surface side than the length of the parallel pn structure of the drift region Semiconductor device. 請求項1乃至請求項5のいずれか一項において、前記耐圧構造部の並列pn構造のpn繰り返しピッチは前記縦形ドリフト部の並列pn構造のpn繰り返しピッチよりも狭いことを特徴とする半導体装置。  6. The semiconductor device according to claim 1, wherein a pn repetition pitch of the parallel pn structure of the breakdown voltage structure portion is narrower than a pn repetition pitch of the parallel pn structure of the vertical drift portion. 請求項1乃至請求項6のいずれか一項において、前記耐圧構造部の周囲に形成された第1導電型のチャネルストッパー領域を有することを特徴とする半導体装置。  7. The semiconductor device according to claim 1, further comprising a first conductivity type channel stopper region formed around the breakdown voltage structure portion. 請求項7において、前記チャネルストッパー領域は第1導電型の側縁領域を介して前記低抵抗層に接続していることを特徴とする半導体装置。  8. The semiconductor device according to claim 7, wherein the channel stopper region is connected to the low resistance layer through a side edge region of a first conductivity type. 基板の第1主面側に形成された素子活性部に導電接続する第1の電極層と、前記基板の第2主面側に形成された第1導電型の低抵抗層に導電接続する第2の電極層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流を縦方向に流すと共にオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オフ状態では空乏化する耐圧構造部とを有し、前記縦形ドリフト部及び前記耐圧構造部が前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とを交互に繰り返して接合して成る並列pn構造を有し、前記耐圧構造部は前記並列pn構造の主面側に接続する第1導電型の高抵抗層と前記素子活性部の周りで前記縦形第2導電型領域に非接続で前記高抵抗層の主面側に形成された第2導電型のリングとを有する半導体装置の製造方法であって、
第1導電型の低抵抗基体上の前記縦形ドリフト部及び前記耐圧構造部を形成すべき領域において、第1導電型高抵抗のエピタキシャル層を成長させた後、そのエピタキシャル層に離散的に配置した不純物導入窓を介して第2の導電型の不純物イオンを選択的に導入する工程を繰り返す第1の段階と、次いで、新たに第1導電型高抵抗のエピタキシャル層を成長させた後、前記耐圧構造部を形成すべき領域をマスクした状態で、前記縦形ドリフト部を形成すべき領域において第2の導電型の不純物イオンを離散的に配置した不純物導入窓を介して選択的に導入する工程を少なくとも1回行う第2の段階と、しかる後、熱処理を施して前記各エピタキシャル層に選択的に導入した前記不純物を熱拡散させて層違いの熱拡散領域同士を上下相互に接続し、前記並列pn構造を形成する第3の段階と、を有することを特徴とする半導体装置の製造方法。
A first electrode layer that is conductively connected to the element active portion formed on the first main surface side of the substrate, and a first conductive layer that is conductively connected to the low resistance layer of the first conductivity type formed on the second main surface side of the substrate. A vertical drift portion interposed between the electrode active layer 2, the element active portion and the low resistance layer, which flows a drift current in the vertical direction in the on state and is depleted in the off state, and around the vertical drift portion in interposed between the low-resistance layer and the first major surface, and a pressure-resistant structure portion for depletion in the off state, the orientation wherein the vertical drift region and the breakdown withstanding section in the thickness direction of the substrate A vertical pn structure in which vertical first conductivity type regions and vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the breakdown voltage structure portion is a main part of the parallel pn structure. Around the first active type high resistance layer connected to the surface side and the element active portion Serial A method of manufacturing a semiconductor device having a second conductivity type of the ring formed on a main surface of the high resistance layer in a non-connected to the vertical second conductivity type region,
In the region where the vertical drift portion and the breakdown voltage structure portion on the first conductivity type low resistance substrate are to be formed, the first conductivity type high resistance epitaxial layer is grown and then discretely disposed on the epitaxial layer. First step of repeating the step of selectively introducing impurity ions of the second conductivity type through the impurity introduction window, and then newly growing a first conductivity type high resistance epitaxial layer, A step of selectively introducing impurity ions of the second conductivity type through impurity introduction windows discretely arranged in the region where the vertical drift portion is to be formed in a state where the region where the structure portion is to be formed is masked; The second stage performed at least once, and then thermally treated to diffuse the impurities selectively introduced into the respective epitaxial layers by heat treatment, so that the heat diffusion regions of different layers are in contact with each other vertically. And, a method of manufacturing a semiconductor device characterized by having a third step of forming the parallel pn structure.
基板の第1主面側に形成された素子活性部に導電接続する第1の電極層と、前記基板の第2主面側に形成された第1導電型の低抵抗層に導電接続する第2の電極層と、前記素子活性部と前記低抵抗層との間に介在し、オン状態ではドリフト電流を縦方向に流すと共にオフ状態では空乏化する縦形ドリフト部と、前記縦形ドリフト部の周りで前記第1主面と前記低抵抗層との間に介在し、オフ状態では空乏化する耐圧構造部とを有し、前記縦形ドリフト部及び前記耐圧構造部が前記基板の厚み方向に配向する縦形第1導電型領域と前記基板の厚み方向に配向する縦形第2導電型領域とを交互に繰り返して接合して成る並列pn構造を有し、前記耐圧構造部は前記並列pn構造の主面側に接続する第1導電型の高抵抗層と前記素子活性部の周りで前記縦形第2導電型領域に非接続で前記高抵抗層の主面側に形成された第2導電型のリングとを有する半導体装置の製造方法であって、
第1導電型の低抵抗基体上の前記縦形ドリフト部及び前記耐圧構造部を形成すべき領域において、第1導電型高抵抗のエピタキシャル層を成長させた後、そのエピタキシャル層に離散的に配置した不純物導入窓を介して第2の導電型の不純物イオンを選択的に導入する工程を繰り返す第1の段階と、次いで、新たに第1導電型高抵抗のエピタキシャル層を成長させた後、全面に第1の導電型の不純物イオンを導入してから、前記耐圧構造部を形成すべき領域での不純物導入窓のピッチと窓幅が前記縦形ドリフト部を形成すべき領域でのピッチと窓幅よりも狭いマスクを形成して第2の導電型の不純物イオンを選択的に導入する工程を少なくとも1回行う第2の段階と、しかる後、熱処理を施して前記各エピタキシャル層に選択的に導入した前記不純物を熱拡散させて層違いの熱拡散領域同士を上下相互に接続し、前記並列pn構造を形成する第3の段階と、を有することを特徴とする半導体装置の製造方法。
A first electrode layer that is conductively connected to the element active portion formed on the first main surface side of the substrate, and a first conductive layer that is conductively connected to the low resistance layer of the first conductivity type formed on the second main surface side of the substrate. A vertical drift portion interposed between the electrode active layer 2, the element active portion and the low resistance layer, which flows a drift current in the vertical direction in the on state and is depleted in the off state, and around the vertical drift portion in interposed between the low-resistance layer and the first major surface, and a pressure-resistant structure portion for depletion in the off state, the orientation wherein the vertical drift region and the breakdown withstanding section in the thickness direction of the substrate A vertical pn structure in which vertical first conductivity type regions and vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined, and the breakdown voltage structure portion is a main part of the parallel pn structure. Around the first active type high resistance layer connected to the surface side and the element active portion Serial A method of manufacturing a semiconductor device having a second conductivity type of the ring formed on a main surface of the high resistance layer in a non-connected to the vertical second conductivity type region,
In the region where the vertical drift portion and the breakdown voltage structure portion on the first conductivity type low resistance substrate are to be formed, the first conductivity type high resistance epitaxial layer is grown and then discretely disposed on the epitaxial layer. A first step of repeating the step of selectively introducing impurity ions of the second conductivity type through the impurity introduction window, and then a new first conductivity type high resistance epitaxial layer is grown and then applied to the entire surface. After introducing the impurity ions of the first conductivity type, the pitch and window width of the impurity introduction window in the region where the breakdown voltage structure portion is to be formed are larger than the pitch and window width in the region where the vertical drift portion is to be formed. A second step of forming a narrow mask and selectively introducing impurity ions of the second conductivity type at least once, and then performing heat treatment to selectively introduce each of the epitaxial layers. in front The method of manufacturing a semiconductor device which impurities are thermally diffused to connect the heat diffusion region between layers difference vertically mutually and having a third step of forming the parallel pn structure.
JP2001307314A 2001-10-03 2001-10-03 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3731520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307314A JP3731520B2 (en) 2001-10-03 2001-10-03 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307314A JP3731520B2 (en) 2001-10-03 2001-10-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003115589A JP2003115589A (en) 2003-04-18
JP3731520B2 true JP3731520B2 (en) 2006-01-05

Family

ID=19126793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307314A Expired - Lifetime JP3731520B2 (en) 2001-10-03 2001-10-03 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3731520B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882212B2 (en) * 2003-08-20 2012-02-22 株式会社デンソー Vertical semiconductor device
JP2006005275A (en) 2004-06-21 2006-01-05 Toshiba Corp Semiconductor device for electric power
JP2007173418A (en) 2005-12-20 2007-07-05 Toshiba Corp Semiconductor device
JP5124999B2 (en) * 2006-06-15 2013-01-23 富士電機株式会社 Semiconductor device and manufacturing method thereof
US8716792B2 (en) * 2008-09-30 2014-05-06 Infineon Technologies Austria Ag Semiconductor device with a charge carrier compensation structure and method for the production of a semiconductor device
JP5491723B2 (en) * 2008-11-20 2014-05-14 株式会社東芝 Power semiconductor device
JP5741567B2 (en) * 2009-07-31 2015-07-01 富士電機株式会社 Semiconductor device
JP5533067B2 (en) * 2010-03-15 2014-06-25 富士電機株式会社 Manufacturing method of super junction semiconductor device
JP6009731B2 (en) 2010-10-21 2016-10-19 富士電機株式会社 Semiconductor device
JP5664142B2 (en) 2010-11-09 2015-02-04 富士電機株式会社 Semiconductor device
JP5719167B2 (en) * 2010-12-28 2015-05-13 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5915076B2 (en) 2011-10-21 2016-05-11 富士電機株式会社 Super junction semiconductor device
WO2016002963A1 (en) 2014-07-04 2016-01-07 富士電機株式会社 Semiconductor device
JP2019054169A (en) * 2017-09-15 2019-04-04 株式会社東芝 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69833743T2 (en) * 1998-12-09 2006-11-09 Stmicroelectronics S.R.L., Agrate Brianza Manufacturing method of an integrated edge structure for high voltage semiconductor devices
JP4450122B2 (en) * 1999-11-17 2010-04-14 株式会社デンソー Silicon carbide semiconductor device
JP4483001B2 (en) * 2000-02-17 2010-06-16 富士電機システムズ株式会社 Semiconductor element

Also Published As

Publication number Publication date
JP2003115589A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
JP4765012B2 (en) Semiconductor device and manufacturing method thereof
US10727318B2 (en) Semiconductor device VDMOS having a gate insulating film having a high dielectric constant portion contacting the drift region for relaxing an electric field generated in the gate insulating film
JP4874516B2 (en) Trench double-diffused metal oxide semiconductor transistor incorporating a trench Schottky rectifier
JP3951522B2 (en) Super junction semiconductor device
US8035158B2 (en) Semiconductor device
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
US6620667B2 (en) Method of making a HF LDMOS structure with a trench type sinker
US20060284248A1 (en) Semiconductor device and method of fabricating the same
JP3731520B2 (en) Semiconductor device and manufacturing method thereof
US20090085111A1 (en) Semiconductor device and method of manufacturing the same
JP2012074441A (en) Semiconductor device for power
US8455958B2 (en) Insulated gate semiconductor device with well region edge positioned within ring-shaped buffer trench
KR20180062379A (en) Semiconductor device, rc-igbt, and method of manufacturing semiconductor device
JP7505217B2 (en) Super-junction semiconductor device and method for manufacturing the same
TWI741185B (en) Semiconductor device and method of manufacturing semiconductor device
US7538388B2 (en) Semiconductor device with a super-junction
JP6005903B2 (en) Manufacturing method of semiconductor device
US10651277B2 (en) Semiconductor device and method of manufacturing the same
WO2022202936A1 (en) Silicon carbide semiconductor device, inverter circuit using same, and method for manufacturing silicon carbide semiconductor device
JP5023423B2 (en) Vertical insulated gate field effect transistor and manufacturing method thereof
CN114388612A (en) Semiconductor device and method for manufacturing semiconductor device
JP4765104B2 (en) Superjunction semiconductor device manufacturing method
JP2002141505A (en) Field-effect transistor
KR20050067012A (en) Semiconductor device and method of manufacturing the same
JP2007109712A (en) Transistor and diode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Ref document number: 3731520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250