JP3722684B2 - LED array for printer - Google Patents

LED array for printer Download PDF

Info

Publication number
JP3722684B2
JP3722684B2 JP2000291100A JP2000291100A JP3722684B2 JP 3722684 B2 JP3722684 B2 JP 3722684B2 JP 2000291100 A JP2000291100 A JP 2000291100A JP 2000291100 A JP2000291100 A JP 2000291100A JP 3722684 B2 JP3722684 B2 JP 3722684B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
electrode
element group
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000291100A
Other languages
Japanese (ja)
Other versions
JP2002100809A (en
Inventor
達也 岸本
勝信 北田
智郁 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000291100A priority Critical patent/JP3722684B2/en
Publication of JP2002100809A publication Critical patent/JP2002100809A/en
Application granted granted Critical
Publication of JP3722684B2 publication Critical patent/JP3722684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体発光装置に関し、特にページプリンター用感光ドラムの露光用光源などに用いられるプリンター用に適したLEDアレイに関するものである。
【0002】
【従来の技術】
従来のプリンター用LEDアレイを図3〜図5に示す。
図3は1つのLEDの断面図、図4はプリンター用LEDアレイ平面図、また、図5は他のプリンター用LEDアレイの平面図である。
【0003】
図3に示すLEDにおいて、21は高抵抗シリコン基板であり、高抵抗シリコン基板21の上に一導電型半導体層22と逆導電型半導体層23とを順次積層している。24は個別電極、25は共通電極、26は窒化シリコン膜などから成る保護膜である。
【0004】
そして、逆導電型半導体層23を一導電型半導体層22よりも小さな面積となるように設けると共に、この一導電型半導体層22の露出部に共通電極25を接続して設け、また、逆導電型半導体層23に個別電極24を接続して設けている。
【0005】
また、図4に示すプリンター用LEDアレイによれば、上記構成のLED(発光素子)を複数個配列したものであり、逆導電型半導体層23上に接続された電極2線分を1つのパッドPにまとめて、従来の2分の1の数のパッドにしている。共通電極25(25a〜25d)は隣接する発光素子ごとに異なる群に属するように二群に分けて接続して設けられ、そのために電極パッドDが設けられている。隣接する2個の発光素子が一単位となって、双方は同じ個別電極24に接続されている。
【0006】
このようなLEDアレイでは、個別電極24と共通電極25(25a〜25d)の組み合わせを選択して電流を流すことによって、各発光素子を選択的に発光させている。
【0007】
また、図5に示すプリンター用LEDアレイにおいては、逆導電型半導体層23上に接続された個別電極24を4線分でもって1つの電極パッドPにまとめることにより従来の4分の1の数にしている。しかも、すべての電極パッドPをLEDアレイの一方側に配列している。
【0008】
共通電極25(25a〜25d)は隣接する発光素子ごとに異なる群に属するように4群に分けて接続して設けられ、そのために電極パッドDが設けられている。
【0009】
そして、このLEDアレイにおいても、同様に個別電極24と共通電極25(25a〜25d)の組み合わせを選択して電流を流すことによって、各LEDを選択的に発光させる。
【0010】
【発明が解決しようとする課題】
しかしながら、図5に示すようなプリンター用LEDアレイによれば、LEDアレイの内側に配列される共通電極25a、25cと、外側に配列される共通電極25b、25dに分けられたことで、外側の共通電極25bと共通電極25dでもって接続される一導電型半導体層22とのコンタクト位置は、内側の共通電極25a、25cでもって接続される一導電型半導体層22とのコンタクト位置と対比するに、逆導電型半導体層23からより遠距離になり、一導電型半導体層22を電流がより長距離流れなければならず、その結果、駆動電圧が大きくなっていた。
【0011】
しかしながら、LED(発光素子)を駆動させるICは、所定の電圧値を超えると定電流を供給できなくなり、その値もばらつくという欠点があり、そのために、発光素子の駆動電圧にばらつきがあると、供給する電流がばらつき、これに起因して各発光素子間にて発光強度がばらつくという問題があった。
【0012】
したがって本発明は叙上に鑑みて完成されたものであり、その目的は各発光素子の間にて駆動電圧値のばらつきを小さくしたり、無くすことで、各発光素子間にて発光強度を均等にし、これによって高品質なLEDアレイを提供することにある。
【0013】
本発明の他の目的はページプリンター用感光ドラムの露光用光源などに用いられるプリンター用に好適なLEDアレイを提供することにある。
【0014】
【課題を解決するための手段】
本発明のLEDアレイは、単結晶基板上に一導電型半導体層と逆導電型半導体層と一方電極とを順次積層し、この一導電型半導体層を引き延ばした延在部の上に他方電極を形成して成る発光素子を複数個配列し、これら発光素子の各一方電極を共通に通電させる電極パッドを配設して発光素子群と成し、さらに複数の発光素子群をアレイ状に配列し、かつ一方の発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、他方の発光素子群の発光素子との間にて、その電極間隔が同じになるように各他方電極間を電気的に接続せしめ、そして、一方の発光素子群と他方の発光素子群との双方の延在部に対し、前記発光素子の延在部における他方電極に至る電極間隔が長くなるにしたがって、その幅を広くするとともに、線対称にパターン形成し、さらに一方の発光素子群と他方の発光素子群とを交互に繰り返し配列して成ることを特徴とする。
【0015】
本発明の他のLEDアレイは、上記一方の発光素子群と他方の発光素子群との双方の隣接する発光素子の延在部を一体化したことを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明を図1と図2により詳細に説明する。
図1は本発明のLEDアレイを構成する各LED(発光素子)の断面概略図であり、図2は本発明のプリンター用のLEDアレイの一実施形態を示す平面図である。
【0017】
図1に示すLEDにおいては、1は高抵抗シリコン基板であり、高抵抗シリコン基板1の上に一導電型半導体層2と逆導電型半導体層3とを順次積層している。4は前記一方電極である個別電極、5は前記他方電極である共通電極、6は窒化シリコン膜などから成る保護膜であり、個別電極4と共通電極5は保護膜6が被覆されていない領域に形成される。
【0018】
このように積層構成において、逆導電型半導体層3を一導電型半導体層2よりも小さな面積となるように設けると共に、一導電型半導体層2を引き延ばした延在部7の上に共通電極5を接続して設けている。
【0019】
高抵抗シリコン基板1には、高抵抗シリコン単結晶でもって構成するのがよく、特にその(100)面を<011>方向に2〜7°オフさせた基板などが好適である。
【0020】
一導電型半導体層2は、バッファ層2a、オーミックコンタクト層2b、電子注入層2cにて構成される。
【0021】
バッファ層2aは2〜4μm程度の厚みに形成され、オーミックコンタクト層2bは0.1〜4μm程度の厚みに形成され、電子注入層2cは0.2〜4μm程度の厚みに形成される。
【0022】
バッファ層2aとオーミックコンタクト層2bはガリウム砒素などで形成され、電子注入層2cはアルミニウムガリウム砒素などで形成される。
【0023】
オーミックコンタクト層2bはシリコンなどの一導電型半導体不純物を1×1016〜1019atoms/cm3 程度含有し、電子注入層2cもシリコンなどの一導電型半導体不純物を1×1016〜1019atoms/cm3 程度含有する。
【0024】
バッファ層2aは高抵抗シリコン基板1と半導体層との格子定数の不整合に基づくミスフィット転位を防止するために設けるものであり、半導体不純物は必須不可欠ではなく、含有させなくてもよい。
【0025】
逆導電型半導体層3は、発光層3a、第2のクラッド層3bおよび第2のオーミックコンタクト層3cで構成される。
【0026】
発光層3aと第2のクラッド層3bは0.2〜4μm程度の厚みに形成され、オーミックコンタクト層3cは膜厚d0.01μm〜1μm程度の厚みに形成される。
【0027】
発光層3aと第2のクラッド層3bはアルミニウムガリウム砒素などから成り、第2のオーミックコンタクト層3cはガリウム砒素などから成る。
【0028】
発光層3aと第2のクラッド層3bおよびオーミックコンタクト抵抗低減層3cは、電子の閉じ込め効果と光の取り出し効果を出すために、アルミニウム砒素(AlAs)とガリウム砒素(GaAs)との混晶比を異ならしめる。
【0029】
発光層3aおよび第2のクラッド層3bは亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1021atoms/cm3 程度含有し、第2のオーミックコンタクト層3cは亜鉛などの逆導電型半導体不純物を1×1019〜1021atoms/cm3 程度含有する。
【0030】
保護膜6は窒化シリコンなどから成り、厚み3000Å程度に形成される。
【0031】
個別電極4と共通電極5は金/クロム(Au/Cr)などから成り、厚み1μm程度に形成される。
【0032】
上記構成のLEDアレイにおいては、図2に示すように4個の発光素子を並べて、それらの個別電極4を共通に通電させる電極パッド8を配設して発光素子群と成し、さらに複数の発光素子群をアレイ状に配列している。
【0033】
同図においては、図1に示す発光素子を矩形状の一導電型半導体層2と矩形状の逆導電型半導体層3との重ね合わせ構造でもって示す。
【0034】
各逆導電型半導体層3の延在部7には、共通電極5を接続するが、その接続部は図中、コンタクト部として示す。共通電極5を他の発光素子に延ばすに当たっては、保護膜6の上をまたがって形成すればよい。
【0035】
発光素子群においては、各発光素子間において逆導電型半導体層3の延在部7における共通電極5に至る電極間隔Sが異なる。そして、他方の発光素子群の発光素子との間にて、その電極間隔Sが同じになるように各共通電極5との間を電気的に接続している。
【0036】
さらに本発明においては、発光素子の延在部7における共通電極5に至る電極間隔Sが長くなるにしたがって、その幅を広くし、これによって各発光素子ごとの駆動電圧を一定にする。すなわち、電極間隔Sが大きくなると、電気的抵抗が増大し、駆動電圧が大きくなるが、電極間隔Sの幅を広くすることで、電気的抵抗の増大が抑制され、小さくなることで、駆動電圧の増大も抑えられる。
【0037】
本例においては、図2に示すように4個の発光素子を並べて、それらの個別電極4を共通に通電させる電極パッド8を配設して一方の発光素子群と成し、そして、そのような構成の他方の発光素子群との間にて、線対称にパターン形成している。
【0038】
このように4個の発光素子の一方の発光素子群と、4個の発光素子の他方の発光素子群とを組み合わせて、8個の発光素子を単位にして繰り返すことで、もっとも延在部が長い発光素子(LED)の駆動電圧が律速とならないように全体の駆動電圧を小さくすることができた。
【0039】
また、本発明においては、図2に示すように一方の発光素子群と他方の発光素子群との双方の隣接する発光素子の延在部を一体化してもよく、これによって、その延在部が共有化されるので、電極間隔Sの幅がさらに広くなり、電気的抵抗の増大が抑制される。そのために、発光素子の延在部7における共通電極5に至る電極間隔Sが長くなっても、その長さをある程度短くすることができ、その結果、その占有スペースが小さくなり、小型化を達成することができる。
【0040】
(プリンター用LEDアレイの製造方法)
次に、上述のようなプリンター用LEDアレイの製造方法を説明する。
まず、高抵抗シリコン単結晶からなる高抵抗シリコン基板1の上に、一導電型半導体層2および逆導電型半導体層3をMOCVD法などで順次積層して形成する。
【0041】
これらの半導体層2、3を形成する場合、基板温度をまず400〜500℃に設定して200〜2000Åの厚みにアモルファス状のガリウム砒素膜を形成し、その後、基板温度を700〜900℃に上げて所望厚みの半導体層2、3を形成する。
【0042】
この場合、原料ガスとしてはTMG((CH33 Ga)、TEG((C253 Ga)、アルシン(AsH3 )、TMA((CH33 Al)、TEA((C253 Al)などが用いられ、導電型を制御するためのガスとしては、シラン(SiH4 )、セレン化水素(H2 Se)、DMZ((CH32 Zn)などが用いられ、キャリアガスとしては、H2などが用いられる。
【0043】
次に、隣接する素子同志が電気的に分離されるように、半導体層2、3が島状にパターニングされる。このエッチングは、硫酸過酸化水素系のエッチング液を用いたウエットエッチングやCCl22 ガスを用いたドライエッチングなどで行われる。
【0044】
その後、一導電型半導体層2の一端部側の一部が露出し、且つこの一導電型半導体層2の隣接する領域部分が露出するように逆導電型半導体層3が一導電型半導体層2よりも幅狭に形成されるように逆導電型半導体層3をエッチングする。このエッチングも硫酸過酸化水素系のエッチング液を用いたウェットエッチングやCCl22 ガスを用いたドライエッチングなどで行なわれる。
【0045】
しかる後に、プラズマCVD法で、シランガス(SiH4 )とアンモニアガス(NH3 )を用いて窒化シリコンから成る絶縁膜を形成してパターニングする。
【0046】
最後に、クロムと金を蒸着法やスパッタリング法で形成してパターニングすることにより完成する。
【0047】
なお、本発明は上記実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等は何ら差し支えない。
【0048】
たとえば、本例では4個の発光素子でもって発光素子群としたが、5個、6個あるいはそれ以上の発光素子数にて発光素子群としてもよい。
【0049】
また、本例では図2に示すように一方の発光素子群と他方の発光素子群との双方の隣接する発光素子の延在部を一体化しているが、そのように一体化しなくても別個に延在部を形成してもよい。
【0050】
【発明の効果】
以上のように、本発明のLEDアレイによれば、単結晶基板上に一導電型半導体層と逆導電型半導体層と一方電極とを順次積層し、この一導電型半導体層を引き延ばした延在部の上に他方電極を形成して成る発光素子を複数個配列し、これら発光素子の各一方電極を共通に通電させる電極パッドを配設して発光素子群と成し、さらに複数の発光素子群をアレイ状に配列し、かつ一方の発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、他方の発光素子群の発光素子との間にて、その電極間隔が同じになるように各他方電極間を電気的に接続せしめ、そして、一方の発光素子群と他方の発光素子群との双方の延在部に対し、前記発光素子の延在部における他方電極に至る電極間隔が長くなるにしたがって、その幅を広くするとともに、線対称にパターン形成し、さらに一方の発光素子群と他方の発光素子群とを交互に繰り返し配列して成ることで、各発光素子の間にて駆動電圧値のばらつきを小さくしたり、無くすことができ、これにより、各発光素子間にて発光強度が均等になり、その結果、高品質かつ高信頼性のLEDアレイが提供できた。
【0051】
また、本発明のLEDアレイにおいては、一方の発光素子群と他方の発光素子群との双方の隣接する発光素子の延在部を一体化したことで、発光素子の延在部における他方電極に至る電極間隔が長くなっても、その長さをある程度短くすることができ、その結果、その占有スペースが小さくなり、小型化を達成することができた。
【0052】
さらにまた、本発明によれば、各発光素子間にて発光強度が均等になったことで、ページプリンター用感光ドラムの露光用光源などに用いられるプリンター用に好適なLEDアレイが提供できた。
【図面の簡単な説明】
【図1】本発明のLEDアレイを成す発光素子の概略断面図である。
【図2】本発明のLEDアレイの一実施形態を示す平面図である。
【図3】従来のLEDアレイを成す発光素子の概略断面図である。
【図4】従来のLEDアレイの一実施形態を示す平面図である。
【図5】従来の他のLEDアレイを成す発光素子の概略平面図である。
【符号の説明】
1・・・高抵抗シリコン基板
2・・・一導電型半導体層
3・・・逆導電型半導体層
4・・・個別電極
5・・・共通電極
6・・・保護膜
7・・・延在部
8・・・電極パッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to an LED array suitable for a printer used as an exposure light source for a photosensitive drum for a page printer.
[0002]
[Prior art]
Conventional LED arrays for printers are shown in FIGS.
3 is a cross-sectional view of one LED, FIG. 4 is a plan view of an LED array for a printer, and FIG. 5 is a plan view of another LED array for a printer.
[0003]
In the LED shown in FIG. 3, reference numeral 21 denotes a high-resistance silicon substrate, and a one-conductivity-type semiconductor layer 22 and a reverse-conductivity-type semiconductor layer 23 are sequentially stacked on the high-resistance silicon substrate 21. Reference numeral 24 is an individual electrode, 25 is a common electrode, and 26 is a protective film made of a silicon nitride film or the like.
[0004]
The reverse conductivity type semiconductor layer 23 is provided so as to have an area smaller than that of the one conductivity type semiconductor layer 22, and the common electrode 25 is connected to the exposed portion of the one conductivity type semiconductor layer 22. An individual electrode 24 is connected to the type semiconductor layer 23.
[0005]
Also, according to the printer LED array shown in FIG. 4, a plurality of LEDs (light emitting elements) having the above-described configuration are arranged, and two electrodes connected to the reverse conductivity type semiconductor layer 23 are connected to one pad. In summary, the number of pads is halved. The common electrode 25 (25a to 25d) is provided in two groups so as to belong to different groups for each adjacent light emitting element, and an electrode pad D is provided for this purpose. Two adjacent light emitting elements form one unit, and both are connected to the same individual electrode 24.
[0006]
In such an LED array, each light emitting element is made to emit light selectively by selecting a combination of the individual electrode 24 and the common electrode 25 (25a to 25d) and passing a current.
[0007]
Further, in the printer LED array shown in FIG. 5, the individual electrodes 24 connected on the reverse conductivity type semiconductor layer 23 are combined into one electrode pad P by four lines, thereby reducing the number of the conventional one-fourth. I have to. In addition, all the electrode pads P are arranged on one side of the LED array.
[0008]
The common electrodes 25 (25a to 25d) are provided by being divided into four groups so as to belong to different groups for each adjacent light emitting element, and an electrode pad D is provided for this purpose.
[0009]
In this LED array as well, each LED is selectively caused to emit light by selecting a combination of the individual electrode 24 and the common electrode 25 (25a to 25d) and passing a current in the same manner.
[0010]
[Problems to be solved by the invention]
However, according to the LED array for a printer as shown in FIG. 5, it is divided into the common electrodes 25a and 25c arranged on the inner side of the LED array and the common electrodes 25b and 25d arranged on the outer side. The contact position between the common electrode 25b and the one conductive type semiconductor layer 22 connected by the common electrode 25d is compared with the contact position of the one conductive type semiconductor layer 22 connected by the inner common electrodes 25a and 25c. Therefore, the distance from the reverse conductivity type semiconductor layer 23 is longer, and the current must flow through the one conductivity type semiconductor layer 22 for a longer distance. As a result, the drive voltage is increased.
[0011]
However, an IC for driving an LED (light emitting element) has a drawback that it cannot supply a constant current when a predetermined voltage value is exceeded, and the value also varies. Therefore, if the driving voltage of the light emitting element varies, There is a problem in that the supplied current varies and the light emission intensity varies between the light emitting elements due to this.
[0012]
Therefore, the present invention has been completed in view of the above description, and the object thereof is to make the emission intensity uniform between the light emitting elements by reducing or eliminating the variation in the driving voltage value among the light emitting elements. This provides a high quality LED array.
[0013]
Another object of the present invention is to provide an LED array suitable for a printer used as an exposure light source for a photosensitive drum for a page printer.
[0014]
[Means for Solving the Problems]
In the LED array of the present invention, a one-conductivity-type semiconductor layer, a reverse-conductivity-type semiconductor layer, and one electrode are sequentially stacked on a single crystal substrate, and the other electrode is formed on an extension portion that extends the one-conductivity-type semiconductor layer. A plurality of formed light emitting elements are arranged, and an electrode pad for commonly energizing each one electrode of these light emitting elements is provided to form a light emitting element group, and the plurality of light emitting element groups are arranged in an array. In addition, the electrode spacing to the other electrode in the extending portion of each light emitting element in one light emitting element group is different, and the electrode spacing is the same between the light emitting elements in the other light emitting element group. The other electrodes are electrically connected to each other, and the electrode spacing to the other electrode in the extending portion of the light emitting element is longer than the extending portions of both the one light emitting element group and the other light emitting element group. As the Together, patterned symmetrically, characterized by comprising repeatedly arranged further one and a light-emitting element group and the other group of light emitting elements alternately.
[0015]
Another LED array according to the present invention is characterized in that extending portions of adjacent light emitting elements of both the one light emitting element group and the other light emitting element group are integrated.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIGS.
FIG. 1 is a schematic cross-sectional view of each LED (light emitting element) constituting the LED array of the present invention, and FIG. 2 is a plan view showing an embodiment of the LED array for a printer of the present invention.
[0017]
In the LED shown in FIG. 1, reference numeral 1 denotes a high-resistance silicon substrate, and a one-conductivity type semiconductor layer 2 and a reverse-conductivity type semiconductor layer 3 are sequentially stacked on the high-resistance silicon substrate 1. 4 is an individual electrode which is the one electrode, 5 is a common electrode which is the other electrode, 6 is a protective film made of a silicon nitride film or the like, and the individual electrode 4 and the common electrode 5 are regions where the protective film 6 is not covered. Formed.
[0018]
As described above, in the stacked configuration, the reverse conductivity type semiconductor layer 3 is provided so as to have a smaller area than the one conductivity type semiconductor layer 2, and the common electrode 5 is formed on the extended portion 7 where the one conductivity type semiconductor layer 2 is extended. Are connected.
[0019]
The high-resistance silicon substrate 1 is preferably composed of a high-resistance silicon single crystal, and a substrate with its (100) plane turned off by 2 to 7 degrees in the <011> direction is particularly suitable.
[0020]
The one conductivity type semiconductor layer 2 includes a buffer layer 2a, an ohmic contact layer 2b, and an electron injection layer 2c.
[0021]
The buffer layer 2a is formed to a thickness of about 2 to 4 μm, the ohmic contact layer 2b is formed to a thickness of about 0.1 to 4 μm, and the electron injection layer 2c is formed to a thickness of about 0.2 to 4 μm.
[0022]
The buffer layer 2a and the ohmic contact layer 2b are formed of gallium arsenide or the like, and the electron injection layer 2c is formed of aluminum gallium arsenide or the like.
[0023]
The ohmic contact layer 2b contains about 1 × 10 16 to 10 19 atoms / cm 3 of one conductivity type semiconductor impurity such as silicon, and the electron injection layer 2c also contains 1 × 10 16 to 10 19 of one conductivity type semiconductor impurity such as silicon. Contains about atoms / cm 3 .
[0024]
The buffer layer 2a is provided in order to prevent misfit dislocation based on mismatch of lattice constant between the high resistance silicon substrate 1 and the semiconductor layer, and the semiconductor impurity is not essential and may not be contained.
[0025]
The reverse conductivity type semiconductor layer 3 includes a light emitting layer 3a, a second cladding layer 3b, and a second ohmic contact layer 3c.
[0026]
The light emitting layer 3a and the second cladding layer 3b are formed to a thickness of about 0.2 to 4 μm, and the ohmic contact layer 3c is formed to a thickness of about 0.01 μm to 1 μm.
[0027]
The light emitting layer 3a and the second cladding layer 3b are made of aluminum gallium arsenide or the like, and the second ohmic contact layer 3c is made of gallium arsenide or the like.
[0028]
The light emitting layer 3a, the second cladding layer 3b, and the ohmic contact resistance reduction layer 3c have a mixed crystal ratio of aluminum arsenide (AlAs) and gallium arsenide (GaAs) in order to obtain an electron confinement effect and a light extraction effect. Make it different.
[0029]
The light emitting layer 3a and the second cladding layer 3b contain about 1 × 10 16 to 10 21 atoms / cm 3 of a reverse conductivity type semiconductor impurity such as zinc (Zn), and the second ohmic contact layer 3c is a reverse layer of zinc or the like. About 1 × 10 19 to 10 21 atoms / cm 3 of conductive semiconductor impurities are contained.
[0030]
The protective film 6 is made of silicon nitride or the like and has a thickness of about 3000 mm.
[0031]
The individual electrode 4 and the common electrode 5 are made of gold / chromium (Au / Cr) or the like and are formed with a thickness of about 1 μm.
[0032]
In the LED array having the above configuration, four light emitting elements are arranged as shown in FIG. 2, and an electrode pad 8 for energizing these individual electrodes 4 in common is provided to form a light emitting element group. Light emitting element groups are arranged in an array.
[0033]
In the figure, the light-emitting element shown in FIG. 1 is shown with an overlapping structure of a rectangular one-conductive semiconductor layer 2 and a rectangular reverse-conductive semiconductor layer 3.
[0034]
The common electrode 5 is connected to the extending portion 7 of each reverse conductivity type semiconductor layer 3, and the connecting portion is shown as a contact portion in the drawing. In extending the common electrode 5 to other light emitting elements, the common electrode 5 may be formed over the protective film 6.
[0035]
In the light emitting element group, the electrode spacing S reaching the common electrode 5 in the extending portion 7 of the reverse conductivity type semiconductor layer 3 is different between the light emitting elements. The common electrodes 5 are electrically connected so that the electrode spacing S is the same between the light emitting elements of the other light emitting element group.
[0036]
Furthermore, in the present invention, as the electrode spacing S reaching the common electrode 5 in the extending portion 7 of the light emitting element becomes longer, the width is increased, thereby making the driving voltage for each light emitting element constant. That is, as the electrode spacing S increases, the electrical resistance increases and the driving voltage increases. However, by increasing the width of the electrode spacing S, the increase in electrical resistance is suppressed and the driving voltage decreases. An increase in the amount can also be suppressed.
[0037]
In this example, as shown in FIG. 2, four light emitting elements are arranged, and an electrode pad 8 for energizing these individual electrodes 4 in common is provided to form one light emitting element group. A pattern is formed in line symmetry with the other light emitting element group having the above configuration.
[0038]
In this way, by combining one light emitting element group of the four light emitting elements and the other light emitting element group of the four light emitting elements, and repeating in units of eight light emitting elements, the extension portion is the most. The overall drive voltage could be reduced so that the drive voltage of the long light emitting element (LED) was not rate-limiting.
[0039]
Further, in the present invention, as shown in FIG. 2, the extending portions of the adjacent light emitting elements in both the one light emitting element group and the other light emitting element group may be integrated. Is shared, the width of the electrode spacing S is further increased, and an increase in electrical resistance is suppressed. Therefore, even if the electrode spacing S reaching the common electrode 5 in the extending portion 7 of the light emitting element is increased, the length can be shortened to some extent, and as a result, the occupied space is reduced and the miniaturization is achieved. can do.
[0040]
(Method for manufacturing LED array for printer)
Next, the manufacturing method of the above LED array for printers is demonstrated.
First, a one-conductivity-type semiconductor layer 2 and a reverse-conductivity-type semiconductor layer 3 are sequentially stacked on a high-resistance silicon substrate 1 made of a high-resistance silicon single crystal by MOCVD or the like.
[0041]
When these semiconductor layers 2 and 3 are formed, the substrate temperature is first set to 400 to 500 ° C., an amorphous gallium arsenide film is formed to a thickness of 200 to 2000 mm, and then the substrate temperature is set to 700 to 900 ° C. The semiconductor layers 2 and 3 having a desired thickness are formed.
[0042]
In this case, as source gases, TMG ((CH 3 ) 3 Ga), TEG ((C 2 H 5 ) 3 Ga), arsine (AsH 3 ), TMA ((CH 3 ) 3 Al), TEA ((C 2 H 5 ) 3 Al) or the like is used, and silane (SiH 4 ), hydrogen selenide (H 2 Se), DMZ ((CH 3 ) 2 Zn) or the like is used as the gas for controlling the conductivity type. As the carrier gas, H 2 or the like is used.
[0043]
Next, the semiconductor layers 2 and 3 are patterned in an island shape so that adjacent elements are electrically separated. This etching is performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution, dry etching using CCl 2 F 2 gas, or the like.
[0044]
Thereafter, the reverse conductivity semiconductor layer 3 is exposed to the one-conductivity-type semiconductor layer 2 so that a part of the one-conductivity-type semiconductor layer 2 on one end side is exposed and an adjacent region portion of the one-conductivity-type semiconductor layer 2 is exposed. The reverse conductivity type semiconductor layer 3 is etched so as to be formed narrower. This etching is also performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution or dry etching using CCl 2 F 2 gas.
[0045]
Thereafter, an insulating film made of silicon nitride is formed and patterned by plasma CVD using silane gas (SiH 4 ) and ammonia gas (NH 3 ).
[0046]
Finally, chromium and gold are formed by vapor deposition or sputtering and patterned.
[0047]
In addition, this invention is not limited to the said embodiment, A various change, improvement, etc. do not interfere in the range which does not deviate from the summary of this invention.
[0048]
For example, in this example, the light emitting element group is composed of four light emitting elements, but the number of light emitting elements may be five, six, or more.
[0049]
Further, in this example, as shown in FIG. 2, the extending portions of the adjacent light emitting elements in both the one light emitting element group and the other light emitting element group are integrated. An extending portion may be formed in
[0050]
【The invention's effect】
As described above, according to the LED array of the present invention, the one conductive semiconductor layer, the reverse conductive semiconductor layer, and the one electrode are sequentially stacked on the single crystal substrate, and the one conductive semiconductor layer is extended. A plurality of light emitting elements formed by forming the other electrode on the portion are arranged, and an electrode pad for energizing each one electrode of these light emitting elements in common is provided to form a light emitting element group. The groups are arranged in an array, and the electrode spacing to the other electrode in the extending portion of each light emitting element in one light emitting element group is different, and the electrodes between the light emitting elements of the other light emitting element group The other electrodes are electrically connected so that the distance between them is the same, and the other of the extending portions of the light emitting elements is extended with respect to the extending portions of the one light emitting element group and the other light emitting element group. The electrode spacing to the electrodes has become longer In addition, the drive voltage value between each light emitting element is increased by widening the width, forming a line symmetrical pattern, and alternately arranging one light emitting element group and the other light emitting element group alternately. Thus, the emission intensity is uniform between the light emitting elements, and as a result, a high quality and high reliability LED array can be provided.
[0051]
Further, in the LED array of the present invention, the extension portions of the adjacent light emitting elements of both the one light emitting element group and the other light emitting element group are integrated, so that the other electrode in the extending portion of the light emitting element is integrated. Even if the distance between the electrodes is increased, the length can be shortened to some extent. As a result, the occupied space is reduced, and the miniaturization can be achieved.
[0052]
Furthermore, according to the present invention, since the light emission intensity is uniform between the light emitting elements, it is possible to provide an LED array suitable for a printer used as an exposure light source of a photosensitive drum for a page printer.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a light emitting device constituting an LED array of the present invention.
FIG. 2 is a plan view showing an embodiment of the LED array of the present invention.
FIG. 3 is a schematic cross-sectional view of a light-emitting element forming a conventional LED array.
FIG. 4 is a plan view showing an embodiment of a conventional LED array.
FIG. 5 is a schematic plan view of a light-emitting element forming another conventional LED array.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High resistance silicon substrate 2 ... One conductivity type semiconductor layer 3 ... Reverse conductivity type semiconductor layer 4 ... Individual electrode 5 ... Common electrode 6 ... Protective film 7 ... Extension Part 8 ... Electrode pad

Claims (2)

単結晶基板上に一導電型半導体層と逆導電型半導体層と一方電極とを順次積層し、この一導電型半導体層を引き延ばした延在部の上に他方電極を形成して成る発光素子を複数個配列し、これら発光素子の各一方電極を共通に通電させる電極パッドを配設して発光素子群と成し、さらに複数の発光素子群をアレイ状に配列し、かつ一方の発光素子群内における各発光素子の延在部における他方電極に至る電極間隔が異なるとともに、他方の発光素子群の発光素子との間にて、その電極間隔が同じになるように各他方電極間を電気的に接続せしめたLEDアレイであって、一方の発光素子群と他方の発光素子群との双方の延在部に対し、前記発光素子の延在部における他方電極に至る電極間隔が長くなるにしたがって、その幅を広くするとともに、線対称にパターン形成し、さらに一方の発光素子群と他方の発光素子群とを交互に繰り返し配列して成ることを特徴とするLEDアレイ。A light-emitting element in which a one-conductivity-type semiconductor layer, a reverse-conductivity-type semiconductor layer, and one electrode are sequentially stacked on a single crystal substrate, and the other electrode is formed on an extended portion obtained by extending the one-conductivity-type semiconductor layer. A plurality of light emitting elements are arranged to form a light emitting element group by arranging an electrode pad for energizing each one of the light emitting elements in common, and the plurality of light emitting element groups are arranged in an array, and one light emitting element group The distance between the electrodes reaching the other electrode in the extending portion of each light emitting element is different, and the other electrode is electrically connected so that the electrode distance is the same between the light emitting elements of the other light emitting element group. The LED array is connected to the light emitting element, and with respect to the extending portions of both the one light emitting element group and the other light emitting element group, the electrode distance to the other electrode in the extending portion of the light emitting element is increased. And widen its width LED array, characterized in that patterned symmetrically made repeated sequence further one and a light-emitting element group and the other group of light emitting elements alternately. 前記一方の発光素子群と他方の発光素子群との双方の隣接する発光素子の延在部を一体化したことを特徴とする請求項1記載のLEDアレイ。2. The LED array according to claim 1, wherein extending portions of adjacent light emitting elements of the one light emitting element group and the other light emitting element group are integrated.
JP2000291100A 2000-09-25 2000-09-25 LED array for printer Expired - Fee Related JP3722684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000291100A JP3722684B2 (en) 2000-09-25 2000-09-25 LED array for printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000291100A JP3722684B2 (en) 2000-09-25 2000-09-25 LED array for printer

Publications (2)

Publication Number Publication Date
JP2002100809A JP2002100809A (en) 2002-04-05
JP3722684B2 true JP3722684B2 (en) 2005-11-30

Family

ID=18774231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291100A Expired - Fee Related JP3722684B2 (en) 2000-09-25 2000-09-25 LED array for printer

Country Status (1)

Country Link
JP (1) JP3722684B2 (en)

Also Published As

Publication number Publication date
JP2002100809A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP2010506384A (en) Light emitting diode having light emitting cells of different sizes and light emitting element employing the same
JPH11150303A (en) Light emitting parts
JP3722684B2 (en) LED array for printer
JP3722680B2 (en) LED array
JP3722683B2 (en) LED array
JP2005136142A (en) Light emitting diode array device and light emitting diode printer using it
JP4382902B2 (en) LED array and manufacturing method thereof
JP4683832B2 (en) Light emitting diode array device and light emitting diode printer using the same
JP4012716B2 (en) LED array and manufacturing method thereof
JP3857083B2 (en) LED array
JP4417635B2 (en) LED array and manufacturing method thereof
JP2001244500A (en) Semiconductor light emitting device
JP3517101B2 (en) Light emitting diode array
JPH11135837A (en) Semiconductor light-emitting device
JP3638418B2 (en) Semiconductor light emitting device
JP3540947B2 (en) Light emitting diode array
JP3559463B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4184521B2 (en) Semiconductor light emitting device
JP4303571B2 (en) Light emitting diode array device and light emitting diode printer using the same
JP4045044B2 (en) Manufacturing method of semiconductor light emitting device
JP2005136238A (en) Light emitting diode array device and light emitting diode printer using it
JP2001284649A (en) Led array
JP2002064222A (en) Led array
JP4436528B2 (en) Semiconductor light emitting device
JP3623110B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees