JP3725889B2 - 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法 - Google Patents

超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法 Download PDF

Info

Publication number
JP3725889B2
JP3725889B2 JP2003388533A JP2003388533A JP3725889B2 JP 3725889 B2 JP3725889 B2 JP 3725889B2 JP 2003388533 A JP2003388533 A JP 2003388533A JP 2003388533 A JP2003388533 A JP 2003388533A JP 3725889 B2 JP3725889 B2 JP 3725889B2
Authority
JP
Japan
Prior art keywords
product gas
gas
reactor
reaction
decomposition product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003388533A
Other languages
English (en)
Other versions
JP2005144391A (ja
Inventor
正澄 金澤
Original Assignee
大旺建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大旺建設株式会社 filed Critical 大旺建設株式会社
Priority to JP2003388533A priority Critical patent/JP3725889B2/ja
Publication of JP2005144391A publication Critical patent/JP2005144391A/ja
Application granted granted Critical
Publication of JP3725889B2 publication Critical patent/JP3725889B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、超音波を利用した化学物質の二重結合の解裂等の反応促進方法及びその装置並びに超音波を利用してフロンR22(又はフロンR23)からポリテトラフルオロエチレン(テフロン(登録商標))等のフッ素樹脂を製造する方法に関する。
従来から冷媒として使用されているフロンガスとか、消化剤として使用されているハロンガスは環境汚染物質であることが指摘されており、これら物質の無害化処理が地球環境を守る観点から全世界的な関心事であって各種の対処手段が提案されている。例えばフロン処理方法に関しては、水熱反応法,焼却法,爆発反応分解法,微生物分解法,超音波分解法及びプラズマ反応法等が提案されている。また、オゾン層の破壊物質であるフロンR22(CHClF)は分解してから廃棄処理する手段が通例であるが、近時はフッ素樹脂にリサイクルして再利用する試みが行われている。例えば使用済みのエアコン等から回収したフロンR22を回収後に精製してからポリテトラフルオロエチレン樹脂原料として利用する手段が工夫されている。
一般にポリテトラフルオロエチレンの製造方法としては、フッ化塩化エタンの脱塩素法、C,F,H,Cl,Br等を含む低級脂肪族の熱分解法、三フッ化酢酸のアルカリ金属塩の熱分解法、PTFTの熱分解法等が知られている。工業的には白金,銀,炭素などの反応管を使用し、無充填流動方式により650℃〜800℃熱分解を行ってポリテトラフルオロエチレンを得ている。副生成物の主なものはCである(非特許文献1,2を参照)。
フッ素樹脂ハンドブック(里川孝臣編,1990年,日刊工業新聞社発行) フッ素系材料の開発(山辺正顕,松尾 仁編,1997年,株式会社シーエムシー出版発行)
しかしながら、上記従来のフロンR22をフッ素樹脂にリサイクルする手段では、原料であるフロンR22の純度が高いことが要求され、一方家庭用エアコン等から回収したフロンR22は水分,油分,空気等を含んでいるため、充分に精製して純度を高めないと原料として使用できないという問題がある。更に熱分解法により4フッ化エチレンガス(CF=CFガス)を作る際に副生成物として有害なガスが発生するので、この有毒ガスの処理が難しいという課題がある。また、原料としてのフロンR22からポリテトラフルオロエチレンまでを連続的に製造することはできないという問題点もある。
また、熱分解により4フッ化エチレンガス(CF=CFガス)ができても、このCF=CFガスの純度が高くないと重合が開始されないので、CF=CFガスを精製して重合が開始されるまでの純度に高める必要がある。一方、純度が高くなると常温常圧でも重合が始まり止めることができないくらい激しく重合し、このとき大きな反応熱を出すので爆発したり危険な反応となる。また、純度の高いCF=CFガスを保存するには、重合阻止剤を入れて−20℃以下にして保管しなければならず、それでも徐々に重合する。
また、フロンR22(CHClF)の1個の塩素(Cl)がフッ素(F)に置き換わったフロンR23(CHF)という物質がある。このフロンR23はフッ素樹脂の原料としてフロンR22を作る際の副生成物として必ずできるフロンであり、特に重要な用途は存在しない。しかしながら、フロンR23は、フロンR22のようにオゾン層の破壊物質ではないため看過されてきたが、近時大きな環境問題となっている地球温暖化の指数が炭酸ガスの10000倍以上(フロンR22は1000倍程度)あることが明らかとなり、その分解処理が大きな課題となっている。一方において、このフロンR23は塩素(Cl)を含んでいないので、このフロンR23からフッ素樹脂を製造することができれば塩素の混入がないので、非常に効率的に樹脂化でき、更にはポリテトラフルオロエチレンのみを製造することができるという画期的な効果を得ることができる。
そこで本発明はこれらの事情に鑑み、上記従来のフロンR22をフッ素樹脂にリサイクルして再利用する手段等が有している課題を解消して、超音波を利用した各種化学物質の二重結合の解裂,重合,置換等の各種反応促進方法及びその装置並びに回収したフロンR22(又はフロンR23)が不純物を多く含んでいても、蒸留や精留などのような高度な精製工程を行うことなく、原料としてのフロンR22(又はフロンR23)の投入からフッ素樹脂の製造、残ガス回収まで連続した工程で行うことができるとともに、重合の開始・停止を制御することのできる超音波を利用したフッ素樹脂の製造方法を提供することを目的とするものである。
本発明は上記目的を達成するために、化学物質を加熱して熱分解させることにより分解生成ガスとし、該分解生成ガスに超音波を照射して分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進させる超音波を利用した化学物質の反応促進方法、化学物質と水蒸気を混合して加熱し熱分解させることにより分解生成ガスとし、該分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去し、その後分解生成ガス中の酸を中和洗浄した後、該分解生成ガスに超音波を照射して分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進させる超音波を利用した化学物質の反応促進方法、及びフロンR22(又はフロンR23)と水蒸気を混合して加熱し熱分解させることにより、分解生成ガスとし、該分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去し、その後分解生成ガス中の酸を中和洗浄した後、該分解生成ガスに超音波を照射して分解生成ガス中の二重結合を解裂して連鎖的重合反応を促進し、重合反応によってフッ素樹脂を得る超音波を利用した化学物質の反応促進方法を提供する。
反応促進装置としては、超音波振動子が配置されて化学物質の二重結合を解裂して連鎖的な重合反応を促進する反応器を備えてなる超音波を利用した化学物質の反応促進装置、化学物質を加熱して熱分解する第一反応器と、超音波振動子が配置されて分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進する第二反応器とを備えてなる超音波を利用した化学物質の反応促進装置、及び化学物質と水蒸気を混合して加熱し熱分解する第一反応器と、分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去するための冷却器と、分解生成ガス中の酸を中和洗浄する洗浄器と、超音波振動子が配置されて分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進する第二反応器とを備えてなる構成、更にフロンR22(又はフロンR23)と水蒸気を混合して加熱し熱分解する第一反応器と、分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去するための冷却器と、分解生成ガス中の酸を中和洗浄する洗浄器と、超音波振動子が配置されて分解生成ガス中の二重結合を解裂して連鎖的重合反応を促進する第二反応器とを備えてなる構成を提供する。また、フロンR22(又はフロンR23)と水蒸気の予熱器を有する構成、残ガスを回収する残ガス回収容器を装備した構成を提供する。
更に、適度に加熱された第一反応器でフロンR22(又はフロンR23)と水蒸気を混合して熱分解反応を行い、冷却器で分解生成ガスと水蒸気を冷却することにより水蒸気を凝縮液化して除去してから、酸を除去するために分解生成ガスをガス洗浄器により中和洗浄した後に第二反応器内に導入し、超音波振動子によって分解生成ガスに超音波を照射することにより、分解生成ガス中の二重結合を解裂してフッ素樹脂の重合反応を促進し、フッ素樹脂を製造する超音波を利用したフッ素樹脂の製造方法、フロンR22(又はフロンR23)と水蒸気を予熱器に投入して予熱してから、第一反応器に供給する構成、超音波の照射の有無によって、重合反応を制御する構成、及びフッ素樹脂がポリテトラフルオロエチレンである構成を提供する。
かかる超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法によれば、超音波によって各種化学物質の反応を促進させることができる。即ち、超音波を化学物質の分解生成ガスに照射することで運動エネルギーの増加と衝突頻度の増大、さらに、断熱圧縮による高温高圧状態でエネルギーの供給が可能となるから十分な活性化エネルギーが与えられ化学反応が促進されるのである。例えば、二重結合の解裂,重合(分子結合反応),置換反応等が活発に行われる場ができることとなる。また、一定量のフロンR22(又はフロンR23)とともに適量の水蒸気を予熱器に投入して予熱してから、次段の第一反応器内に導入し熱分解させた後、CF=CFガスと塩化水素からなる分解生成ガス(フロンR23の場合はCF=CFガスとフッ化水素)と水蒸気を冷却器に送り冷却することにより、水蒸気は凝縮液化される。一方残りの分解生成ガスはガス洗浄器に入り、含まれている酸性ガスを中和洗浄し、次に第二反応器内に導入して超音波振動子からの超音波照射による疎密波によって分解生成ガス分子は高速反転移動を繰り返し激しく衝突する。さらに、超音波の持つ高圧部分の断熱圧縮作用により局部的な高温高圧状態下で二重結合を解裂するとともにポリテトラフルオロエチレン等のフッ素樹脂への重合反応が促進され、該フッ素樹脂が製造される。なお、残ガスは濾過装置を経て残ガス回収容器内に取り込まれる。
本発明によって得られた超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法によれば、従来のフロンR22をフッ素樹脂にリサイクルする手段のように回収したフロンの高度な精製は不要であって、フロンの純度を極端に高める必要はなく、熱分解によるCF=CFガスを作る際の副生成物として有害なガスの発生を防止することができる。更に被分解物としてのフロンR22(又はフロンR23)からポリテトラフルオロエチレン等のフッ素樹脂までを連続的に製造することが可能となる。更に、フロンR22以上に地球温暖化への負荷の高いフロンR23を分解処理するとともに、フッ素樹脂の原材料として有効利用できる。
また、CF=CFガスの純度が高くなくても重合が開始されるので、ガスを精製して重合が開始されるまで純度を高める工程は不要である。更に、超音波の照射の有無によって、重合反応の開始と停止を任意に制御することができる。従って本発明によれば、回収したフロンが不純物を多く含んでいても高度な精製工程を行うことなく、原料投入から残ガス回収まで連続した工程で行うことができる。
以下本発明にかかる超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法の最良の実施形態を、フロンR22の解裂及びフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を製造する場合を例として説明する。なお、本発明はフロンR22(又はフロンR23)に限ることなく、各種の化学物質の解裂,重合,置換等の反応促進に広く適用することができる。
図1は本発明を適用してフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を製造する際の工程例を示すフローチャートであり、先ず主要な構成要素を説明すると、1は予熱器であり、この予熱器1にはフロンR22投入口1aと水蒸気投入口1bが配設されている。2は第一反応器、3は冷却器、4はガス洗浄器、5は第二反応器、6は濾過装置、7は圧縮機、8は残ガス回収容器である。第二反応器5内には超音波振動子5aが配置されており、外部に該超音波振動子5aを作動させるための超音波発振器5bと制御回路5cが配備されている。
本発明の要旨は、化学物質の分解生成ガスに超音波を照射することで運動エネルギーの増加と衝突頻度の増大、更に断熱圧縮による高温高圧状態でエネルギーの供給が可能となるから十分な活性化エネルギーが与えられ化学反応が促進され、例えば、二重結合の解裂,重合(分子結合反応),置換反応等が活発に行われる場ができることにある。そこで、先ずこれらに関する基本的実験データに関して、図3〜図8に基づいて説明する。
図3は第二反応器5内での動作時における超音波を照射したときの音圧と断熱圧縮による温度上昇曲線を示しており、縦軸に圧力(Pa)と温度(℃)、横軸に電圧を取っている。圧力が約1000Paで温度は約450℃となるから供給できるエネルギーレベルは高いものといえる。
図4は第一反応器2で生成される分解生成ガスの内、CF=CFガスの収率(%)と第一反応器2の温度(℃)との関係を示すグラフであり、図5は第二反応器5の温度(℃)によるCF=CFガス量の比率(%)の関係を示すグラフである。図4によればCF=CFガスの収率は最大40%程度となっている。一方、図5に示すように反応温度によってCF=CFガスの収率は高くなるが、これは温度が高くなると分解して全体のガス量が少なくなるためで、850℃のときにはほぼ90%以上がCF=CFガスで構成されているが、これは見かけ上であって、図4の850℃のときの収率から明らかなように実際のCF=CFガスの量は著しく少なくなっている。収率がよいのは550℃〜650℃の間である。図6は650℃を100%としたときにおける生成される他のガスには含まれないCF=CFガスに特有のイオン分子量81の量と第一反応器2の温度との関係を示すグラフである。このイオンの量が多いとそれだけCF=CFガスの量が多いと考えられ、図6に示すように550℃〜650℃の間で比率が高くなっている。
図7はCF=CFガスの温度と分解率の関係を示すグラフであり、第一反応器2に水蒸気を供給するため、加水分解との関係を検討する必要があり、図7に示すように500℃〜650℃程度が効果的である。温度が650℃を超えるとフロンR22が加水分解又は熱分解によってほとんど分解してしまい、CF=CFガスの構成比率が高くても図4に示すようにその量は少なくなる。また、温度500℃より低いと熱分解が不充分となる。図8は第一反応器2の温度と排出されるガス量の関係を示すグラフであり、温度による排出ガス量はあまり変化していないことが分かる。これは塩酸により洗浄した後のガス量が下記の式(1)(2)から同じモル量となるためと考えられる。
CHClF+HO=CO+HCl+2HF(加水分解)・・・・・・・(1)
2CHClF=CFCF+2HCl(期待する転化の反応式)・・・(2)
よって、第一反応器2におけるCF=CFガスへの転化率は温度が550℃から650℃で40%程度であるが収率は良好である。温度が650℃から850℃では転化率は高くなるが、CF=CFガス量は少なくなる。温度が850℃以上では転化率は良くなるが副生成物が多くなり、900℃を越えると加水分解が顕著となって前記(1)(2)式で示した転化率も低下する。
次にこれら実験データに基づき、図2に示す具体的な装置例の概要図に基づいて、本発明によるフッ素樹脂製造時の反応条件に関して説明する。先ずフロンR22投入口1aから一定量のフロンR22を予熱器1に投入するのと同時に水蒸気投入口1bから該フロンR22と同重量の水蒸気を投入して約300℃〜500℃に予熱する。この予熱器1内ではフロンR22と水蒸気は混合することなく、別々に予熱して次段の第一反応器2内に流入させる。尚、原料としてのフロンR22は移充填することである程度油分と水分を除去した後に予熱器1に投入する。尚、予熱器1は次段の第一反応器2で被分解物の熱分解をすぐに始めることが目的であり、必ずしも必要不可欠の構成要素ではないが、反応時間を少なくして副生成物の混入の少ない分解生成ガスを得るためには、予熱をしておくことが好ましい。また、フロンR22と水蒸気にそれぞれ個別の予熱器を使用することもできる。
第一反応器2の外周部には加熱ヒータ2a,2aが配備されていて、予熱されたフロンR22と水蒸気とをこの第一反応器2において混合し、約500℃〜750℃,圧力−100mHO〜常圧の条件下で反応を行わせる。第一反応器2内でのフロンR22と水蒸気との滞留時間は約1秒とする。なお、第一反応器2における分解反応は熱分解なので水蒸気は特に必要なわけではないが、水蒸気を存在させることにより、副生成物の発生が少なくなり、目的とするガスの収率も高くなることから水蒸気を入れることが好ましい。
この第一反応器2では熱分解反応が起こり、フロンR22は熱分解によってCF=CFガスと塩化水素に分解生成され、CF=CFガスと塩化水素からなる分解生成ガスが得られる。その反応式は次の通りである。
2CHClF→CF=CF+2HCl
本発明はフロンR22に替えて、フロンR23の解裂及びフッ素樹脂への重合にもそのまま適用することができる。なお、フロンR23を原料とする場合は、フロンR23は第一反応器2での熱分解によってCF=CFガスとフッ化水素に分解生成され、CF=CFガスとフッ化水素からなる分解生成ガスが得られる。その反応式は次の通りである。
2CHF→CF=CF+2HF
よって、本実施形態では、フロンR22をフロンR23と、塩化水素をフッ化水素と読み替えることにより、そのままフロンR23を原料とする場合に該当する。
次に熱分解によって生成された分解生成ガス(CF=CFガス+塩化水素)と水蒸気は冷却器3に入り、冷却水入口3aから流入して冷却水出口3bに流出する冷却水により分解生成ガスと水蒸気を冷却することにより、分解生成ガスの温度を下げるとともに水蒸気の液化が行われる。冷却器3内の温度は水蒸気を液化できる温度であればよく、常温程度が適当である。この冷却は水蒸気を液化して除去するためのものであるが、その際多くの酸も水に溶けることとなり、併せて酸の除去にもなる。このように急速に冷却液化することにより副生成物の発生が防止され、分解生成ガス中のCF=CFガスの純度が高くなることによって第二反応器5内での解裂,重合反応が効率良く行えることになる。
水蒸気を除去した分解生成ガスはガス洗浄器4,4により、分解生成ガスに含まれる酸を中和洗浄して、CF=CFガスとしてから第二反応器5内に導入する。第二反応器5内の温度は通常常温であるが反応性を高めるため適宜加熱していてもよく、そのためのヒーターを装備してある。この第二反応器5は圧力−100mHO〜常圧、制御回路5cによりコントロールされた超音波発振器5bによる超音波振動子5aの超音波振動数は200KHz,駆動電圧は1kVの条件下で超音波を照射して反応を行わせる。第二反応器5内での被反応物の滞留時間は0.5〜3秒程度とする。
第二反応器5内で超音波の照射によりCF=CFガスの二重結合が解裂してポリテトラフルオロエチレンに代表される各種のフッ素樹脂への重合反応が開始・促進される。第二反応器5での超音波照射によってCF=CFガスが解裂,重合するメカニズムは以下の通りである。即ち、超音波照射における疎密波の高圧と真空の繰り返しによる物理的な衝撃と超音波の持つ断熱圧縮作用で局部的な高温高圧状態が得られ、このエネルギーによってCF=CFガスの二重結合が解裂される。解裂後の分子は反応性に富んでいるため、同様な分子の衝突により次々に結合して重合していき、更に一度重合が開始すると発熱反応によって重合が加速されるが、負圧の部分では温度が下がるため爆発的な重合は起こらず、超音波照射を停止すると二重結合の解裂も止まり、重合も停止する。即ち、超音波の照射の有無によって、重合反応の開始と停止を任意に制御することができる。また、他の化学物質についても同様に解裂,重合,置換等の化学反応の促進を行うことができる。
9は第二反応器5からの生成物取出口である。残ガスはフィルタ等の濾過装置6から圧縮機7を介して残ガス回収容器8内に取り込む。濾過装置6は重合によって固体となったフッ素樹脂の粒子が小さくてガスとともに飛散してしまうため、適当なフィルターを用いてこれを補足する機能を有している。圧縮機7は分解しなかったフロンR22を大気放出せずにボンベに回収することで再度フッ素樹脂の原料として利用するためのものである。
上記の工程途中に精製工程は必要とせず、第二反応器5内で超音波発振器5bの駆動による超音波振動子5aから発せられる超音波振動によってフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を重合させることができた。なお、使用した原料のフロンR22は移充填することで大まかに油分、水分の除去を行ったものを使用しても問題なく重合させることができた。但し、空気があるとCF=CFガスに転化しないので液で取り出し供給した。また、実験によれば超音波振動の発振と同時に重合が開始され、超音波振動の発振停止とともに上記重合も停止することが判明した。
また、解裂,重合等の反応を促進させる化学物質を直接反応器(第二反応器5)に供給するようにすることも可能である。
下記条件の下で上記反応促進装置を使用して、フロンR22から連続してCF=CFガスを分解生成し、該CF=CFガスの二重結合を解裂し、重合反応によってポリテトラフルオロエチレンを製造した。
第一反応器2における条件
1.反応器温度 650℃
2.フロンR22の投入量 2kg/h
3.水蒸気の投入量 フロンR22と同量(重量)
4.滞留時間 約1秒程度
5.フロンR22,水蒸気の予熱温度 約500℃
6.反応器圧力 −100mHO〜常圧
第二反応器5における条件
1.反応器温度 常温
2.反応器圧力 −100mHO〜常圧
3.超音波振動数 200KHz
4.駆動電圧 1kV(p−p)
5.滞留時間 約3秒
6.CF=CFガス濃度 60%
上記データに示すとおり、フロンR22と水蒸気を各々2kg/hで予熱器1に投入して500℃に予熱した後、第一反応器2で予熱したフロンR22と水蒸気とを混合して650℃,圧力−100mHO〜常圧の条件下で約1秒反応を行わせ、冷却器3で冷却して水蒸気を凝縮液化して除去してからガス洗浄器4,4で酸を中和洗浄して第二反応器5内に流入し、常温下で圧力−100mHO、超音波振動数は200KHz,駆動電圧は1kVで3秒反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図9に示す。
超音波の照射を0.1秒間隔で60回照射し、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図10に示す。
超音波の照射を0.1秒間隔で120回照射し、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図11に示す。図12は、図9〜図11に示すクロマトグラフの各ピークA〜Lの組成物の化学式を示す図である。図11はGC−MSによるクロマトグラフであるが、このグラフのみCF=CFガスの分離効率を高めるためカラムがHP=PLOT/Qを使用している。超音波の照射回数が増えるとCF=CFガスの二重結合を解いて連鎖していくことになり、CF=CFガスとしては検出されずに他のガスのピークが目立っている。図11では二重結合を持ったガスはない。従って第一反応器で転化させたCF=CFガスを常温まで冷却、洗浄した後に超音波を照射すると、図11のピークGに示すように排気ガスはフロンR22だけが残ることになる。
第一反応器2の温度を550℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図13に示す。
第一反応器2の温度を650℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図14に示す。
第一反応器2の温度を750℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図15に示す。図16は、図13〜図15に示すクロマトグラフの各ピークA〜Eの組成物の化学式を示す図である。温度が高くなると転化率も高くなり、図15に示すようにフロンR22はほとんど残らない。
超音波を連続照射とし、その他は実施例4と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図17に示す。
超音波を連続照射とし、その他は実施例5と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図18に示す。
超音波を連続照射とし、その他は実施例6と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図19に示す。実施例7〜実施例9においては、それぞれ超音波を連続照射とすることにより、超音波が定常状態になる場所が第二反応器5内に発生して超音波の振幅が大きくなるところができて、音圧レベルや温度の上昇が計算よりも高くなるケースが生じて容易に重合が開始される。
第一反応器2における水蒸気量を4kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図20に示す。
第一反応器2における水蒸気量を2kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図21に示す。
第一反応器2における水蒸気量を1kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図22に示す。図23は、図20〜図22に示すクロマトグラフの各ピークA〜Fの組成物の化学式を示す図である。フロンR22とともに水蒸気を混合することにより、副生成物の種類は少なくなるとともに転化効率も上昇する。しかし水蒸気量が多すぎると目的外のガスも発生してCF=CFガスの収率が低下する惧れがある。そのため、好ましくはフロンR22と同重量程度の水蒸気を投入することが適当である。
次に水蒸気量を0にし、その他は実施例4と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図24に示す。
次に水蒸気量を0にし、その他は実施例5と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図25に示す。
次に水蒸気量を0にし、その他は実施例6と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図26に示す。図27は、図24〜図26に示すクロマトグラフの各ピークA〜Lの組成物の化学式を示す図である。図24は温度を550℃とした場合、図25は温度を650℃とした場合、図26は温度を750℃とした場合であり、温度が低いと多種のガスが生成して二重結合を持つガス以外のガスも発生する。一方温度が高くなると生成されるガスの種類は少なくなり、CF=CFガスの比率は高くなるが、全体としての熱分解が多くなってガス量は少なくなるからCF=CFガスの収率は悪化する。
他方で温度を上げると加水分解や熱分解が多くなり、特に水蒸気を入れない場合にはCF=CFガス量は少なくなる。これはカーボンが大量に出てくることと分子量が大きなガスが多く発生するためと考えられる。水蒸気を2kg/hとして温度を高くすると、CF=CFガスと未分解フロンの構成比はCF=CFガスの方が高くなり、COガス量も多くなってくることから加水分解されるフロンR22が多くなって全体のガス量は少なくなる。従って水蒸気を入れることでガス量を大きくすることができるが、熱分解及び加水分解が大きくならない転化条件が必要となる。
以上詳細に説明したように、本発明によれば回収したフロンR22(又はフロンR23)が不純物を多く含んでいても高度な精製工程を行うことなく、原料投入から残ガス回収まで連続した工程で行うことができるとともに副生成物として有害なガスの発生を防止することができるので、従来から冷媒として使用されているフロンガスの無害化処理を容易に行うことができるとともに、フロンR22(又はフロンR23)を回収後に簡単な精製の後ポリテトラフルオロエチレン樹脂に代表されるフッ素樹脂の原料として利用することができる。また、地球温暖化の指数が炭酸ガスの10000倍以上(フロンR22は1000倍程度)あり、地球温暖化への負荷の高いフロンR23を分解処理するとともに、フッ素樹脂の原材料として有効利用できる。
本発明を適用してフッ素樹脂を製造する際の工程例を示すフローチャート。 本発明に係る反応促進装置例を示す概要図。 第二反応器内での超音波による音圧と断熱圧縮による温度上昇曲線を示すグラフ。 連続重合によるCF=CFガスの収率(%)と温度(℃)の関係を示すグラフ。 第二反応器の温度(℃)によるCF=CFガス量の比率(%)の関係を示すグラフ。 650℃を100%としたときにおける生成される他のガスには含まれないCF=CFガスに特有のイオン分子量81の量と第一反応器の温度との関係を示すグラフ。 CF=CFガスの温度と分解率の関係を示すグラフ。 第一反応器の温度とガス量の関係を示すグラフ。 実施例1の排気ガスのクロマトグラフ。 実施例2の排気ガスのクロマトグラフ。 実施例3の排気ガスのクロマトグラフ。 図9〜図11の各ピークA〜Lの組成物の化学式の図。 実施例4の排気ガスのクロマトグラフ。 実施例5の排気ガスのクロマトグラフ。 実施例6の排気ガスのクロマトグラフ。 図13〜図15の各ピークA〜Eの組成物の化学式の図。 実施例7の排気ガスのクロマトグラフ。 実施例8の排気ガスのクロマトグラフ。 実施例9の排気ガスのクロマトグラフ。 実施例10の排気ガスのクロマトグラフ。 実施例11の排気ガスのクロマトグラフ。 実施例12の排気ガスのクロマトグラフ。 図20〜図22の各ピークA〜Fの組成物の化学式の図。 実施例13の排気ガスのクロマトグラフ。 実施例14の排気ガスのクロマトグラフ。 実施例15の排気ガスのクロマトグラフ。 図24〜図26の各ピークA〜Lの組成物の化学式の図。
符号の説明
1…予熱器
1a…フロンR22投入口
1b…水蒸気投入口
2…第一反応器
3…冷却器
4…ガス洗浄器
5…第二反応器
5a…超音波振動子
5b…超音波発振器
5c…制御回路
6…濾過装置
7…圧縮機
8…残ガス回収容器
9…生成物取出口

Claims (13)

  1. 化学物質を加熱して熱分解させることにより分解生成ガスとし、該分解生成ガスに超音波を照射して分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進させることを特徴とする超音波を利用した化学物質の反応促進方法。
  2. 化学物質と水蒸気を混合して加熱し熱分解させることにより分解生成ガスとし、該分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去し、その後分解生成ガス中の酸を中和洗浄した後、該分解生成ガスに超音波を照射して分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進させることを特徴とする超音波を利用した化学物質の反応促進方法。
  3. フロンR22(又はフロンR23)と水蒸気を混合して加熱し熱分解させることにより、分解生成ガスとし、該分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去し、その後分解生成ガス中の酸を中和洗浄した後、該分解生成ガスに超音波を照射して分解生成ガス中の二重結合を解裂して連鎖的重合反応を促進し、重合反応によってフッ素樹脂を得ることを特徴とする超音波を利用した化学物質の反応促進方法。
  4. 超音波振動子が配置されて化学物質の二重結合を解裂して連鎖的な重合反応を促進する反応器を備えてなることを特徴とする超音波を利用した化学物質の反応促進装置。
  5. 化学物質を加熱して熱分解する第一反応器と、超音波振動子が配置されて分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進する第二反応器とを備えてなることを特徴とする超音波を利用した化学物質の反応促進装置。
  6. 化学物質と水蒸気を混合して加熱し熱分解する第一反応器と、分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去するための冷却器と、分解生成ガス中の酸を中和洗浄する洗浄器と、超音波振動子が配置されて分解生成ガス中に含まれる二重結合を解裂して連鎖的な重合反応を促進する第二反応器とを備えてなることを特徴とする超音波を利用した化学物質の反応促進装置。
  7. フロンR22(又はフロンR23)と水蒸気を混合して加熱し熱分解する第一反応器と、分解生成ガスを冷却して凝縮液化することにより、分解生成ガス中から水蒸気を除去するための冷却器と、分解生成ガス中の酸を中和洗浄する洗浄器と、超音波振動子が配置されて分解生成ガス中の二重結合を解裂して連鎖的重合反応を促進する第二反応器とを備えてなることを特徴とする超音波を利用した化学物質の反応促進装置。
  8. フロンR22(又はフロンR23)と水蒸気の予熱器を有する請求項記載の超音波を利用した化学物質の反応促進装置。
  9. 残ガスを回収する残ガス回収容器を装備した請求項4,5,6,7又は記載の超音波を利用した化学物質の反応促進装置。
  10. 適度に加熱された第一反応器でフロンR22(又はフロンR23)と水蒸気を混合して熱分解反応を行い、冷却器で分解生成ガスと水蒸気を冷却することにより水蒸気を凝縮液化して除去してから、酸を除去するために分解生成ガスをガス洗浄器により中和洗浄した後に第二反応器内に導入し、超音波振動子によって分解生成ガスに超音波を照射することにより、分解生成ガス中の二重結合を解裂してフッ素樹脂の重合反応を促進し、フッ素樹脂を製造することを特徴とする超音波を利用したフッ素樹脂の製造方法。
  11. フロンR22(又はフロンR23)と水蒸気を予熱器に投入して予熱してから、第一反応器に供給する請求項10記載の超音波を利用したフッ素樹脂の製造方法。
  12. 超音波の照射の有無によって、重合反応を制御する請求項10又は11記載の超音波を利用したフッ素樹脂の製造方法。
  13. フッ素樹脂がポリテトラフルオロエチレンである請求項10,11又は12記載の超音波を利用したフッ素樹脂の製造方法。
JP2003388533A 2003-11-18 2003-11-18 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法 Expired - Fee Related JP3725889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388533A JP3725889B2 (ja) 2003-11-18 2003-11-18 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388533A JP3725889B2 (ja) 2003-11-18 2003-11-18 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005236512A Division JP2006035217A (ja) 2005-08-17 2005-08-17 超音波を利用した化学物質の反応促進方法

Publications (2)

Publication Number Publication Date
JP2005144391A JP2005144391A (ja) 2005-06-09
JP3725889B2 true JP3725889B2 (ja) 2005-12-14

Family

ID=34695565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388533A Expired - Fee Related JP3725889B2 (ja) 2003-11-18 2003-11-18 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法

Country Status (1)

Country Link
JP (1) JP3725889B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090236133A1 (en) * 2005-09-12 2009-09-24 Tadahiro Ohmi Method of Manufacturing a Polymer and Poymer Material
KR101236645B1 (ko) 2010-12-31 2013-02-22 주식회사 효성 공정성이 우수한 연속식 파이프형 중합 반응 장치 및 이를 이용한 중합 방법

Also Published As

Publication number Publication date
JP2005144391A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
Han et al. Treatment of the potent greenhouse gas, CHF3—an overview
CN109310949B (zh) 用于包括氮氧化物、氯氟烃、氢氯氟烃、氢氟烃和全氟化合物的混合废气的整体式处理系统
JP5690274B2 (ja) フッ化物イオン洗浄方法
JP4387671B2 (ja) フルオロカーボンの製造方法
US5416247A (en) Chemical disposal of halocarbons
JP3725889B2 (ja) 超音波を利用した化学物質の反応促進方法及びその装置並びに超音波を利用したフッ素樹脂の製造方法
JP2006035217A (ja) 超音波を利用した化学物質の反応促進方法
WO2001038787A1 (en) Improved chlorinated hydrocarbon waste incinerator an d valorization of chlorinated residuals process unit
JP3457518B2 (ja) 発泡ウレタンを含む廃棄物の処理方法及び処理装置
JP2011115795A (ja) 難分解物質の分解処理方法及びその装置
Blake Solar thermal technology for the destruction of CFC waste
JPH0724081A (ja) 高周波誘導プラズマによる有機ハロゲン化合物の分解方法及びその装置
JPH08270922A (ja) フロンの無害化方法
JP4399938B2 (ja) モノクロロジフルオロメタンの処理方法
JP3626319B2 (ja) 高温高圧流体を利用した反応方法およびその装置
JP2003130324A (ja) フロンの処理方法
JP3216868B2 (ja) ハロゲン化物ガスの分解方法
JPH1028836A (ja) 放電プラズマを用いたフロン分解処理装置
CN116947598B (en) Method for producing tetrafluoromethane by taking trifluoromethane as raw material
JPH0782569A (ja) 加熱油化方法及びその装置
JP3606575B1 (ja) 有機ハロゲン化合物の処理方法及びその装置
KR20190102396A (ko) 발포 공정에서 배출되는 발포 가스 회수 장치 및 방법
JPH08318122A (ja) フロン分解排ガスの処理方法
KR102276506B1 (ko) 폐냉매를 이용한 알루미늄 브레이징용 플럭스의 제조방법
Tong et al. Enhanced degradation of fluorinated refrigerants and resourceful conversion under external physical and chemical fields: Principle, technology and perspective

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees