JP3623110B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3623110B2
JP3623110B2 JP27689198A JP27689198A JP3623110B2 JP 3623110 B2 JP3623110 B2 JP 3623110B2 JP 27689198 A JP27689198 A JP 27689198A JP 27689198 A JP27689198 A JP 27689198A JP 3623110 B2 JP3623110 B2 JP 3623110B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
light emitting
conductivity
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27689198A
Other languages
Japanese (ja)
Other versions
JP2000114589A (en
Inventor
達也 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27689198A priority Critical patent/JP3623110B2/en
Publication of JP2000114589A publication Critical patent/JP2000114589A/en
Application granted granted Critical
Publication of JP3623110B2 publication Critical patent/JP3623110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体発光装置に関し、特にページプリンタ用感光ドラムの露光用光源などに用いられる半導体発光装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来の半導体発光装置を図3および図4に示す。図3は断面図、図4は平面図である。図3および図4において、21は半導体基板、22は一導電型半導体層、23は逆導電型半導体層、24は個別電極、25は共通電極である。
【0003】
半導体基板21上に、一導電型半導体層22と逆導電型半導体層23を一導電型半導体層22よりも逆導電型半導体層23が小面積となるように設けると共に、この一導電型半導体層22の露出部Rに共通電極25(25a、25b)を接続して設け、逆導電型半導体層23に個別電極24を接続して設けている。なお、図3中、26は窒化シリコン膜などから成る保護膜である。また、図4に示すように、共通電極25(25a、25b)は隣接する島状半導体層22、23ごとに異なる群に属するように二群に分けて接続して設けられ、隣接する島状半導体層22、23が同じ個別電極24に接続されている。
【0004】
このような発光ダイオードアレイでは、個別電極24と共通電極25(25a、25b)の組み合わせを選択して電流を流すことによって、各発光ダイオードを選択的に発光させることができる。
【0005】
ところが、この従来の半導体発光装置では、個別電極24と共通電極25(25a、25b)が一導電型半導体層22の露出部Rにおいて、対峙して近接して設けられていることから、電極のバリや塵埃などによって短絡することがしばしば発生するという問題があった。
【0006】
また、従来の半導体発光装置では、島状半導体層22、23の露出部Rにおける逆導電型半導体層23の側壁部Wが順メサとなるような構造になっていることから、この順メサ部分から光漏れが発生して印画品質が劣化する原因になるという問題があった。
【0007】
本発明はこのような従来装置の問題点に鑑みてなされたものであり、一導電型半導体層の露出部Rにおける逆導電型半導体層の側壁部が順メサ構造であることに起因して発生する電極の短絡と印画品質の劣化を解消した半導体発光装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る半導体発光装置では、基板上に島状の一導電型半導体層を設けると共に、この一導電型半導体層上にこの一導電型半導体層の一部が露出するように逆導電型半導体層を設け、この一導電型半導体層の露出部と前記逆導電型半導体層上に電極を接続して設けた半導体発光装置において、前記逆導電型半導体層に接続される電極を矩形状に形成すると共に、前記一導電型半導体層の露出部における前記逆導電型半導体層の側壁部を逆メサ構造とし、この逆メサ構造部で光を反射させて上方に取り出すことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明を添付図面に基づき詳細に説明する。
図1は本発明に係る半導体発光装置の一実施形態を示す断面図、図2は平面図である。
【0010】
図1および図2において、1は基板、2は一導電型半導体層、3は逆導電型半導体層、4は個別電極、5は共通電極、6は絶縁膜である。
【0011】
基板1はシリコン(Si)やガリウム砒素(GaAs)などの単結晶半導体基板やサファイア(Al)などの単結晶絶縁基板から成る。単結晶半導体基板の場合、(100)面を<011>方向に2〜7°オフさせた基板などが好適に用いられる。サファイアの場合、C面基板が好適に用いられる。
【0012】
一導電型半導体層2は、バッファ層2a、オーミックコンタクト層2b、発光層2cで構成される。バッファ層2aは2〜4μm程度の厚みに形成され、オーミックコンタクト層2bは0.1〜1.0μm程度の厚みに形成され、クラッド層2cは0.2〜0.4μm程度の厚みに形成される。バッファ層2aとオーミックコンタクト層2bはガリウム砒素などで形成され、発光層2cはアルミニウムガリウム砒素などで形成される。オーミックコンタクト層2bはシリコンやセレンなどの一導電型半導体不純物を1×1018〜1022atoms/cm程度含有し、クラッド層2cはシリコンやセレンなどの一導電型半導体不純物を1×1016〜1019atoms/cm程度含有する。バッファ層2aは基板1と半導体層との格子定数の不整合に基づくミスフィット転位を防止するために設けるものであり、半導体不純物を含有させる必要はない。
【0013】
逆導電型半導体層3は、発光層3a、第2のクラッド層3b、および第2のオーミックコンタクト層3cで構成される。発光層3aと第2のクラッド層3bは0.2〜0.4μm程度の厚みに形成され、オーミックコンタクト層3cは0.01〜0.1μm程度の厚みに形成される。発光層3aと第2のクラッド層3bはアルミニウムガリウム砒素などから成り、第2のオーミックコンタクト層3cはガリウム砒素などから成る。
【0014】
発光層3aと第2のクラッド層3bは、電子の閉じ込め効果と光の取り出し効果を考慮してアルミニウム砒素(AlAs)とガリウム砒素(GaAs)との混晶比を異ならしめる。発光層3aと第2のクラッド層3bは亜鉛(Zn)などの逆導電型半導体不純物を1×1016〜1019程度含有し、第2のオーミックコンタクト層3cは亜鉛などの逆導電型半導体不純物を1×1019〜1022程度含有する。
【0015】
絶縁膜6は窒化シリコンなどから成り、厚み3000Å程度に形成される。個別電極4と共通電極5は金/クロム(Au/Cr)などから成り、厚み1μm程度に形成される。
【0016】
本発明の半導体発光装置では、図2に示すように、一導電型半導体層2と逆導電型半導体層3から成る島状半導体層2、3を基板1上に一列状に並べて、隣接する島状半導体層2、3毎に同じ個別電極4に接続し、同じ個別電極4に接続された下の一導電型半導体層2が異なる共通電極5に接続されるように二群に分けて接続される。個別電極4を選択して電流を流すことによってページプリンタ用感光ドラムの露光用光源として用いられる。
【0017】
島状半導体層2、3は、結晶の面方位とエッチングとの関係から一方の対向する壁面が順メサ構造で、他方の対向する壁面が逆メサ構造を有する。本発明では、一導電型半導体層2の露出部Rにおける逆導電型半導体層3の側壁部Wが逆メサとなるように形成した。すなわち、段差エッチングを行う際、GaAsは順メサ形状になるが、AlGaAsの<1−10>方向は逆メサ形状になるエッチング液を用いて逆導電型半導体層3の側壁部Wを逆メサ形状にする。この逆導電型半導体層3の側壁部Wを逆メサ形状とすることで、個別電極4の逆導電型半導体層3上部分と一導電型半導体層2上部分を切断することができる。
【0018】
また、一導電型半導体層2の露出部Rにおける逆導電型半導体層3の側壁部Wが逆メサとなるように形成されることから、発光層2c、3aで発光した光は側壁部Wの内側で反射して上方に照射される。もって、この側壁部Yからの光漏れがなくなる。
【0019】
次に、上述のような半導体発光装置の製造方法を説明する。まず、単結晶基板1上に、一導電型半導体層2、逆導電型半導体層3をMOCVD法などで順次積層して形成する。
【0020】
これらの半導体層2、3を形成する場合、基板温度をまず400〜500℃に設定して200〜2000Åの厚みにアモルファス状のガリウム砒素膜を形成した後、基板温度を700〜900℃に上げて所望厚みの半導体層2、3を形成する。
【0021】
この場合、原料ガスとしてはTMG((CHGa)、TEG((CGa)、アルシン(AsH)、TMA((CHA1)、TEA((CA1)などが用いられ、導電型を制御するためのガスとしては、シラン(SiH)、セレン化水素(HSe)、TMZ((CHZn)などが用いられ、キャリアガスとしては、Hなどが用いられる。
【0022】
次に、隣接する素子同志が電気的に分離されるように、半導体層2、3が島状にパターニングされる。このエッチングは、硫酸過酸化水素系のエッチング液を用いたウエットエッチングやCC1ガスを用いたドライエッチングなどで行われる。また、一導電型半導体層2と共通電極5との接続部が逆導電型半導体層3から露出するようにエッチングされる。このエッチングは、I:KI:HCl:HO=2g:4g:1cc:100ccなどのエッチング液を用いたウエットエッチングで行われる。
【0023】
次に、プラズマCVD法で、シランガス(SiH)とアンモニアガス(NH)を用いて窒化シリコンから成る絶縁膜を形成してパターニングする。最後に、クロムと金を蒸着法やスパッタリング法で形成してパターニングすることにより完成する。
【0024】
【発明の効果】
以上のように本発明に係る半導体発光装置によれば、逆導電型半導体層に接続される電極を矩形状に形成すると共に、前記一導電型半導体層の露出部における前記逆導電型半導体層の側壁部を逆メサ構造とし、この逆メサ構造部で光を反射させて上方に取り出すことから、一導電型半導体層上の電極を逆メサ部分で切断することができ、もって個別電極と共通電極が近接して配設されても短絡などを有効に防止することができる。また、一導電型半導体層の露出部近傍からの光漏れを低減でき、印画品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る半導体発光装置の一実施形態を示す断面図である。
【図2】本発明に係る半導体発光装置の一実施形態を示す平面図である。
【図3】従来の半導体発光装置を示す断面図である。
【図4】従来の半導体発光装置を示す平面図である。
【符号の説明】
1‥‥‥基板、2‥‥‥一導電型半導体層、3‥‥‥逆導電型半導体層、4‥‥‥個別電極、5‥‥‥共通電極、6‥‥‥絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device used for an exposure light source of a photosensitive drum for a page printer.
[0002]
[Prior art and problems to be solved by the invention]
A conventional semiconductor light emitting device is shown in FIGS. 3 is a cross-sectional view, and FIG. 4 is a plan view. 3 and 4, 21 is a semiconductor substrate, 22 is a one-conductivity-type semiconductor layer, 23 is a reverse-conductivity-type semiconductor layer, 24 is an individual electrode, and 25 is a common electrode.
[0003]
On the semiconductor substrate 21, a one-conductivity-type semiconductor layer 22 and a reverse-conductivity-type semiconductor layer 23 are provided so that the reverse-conductivity-type semiconductor layer 23 has a smaller area than the one-conductivity-type semiconductor layer 22. The common electrode 25 (25a, 25b) is connected to the exposed portion R of 22 and the individual electrode 24 is connected to the reverse conductivity type semiconductor layer 23. In FIG. 3, reference numeral 26 denotes a protective film made of a silicon nitride film or the like. In addition, as shown in FIG. 4, the common electrode 25 (25a, 25b) is provided in two groups so as to belong to different groups for each of the adjacent island-like semiconductor layers 22 and 23, and is connected to the adjacent island-like semiconductor layers 22 and 23. The semiconductor layers 22 and 23 are connected to the same individual electrode 24.
[0004]
In such a light emitting diode array, each light emitting diode can be made to emit light selectively by selecting a combination of the individual electrode 24 and the common electrode 25 (25a, 25b) and flowing a current.
[0005]
However, in this conventional semiconductor light emitting device, the individual electrode 24 and the common electrode 25 (25a, 25b) are provided in close proximity to each other in the exposed portion R of the one-conductivity type semiconductor layer 22. There has been a problem that short-circuiting often occurs due to burrs or dust.
[0006]
Moreover, in the conventional semiconductor light emitting device, the sidewall portion W of the reverse conductivity type semiconductor layer 23 in the exposed portion R of the island-like semiconductor layers 22 and 23 is structured to be a forward mesa. There is a problem in that light leakage occurs and the print quality deteriorates.
[0007]
The present invention has been made in view of such problems of the conventional device, and is caused by the fact that the side wall portion of the reverse conductivity type semiconductor layer in the exposed portion R of the one conductivity type semiconductor layer has a forward mesa structure. An object of the present invention is to provide a semiconductor light emitting device that eliminates short-circuiting of electrodes and deterioration of print quality.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the semiconductor light emitting device according to the present invention, an island-shaped one-conductivity-type semiconductor layer is provided on a substrate, and a part of the one-conductivity-type semiconductor layer is formed on the one-conductivity-type semiconductor layer. In a semiconductor light emitting device in which an opposite conductivity type semiconductor layer is provided so as to be exposed, and an electrode is connected to the exposed portion of the one conductivity type semiconductor layer and the opposite conductivity type semiconductor layer, the connection is made to the opposite conductivity type semiconductor layer In addition, the electrode to be formed is formed in a rectangular shape, and the side wall portion of the opposite conductivity type semiconductor layer in the exposed portion of the one conductivity type semiconductor layer has an inverted mesa structure, and light is reflected by the inverted mesa structure portion and extracted upward. It is characterized by that.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an embodiment of a semiconductor light emitting device according to the present invention, and FIG. 2 is a plan view.
[0010]
1 and 2, 1 is a substrate, 2 is a one-conductivity-type semiconductor layer, 3 is a reverse-conductivity-type semiconductor layer, 4 is an individual electrode, 5 is a common electrode, and 6 is an insulating film.
[0011]
The substrate 1 is made of a single crystal semiconductor substrate such as silicon (Si) or gallium arsenide (GaAs) or a single crystal insulating substrate such as sapphire (Al 2 O 3 ). In the case of a single crystal semiconductor substrate, a substrate in which the (100) plane is turned off by 2 to 7 degrees in the <011> direction is preferably used. In the case of sapphire, a C-plane substrate is preferably used.
[0012]
The one conductivity type semiconductor layer 2 includes a buffer layer 2a, an ohmic contact layer 2b, and a light emitting layer 2c. The buffer layer 2a is formed to a thickness of about 2 to 4 μm, the ohmic contact layer 2b is formed to a thickness of about 0.1 to 1.0 μm, and the cladding layer 2c is formed to a thickness of about 0.2 to 0.4 μm. The The buffer layer 2a and the ohmic contact layer 2b are formed of gallium arsenide or the like, and the light emitting layer 2c is formed of aluminum gallium arsenide or the like. The ohmic contact layer 2b contains about 1 × 10 18 to 10 22 atoms / cm 3 of one conductivity type semiconductor impurity such as silicon and selenium, and the cladding layer 2c contains 1 × 10 16 one conductivity type semiconductor impurity such as silicon and selenium. About 10 19 atoms / cm 3 . The buffer layer 2a is provided in order to prevent misfit dislocation based on mismatch of lattice constants between the substrate 1 and the semiconductor layer, and does not need to contain semiconductor impurities.
[0013]
The reverse conductivity type semiconductor layer 3 includes a light emitting layer 3a, a second cladding layer 3b, and a second ohmic contact layer 3c. The light emitting layer 3a and the second cladding layer 3b are formed to a thickness of about 0.2 to 0.4 μm, and the ohmic contact layer 3c is formed to a thickness of about 0.01 to 0.1 μm. The light emitting layer 3a and the second cladding layer 3b are made of aluminum gallium arsenide or the like, and the second ohmic contact layer 3c is made of gallium arsenide or the like.
[0014]
The light emitting layer 3a and the second cladding layer 3b have different mixed crystal ratios of aluminum arsenide (AlAs) and gallium arsenide (GaAs) in consideration of the electron confinement effect and the light extraction effect. The light emitting layer 3a and the second cladding layer 3b contain about 1 × 10 16 to 10 19 reverse conductive semiconductor impurities such as zinc (Zn), and the second ohmic contact layer 3c is a reverse conductive semiconductor impurity such as zinc. About 1 × 10 19 to 10 22 .
[0015]
The insulating film 6 is made of silicon nitride or the like and has a thickness of about 3000 mm. The individual electrode 4 and the common electrode 5 are made of gold / chromium (Au / Cr) or the like and are formed with a thickness of about 1 μm.
[0016]
In the semiconductor light emitting device of the present invention, as shown in FIG. 2, island-like semiconductor layers 2 and 3 comprising a one-conductivity-type semiconductor layer 2 and a reverse-conductivity-type semiconductor layer 3 are arranged in a line on a substrate 1 and adjacent islands are arranged. Each of the semiconductor layers 2 and 3 is connected to the same individual electrode 4 and is connected in two groups so that the lower one conductive semiconductor layer 2 connected to the same individual electrode 4 is connected to a different common electrode 5. The By selecting an individual electrode 4 and passing an electric current, it is used as an exposure light source for a photosensitive drum for a page printer.
[0017]
In the island-like semiconductor layers 2 and 3, one opposing wall surface has a forward mesa structure and the other opposing wall surface has an inverted mesa structure because of the relationship between crystal plane orientation and etching. In the present invention, the sidewall portion W of the reverse conductivity type semiconductor layer 3 in the exposed portion R of the one conductivity type semiconductor layer 2 is formed to be a reverse mesa. That is, when performing step etching, the side wall W of the reverse conductivity type semiconductor layer 3 is formed in a reverse mesa shape using an etching solution in which GaAs has a forward mesa shape, but the <1-10> direction of AlGaAs has a reverse mesa shape. To. By making the side wall W of the reverse conductivity type semiconductor layer 3 into an inverted mesa shape, the upper portion of the individual electrode 4 on the reverse conductivity type semiconductor layer 3 and the upper portion of the one conductivity type semiconductor layer 2 can be cut.
[0018]
Further, since the side wall portion W of the reverse conductivity type semiconductor layer 3 in the exposed portion R of the one conductivity type semiconductor layer 2 is formed as a reverse mesa, the light emitted from the light emitting layers 2c and 3a is emitted from the side wall portion W. Reflected inside and irradiated upward. Accordingly, light leakage from the side wall portion Y is eliminated.
[0019]
Next, a method for manufacturing the semiconductor light emitting device as described above will be described. First, a one-conductivity-type semiconductor layer 2 and a reverse-conductivity-type semiconductor layer 3 are sequentially stacked on a single crystal substrate 1 by MOCVD or the like.
[0020]
When these semiconductor layers 2 and 3 are formed, the substrate temperature is first set to 400 to 500 ° C., an amorphous gallium arsenide film is formed to a thickness of 200 to 2000 mm, and then the substrate temperature is raised to 700 to 900 ° C. Thus, the semiconductor layers 2 and 3 having a desired thickness are formed.
[0021]
In this case, as source gases, TMG ((CH 3 ) 3 Ga), TEG ((C 2 H 5 ) 3 Ga), arsine (AsH 3 ), TMA ((CH 3 ) 3 A1), TEA ((C 2 H 5 ) 3 A1) and the like are used, and silane (SiH 4 ), hydrogen selenide (H 2 Se), TMZ ((CH 3 ) 3 Zn), and the like are used as the gas for controlling the conductivity type. As the carrier gas, H 2 or the like is used.
[0022]
Next, the semiconductor layers 2 and 3 are patterned in an island shape so that adjacent elements are electrically separated. This etching is performed by wet etching using a sulfuric acid hydrogen peroxide-based etching solution or dry etching using CC1 2 F 2 gas. Further, etching is performed so that the connection portion between the one-conductivity-type semiconductor layer 2 and the common electrode 5 is exposed from the reverse-conductivity-type semiconductor layer 3. This etching is performed by wet etching using an etchant such as I 2 : KI: HCl: H 2 O = 2 g: 4 g: 1 cc: 100 cc.
[0023]
Next, an insulating film made of silicon nitride is formed and patterned by plasma CVD using silane gas (SiH 4 ) and ammonia gas (NH 3 ). Finally, chromium and gold are formed by vapor deposition or sputtering and patterned.
[0024]
【The invention's effect】
As described above, according to the semiconductor light emitting device of the present invention, the electrode connected to the reverse conductivity type semiconductor layer is formed in a rectangular shape, and the reverse conductivity type semiconductor layer in the exposed portion of the one conductivity type semiconductor layer is formed. Since the side wall portion has an inverted mesa structure and light is reflected by the inverted mesa structure portion and extracted upward, the electrode on the one-conductivity-type semiconductor layer can be cut at the inverted mesa portion. Even if they are arranged close to each other, a short circuit or the like can be effectively prevented. In addition, light leakage from the vicinity of the exposed portion of the one conductivity type semiconductor layer can be reduced, and the printing quality can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor light emitting device according to the present invention.
FIG. 2 is a plan view showing an embodiment of a semiconductor light emitting device according to the present invention.
FIG. 3 is a cross-sectional view showing a conventional semiconductor light emitting device.
FIG. 4 is a plan view showing a conventional semiconductor light emitting device.
[Explanation of symbols]
1 ... substrate, 2 ... one conductivity type semiconductor layer, 3 ... reverse conductivity type semiconductor layer, 4 ... individual electrode, 5 ... common electrode, 6 ... insulation film

Claims (1)

基板上に島状の一導電型半導体層を設けると共に、この一導電型半導体層上にこの一導電型半導体層の一部が露出するように逆導電型半導体層を設け、この一導電型半導体層の露出部と前記逆導電型半導体層上に電極を接続して設けた半導体発光装置において、前記逆導電型半導体層に接続される電極を矩形状に形成すると共に、前記一導電型半導体層の露出部における前記逆導電型半導体層の側壁部を逆メサ構造とし、この逆メサ構造部で光を反射させて上方に取り出すことを特徴とする半導体発光装置。An island-shaped one-conductivity-type semiconductor layer is provided on the substrate, and a reverse-conductivity-type semiconductor layer is provided on the one-conductivity-type semiconductor layer so that a part of the one-conductivity-type semiconductor layer is exposed. In the semiconductor light emitting device provided by connecting an electrode on the exposed portion of the layer and the reverse conductivity type semiconductor layer, the electrode connected to the reverse conductivity type semiconductor layer is formed in a rectangular shape and the one conductivity type semiconductor layer A semiconductor light emitting device characterized in that a side wall portion of the reverse conductivity type semiconductor layer in the exposed portion has a reverse mesa structure, and light is reflected by the reverse mesa structure portion and extracted upward .
JP27689198A 1998-09-30 1998-09-30 Semiconductor light emitting device Expired - Fee Related JP3623110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27689198A JP3623110B2 (en) 1998-09-30 1998-09-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27689198A JP3623110B2 (en) 1998-09-30 1998-09-30 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000114589A JP2000114589A (en) 2000-04-21
JP3623110B2 true JP3623110B2 (en) 2005-02-23

Family

ID=17575846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27689198A Expired - Fee Related JP3623110B2 (en) 1998-09-30 1998-09-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3623110B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680804B2 (en) * 1982-07-13 1997-11-19 日本電気株式会社 Semiconductor laser
JPS6281782A (en) * 1985-10-07 1987-04-15 Fujitsu Ltd Semiconductor light emitting device
JPS6331187A (en) * 1986-07-24 1988-02-09 Nec Corp Semiconductor laser
JP2690538B2 (en) * 1988-12-28 1997-12-10 京セラ株式会社 Semiconductor light emitting device
JPH04343484A (en) * 1991-05-21 1992-11-30 Eastman Kodak Japan Kk Luminous diode array
JP2958182B2 (en) * 1992-02-28 1999-10-06 京セラ株式会社 Semiconductor light emitting device
JPH05327018A (en) * 1992-05-18 1993-12-10 Victor Co Of Japan Ltd Semiconductor light emitting device and its manufacture
JPH07254732A (en) * 1994-03-15 1995-10-03 Toshiba Corp Semiconductor light emitting device
JP3769872B2 (en) * 1997-05-06 2006-04-26 ソニー株式会社 Semiconductor light emitting device
JPH11135837A (en) * 1997-10-29 1999-05-21 Kyocera Corp Semiconductor light-emitting device
JP3693142B2 (en) * 1997-12-11 2005-09-07 株式会社リコー Semiconductor laser device and manufacturing method thereof
JPH11233826A (en) * 1998-02-12 1999-08-27 Oki Electric Ind Co Ltd Edge face light emitting type semiconductor light emitting device and manufacture thereof

Also Published As

Publication number Publication date
JP2000114589A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP2000196149A (en) Semiconductor light emitting device and its manufacture
JP3623110B2 (en) Semiconductor light emitting device
JP4126448B2 (en) Manufacturing method of semiconductor light emitting device
JP4382902B2 (en) LED array and manufacturing method thereof
JPH11135837A (en) Semiconductor light-emitting device
JP4587515B2 (en) Manufacturing method of semiconductor light emitting device
JP3559463B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4360573B2 (en) LED array
JP3638418B2 (en) Semiconductor light emitting device
JP4184521B2 (en) Semiconductor light emitting device
JP4256014B2 (en) Light emitting diode array
JP3236649B2 (en) Semiconductor light emitting device
JP4012716B2 (en) LED array and manufacturing method thereof
JP3667208B2 (en) LED array for optical printer
JP2001284650A (en) Semiconductor light emitting element
JP4295380B2 (en) Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP4247937B2 (en) Manufacturing method of semiconductor light emitting device
JP3140123B2 (en) Semiconductor light emitting device
JP4417635B2 (en) LED array and manufacturing method thereof
JP3722680B2 (en) LED array
JP4436528B2 (en) Semiconductor light emitting device
JP4045044B2 (en) Manufacturing method of semiconductor light emitting device
JP3540947B2 (en) Light emitting diode array
JP2000223744A (en) Light emitting diode array
JP3735459B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees